SlideShare a Scribd company logo
1 of 49
Download to read offline
DESIGN  OF  IMPROVED  SURFACE  MARKER  
BUOY  (SMB)  FOR  SCUBA  DIVERS
Min  Maung,  Kevin  Sakumoto,  Cody  Sato,  Brandon  Uchimura
University  of  Southern  California
Department  of  Aerospace  and  Mechanical  Engineering
PRESENTERS:
Sunday,  March  29th,  2015DATE:
|      
BACKGROUND
BACKGROUND >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN
What  is  a  Surface  Marker  Buoy  (SMB)?
• Device  used  by  Scuba  Divers
• Inflated  and  released  from  submerged  
diver  at  depth,  typical  max  35  m
• Ascends  to  surface  when  inflated
• Signal  location  of  submerged  divers  to  
observers  at  surface
|      
BACKGROUND
How  to  Use  an  SMB:
1. Attach  SMB  to  line  
attached  to  a  reel  
attached  to  the  
diver.
2. Inflate  SMB  with  air  
from  diver’s  dive  
tank  regulator  to  
about  50%  capacity.
3. Release  the  SMB  
and  monitor  its  
ascent  to  the  
surface.
4. Apply  tension  to  reel  
line  when  the  SMB  
surfaces  to  ensure  
upright  position
BACKGROUND >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN
|      
BACKGROUND
Problems  with  SMB  Currently  in  
the  Market:
1.Reel  Jamming
BACKGROUND >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN
|      
BACKGROUND
Problems  with  SMB  Currently  in  
the  Market:
1. Reel  Jamming
2.    Uncontrolled  Ascent
BACKGROUND >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN
|      
BACKGROUND
Problems  with  SMB  Currently  in  
the  Market:
1. Reel  Jamming
2.      Uncontrolled  Ascent
3.    Inflation  of  SMB
BACKGROUND >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN
|      
Design  Requirements:
1. SMB  can  stabilize  autonomously  at  the  surface
2. SMB  is  not  submerged  more  than  40%  at  the  surface
3. SMB  vertical  ascent  velocity  is  minimized
4. SMB  can  inflate  without  pressurized  air  from  diver’s  air  tank
PROJECT  SCOPE
BACKGROUND  >>  PROJECT  SCOPE>>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN
Steps  for  Iterative  Method
1. Develop  MATLAB  model  of  ascent  and  stability  at  surface  of  SMB
2. Fabricate  a  functional  prototype
3. Test  and  evaluate  the  functional  prototype
APPROACH
BACKGROUND  >>  PROJECT  SCOPE  >>  APPROACH >>  DESIGN  ITERATION  >>  FINAL  DESIGN
MATLAB  MODEL FABRICATION
TEST  AND  
EVALUATION
Y/N
FINAL  PRODUCT  
DESIGN
|      
CONCEPT:
• 3  passively-­controlled  
nozzles  on  opposing  sides  
of  SMB
• 1  excess  thrust  nozzle  at  
base  of  SMB
• Valves  release  air  to  keep  
vertical  trajectory
PRODUCT  DESIGN  ITERATION  #1:
CONCEPTUAL  DESIGN
BACKGROUND  >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN
PRESSURE  RELIEF  
VALVE  (x4)
SMB  BODY
PHYSICAL  MODEL:
Illustration  of  forces  acting  on  
buoy.
FB =  ρwater VSMB g
PRODUCT  DESIGN  ITERATION  #1:
NUMERICAL  SIMULATION
FB
PHYSICAL  MODEL:
Illustration  of  forces  acting  on  
buoy.
FB =  ρwater VSMB g
FD is  drag  acting  on  the  SMB  
and  Fg is  weight  of  buoy.
PRODUCT  DESIGN  ITERATION  #1:
NUMERICAL  SIMULATION
FB
FD
Fg
PHYSICAL  MODEL:
Illustration  of  forces  acting  on  
buoy.
FB =  ρwater VSMB g
FD is  drag  acting  on  the  SMB  and  
Fg is  weight  of  buoy.
Fthrust is  force  created  by  mass  
flow  from  valves
PRODUCT  DESIGN  ITERATION  #1:
NUMERICAL  SIMULATION
Fthrust
FB
FD
Fg
Fthrust
Fthrust
PRODUCT  DESIGN  ITERATION  #1:
NUMERICAL  SIMULATION
PLOT  FORCES  v.  TIME:
Fthrust <<  1N  at  all  times.
Not  enough  mass  flow  to  adjust  trajectory.
Fthrust
FB
FD
Fg
Fthrust
Fthrust
FD FB Fthrust
t [s]
F[N]
PRODUCT  DESIGN  ITERATION  #1:
NUMERICAL  SIMULATION
PLOT  FORCES  v.  TIME:
FD =  FB once  the  buoy  reaches  terminal  velocity,  Uterminal
FD FB Fthrust
t [s]
F[N]
Fthrust
FB
FD
Fg
Fthrust
Fthrust
|      
CONCEPT:
• Drag  chute  attached  to  base  
of  SMB
• Drag  chute  fills  with  water  
during  ascent  to  shift  CG
PRODUCT  DESIGN  ITERATION  #2:
CONCEPTUAL  DESIGN
BACKGROUND  >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN
PRESSURE  RELIEF  VALVE
SMB  BODY
DRAG  CHUTE
PRODUCT  DESIGN  ITERATION  #2:
NUMERICAL  MODEL
Adragchute used  for  fabrication:  
0.092  m2 (1  ft  x  1  ft)
PLOT  TERMINAL  VELOCITY  v.  AREA  OF  DRAG  CHUTE:
Factors  to  consider:
• Low  terminal  velocity  to  avoid  uncontrollable  ascent
• Large  enough  chute  area  to  provide  stability  at  surface
FB
Adragchute [m2]
Uterminal[m/s]
FD
Fg
PRODUCT  DESIGN  ITERATION  #2:
NUMERICAL  MODEL
PLOT  CG-­CB V.  CHUTE  HEIGHT
CG:  Centroid of  an  object
CB:  Centroid of  submerged  object
CG
CBhdragchute
hdragchute [m]
PRODUCT  DESIGN  ITERATION  #2:
NUMERICAL  MODEL
PLOT  CG-­CB V.  CHUTE  HEIGHT
CG:  Centroid of  an  object
CB:  Centroid of  submerged  object
hdragchute used  for  
fabrication:
0.125  m  (~5  in)
hdragchute
hdragchute [m]
CG
CB
Hollow  rods  bent  around  metal  
rings
Chute  attached  with  soldering  iron  and  
adhesive
Ring
Rods
Adhesive  
