SlideShare a Scribd company logo
1 of 14
Download to read offline
Understanding Soil Moisture Dynamics at the Small Catchment Scale: 
A Geostatistical Approach 
 
 
1. INTRODUCTION 
The spatial and temporal variability in soil moisture is a phenomenon that has been well                             
documented ​[Western and Blöschl, 1998]​. The underlying processes involved in the                     
redistribution of soil moisture include complex, non­linear phenomenon ​[Famiglietti et al, 1998]                       
like soil texture, grain size distribution and atmospheric forcing. However, the successful                       
modelling of many ecological phenomenon, including sub­surface flow and terrestrial energy                     
exchange, benefit largely from a better understanding of soil moisture dynamics ​[Ivanov et al,                           
2010]​. In this study, data from the SoilNet wireless sensor networks (WSN) ​[Bogena et. al, 2010]                               
was used in order to understand soil moisture dynamics at a catchment scale. The sensors in                               
question are installed in the Wüstebach catchment, a sub­catchment of the river Rur, situated                           
within the Eifel National Park. The catchment is a part of the TERENO Eifel/lower Rhine Valley                               
Observatory. A detailed description of the geographical location, topography, soil type and the                         
local climate can be found in ​Rosenbaum et al, 2012 ​as well as ​Bogena et al, 2010. 
In order to ascertain the various influences on the dynamics of the soil moisture, geostatistical                             
analysis was performed on the data. 
 
2. METHODS 
As an initial step, the data was prepared as a time series, extending over a period of three years                                     
and nine months, from 1​st
July 2009 to 11​th
March 2013. Although data from SoilNet is available                                 
at a temporal resolution of 15 minutes, this particular study utilized data on a daily basis, since                                 
the objective of the study was to understand the seasonal dynamics of soil moisture. Further, for                               
the purposes of this study, data was used only from 111 of the 150 end­devices installed in the                                   
Wüstebach catchment. These 111 end­devices were chosen because of their more consistent                       
output in data over the study period, and since they were least plagued by instrumental errors.                               
On many occasions, it was found that end­devices or router units did not perform according to                               
expectations, mainly due to issues of maintenance ​[Rosenbaum et al, 2012]​. 
 
The following procedures were employed in order to perform geostatistical analysis on the soil                           
moisture data. 
 
2.1. Outlier Detection 
The existence of outliers in spatially referenced data can have an influential effect on                           
geostatistical analysis. This is mainly because spatial outliers, being inconsistent data points,                       
can disrupt the stationarity of data that is an intrinsic assumption in geostatistical analysis                           
[Deutsch and Journel, 1992]​. It is important to note that spatial outliers are local aberrations,                             
and as such, are only detected as outliers based on the data sourced from spatial neighbours                               
[Kou et al, 2006]​, and not from the ensemble data. The procedure adopted in order to detect the                                   
existence of spatial outliers is discussed in detail in ​Kou et al, 2006 ​and in ​Chen et al, 2007​. 
It was assumed that the data was normally distributed. Under such an assumption, a probability                             
distribution function can be developed for a particular neighbourhood in which the data­point in                           
question is located. Further, confidence intervals are inferred from this probability distribution                       
function, and the confidence value associated with the value of the data­point under                         
consideration is evaluated. The data­point is then accepted or rejected, based on the                         
confidence value. In this particular study, the neighbourhood was defined by the ten nearest                           
neighbours of the data­point in question. This definition of the neighbourhood was adopted                         
since it was felt that the estimate made at a particular point must be consistently made from the                                   
same number of neighbours. This, however, can be a particular disadvantage, especially for                         
points located at the boundaries of the study­area, since the ten nearest neighbours for this                             
point will be quite distant from the point itself. 
The data­point was discarded if it was found to be outside the 98% confidence interval. In other                                 
words, the point was discarded if the probability of the data coming from the normal distribution                               
adopted was less than 2%. On an average, it was found that around 3 to 4 data points per time                                       
slice were rejected in this manner. 
Additionally, it was found that a few sampling points in particular were consistently reported as                             
outliers. In many cases, the sampling points which performed poorly in the outlier test (ie: they                               
were reported as outliers for a large portion of the time­series) were found to be points located                                 
in groundwater influenced areas. It is therefore important to appreciate that the outlier test has                             
its own limitations. It is suggested that the outlier detection is performed on a regional basis ­ ie:                                   
the outlier detection is performed separately for groundwater influenced areas and groundwater                       
distant areas. Such a distinction could possibly be made from the soil­map. 
 
