SlideShare a Scribd company logo
1 of 1
Download to read offline
INTRODUCTION	
   DISCUSSION	
  
Neuroplastic Changes after Auditory Working Memory Training in A Patient Surviving Multiple Strokes
Benson	
  P.	
  S.	
  Ng1,	
  Xianzhi	
  Chen1,	
  Carmen	
  Tuchak3,	
  Masako	
  Miyazaki3,	
  Darcy	
  BuBerworth3,	
  Joanne	
  Martens3,	
  Rhondda	
  Jones3,	
  Ada	
  W.	
  S.	
  Leung1,2,3	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  1Department	
  of	
  OccupaMonal	
  Therapy,	
  University	
  of	
  Alberta,	
  Canada;	
  2Centre	
  for	
  Neuroscience,	
  University	
  of	
  Alberta;	
  3Glenrose	
  RehabilitaMon	
  Hospital,	
  Edmonton,	
  Alberta,	
  Canada.	
  
	
  
Stroke	
  paMents	
  exhibit	
  a	
  wide	
  range	
  of	
  cogniMve	
  deficits	
  including	
  
working	
  memory	
  (van	
  Geldorp	
  et	
  al.,	
  2013).	
  Working	
  memory	
  refers	
  
to	
  the	
  ability	
  to	
  maintain	
  and	
  manipulate	
  a	
  limited	
  amount	
  of	
  
informaMon	
  for	
  goal-­‐directed	
  acMon	
  (Baddeley,	
  1986).	
  Previous	
  
studies	
  have	
  shown	
  that	
  working	
  memory	
  ability	
  measured	
  at	
  the	
  
early	
  phase	
  of	
  cogniMve	
  rehabilitaMon	
  is	
  predicMve	
  of	
  funcMonal	
  gains	
  
a^er	
  stroke	
  (Leung	
  et	
  al.,	
  2010).	
  However,	
  it	
  is	
  unclear	
  how	
  working	
  
memory	
  training	
  induces	
  neuroplasMc	
  changes	
  in	
  paMents	
  surviving	
  a	
  
stroke.	
  Understanding	
  the	
  underlying	
  neural	
  mechanisms	
  associated	
  
with	
  working	
  memory	
  training	
  will	
  provide	
  insights	
  into	
  training	
  
regimens,	
  transfer	
  effects	
  and	
  potenMal	
  benefits	
  for	
  stroke	
  paMents.	
  
	
  
	
  
	
  
	
	
  
Case	
  History	
  –	
  The	
  paMent,	
  KB,	
  was	
  a	
  39	
  year-­‐old	
  right-­‐handed	
  male	
  
who	
  suffered	
  an	
  acute	
  right	
  subdural	
  hematoma,	
  involving	
  frontal	
  and	
  
parietal	
  lobes,	
  as	
  well	
  as	
  the	
  ipsilateral	
  tentorium	
  cerebelli.	
  During	
  the	
  
operaMon,	
  KB	
  suffered	
  mulMple	
  cerebrovascular	
  accidents	
  (CVAs)	
  in	
  the	
  
bilateral	
  posterior	
  cerebral	
  artery	
  (PCA)	
  and	
  bilateral	
  anterior	
  cerebral	
  
artery	
  (ACA)	
  territories.	
  The	
  paMent	
  had	
  corMcal	
  blindness	
  and	
  le^	
  
hemiparesis,	
  but	
  did	
  not	
  demonstrate	
  significant	
  aphasia	
  and	
  did	
  not	
  
suffer	
  from	
  other	
  neurological	
  or	
  psychiatric	
  diseases.	
  At	
  the	
  Mme	
  of	
  the	
  
study,	
  KB	
  was	
  two	
  years	
  post-­‐stroke	
  and	
  demonstrated	
  short-­‐term	
  
memory	
  impairment	
  as	
  well	
  as	
  persistent	
  working	
  memory	
  and	
  
execuMve	
  dysfuncMon	
  problems.	
  	
  
	
  
This	
  single	
  case	
  report	
  explored	
  the	
  neuroplasMc	
  changes	
  associated	
  
with	
  auditory	
  working	
  memory	
  training	
  for	
  seven	
  consecuMve	
  weeks.	
  
We	
  found	
  that	
  KB	
  showed	
  improved	
  task	
  performance	
  throughout	
  
training	
  and	
  demonstrated	
  improvement	
  on	
  cogniMve	
  abiliMes	
  
including	
  aBenMon,	
  working	
  memory	
  and	
  short-­‐term	
  memory	
  a^er	
  the	
  
training.	
  
	
  
Pre-­‐	
  and	
  Post-­‐Training	
  Assessment	
  –	
  Neuropsychological	
  
assessments	
  included	
  subtests	
  from	
  the	
  Wechsler	
  Memory	
  Scale-­‐
Third	
  EdiMon:	
  Digit	
  span	
  forward	
  and	
  digit	
  span	
  backward.	
  Two	
  
subtests	
  from	
  the	
  Test	
  of	
  Everyday	
  ABenMon	
  (TEA)	
  were	
  also	
  
administered:	
  The	
  Elevator	
  CounMng	
  with	
  DistracMon	
  (ECD)	
  and	
  the	
  
Elevator	
  CounMng	
  with	
  Reversal	
  (ECR).	
  