BACKGROUND  >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN
PRODUCT  DESIGN  ITERATION  #2A:
FABRICATION
BACKGROUND  >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN
Close  up  view
Chute  
attached  
to  buoy
PRODUCT  DESIGN  ITERATION  #2A:
FABRICATION
|      
FUNCTIONAL  TEST  METHOD:
Stability  During  Ascent:
Released  buoy  and  chute  from  submerged  position  to  
qualitatively  test  for  chute  stability
Stability  at  Surface:
Qualitatively  assessed  if  buoy  remained  upright  at  surface
PRODUCT  DESIGN  ITERATION  #2A+B:
TEST  AND  EVALUATION
BACKGROUND  >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN
|      
PRODUCT  DESIGN  ITERATION  #2A:
TEST  AND  EVALUATION
BACKGROUND  >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN
HEXAGONAL  CHUTE:
• Corners/joints  broke  and  were  not  
rigid  enough  to  keep  chute  shape
• Chute  collapsed  during  ascent  and  
at  surface
Improvements:
• Rubber  bands  to  
make  flexible  
joints
• Thicker,  solid  
rods  
• Thicker  nylon  
fabric
Rubber  band
Heat  
treatment
Rods  
BACKGROUND  >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN
PRODUCT  DESIGN  ITERATION  #2B:
FABRICATION
New  additions  to  design:
• Sewing
• Adhesive
• Zip  ties  w/rods  and  hooks
Zip  ties
Rods  and  hooks
Adhesive  Sewing  
BACKGROUND  >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN
BACKGROUND  >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN
New  square  chute  did  not  
break  apart:
• Rods  remained  straight
• Joints  stayed  together
• Chute  folds  as  designed
|      
PRODUCT  DESIGN  ITERATION  #2B:
TEST  AND  EVALUATION
BACKGROUND  >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN
SQUARE  CHUTE:
Joint  rigidity  problem  fixed
à Sturdier
BUT…
Joints  kept
unbalanced  shape
à Chute  not  
symmetric
NOT  STABLE  AT
SURFACE
|      
SUMMARY  OF  FUNCTIONAL  TESTS:
Joints  did  not  function  well  enough  to  justify  using  design
Fabrication  limited  the  functionality  of  the  design
PRODUCT  DESIGN  ITERATION  #2A+B:
TEST  AND  EVALUATION
BACKGROUND  >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN
|      
CONCEPT:
• Weight  hung  from  bottom  of  
SMB
• Replicate  reel  tension  for  
surface  stability
• Added  weight  reduces  
ascent  velocity  and  
trajectory  perturbations
PRODUCT  DESIGN  ITERATION  #3:
CONCEPTUAL  DESIGN
BACKGROUND  >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN
PRESSURE  RELIEF  VALVE
SMB  BODY
WEIGHT
PRODUCT  DESIGN  ITERATION  #3:
NUMERICAL  MODEL
0"
5"
10"
15"
20"
25"
30"
35"
40"
45"
50"
0.2" 0.3" 0.4" 0.5" 0.6" 0.7" 0.8" 0.9" 1"
height&submerged&[%]&
mass&of&weight&[kg]&
40%"SUBMERGED"HEIGHT"LIMIT"
PLOT  MASS  OF  WEIGHT,  mweight v.  SUBMERGED  HEIGHT,  hsubmerged:
Maximum  
allowable  mweight
= 0.820  kg
BACKGROUND  >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN
mweight [m]
hsubmerged[m]
hsubmerged
PLOT  TIME  RESPONSE  OF  SMB  ANGULAR  POSITION,  θ:
PRODUCT  DESIGN  ITERATION  #3:
NUMERICAL  MODEL
!10$
0$
10$
20$
30$
40$
50$
60$
0$ 0.5$ 1$ 1.5$ 2$ 2.5$ 3$ 3.5$ 4$ 4.5$ 5$
angular'posi,on'[deg]'
,me'[s]'
+θ
θinitial:  60°
mweight:  0.526  kg
BACKGROUND  >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN
t  [s]
θ[°]
PRODUCT  DESIGN  ITERATION  #3:
NUMERICAL  MODEL
!10$
0$
10$
20$
30$
40$
50$
60$
0$ 0.5$ 1$ 1.5$ 2$ 2.5$ 3$ 3.5$ 4$ 4.5$ 5$
angular'posi,on'[deg]'
,me'[s]'
BACKGROUND  >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN
PLOT  TIME  RESPONSE  OF  SMB  ANGULAR  POSITION,  θ:
θinitial:  60°
mweight:  0.526  kg
+θ
t  [s]
θ[°]
Velocity  [m/s] PRODUCT  DESIGN  ITERATION  #3:
NUMERICAL  MODEL
PLOT  TIME  RESPONSE  OF  U
mweight:  0.526kg
Uterminal reached  in  <  0.1  s.
Uterminal @  tss,2%
BACKGROUND  >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN
t  [s]
U  [m/s]
FB
FD
Fg
𝑈"#$%&'() =
2 ∗ 𝐹. − 𝐹0
𝜌2("#$ 𝐴4$5666#4"&5' 𝐶8
PRODUCT  DESIGN  ITERATION  #3:
NUMERICAL  MODEL
PLOT  TIME  RESPONSE  OF  DEPTH
mweight:  0.526kg
tascent <  9  seconds  from  a  depth  of  35  m  to  surface
BACKGROUND  >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN
t  [s]
depth  [m]
35  m  depth
NUMERICAL  SIMULATION:  m  vs  Uvelocity
Uterminal varies  by  <  1.5  m/s  for  a  weight  attachment  of  0.5  kg  and  1.5  kg
àso  sizing  is    BALANCE  among  design  factors.  
àmweight =  0.526kg  is  a  balance
PRODUCT  DESIGN  ITERATION  #3:
NUMERICAL  MODEL
BACKGROUND  >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN
mweight [kg]
Uterminal[m/s]
FB
FD
Fg
𝑈"#$%&'() =
2 ∗ 𝐹. − 𝐹0
𝜌2("#$ 𝐴4$5666#4"&5' 𝐶8
Buoy  
Weight
apparatus
Test  rig
BACKGROUND  >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN
PRODUCT  DESIGN  ITERATION  #3:
FABRICATION
Carabiner
BACKGROUND  >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN
Fabrication  Method:
• Weight  is  secured  onto  test  rig
• Test  rig  connected  to  carabiner
• Carabiner connected  to  buoy
|      
QUALITATIVE  SUMMARY  OF  FUNCTIONAL  TESTS:
During  Ascent:
Trajectory  perturbations  dampened
Added  weight  to  SMB  reduced  ascent  speed