2.2. Geostatistical Analysis 
Geostatistical analysis has been used in the past ​[Rosenbaum et al, 2012; Western et al, 1999;                               
Huaxing et al, 2009] in order to ascertain the spatial structure of soil moisture distribution. As                               
such, geostatistics provides a rigorous, well defined method by which to study the distribution of                             
any form of spatially referenced data. 
In this study, the data was analyzed by programs available from the Geostatistical Software                           
Library (GSLIB) ​[Deutsch and Journel, 1992]​. 
The ​gamv routine of GSLIB was used to calculate semivariances. The number of lags was fixed                               
at 7 and the lag distance was 30 meters with a lag tolerance of 15 meters. It was generally                                     
observed that an exponential model was often the best fit available, and hence it was uniformly                               
adopted in all cases (as was the case in ​Rosenbaum et al, 2012​). 
                                         ​(1)(h)  c  γ =   0 + c1 1[ − e( )a
−3h
]  
Here is the model semivariance as a function of the lag ‘h’, is the nugget, is the  (h) γ                        c0        c1    
structural semivariance (also known as the sill), and ​a​ is the range. 
It is to be noted that, unlike ​Rosenbam et al, 2012​, no accurate estimate of the “true” nugget                                   
variance could be made, as the data set in question was devoid of the paired sensors                               
(separated by 0.05 meters) available in the case of ​Rosenbaum et al, 2012​. Due to this                               
limitation, it must be mentioned that the fit parameters were not of a desirable quality and in                                 
many cases were found to be unrealistic, since the data often displayed an unbound nature. It                               
was found in many cases that the model that was fit to the data had ranges and sills which were                                       
of the order of 10​6
meters, which is more than three orders of magnitude higher than the                                 
expected sill and range. In order to avoid this, the fitting algorithms was developed in such a                                 
way, so as to ensure that the nugget variance was never negative (it was curtailed to a                                 
minimum value of zero), and the range never exceeded 300 meters, as it was assumed that                               
spatial autocorrelation cannot exist beyond 300 meters. However, it must be noted that in the                             
case of ​Rosenbaum et al, 2012 data for which the model range exceeded 300 meters was                               
discarded, and was not used for further analysis. 
In order to understand the spatial distribution of the data, kriging interpolation was performed on                             
the data set. Both, ​ordinary kriging and ​external drift kriging was performed on the data set. The                                 
GSLIB routine ​kt3d was used to develop kriging results. The co­variable for ​external drift kriging                             
was composed of a combination of the wetness index ​[Beven and Kirkby, 1979] and the soil                               
texture class. In order to compare the results of ​ordinary kriging ​and ​external drift kriging​, cross                               
validation was performed and the root­mean­square error (RMSE) was calculated for the                       
estimated value and the true value at the measurement points. 
 
 
3. RESULTS AND DISCUSSION 
 
3.1. Variogram Analysis 
As mentioned earlier, due to the unavailability of data from paired sensors separated by 0.05                             
meters at each sampling location, as in the case of ​Rosenbaum et al, 2012​, a rigorous estimate                                 
of the ‘true’ nugget variance was not possible. This was mainly because the nugget had to be                                 
obtained by means of extrapolation of the model that was fit to the data. In the case of                                   
Rosenbaum et al, 2012​, the nugget variance rarely approached 50 (vol%)​2​
, and was often                           
around 30 (vol%)​2
for the sensors placed at 5cm depth. However, when an extrapolation of the                               
data is made to estimate the nugget, the nugget variance is comparatively much higher. The                             
nugget variance was consistently above 50 (vol%)​2​
, except for short periods between late                         
January and early March, during which the nugget took a constant value of 0 (vol%)​2​
. This                               
constant zero value is a consequence of the fitting algorithm which forces the nugget to zero if                                 
the initial estimate is negative. 
 
Further, of the 1403 days for which the data was analyzed, it was observed that around 900                                 
days of data displayed a model variogram that was unbound in nature, ie: the estimated range                               
was well above 300 meters. This incorrect estimate can also be attributed to the lack of a ‘true’                                   
nugget. 
 