N-­‐BACK	
  TASKS	
  PERFORMANCE	
  
METHOD	
  
REFERENCES	
  
Figure	
  2	
  -­‐	
  Plot	
  of	
  n-­‐
back	
  task	
  
performance.	
  Data	
  
points	
  in	
  the	
  grey	
  area	
  
represent	
  
measurements	
  at	
  the	
  
pre-­‐training	
  (ie.	
  
baseline)	
  and	
  post	
  
training	
  assessments.	
  
Only	
  training	
  data	
  
was	
  obtained	
  for	
  3-­‐
back	
  tasks.	
  
N-­‐BACK	
  TASKS	
  -­‐	
  ACCURATE	
  TASK	
  BLOCKS	
  
Baddeley A. Working memory. Oxford: Oxford University Press; 1986.
van Geldorp B, Kessels RP, Hendriks MP. Single-item and associative working memory in stroke
patients. Behavioral Neurology. 2013; 26(3): 199-201.
Kelly AMC, Garaven H. Human functional neuroimaging of brain changes associated with practice.
Cerebral Cortex. 2005; 15: 1089-1102.
Leung AWS, Cheng SKW, Mak AKY, Leung KK, Li LSW, Lee TMC. Functional gain in hemorrhagic
stroke patients is predicted by functional level and cognitive abilities measured at hospital admission.
NeuroRehabilitation. 2010; 27(4): 351-358.
Owen AM, McMillan KM, Laird AR, et al. N-back working memory paradigm: a meta- analysis of
normative functional neuroimaging studies. Human Brain Mapping. 2005; 25(1): 46-59.
Schneiders JA, Opitz B, Tang H, Deng Y, Xie C, Li H, Mecklinger A. The impact of auditory working
memory training on the fronto-parietal working memory network. Frontiers in Human Neuroscience.
2012; 6(173): 1-14.
ACKNOWLEDGEMENTS	
  
This research project was supported by the Clinical Research Grants from the Glenrose
Rehabilitation Hospital Foundation, Alberta Health Services, awarded to Ada Leung. 	
  
Figure	
  1	
  -­‐	
  N-­‐
back	
  task.	
  
	
  
Although	
  there	
  has	
  been	
  much	
  research	
  focusing	
  on	
  the	
  neural	
  
mechanisms	
  of	
  auditory	
  working	
  memory,	
  not	
  many	
  studies	
  have	
  
invesMgated	
  neuroplasMc	
  changes	
  associated	
  with	
  auditory	
  working	
  
memory	
  training.	
  Among	
  the	
  few,	
  Schneider	
  et	
  al.	
  (2012)	
  found	
  an	
  
acMvaMon	
  decrease	
  in	
  the	
  inferior	
  and	
  middle	
  frontal	
  gyri	
  and	
  the	
  
inferior	
  parietal	
  lobe	
  in	
  a	
  trained	
  auditory	
  working	
  memory	
  task	
  as	
  
well	
  as	
  a	
  non-­‐trained	
  visual	
  memory	
  task.	
  Their	
  results	
  support	
  the	
  
idea	
  that	
  working	
  memory	
  training	
  induces	
  an	
  overall	
  reducMon	
  of	
  
neural	
  acMviMes,	
  which	
  is	
  thought	
  to	
  index	
  enhanced	
  neural	
  efficiency.	
The	
  aim	
  of	
  this	
  study	
  was	
  to	
  explore	
  the	
  neuroplasMc	
  changes	
  
associated	
  with	
  auditory	
  working	
  memory	
  training	
  using	
  funcMonal	
  
magneMc	
  resonance	
  imaging	
  (fMRI).	
  There	
  were	
  three	
  specific	
  
research	
  quesMons:	
  
(1) What	
  is	
  the	
  neural	
  acMvaMon	
  paBern	
  a^er	
  auditory	
  working	
  
memory	
  training?	
  
(2) Does	
  the	
  neuroplasMc	
  changes	
  with	
  training	
  coincide	
  with	
  
improvement	
  in	
  performance?	
  
(3) Are	
  there	
  any	
  brain	
  regions	
  specific	
  to	
  the	
  neuroplasMc	
  change	
  or	
  
transfer	
  of	
  learning?	
  
Auditory	
  n-­‐back	
  Tasks	
  –	
  The	
  paMent	
  performed	
  a	
  series	
  of	
  auditory	
  n-­‐
back	
  tasks	
  during	
  the	
  pre-­‐	
  and	
  post-­‐training	
  assessment	
  sessions	
  and	
  
the	
  7-­‐week	
  training	
  period.	
  SMmuli	
  for	
  the	
  n-­‐back	
  tasks	
  were	
  leBers	
  
and	
  digits.	
  Each	
  of	
  the	
  three	
  n-­‐back	
  tasks	
  consisted	
  of	
  a	
  number	
  of	
  
blocks	
  presented	
  in	
  a	
  random	
  sequence.	
  Each	
  block	
  consisted	
  of	
  30	
  
sMmuli,	
  containing	
  on	
  average	
  7	
  targets	
  and	
  lasMng	
  60	
  seconds.	
  SMmuli	
  
were	
  presented	
  for	
  1	
  second	
  followed	
  by	
  a	
  1	
  second	
  of	
  silent	
  pause.	
  	