At  Surface:
SMB  achieves  surface  stability  in  both  calm  and  wave  
conditions
PRODUCT  DESIGN  ITERATION  #3:
TEST  AND  EVALUATION
BACKGROUND  >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN
|      
TEST  METHOD:  for Height  Submerged  of  SMB
Static  Testing
Attached  various  masses  to  bottom  of  SMB  and  measured  height  
submerged,  hsubmerged
PRODUCT  DESIGN  ITERATION  #3:
TEST  AND  EVALUATION
BACKGROUND  >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN
SMB
mweight_2
hsubmerged_1
hsubmerged_2
mweight_1
|      
RESULTS:  for  Height  Submerged  of  SMB
PRODUCT  DESIGN  ITERATION  #3:
TEST  AND  EVALUATION
BACKGROUND  >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN
0"
5"
10"
15"
20"
25"
30"
35"
40"
45"
50"
0.2" 0.3" 0.4" 0.5" 0.6" 0.7" 0.8" 0.9" 1"
height&submerged&[%]&
mass&of&weight&[kg]&
theore2cal" experimental" limit"
Outliers  result  from  differing  
submerged  volumes  with  mass  
changes
40%  SUBMERGED  HEIGHT  LIMIT
mweight [m]
hsubmerged[m]
hsubmerged
|      
TEST  METHOD:  for Surface  Stability
Dynamic  Testing:
Perturbed  the  buoy  at  an  angle  of  60° and  determined  convergence  
to  a  stable  state  (0°± 5°).
PRODUCT  DESIGN  ITERATION  #3:
TEST  AND  EVALUATION
BACKGROUND  >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN
SMB
θinitial =  60°
!30
!20
!10
0
10
20
30
40
50
60
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
q[°]
t"[s]
theoretical experiment
|      
TEST  AND  EVAULATION:  for  Surface  Stability
PRODUCT  DESIGN  ITERATION  #3:
TEST  AND  EVALUATION
BACKGROUND  >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN
Both  datasets  show  
convergence  to  0°
tss_th_5deg =  1.9s
tss_exp_5deg =  4.7s +θ
t  [s]
θ[°]
|      
TEST  METHOD:  for  Ascent  Time
Measure  ascent  time  ,  tascent from  a  specified  depth  until  top  of  SMB  
reaches  surface  of  water
PRODUCT  DESIGN  ITERATION  #3:
TEST  AND  EVALUATION
BACKGROUND  >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN
depth
|      
Known  Limitations  with  Testing  for  Ascent  Time:
RESULTS:
Identified  time  to  Uterminal <  1s
Ascent  data  was  not  within  acceptable  uncertainty
àBuoy  depth  not  accurate  enough
àInconsistent  external  forces  lengthen  distance  of  ascent
PRODUCT  DESIGN  ITERATION  #3:
TEST  AND  EVALUATION
BACKGROUND  >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN
1.  Lack  of  certified  
experimental  diver  to  
conduct  test  at  35  m  
depth  in  a  controlled  
test  setup
2.  Limited  space  
to  build  on-­site  
controlled  test  
setup
3.  Swimming  pool  
depths  (3-­5  m)  not  
deep  enough  
BACKGROUND  >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >> FINAL  DESIGN
FINAL  PRODUCT  DESIGN  AND  
EVALUATION
Capsule
Air  Canister
3-­View  Drawing
units  mm
• Have  not  built/tested  yet
• Makes  the  weight  more  compact  
• Includes  air  canister  and  tube  to  
fill  buoy
Tube  
Buoy  
nozzle
Buoy  
Capsule  
BACKGROUND  >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN
FINAL  PRODUCT  DESIGN  AND  
EVALUATION
REFERENCES  |    
GENERAL
• Weight  apparatus  accomplished  design  criteria:
– Stabilizes  at  surface  when  perturbed
– Submerges  <  40%  of  SMB  height
– Dampers  ascent  perturbations  and  weight  apparatus  increases  FD to  reduce  Uterminal
– Pressurized  air  canister  does  not  require  diver  to  use  mouth  piece  to  inflate  SMB
FUTURE  WORK  and  PROPOSALS
• New  controlled  test  setup
– Long  cylindrical  column  of  water,  40m  height  and  x4  SMB  diameter,  with  pulley  
motor  attached  to  rope  attached  to  SMB  to  submerge  SMB  to  testing  depth
– Overcomes  limitations  from  strong  buoyant  forces
• Continue  refining  final  design
– Stress  analysis
– Human-­‐factor  usability  tests
CONCLUSION
REFERENCES  |    
"Satellite  Applications  for  Geoscience  Education." Satellite  Applications  for  Geoscience  Education.  
N.p.,  n.d. Web.  04  Sept.  2014.  
<https://cimss.ssec.wisc.edu/sage/oceanography/lesson4/concepts.html>.
Saltsman,  Robert  R.  "Diver  Operated  Tools  and  Applications  for  Underwater  Construction." University  
of  Florida (1987):  n.  pag.  Web.  4  Sept.  2014.  <http://www.dtic.mil/dtic/tr/fulltext/u2/a190264.pdf>.
"Result  Filters." National  Center  for  Biotechnology  Information.  U.S.  National  Library  of  Medicine,  n.d.
Web.  04  Sept.  2014.  <http://www.ncbi.nlm.nih.gov/pubmed/10517789>.
Prusa,  Joseph  M.  "Hydrodynamics  of  a  Water  Rocket." SIAM  Review 42.4  (2000):  719.  Web.  
<http://epubs.siam.org/doi/pdf/10.1137/S0036144598348223>.
"XS  Scuba  Surface  Marker  Buoy."  XS  Scuba  Surface  Marker  Buoy.  XS  Scuba,  2014.  Web.  05  Sept.  
2014.
REFERENCES
[1]
[2]
[3]
[4]
[5]
REFERENCES  |    
QUESTIONS?
Y
X
XY
CENTER  OF  GRAVITY  (CG)
CENTER  OF  BUOYANCY  (CB)
Y
X
XY
FW
FH20_1
FH20_2
FEXT
+q
+M
FB
ADRY_2
AH20_1
AH20_2
PH20_1
PH20_2
FH20_1
FH20_2
+q
Y
X
XY
FW
FW cosq
FW sinq
FB
FB sinq
FB cosq