  
The	
  training	
  program	
  lasted	
  seven	
  
consecuMve	
  weeks,	
  from	
  Monday	
  
to	
  Friday,	
  with	
  30	
  minutes	
  each	
  
day,	
  for	
  a	
  total	
  of	
  35	
  days.	
  
Table	
  1	
  -­‐	
  Distribu@on	
  of	
  the	
  n-­‐back	
  tasks	
  during	
  the	
  7-­‐week	
  training	
  period.	
  	
  
Figure	
  4	
  -­‐	
  Pair-­‐wise	
  t-­‐test	
  on	
  all	
  task	
  blocks	
  the	
  pre-­‐training	
  and	
  the	
  post-­‐training	
  scans.	
  
IFG	
  =	
  inferior	
  frontal	
  gyrus;	
  IPL	
  =	
  inferior	
  parietal	
  lobe;	
  SPL	
  =	
  superior	
  parietal	
  lobe.	
  
	
  
	
  	
  
Figure	
  5	
  -­‐	
  Pair-­‐wise	
  t-­‐test	
  on	
  accurate	
  task	
  blocks	
  in	
  the	
  pre-­‐training	
  and	
  the	
  post-­‐
training	
  scans.	
  MTG	
  =	
  middle	
  temporal	
  gyrus;	
  MFG	
  =	
  middle	
  frontal	
  gyrus;	
  SPL	
  =	
  superior	
  
parietal	
  lobe.	
  
	
  	
  	
  
	
  	
  
	
  
Table	
  2	
  -­‐	
  Performance of n-back tasks during the fMRI scanning.	
  	
  
Pa8ern	
  of	
  Neuroplas=c	
  Change	
  –	
  KB	
  demonstrated	
  reduced	
  
acMvaMon	
  in	
  the	
  frontal-­‐parietal	
  regions,	
  which	
  are	
  core	
  regions	
  
responsible	
  for	
  working	
  memory	
  processing	
  (Owen	
  et	
  al,	
  2005),	
  a^er	
  a	
  
course	
  of	
  auditory	
  working	
  memory	
  training.	
  According	
  to	
  Kelly	
  and	
  
Garavan’s	
  (2005)	
  review,	
  this	
  kind	
  of	
  pracMce-­‐related	
  acMvaMon	
  
decrease	
  was	
  likely	
  the	
  result	
  of	
  more	
  efficient	
  use	
  of	
  neuronal	
  
circuits.	
  This	
  paBern	
  of	
  neuroplasMc	
  changes	
  suggested	
  that	
  he	
  was	
  
able	
  to	
  perform	
  the	
  task	
  more	
  efficiently	
  a^er	
  training,	
  demonstrated	
  
by	
  higher	
  accuracy	
  rate	
  in	
  the	
  post-­‐training	
  assessment.	
  In	
  addiMon,	
  
KB	
  demonstrated	
  improved	
  task	
  performance	
  on	
  other	
  cogniMve	
  tasks	
  
requiring	
  similar	
  processes,	
  such	
  as	
  the	
  elevator	
  counMng	
  tasks	
  on	
  the	
  
TEA,	
  which	
  demand	
  both	
  aBenMon	
  and	
  working	
  memory.	
  
Implica=on	
  of	
  Accurate	
  Task	
  Blocks	
  –	
  A	
  unique	
  analysis	
  for	
  KB	
  was	
  
that	
  we	
  were	
  able	
  to	
  analyze	
  the	
  paBerns	
  of	
  neuroplasMc	
  changes	
  on	
  
the	
  task	
  blocks	
  that	
  were	
  performed	
  with	
  100%	
  accuracy.	
  Overall,	
  our	
  
results	
  showed	
  comparable	
  neural	
  acMvaMon	
  paBerns	
  between	
  the	
  
two	
  analyses.	
  However,	
  the	
  neural	
  acMvaMon	
  was	
  more	
  extensive	
  for	
  
the	
  analysis	
  using	
  accurate	
  blocks	
  compared	
  to	
  that	
  using	
  all	
  task	
  
blocks	
  in	
  the	
  fronto-­‐parietal	
  regions	
  including	
  the	
  middle	
  and	
  inferior	
  
frontal	
  gyri,	
  the	
  inferior	
  and	
  superior	
  parietal	
  lobes	
  and	
  the	
  
precuneus.	
  In	
  addiMon,	
  KB	
  also	
  showed	
  increased	
  acMvaMon	
  in	
  the	
  
anterior	
  cingulate	
  gyrus	
  only	
  on	
  accurate	
  blocks.	
  	
  
Conclusion	
  –	
  The	
  paMent	
  demonstrated	
  improved	
  aBenMon	
  and	
  
working	
  memory	
  performance	
  a^er	
  training.	
  FuncMonal	
  imaging	
  
revealed	
  a	
  paBern	
  of	
  decreased	
  neural	
  acMvaMon	
  a^er	
  training.	
  
AddiMonally,	
  the	
  results	
  were	
  comparable	
  for	
  analyses	
  involving	
  all	
  
task	
  blocks	
  and	
  accurate	
  task	
  blocks,	
  suggesMng	
  that	
  the	
  paBern	
  of	
  
neuroplasMc	
  changes	
  was	
  not	
  dependent	
  on	
  task	
  performance	
  during	
  
the	
  scanning.	
  Specifically,	
  the	
  precuneus	
  acMviMes	
  were	
  maintained	
  
during	
  the	
  post-­‐training	
  assessment,	
  albeit	
  the	
  prefrontal	
  acMviMes	
  
were	
  subsided.	
  Future	
  study	
  using	
  a	
  larger	
  sample	
  of	
  stroke	
  paMents	
  is	
  
needed	
  to	
  verify	
  the	
  role	
  of	
  precuneus	
  in	
  the	
  neuroplasMc	
  process.	
  
Procedure	
  –	
  KB	
  completed	
  an	
  intake	
  interview	
  and	
  a	
  hearing	
  
screening	
  test	
  in	
  which	
  indicated	
  an	
  intact	
  auditory	
  processing	
  for	
  
parMcipaMng	
  in	
  the	
  study.	
  Before	
  the	
  training,	
  KB	
  completed	
  a	
  pre-­‐
training	
  assessment,	
  which	
  included	
  neuropsychological	
  tests	
  and	
  
auditory	
  n-­‐back	
  tasks.	
  Next,	
  KB	
  was	
  given	
  detailed	
  informaMon	
  about	
  
the	
  training	
  and	
  a	
  laptop	
  with	
  the	
  training	
  program	
  installed.	
  The	
  pre-­‐
training	
  fMRI	
  scanning	
  session	
  was	
  arranged	
  on	
  a	
  separate	
  date	
  to	
  
avoid	
  mental	
  faMgue.	
  Within	
  one	
  week	
  a^er	
  training,	
  KB	
  performed	
  
post-­‐training	
  fMRI	
  tesMng	
  and	
  completed	
  a	
  post-­‐training	
  assessment	
  
on	
  all	
  the	
  tests	
  he	
  performed	
  before	
  the	
  training.	
  
Figure	
  3	
  -­‐	
  A	
  diagram	
  illustra@ng	
  the	
  task	
  blocks	
  with	
  100%	
  accuracy	
  (i.e.,	
  accurate	
  
task	
  blocks)	
  on	
  the	
  pre-­‐training	
  and	
  the	
  post-­‐training	
  scanning	
  sessions.	
  Colored	
  
blocks	
  are	
  blocks	
  showing	
  100%	
  accuracy	
  (i.e.,	
  no	
  misses	
  and	
  false	
  alarm)	
  for	
  1-­‐back	
  
tasks	
  (in	
  blue)	
  and	
  2-­‐back	
  tasks	
  (in	
  red);	
  1B	
  =	
  1-­‐back	
  task;	
  2B	
  =	
  2-­‐back	
  task.	
  	
  
Apart	
  from	
  examining	
  the	
  behavioral	
  and	
  fMRI	
  results	
  from	
  all	
  of	
  the	
  
blocks	
  within	
  the	
  n-­‐back	
  tasks,	
  the	
  paMent	
  demonstrated	
  100%	
  
accuracy	
  (no	
  misses	
  and	
  false	
  alarms)	
  in	
  some	
  of	
  the	
  blocks	
  during	
  
pre-­‐	
  and	
  post-­‐training	
  scans	
  in	
  both	
  1-­‐back	
  and	
  2-­‐back	
  paradigms,	
  
providing	
  us	
  a	
  unique	
  opportunity	
  to	
  examine	
  paBerns	
  of	
  training-­‐
induced	
  neuroplasMcity	
  when	
  behavioral	
  performance	
  is	
  at	
  ceiling.	
  
Therefore,	
  we	
  compared	
  the	
  neural	
  acMvaMon	
  of	
  all	
  task	
  blocks	
  with	
  
the	
  accurate	
  task	
  blocks	
  in	
  order	
  to	
  discover	
  any	
  difference	
  in	
  neural	
  
paBerns	
  between	
  the	
  two	
  analyses.	
  
	
  
fMRI	
  RESULTS	
  
Accurate	
  Task	
  Blocks	
  –	
  KB	
  demonstrated	
  100%	
  accuracy	
  on	
  5	
  out	
  of	
  9	
  
blocks	
  in	
  the	
  1-­‐back	
  task	
  during	
  pre-­‐training	
  and	
  in	
  the	
  2-­‐back	
  task	
  
during	
  both	
  pre-­‐	
  and	
  post-­‐training	
  scans.	
  For	
  the	
  1	
  block	
  task	
  during	
  
post-­‐training	
  scan,	
  he	
  showed	
  100%	
  accuracy	
  on	
  6	
  out	
  of	
  9	
  blocks.	
  

More Related Content

What's hot

ZMPCZM017000.10.02 Neuromove Training presentation.
ZMPCZM017000.10.02 Neuromove Training presentation.ZMPCZM017000.10.02 Neuromove Training presentation.
ZMPCZM017000.10.02 Neuromove Training presentation.
Painezee Specialist
 

What's hot (6)

Zheng
ZhengZheng
Zheng
 
Unilateral Forehead Paralysis Following Operative Repair of Facial Trauma: A ...
Unilateral Forehead Paralysis Following Operative Repair of Facial Trauma: A ...Unilateral Forehead Paralysis Following Operative Repair of Facial Trauma: A ...
Unilateral Forehead Paralysis Following Operative Repair of Facial Trauma: A ...
 