More Related Content

Similar to Final [Presentation] AIAA_ImprovedSurfaceMarkerBuoyforScubaDivers

Rfp09498 p2 pres_t05
Rfp09498 p2 pres_t05Rfp09498 p2 pres_t05
Rfp09498 p2 pres_t05rplaughl
 
IRJET- Structural Analysis and Design of Pump House
IRJET- Structural Analysis and Design of Pump HouseIRJET- Structural Analysis and Design of Pump House
IRJET- Structural Analysis and Design of Pump HouseIRJET Journal
 
Casing Design | Tubing | Well Control | Drilling | Gaurav Singh Rajput
Casing Design | Tubing | Well Control | Drilling | Gaurav Singh RajputCasing Design | Tubing | Well Control | Drilling | Gaurav Singh Rajput
Casing Design | Tubing | Well Control | Drilling | Gaurav Singh RajputGaurav Singh Rajput
 
hochPPT thesis statement master civil engineering.pptx
hochPPT thesis statement master civil engineering.pptxhochPPT thesis statement master civil engineering.pptx
hochPPT thesis statement master civil engineering.pptxZakaria156221
 
Présentation master thesesis in civil department pptx
Présentation master thesesis in civil department pptxPrésentation master thesesis in civil department pptx
Présentation master thesesis in civil department pptxZakaria156221
 
Flat slab design
Flat slab designFlat slab design
Flat slab designMoussa Rili
 
EarthQuake Reistant Building
EarthQuake Reistant BuildingEarthQuake Reistant Building
EarthQuake Reistant BuildingHemant Srivastava
 
UMAID IQBAL SEMINAR.pptx
UMAID IQBAL SEMINAR.pptxUMAID IQBAL SEMINAR.pptx
UMAID IQBAL SEMINAR.pptxPraveendubey82
 
MINIATURIZED CYLINDER HEAD PRODUCTION BY RAPID PROTOTYPING
MINIATURIZED CYLINDER HEAD PRODUCTION BY RAPID PROTOTYPINGMINIATURIZED CYLINDER HEAD PRODUCTION BY RAPID PROTOTYPING
MINIATURIZED CYLINDER HEAD PRODUCTION BY RAPID PROTOTYPINGRodrigo Melo
 
Metode Konstruksi Offshore Platform_2016_2_18.ppt
Metode Konstruksi Offshore Platform_2016_2_18.pptMetode Konstruksi Offshore Platform_2016_2_18.ppt
Metode Konstruksi Offshore Platform_2016_2_18.pptMFaridGeonova
 
Slab on ground 11111111111111111111111111111111111111111111111111
Slab on ground 11111111111111111111111111111111111111111111111111Slab on ground 11111111111111111111111111111111111111111111111111
Slab on ground 11111111111111111111111111111111111111111111111111dat phạm tiến
 
Senior Design Final Presentation (Fin)
Senior Design Final Presentation (Fin)Senior Design Final Presentation (Fin)
Senior Design Final Presentation (Fin)Damone Norwood
 
Ship construction project
Ship construction projectShip construction project
Ship construction projectMummina Sekhar
 
Industrial training report
Industrial training reportIndustrial training report
Industrial training reportkiransuresh7
 
Industrial training report
Industrial training reportIndustrial training report
Industrial training reportkiransuresh7
 
02_Practical_Design_Balanced_Cantilever_Bridges_Piyush_R1.pdf
02_Practical_Design_Balanced_Cantilever_Bridges_Piyush_R1.pdf02_Practical_Design_Balanced_Cantilever_Bridges_Piyush_R1.pdf
02_Practical_Design_Balanced_Cantilever_Bridges_Piyush_R1.pdfpulakrajpadhai
 