ZMPCZM017000.10.02 Neuromove Training presentation.
ZMPCZM017000.10.02 Neuromove Training presentation.ZMPCZM017000.10.02 Neuromove Training presentation.
ZMPCZM017000.10.02 Neuromove Training presentation.
 
Positron-emission tomography studies of cross-modality inhibition in selectiv...
Positron-emission tomography studies of cross-modality inhibition in selectiv...Positron-emission tomography studies of cross-modality inhibition in selectiv...
Positron-emission tomography studies of cross-modality inhibition in selectiv...
 
Neuroplasticity through Exercise and Brain Fitness
Neuroplasticity through Exercise and Brain FitnessNeuroplasticity through Exercise and Brain Fitness
Neuroplasticity through Exercise and Brain Fitness
 
A brief introduction to NEUROPLASTICITY
A brief introduction to NEUROPLASTICITYA brief introduction to NEUROPLASTICITY
A brief introduction to NEUROPLASTICITY
 

Similar to 56x35_oct10

INHIBITION AND SET-SHIFTING TASKS IN CENTRAL EXECUTIVE FUNCTION OF WORKING ME...
INHIBITION AND SET-SHIFTING TASKS IN CENTRAL EXECUTIVE FUNCTION OF WORKING ME...INHIBITION AND SET-SHIFTING TASKS IN CENTRAL EXECUTIVE FUNCTION OF WORKING ME...
INHIBITION AND SET-SHIFTING TASKS IN CENTRAL EXECUTIVE FUNCTION OF WORKING ME...
sipij
 
SFN 2014 Poster - Robert Gougelet
SFN 2014 Poster - Robert GougeletSFN 2014 Poster - Robert Gougelet
SFN 2014 Poster - Robert Gougelet
Alexander Wooten
 
SFVA Brain Injury Rehabilitation Research 11-23-15
SFVA Brain Injury Rehabilitation Research 11-23-15SFVA Brain Injury Rehabilitation Research 11-23-15
SFVA Brain Injury Rehabilitation Research 11-23-15
Charles Mayer
 
DPT student poster_2014
DPT student poster_2014DPT student poster_2014
DPT student poster_2014
Molly Roepke
 
ZMPCZM017000.11.03 Carey Experimentation on brain research
ZMPCZM017000.11.03 Carey Experimentation on brain researchZMPCZM017000.11.03 Carey Experimentation on brain research
ZMPCZM017000.11.03 Carey Experimentation on brain research
Painezee Specialist
 
ZMPCZM017000.11.03 Carey Experimentation on brain research
ZMPCZM017000.11.03 Carey Experimentation on brain researchZMPCZM017000.11.03 Carey Experimentation on brain research
ZMPCZM017000.11.03 Carey Experimentation on brain research
Painezee Specialist
 
Impairments In Prospective And Retrospective Memory Following Stroke
Impairments In Prospective And Retrospective Memory Following StrokeImpairments In Prospective And Retrospective Memory Following Stroke
Impairments In Prospective And Retrospective Memory Following Stroke
Jorge Barbosa
 

Similar to 56x35_oct10 (20)

INHIBITION AND SET-SHIFTING TASKS IN CENTRAL EXECUTIVE FUNCTION OF WORKING ME...
INHIBITION AND SET-SHIFTING TASKS IN CENTRAL EXECUTIVE FUNCTION OF WORKING ME...INHIBITION AND SET-SHIFTING TASKS IN CENTRAL EXECUTIVE FUNCTION OF WORKING ME...
INHIBITION AND SET-SHIFTING TASKS IN CENTRAL EXECUTIVE FUNCTION OF WORKING ME...
 
NEUROPLASTICITY.pptx
NEUROPLASTICITY.pptxNEUROPLASTICITY.pptx
NEUROPLASTICITY.pptx
 
USP_poster
USP_posterUSP_poster
USP_poster
 
SFN 2014 Poster - Robert Gougelet
SFN 2014 Poster - Robert GougeletSFN 2014 Poster - Robert Gougelet
SFN 2014 Poster - Robert Gougelet
 
SFVA Brain Injury Rehabilitation Research 11-23-15
SFVA Brain Injury Rehabilitation Research 11-23-15SFVA Brain Injury Rehabilitation Research 11-23-15
SFVA Brain Injury Rehabilitation Research 11-23-15
 
Preliminary Study Results
Preliminary Study ResultsPreliminary Study Results
Preliminary Study Results
 
DPT student poster_2014
DPT student poster_2014DPT student poster_2014
DPT student poster_2014
 
EEG ppt
EEG pptEEG ppt
EEG ppt
 
ZMPCZM017000.11.03
ZMPCZM017000.11.03ZMPCZM017000.11.03
ZMPCZM017000.11.03
 
ZMPCZM017000.11.03
ZMPCZM017000.11.03ZMPCZM017000.11.03
ZMPCZM017000.11.03
 
ZMPCZM017000.11.03 Carey Experimentation on brain research
ZMPCZM017000.11.03 Carey Experimentation on brain researchZMPCZM017000.11.03 Carey Experimentation on brain research
ZMPCZM017000.11.03 Carey Experimentation on brain research
 