PPT of final on Ultra low head turbine(crossflow)final.pptx
PPT of final on Ultra low head turbine(crossflow)final.pptxPPT of final on Ultra low head turbine(crossflow)final.pptx
PPT of final on Ultra low head turbine(crossflow)final.pptxPawanSharma565262
 

Similar to Final [Presentation] AIAA_ImprovedSurfaceMarkerBuoyforScubaDivers (20)

Rfp09498 p2 pres_t05
Rfp09498 p2 pres_t05Rfp09498 p2 pres_t05
Rfp09498 p2 pres_t05
 
IRJET- Structural Analysis and Design of Pump House
IRJET- Structural Analysis and Design of Pump HouseIRJET- Structural Analysis and Design of Pump House
IRJET- Structural Analysis and Design of Pump House
 
Casing Design | Tubing | Well Control | Drilling | Gaurav Singh Rajput
Casing Design | Tubing | Well Control | Drilling | Gaurav Singh RajputCasing Design | Tubing | Well Control | Drilling | Gaurav Singh Rajput
Casing Design | Tubing | Well Control | Drilling | Gaurav Singh Rajput
 
hochPPT thesis statement master civil engineering.pptx
hochPPT thesis statement master civil engineering.pptxhochPPT thesis statement master civil engineering.pptx
hochPPT thesis statement master civil engineering.pptx
 
Présentation master thesesis in civil department pptx
Présentation master thesesis in civil department pptxPrésentation master thesesis in civil department pptx
Présentation master thesesis in civil department pptx
 
Flat slab design
Flat slab designFlat slab design
Flat slab design
 
EarthQuake Reistant Building
EarthQuake Reistant BuildingEarthQuake Reistant Building
EarthQuake Reistant Building
 
Casing_Design(1).ppt
Casing_Design(1).pptCasing_Design(1).ppt
Casing_Design(1).ppt
 
UMAID IQBAL SEMINAR.pptx
UMAID IQBAL SEMINAR.pptxUMAID IQBAL SEMINAR.pptx
UMAID IQBAL SEMINAR.pptx
 
MINIATURIZED CYLINDER HEAD PRODUCTION BY RAPID PROTOTYPING
MINIATURIZED CYLINDER HEAD PRODUCTION BY RAPID PROTOTYPINGMINIATURIZED CYLINDER HEAD PRODUCTION BY RAPID PROTOTYPING
MINIATURIZED CYLINDER HEAD PRODUCTION BY RAPID PROTOTYPING
 
Metode Konstruksi Offshore Platform_2016_2_18.ppt
Metode Konstruksi Offshore Platform_2016_2_18.pptMetode Konstruksi Offshore Platform_2016_2_18.ppt
Metode Konstruksi Offshore Platform_2016_2_18.ppt
 
Engineering portfolio
Engineering portfolioEngineering portfolio
Engineering portfolio
 
Slab on ground 11111111111111111111111111111111111111111111111111
Slab on ground 11111111111111111111111111111111111111111111111111Slab on ground 11111111111111111111111111111111111111111111111111
Slab on ground 11111111111111111111111111111111111111111111111111
 
Senior Design Final Presentation (Fin)
Senior Design Final Presentation (Fin)Senior Design Final Presentation (Fin)
Senior Design Final Presentation (Fin)
 
Ship construction project
Ship construction projectShip construction project
Ship construction project
 
GLM-introduction and approach
GLM-introduction and approachGLM-introduction and approach
GLM-introduction and approach
 
Industrial training report
Industrial training reportIndustrial training report
Industrial training report
 
Industrial training report
Industrial training reportIndustrial training report
Industrial training report
 
02_Practical_Design_Balanced_Cantilever_Bridges_Piyush_R1.pdf
02_Practical_Design_Balanced_Cantilever_Bridges_Piyush_R1.pdf02_Practical_Design_Balanced_Cantilever_Bridges_Piyush_R1.pdf
02_Practical_Design_Balanced_Cantilever_Bridges_Piyush_R1.pdf
 
PPT of final on Ultra low head turbine(crossflow)final.pptx
PPT of final on Ultra low head turbine(crossflow)final.pptxPPT of final on Ultra low head turbine(crossflow)final.pptx
PPT of final on Ultra low head turbine(crossflow)final.pptx
 