ZMPCZM017000.11.03 Carey Experimentation on brain research
ZMPCZM017000.11.03 Carey Experimentation on brain researchZMPCZM017000.11.03 Carey Experimentation on brain research
ZMPCZM017000.11.03 Carey Experimentation on brain research
 
Beck ElonBrainCARE 2016
Beck ElonBrainCARE 2016Beck ElonBrainCARE 2016
Beck ElonBrainCARE 2016
 
INSIGHTS IN EEG VERSUS HEG AND RT-FMRI NEURO FEEDBACK TRAINING FOR COGNITION ...
INSIGHTS IN EEG VERSUS HEG AND RT-FMRI NEURO FEEDBACK TRAINING FOR COGNITION ...INSIGHTS IN EEG VERSUS HEG AND RT-FMRI NEURO FEEDBACK TRAINING FOR COGNITION ...
INSIGHTS IN EEG VERSUS HEG AND RT-FMRI NEURO FEEDBACK TRAINING FOR COGNITION ...
 
INSIGHTS IN EEG VERSUS HEG AND RT-FMRI NEURO FEEDBACK TRAINING FOR COGNITION ...
INSIGHTS IN EEG VERSUS HEG AND RT-FMRI NEURO FEEDBACK TRAINING FOR COGNITION ...INSIGHTS IN EEG VERSUS HEG AND RT-FMRI NEURO FEEDBACK TRAINING FOR COGNITION ...
INSIGHTS IN EEG VERSUS HEG AND RT-FMRI NEURO FEEDBACK TRAINING FOR COGNITION ...
 
STOCHASTIC MODELING TECHNOLOGY FOR GRAIN CROPS STORAGE APPLICATION: REVIEW
STOCHASTIC MODELING TECHNOLOGY FOR GRAIN CROPS STORAGE APPLICATION: REVIEWSTOCHASTIC MODELING TECHNOLOGY FOR GRAIN CROPS STORAGE APPLICATION: REVIEW
STOCHASTIC MODELING TECHNOLOGY FOR GRAIN CROPS STORAGE APPLICATION: REVIEW
 
Impairments In Prospective And Retrospective Memory Following Stroke
Impairments In Prospective And Retrospective Memory Following StrokeImpairments In Prospective And Retrospective Memory Following Stroke
Impairments In Prospective And Retrospective Memory Following Stroke
 
effects of biomechanical correction and yoga on cortical mapping and re organ...
effects of biomechanical correction and yoga on cortical mapping and re organ...effects of biomechanical correction and yoga on cortical mapping and re organ...
effects of biomechanical correction and yoga on cortical mapping and re organ...
 
Muscle_memory (1).pdf
Muscle_memory (1).pdfMuscle_memory (1).pdf
Muscle_memory (1).pdf
 
Reply to teacher.pdf
Reply to teacher.pdfReply to teacher.pdf
Reply to teacher.pdf
 

56x35_oct10

  • 1. INTRODUCTION   DISCUSSION   Neuroplastic Changes after Auditory Working Memory Training in A Patient Surviving Multiple Strokes Benson  P.  S.  Ng1,  Xianzhi  Chen1,  Carmen  Tuchak3,  Masako  Miyazaki3,  Darcy  BuBerworth3,  Joanne  Martens3,  Rhondda  Jones3,  Ada  W.  S.  Leung1,2,3                                                1Department  of  OccupaMonal  Therapy,  University  of  Alberta,  Canada;  2Centre  for  Neuroscience,  University  of  Alberta;  3Glenrose  RehabilitaMon  Hospital,  Edmonton,  Alberta,  Canada.     Stroke  paMents  exhibit  a  wide  range  of  cogniMve  deficits  including   working  memory  (van  Geldorp  et  al.,  2013).  Working  memory  refers   to  the  ability  to  maintain  and  manipulate  a  limited  amount  of   informaMon  for  goal-­‐directed  acMon  (Baddeley,  1986).  Previous   studies  have  shown  that  working  memory  ability  measured  at  the   early  phase  of  cogniMve  rehabilitaMon  is  predicMve  of  funcMonal  gains   a^er  stroke  (Leung  et  al.,  2010).  However,  it  is  unclear  how  working   memory  training  induces  neuroplasMc  changes  in  paMents  surviving  a   stroke.  Understanding  the  underlying  neural  mechanisms  associated   with  working  memory  training  will  provide  insights  into  training   regimens,  transfer  effects  and  potenMal  benefits  for  stroke  paMents.           Case  History  –  The  paMent,  KB,  was  a  39  year-­‐old  right-­‐handed  male   who  suffered  an  acute  right  subdural  hematoma,  involving  frontal  and   parietal  lobes,  as  well  as  the  ipsilateral  tentorium  cerebelli.  During  the   operaMon,  KB  suffered  mulMple  cerebrovascular  accidents  (CVAs)  in  the   bilateral  posterior  cerebral  artery  (PCA)  and  bilateral  anterior  cerebral   artery  (ACA)  territories.  The  paMent  had  corMcal  blindness  and  le^   hemiparesis,  but  did  not  demonstrate  significant  aphasia  and  did  not   suffer  from  other  neurological  or  psychiatric  diseases.  At  the  Mme  of  the   study,  KB  was  two  years  post-­‐stroke  and  demonstrated  short-­‐term   memory  impairment  as  well  as  persistent  working  memory  and   execuMve  dysfuncMon  problems.       This  single  case  report  explored  the  neuroplasMc  changes  associated   with  auditory  working  memory  training  for  seven  consecuMve  weeks.   We  found  that  KB  showed  improved  task  performance  throughout   training  and  demonstrated  improvement  on  cogniMve  abiliMes   including  aBenMon,  working  memory  and  short-­‐term  memory  a^er  the   training.     Pre-­‐  and  Post-­‐Training  Assessment  –  Neuropsychological   assessments  included  subtests  from  the  Wechsler  Memory  Scale-­‐ Third  EdiMon:  Digit  span  forward  and  digit  span  backward.  Two   subtests  from  the  Test  of  Everyday  ABenMon  (TEA)  were  also   administered:  The  Elevator  CounMng  with  DistracMon  (ECD)  and  the   Elevator  CounMng  with  Reversal  (ECR).   N-­‐BACK  TASKS  PERFORMANCE   METHOD   REFERENCES   Figure  2  -­‐  Plot  of  n-­‐ back  task   performance.  Data   points  in  the  grey  area   represent   measurements  at  the   pre-­‐training  (ie.   baseline)  and  post   training  assessments.   Only  training  data   was  obtained  for  3-­‐ back  tasks.   N-­‐BACK  TASKS  -­‐  ACCURATE  TASK  BLOCKS   Baddeley A. Working memory. Oxford: Oxford University Press; 1986. van Geldorp B, Kessels RP, Hendriks MP. Single-item and associative working memory in stroke patients. Behavioral Neurology. 2013; 26(3): 199-201. Kelly AMC, Garaven H. Human functional neuroimaging of brain changes associated with practice. Cerebral Cortex. 2005; 15: 1089-1102. Leung AWS, Cheng SKW, Mak AKY, Leung KK, Li LSW, Lee TMC. Functional gain in hemorrhagic stroke patients is predicted by functional level and cognitive abilities measured at hospital admission. NeuroRehabilitation. 2010; 27(4): 351-358. Owen AM, McMillan KM, Laird AR, et al. N-back working memory paradigm: a meta- analysis of normative functional neuroimaging studies. Human Brain Mapping. 2005; 25(1): 46-59. Schneiders JA, Opitz B, Tang H, Deng Y, Xie C, Li H, Mecklinger A. The impact of auditory working memory training on the fronto-parietal working memory network. Frontiers in Human Neuroscience. 2012; 6(173): 1-14. ACKNOWLEDGEMENTS   This research project was supported by the Clinical Research Grants from the Glenrose Rehabilitation Hospital Foundation, Alberta Health Services, awarded to Ada Leung.   Figure  1  -­‐  N-­‐ back  task.     Although  there  has  been  much  research  focusing  on  the  neural   mechanisms  of  auditory  working  memory,  not  many  studies  have   invesMgated  neuroplasMc  changes  associated  with  auditory  working   memory  training.  Among  the  few,  Schneider  et  al.  (2012)  found  an   acMvaMon  decrease  in  the  inferior  and  middle  frontal  gyri  and  the   inferior  parietal  lobe  in  a  trained  auditory  working  memory  task  as   well  as  a  non-­‐trained  visual  memory  task.  Their  results  support  the   idea  that  working  memory  training  induces  an  overall  reducMon  of   neural  acMviMes,  which  is  thought  to  index  enhanced  neural  efficiency. The  aim  of  this  study  was  to  explore  the  neuroplasMc  changes   associated  with  auditory  working  memory  training  using  funcMonal   magneMc  resonance  imaging  (fMRI).  There  were  three  specific   research  quesMons:   (1) What  is  the  neural  acMvaMon  paBern  a^er  auditory  working   memory  training?   (2) Does  the  neuroplasMc  changes  with  training  coincide  with   improvement  in  performance?   (3) Are  there  any  brain  regions  specific  to  the  neuroplasMc  change  or   transfer  of  learning?   