Final [Presentation] AIAA_ImprovedSurfaceMarkerBuoyforScubaDivers

  • 1. DESIGN  OF  IMPROVED  SURFACE  MARKER   BUOY  (SMB)  FOR  SCUBA  DIVERS Min  Maung,  Kevin  Sakumoto,  Cody  Sato,  Brandon  Uchimura University  of  Southern  California Department  of  Aerospace  and  Mechanical  Engineering PRESENTERS: Sunday,  March  29th,  2015DATE:
  • 2. |       BACKGROUND BACKGROUND >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN What  is  a  Surface  Marker  Buoy  (SMB)? • Device  used  by  Scuba  Divers • Inflated  and  released  from  submerged   diver  at  depth,  typical  max  35  m • Ascends  to  surface  when  inflated • Signal  location  of  submerged  divers  to   observers  at  surface
  • 3. |       BACKGROUND How  to  Use  an  SMB: 1. Attach  SMB  to  line   attached  to  a  reel   attached  to  the   diver. 2. Inflate  SMB  with  air   from  diver’s  dive   tank  regulator  to   about  50%  capacity. 3. Release  the  SMB   and  monitor  its   ascent  to  the   surface. 4. Apply  tension  to  reel   line  when  the  SMB   surfaces  to  ensure   upright  position BACKGROUND >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN
  • 4. |       BACKGROUND Problems  with  SMB  Currently  in   the  Market: 1.Reel  Jamming BACKGROUND >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN
  • 5. |       BACKGROUND Problems  with  SMB  Currently  in   the  Market: 1. Reel  Jamming 2.    Uncontrolled  Ascent BACKGROUND >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN
  • 6. |       BACKGROUND Problems  with  SMB  Currently  in   the  Market: 1. Reel  Jamming 2.      Uncontrolled  Ascent 3.    Inflation  of  SMB BACKGROUND >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN
  • 7. |       Design  Requirements: 1. SMB  can  stabilize  autonomously  at  the  surface 2. SMB  is  not  submerged  more  than  40%  at  the  surface 3. SMB  vertical  ascent  velocity  is  minimized 4. SMB  can  inflate  without  pressurized  air  from  diver’s  air  tank PROJECT  SCOPE BACKGROUND  >>  PROJECT  SCOPE>>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN
  • 8. Steps  for  Iterative  Method 1. Develop  MATLAB  model  of  ascent  and  stability  at  surface  of  SMB 2. Fabricate  a  functional  prototype 3. Test  and  evaluate  the  functional  prototype APPROACH BACKGROUND  >>  PROJECT  SCOPE  >>  APPROACH >>  DESIGN  ITERATION  >>  FINAL  DESIGN MATLAB  MODEL FABRICATION TEST  AND   EVALUATION Y/N FINAL  PRODUCT   DESIGN
  • 9. |       CONCEPT: • 3  passively-­controlled   nozzles  on  opposing  sides   of  SMB • 1  excess  thrust  nozzle  at   base  of  SMB • Valves  release  air  to  keep   vertical  trajectory PRODUCT  DESIGN  ITERATION  #1: CONCEPTUAL  DESIGN BACKGROUND  >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN PRESSURE  RELIEF   VALVE  (x4) SMB  BODY
  • 10. PHYSICAL  MODEL: Illustration  of  forces  acting  on   buoy. FB =  ρwater VSMB g PRODUCT  DESIGN  ITERATION  #1: NUMERICAL  SIMULATION FB
  • 11. PHYSICAL  MODEL: Illustration  of  forces  acting  on   buoy. FB =  ρwater VSMB g FD is  drag  acting  on  the  SMB   and  Fg is  weight  of  buoy. PRODUCT  DESIGN  ITERATION  #1: NUMERICAL  SIMULATION FB FD Fg
  • 12. PHYSICAL  MODEL: Illustration  of  forces  acting  on   buoy. FB =  ρwater VSMB g FD is  drag  acting  on  the  SMB  and   Fg is  weight  of  buoy. Fthrust is  force  created  by  mass   flow  from  valves PRODUCT  DESIGN  ITERATION  #1: NUMERICAL  SIMULATION Fthrust FB FD Fg Fthrust Fthrust
  • 13. PRODUCT  DESIGN  ITERATION  #1: NUMERICAL  SIMULATION PLOT  FORCES  v.  TIME: Fthrust <<  1N  at  all  times. Not  enough  mass  flow  to  adjust  trajectory. Fthrust FB FD Fg Fthrust Fthrust FD FB Fthrust t [s] F[N]
  • 14. PRODUCT  DESIGN  ITERATION  #1: NUMERICAL  SIMULATION PLOT  FORCES  v.  TIME: FD =  FB once  the  buoy  reaches  terminal  velocity,  Uterminal FD FB Fthrust t [s] F[N] Fthrust FB FD Fg Fthrust Fthrust
  • 15. |       CONCEPT: • Drag  chute  attached  to  base   of  SMB • Drag  chute  fills  with  water   during  ascent  to  shift  CG PRODUCT  DESIGN  ITERATION  #2: CONCEPTUAL  DESIGN BACKGROUND  >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN PRESSURE  RELIEF  VALVE SMB  BODY DRAG  CHUTE
  • 16. PRODUCT  DESIGN  ITERATION  #2: NUMERICAL  MODEL Adragchute used  for  fabrication:   0.092  m2 (1  ft  x  1  ft) PLOT  TERMINAL  VELOCITY  v.  AREA  OF  DRAG  CHUTE: Factors  to  consider: • Low  terminal  velocity  to  avoid  uncontrollable  ascent • Large  enough  chute  area  to  provide  stability  at  surface FB Adragchute [m2] Uterminal[m/s] FD Fg
  • 17. PRODUCT  DESIGN  ITERATION  #2: NUMERICAL  MODEL PLOT  CG-­CB V.  CHUTE  HEIGHT CG:  Centroid of  an  object CB:  Centroid of  submerged  object CG CBhdragchute hdragchute [m]
  • 18. PRODUCT  DESIGN  ITERATION  #2: NUMERICAL  MODEL PLOT  CG-­CB V.  CHUTE  HEIGHT CG:  Centroid of  an  object CB:  Centroid of  submerged  object hdragchute used  for   fabrication: 0.125  m  (~5  in) hdragchute hdragchute [m] CG CB
  • 19. Hollow  rods  bent  around  metal   rings Chute  attached  with  soldering  iron  and   adhesive Ring Rods Adhesive   BACKGROUND  >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN PRODUCT  DESIGN  ITERATION  #2A: FABRICATION
  • 20. BACKGROUND  >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN Close  up  view Chute   attached   to  buoy PRODUCT  DESIGN  ITERATION  #2A: FABRICATION
  • 21. |       FUNCTIONAL  TEST  METHOD: Stability  During  Ascent: Released  buoy  and  chute  from  submerged  position  to   qualitatively  test  for  chute  stability Stability  at  Surface: Qualitatively  assessed  if  buoy  remained  upright  at  surface PRODUCT  DESIGN  ITERATION  #2A+B: TEST  AND  EVALUATION BACKGROUND  >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN
  • 22. |       PRODUCT  DESIGN  ITERATION  #2A: TEST  AND  EVALUATION BACKGROUND  >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN HEXAGONAL  CHUTE: • Corners/joints  broke  and  were  not   rigid  enough  to  keep  chute  shape • Chute  collapsed  during  ascent  and   at  surface
  • 23. Improvements: • Rubber  bands  to   make  flexible   joints • Thicker,  solid   rods   • Thicker  nylon   fabric Rubber  band Heat   treatment Rods   BACKGROUND  >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN PRODUCT  DESIGN  ITERATION  #2B: FABRICATION
  • 24. New  additions  to  design: • Sewing • Adhesive • Zip  ties  w/rods  and  hooks Zip  ties Rods  and  hooks Adhesive  Sewing   BACKGROUND  >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN
  • 25. BACKGROUND  >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN New  square  chute  did  not   break  apart: • Rods  remained  straight • Joints  stayed  together • Chute  folds  as  designed
  • 26. |       PRODUCT  DESIGN  ITERATION  #2B: TEST  AND  EVALUATION BACKGROUND  >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN SQUARE  CHUTE: Joint  rigidity  problem  fixed à Sturdier BUT… Joints  kept unbalanced  shape à Chute  not   symmetric NOT  STABLE  AT SURFACE
  • 27. |       SUMMARY  OF  FUNCTIONAL  TESTS: Joints  did  not  function  well  enough  to  justify  using  design Fabrication  limited  the  functionality  of  the  design PRODUCT  DESIGN  ITERATION  #2A+B: TEST  AND  EVALUATION BACKGROUND  >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN
  • 28. |       CONCEPT: • Weight  hung  from  bottom  of   SMB • Replicate  reel  tension  for   surface  stability • Added  weight  reduces   ascent  velocity  and   trajectory  perturbations PRODUCT  DESIGN  ITERATION  #3: CONCEPTUAL  DESIGN BACKGROUND  >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN PRESSURE  RELIEF  VALVE SMB  BODY WEIGHT
  • 29. PRODUCT  DESIGN  ITERATION  #3: NUMERICAL  MODEL 0" 5" 10" 15" 20" 25" 30" 35" 40" 45" 50" 0.2" 0.3" 0.4" 0.5" 0.6" 0.7" 0.8" 0.9" 1" height&submerged&[%]& mass&of&weight&[kg]& 40%"SUBMERGED"HEIGHT"LIMIT" PLOT  MASS  OF  WEIGHT,  mweight v.  SUBMERGED  HEIGHT,  hsubmerged: Maximum   allowable  mweight = 0.820  kg BACKGROUND  >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN mweight [m] hsubmerged[m] hsubmerged
  • 30. PLOT  TIME  RESPONSE  OF  SMB  ANGULAR  POSITION,  θ: PRODUCT  DESIGN  ITERATION  #3: NUMERICAL  MODEL !10$ 0$ 10$ 20$ 30$ 40$ 50$ 60$ 0$ 0.5$ 1$ 1.5$ 2$ 2.5$ 3$ 3.5$ 4$ 4.5$ 5$ angular'posi,on'[deg]' ,me'[s]' +θ θinitial:  60° mweight:  0.526  kg BACKGROUND  >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN t  [s] θ[°]
  • 31. PRODUCT  DESIGN  ITERATION  #3: NUMERICAL  MODEL !10$ 0$ 10$ 20$ 30$ 40$ 50$ 60$ 0$ 0.5$ 1$ 1.5$ 2$ 2.5$ 3$ 3.5$ 4$ 4.5$ 5$ angular'posi,on'[deg]' ,me'[s]' BACKGROUND  >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN PLOT  TIME  RESPONSE  OF  SMB  ANGULAR  POSITION,  θ: θinitial:  60° mweight:  0.526  kg +θ t  [s] θ[°]
  • 32. Velocity  [m/s] PRODUCT  DESIGN  ITERATION  #3: NUMERICAL  MODEL PLOT  TIME  RESPONSE  OF  U mweight:  0.526kg Uterminal reached  in  <  0.1  s. Uterminal @  tss,2% BACKGROUND  >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN t  [s] U  [m/s] FB FD Fg 𝑈"#$%&'() = 2 ∗ 𝐹. − 𝐹0 𝜌2("#$ 𝐴4$5666#4"&5' 𝐶8
  • 33. PRODUCT  DESIGN  ITERATION  #3: NUMERICAL  MODEL PLOT  TIME  RESPONSE  OF  DEPTH mweight:  0.526kg tascent <  9  seconds  from  a  depth  of  35  m  to  surface BACKGROUND  >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN t  [s] depth  [m] 35  m  depth
  • 34. NUMERICAL  SIMULATION:  m  vs  Uvelocity Uterminal varies  by  <  1.5  m/s  for  a  weight  attachment  of  0.5  kg  and  1.5  kg àso  sizing  is    BALANCE  among  design  factors.   àmweight =  0.526kg  is  a  balance PRODUCT  DESIGN  ITERATION  #3: NUMERICAL  MODEL BACKGROUND  >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN mweight [kg] Uterminal[m/s] FB FD Fg 𝑈"#$%&'() = 2 ∗ 𝐹. − 𝐹0 𝜌2("#$ 𝐴4$5666#4"&5' 𝐶8
  • 35. Buoy   Weight apparatus Test  rig BACKGROUND  >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN PRODUCT  DESIGN  ITERATION  #3: FABRICATION Carabiner
  • 36. BACKGROUND  >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN Fabrication  Method: • Weight  is  secured  onto  test  rig • Test  rig  connected  to  carabiner • Carabiner connected  to  buoy