Auditory  n-­‐back  Tasks  –  The  paMent  performed  a  series  of  auditory  n-­‐ back  tasks  during  the  pre-­‐  and  post-­‐training  assessment  sessions  and   the  7-­‐week  training  period.  SMmuli  for  the  n-­‐back  tasks  were  leBers   and  digits.  Each  of  the  three  n-­‐back  tasks  consisted  of  a  number  of   blocks  presented  in  a  random  sequence.  Each  block  consisted  of  30   sMmuli,  containing  on  average  7  targets  and  lasMng  60  seconds.  SMmuli   were  presented  for  1  second  followed  by  a  1  second  of  silent  pause.     The  training  program  lasted  seven   consecuMve  weeks,  from  Monday   to  Friday,  with  30  minutes  each   day,  for  a  total  of  35  days.   Table  1  -­‐  Distribu@on  of  the  n-­‐back  tasks  during  the  7-­‐week  training  period.     Figure  4  -­‐  Pair-­‐wise  t-­‐test  on  all  task  blocks  the  pre-­‐training  and  the  post-­‐training  scans.   IFG  =  inferior  frontal  gyrus;  IPL  =  inferior  parietal  lobe;  SPL  =  superior  parietal  lobe.         Figure  5  -­‐  Pair-­‐wise  t-­‐test  on  accurate  task  blocks  in  the  pre-­‐training  and  the  post-­‐ training  scans.  MTG  =  middle  temporal  gyrus;  MFG  =  middle  frontal  gyrus;  SPL  =  superior   parietal  lobe.               Table  2  -­‐  Performance of n-back tasks during the fMRI scanning.     Pa8ern  of  Neuroplas=c  Change  –  KB  demonstrated  reduced   acMvaMon  in  the  frontal-­‐parietal  regions,  which  are  core  regions   responsible  for  working  memory  processing  (Owen  et  al,  2005),  a^er  a   course  of  auditory  working  memory  training.  According  to  Kelly  and   Garavan’s  (2005)  review,  this  kind  of  pracMce-­‐related  acMvaMon   decrease  was  likely  the  result  of  more  efficient  use  of  neuronal   circuits.  This  paBern  of  neuroplasMc  changes  suggested  that  he  was   able  to  perform  the  task  more  efficiently  a^er  training,  demonstrated   by  higher  accuracy  rate  in  the  post-­‐training  assessment.  In  addiMon,   KB  demonstrated  improved  task  performance  on  other  cogniMve  tasks   requiring  similar  processes,  such  as  the  elevator  counMng  tasks  on  the   TEA,  which  demand  both  aBenMon  and  working  memory.   Implica=on  of  Accurate  Task  Blocks  –  A  unique  analysis  for  KB  was   that  we  were  able  to  analyze  the  paBerns  of  neuroplasMc  changes  on   the  task  blocks  that  were  performed  with  100%  accuracy.  Overall,  our   results  showed  comparable  neural  acMvaMon  paBerns  between  the   two  analyses.  However,  the  neural  acMvaMon  was  more  extensive  for   the  analysis  using  accurate  blocks  compared  to  that  using  all  task   blocks  in  the  fronto-­‐parietal  regions  including  the  middle  and  inferior   frontal  gyri,  the  inferior  and  superior  parietal  lobes  and  the   precuneus.  In  addiMon,  KB  also  showed  increased  acMvaMon  in  the   anterior  cingulate  gyrus  only  on  accurate  blocks.     Conclusion  –  The  paMent  demonstrated  improved  aBenMon  and   working  memory  performance  a^er  training.  FuncMonal  imaging   revealed  a  paBern  of  decreased  neural  acMvaMon  a^er  training.   AddiMonally,  the  results  were  comparable  for  analyses  involving  all   task  blocks  and  accurate  task  blocks,  suggesMng  that  the  paBern  of   neuroplasMc  changes  was  not  dependent  on  task  performance  during   the  scanning.  Specifically,  the  precuneus  acMviMes  were  maintained   during  the  post-­‐training  assessment,  albeit  the  prefrontal  acMviMes   were  subsided.  Future  study  using  a  larger  sample  of  stroke  paMents  is   needed  to  verify  the  role  of  precuneus  in  the  neuroplasMc  process.   Procedure  –  KB  completed  an  intake  interview  and  a  hearing   screening  test  in  which  indicated  an  intact  auditory  processing  for   parMcipaMng  in  the  study.  Before  the  training,  KB  completed  a  pre-­‐ training  assessment,  which  included  neuropsychological  tests  and   auditory  n-­‐back  tasks.  Next,  KB  was  given  detailed  informaMon  about   the  training  and  a  laptop  with  the  training  program  installed.  The  pre-­‐ training  fMRI  scanning  session  was  arranged  on  a  separate  date  to   avoid  mental  faMgue.  Within  one  week  a^er  training,  KB  performed   post-­‐training  fMRI  tesMng  and  completed  a  post-­‐training  assessment   on  all  the  tests  he  performed  before  the  training.   Figure  3  -­‐  A  diagram  illustra@ng  the  task  blocks  with  100%  accuracy  (i.e.,  accurate   task  blocks)  on  the  pre-­‐training  and  the  post-­‐training  scanning  sessions.  Colored   blocks  are  blocks  showing  100%  accuracy  (i.e.,  no  misses  and  false  alarm)  for  1-­‐back   tasks  (in  blue)  and  2-­‐back  tasks  (in  red);  1B  =  1-­‐back  task;  2B  =  2-­‐back  task.     Apart  from  examining  the  behavioral  and  fMRI  results  from  all  of  the   blocks  within  the  n-­‐back  tasks,  the  paMent  demonstrated  100%   accuracy  (no  misses  and  false  alarms)  in  some  of  the  blocks  during   pre-­‐  and  post-­‐training  scans  in  both  1-­‐back  and  2-­‐back  paradigms,   providing  us  a  unique  opportunity  to  examine  paBerns  of  training-­‐ induced  neuroplasMcity  when  behavioral  performance  is  at  ceiling.   Therefore,  we  compared  the  neural  acMvaMon  of  all  task  blocks  with   the  accurate  task  blocks  in  order  to  discover  any  difference  in  neural   paBerns  between  the  two  analyses.     fMRI  RESULTS   Accurate  Task  Blocks  –  KB  demonstrated  100%  accuracy  on  5  out  of  9   blocks  in  the  1-­‐back  task  during  pre-­‐training  and  in  the  2-­‐back  task   during  both  pre-­‐  and  post-­‐training  scans.  For  the  1  block  task  during   post-­‐training  scan,  he  showed  100%  accuracy  on  6  out  of  9  blocks.