  • 37. |       QUALITATIVE  SUMMARY  OF  FUNCTIONAL  TESTS: During  Ascent: Trajectory  perturbations  dampened Added  weight  to  SMB  reduced  ascent  speed At  Surface: SMB  achieves  surface  stability  in  both  calm  and  wave   conditions PRODUCT  DESIGN  ITERATION  #3: TEST  AND  EVALUATION BACKGROUND  >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN
  • 38. |       TEST  METHOD:  for Height  Submerged  of  SMB Static  Testing Attached  various  masses  to  bottom  of  SMB  and  measured  height   submerged,  hsubmerged PRODUCT  DESIGN  ITERATION  #3: TEST  AND  EVALUATION BACKGROUND  >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN SMB mweight_2 hsubmerged_1 hsubmerged_2 mweight_1
  • 39. |       RESULTS:  for  Height  Submerged  of  SMB PRODUCT  DESIGN  ITERATION  #3: TEST  AND  EVALUATION BACKGROUND  >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN 0" 5" 10" 15" 20" 25" 30" 35" 40" 45" 50" 0.2" 0.3" 0.4" 0.5" 0.6" 0.7" 0.8" 0.9" 1" height&submerged&[%]& mass&of&weight&[kg]& theore2cal" experimental" limit" Outliers  result  from  differing   submerged  volumes  with  mass   changes 40%  SUBMERGED  HEIGHT  LIMIT mweight [m] hsubmerged[m] hsubmerged
  • 40. |       TEST  METHOD:  for Surface  Stability Dynamic  Testing: Perturbed  the  buoy  at  an  angle  of  60° and  determined  convergence   to  a  stable  state  (0°± 5°). PRODUCT  DESIGN  ITERATION  #3: TEST  AND  EVALUATION BACKGROUND  >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN SMB θinitial =  60°
  • 41. !30 !20 !10 0 10 20 30 40 50 60 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 q[°] t"[s] theoretical experiment |       TEST  AND  EVAULATION:  for  Surface  Stability PRODUCT  DESIGN  ITERATION  #3: TEST  AND  EVALUATION BACKGROUND  >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN Both  datasets  show   convergence  to  0° tss_th_5deg =  1.9s tss_exp_5deg =  4.7s +θ t  [s] θ[°]
  • 42. |       TEST  METHOD:  for  Ascent  Time Measure  ascent  time  ,  tascent from  a  specified  depth  until  top  of  SMB   reaches  surface  of  water PRODUCT  DESIGN  ITERATION  #3: TEST  AND  EVALUATION BACKGROUND  >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN depth
  • 43. |       Known  Limitations  with  Testing  for  Ascent  Time: RESULTS: Identified  time  to  Uterminal <  1s Ascent  data  was  not  within  acceptable  uncertainty àBuoy  depth  not  accurate  enough àInconsistent  external  forces  lengthen  distance  of  ascent PRODUCT  DESIGN  ITERATION  #3: TEST  AND  EVALUATION BACKGROUND  >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN 1.  Lack  of  certified   experimental  diver  to   conduct  test  at  35  m   depth  in  a  controlled   test  setup 2.  Limited  space   to  build  on-­site   controlled  test   setup 3.  Swimming  pool   depths  (3-­5  m)  not   deep  enough  
  • 44. BACKGROUND  >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >> FINAL  DESIGN FINAL  PRODUCT  DESIGN  AND   EVALUATION Capsule Air  Canister 3-­View  Drawing units  mm
  • 45. • Have  not  built/tested  yet • Makes  the  weight  more  compact   • Includes  air  canister  and  tube  to   fill  buoy Tube   Buoy   nozzle Buoy   Capsule   BACKGROUND  >>  PROJECT  SCOPE  >>  APPROACH  >>  DESIGN  ITERATION  >>  FINAL  DESIGN FINAL  PRODUCT  DESIGN  AND   EVALUATION
  • 46. REFERENCES  |     GENERAL • Weight  apparatus  accomplished  design  criteria: – Stabilizes  at  surface  when  perturbed – Submerges  <  40%  of  SMB  height – Dampers  ascent  perturbations  and  weight  apparatus  increases  FD to  reduce  Uterminal – Pressurized  air  canister  does  not  require  diver  to  use  mouth  piece  to  inflate  SMB FUTURE  WORK  and  PROPOSALS • New  controlled  test  setup – Long  cylindrical  column  of  water,  40m  height  and  x4  SMB  diameter,  with  pulley   motor  attached  to  rope  attached  to  SMB  to  submerge  SMB  to  testing  depth – Overcomes  limitations  from  strong  buoyant  forces • Continue  refining  final  design – Stress  analysis – Human-­‐factor  usability  tests CONCLUSION
  • 47. REFERENCES  |     "Satellite  Applications  for  Geoscience  Education." Satellite  Applications  for  Geoscience  Education.   N.p.,  n.d. Web.  04  Sept.  2014.   <https://cimss.ssec.wisc.edu/sage/oceanography/lesson4/concepts.html>. Saltsman,  Robert  R.  "Diver  Operated  Tools  and  Applications  for  Underwater  Construction." University   of  Florida (1987):  n.  pag.  Web.  4  Sept.  2014.  <http://www.dtic.mil/dtic/tr/fulltext/u2/a190264.pdf>. "Result  Filters." National  Center  for  Biotechnology  Information.  U.S.  National  Library  of  Medicine,  n.d. Web.  04  Sept.  2014.  <http://www.ncbi.nlm.nih.gov/pubmed/10517789>. Prusa,  Joseph  M.  "Hydrodynamics  of  a  Water  Rocket." SIAM  Review 42.4  (2000):  719.  Web.   <http://epubs.siam.org/doi/pdf/10.1137/S0036144598348223>. "XS  Scuba  Surface  Marker  Buoy."  XS  Scuba  Surface  Marker  Buoy.  XS  Scuba,  2014.  Web.  05  Sept.   2014. REFERENCES [1] [2] [3] [4] [5]
  • 48. REFERENCES  |     QUESTIONS?
  • 49. Y X XY CENTER  OF  GRAVITY  (CG) CENTER  OF  BUOYANCY  (CB) Y X XY FW FH20_1 FH20_2 FEXT +q +M FB ADRY_2 AH20_1 AH20_2 PH20_1 PH20_2 FH20_1 FH20_2 +q Y X XY FW FW cosq FW sinq FB FB sinq FB cosq