 
 
 
 
 
Figure 1: An example of the zero nugget phenomenon (19.02.2011) 
 
Figure 2: An example of an unbound variogram (30.07.2009) 
 
The variogram is an important tool in geostatistics, and the data that is generated from the                               
variogram model is used subsequently in kriging analysis. Keeping this in mind, it is important                             
that the variogram is as accurate as possible and is able to represent the physical realities of                                 
the study area. In this regard, the method of geostatistical analysis employed by ​Rosenbaum et                             
al, 2012​, seems to be the only rigorous and accurate method of estimating the true nugget, and                                 
in the light of the lower quality fits generated in this study, it must be emphasized that an                                   
estimate of the true nugget is indispensable. 
Another observation made in the variogram of most of the data­sets was a sudden, anomalous                             
increase in the semivariance for a lag distance of 150 meters. 
 
Figure 3: Increased semivariance at 150 meters lag distance (27.08.2010) 
 
 
This high value of semivariance was observed to be a consistent phenomenon, but the intensity                             
of the heightened semivariance differed with time ­ with the difference being prominent during                           
the dry summer months, and almost non­existent during the wet winter months. It was proposed                             
that the cause of this increased semivariance can be attributed to the hillslope length. Since the                               
valley regions are groundwater influenced, it is expected that these regions continue to remain                           
wet during the summer months, while the rest of the catchment is relatively dry. Since the 150                                 
meter lag bin (ie: with a lag tolerance of 15 meters) would consist mainly of pairs composed                                 
from valley bottom and hillslope top (very wet and very dry, respectively), we expect this                             
variance to be particularly high. Further, it is to be noted that the total sill (a measure of overall                                     
variance) during the summer months is comparatively higher than the total sill during the winter                             
months ­ which suggests that overall variances increase during the summer months. 
 
3.2. Kriging Analysis 
As a second step in the geostatistical analysis of the data, kriging analysis was performed in                               
order to understand the spatial distribution of soil moisture. 
As a first step, ordinary kriging was performed. The discretization of the area was done by 10m                                 
X 10m grids in both x and y directions. The estimate at a particular grid was made with data                                     
from all points in the catchment, suitably weighted by the semivariance as obtained from the                             
variogram model ­ which is the principle of kriging interpolation. 
It was evident that the variogram had a very influential role in the final kriging output that was                                   
created. It was observed that the variograms which were unbound and showed very high sills                             
and ranges, not to mention higher than expected nuggets, showed a distinct amount of                           
smoothing. These variograms resulted in a kriging map devoid of the expected variability in the                             
surface soil moisture. Further, it was also observed that the correction that was introduced,                           
which restricted nuggets to a minimum value of zero, was not physically sound since                           
subsequent time slices showed marked differences in the kriging map, even though there was                           
no significant precipitation event. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: Kriging map (15.11.2009)                                      Figure 5: Kriging map (16.11.2009)   
               note the unbound variogram                                               note the zero nugget and 
               and the high degree of smoothing                                       the high local variability 
 
 
It is to be noted in the runoff­precipitation graphs in both fig. 4 and fig. 5 that there was no                                       
significant precipitation event during this period, yet the kriging outputs look surprisingly                       
different. In fig. 4 there is a marked smoothing effect, with all local variability being averaged out                                 
­ this is due to the unbound variogram which results in an almost equal weightage for all pairs of                                     
points. Fig. 5 shows a high degree of local variability, which can be attributed to the zero nugget                                   
variance. Such a model would give very high weightage to nearby points and very low                             
weightage to distant points while calculating the interpolated estimate at a point. It is further                             
important to note that both situations ­ unbound variogram with a high nugget, and a zero                               
nugget variogram ­ are not representative of the physical realities which can only be closely                             
matched with an estimate of the true nugget. 
In order to improve the estimate at a given point, ​external drift kriging was performed with a                                 
covariable that was composed of a combination of the wetness index and the soil texture class.                               
In order to quantify the improvement in the estimate, cross validation was performed by a                             
resampling routine that compares the estimated value to the measured value. This cross                         
validation can be used to calculate the average root­mean­squared error (RMSE) for a given                           
period. 
It was observed that external drift kriging performed only marginally better in the cross­validation                           
tests. However, the advantage of external drift kriging lies in the reintroduction of local variability                             
in the data, as seen in fig. 6 (a,b,c). 
The increased variability that external drift kriging permits is, in fact, representative of the input                             
data, since the input data showed certain measurement stations with a moisture content well                           
above 50 vol.% and well below 30 vol.% ­ both of these values are found to be missing in the                                       
ordinary kriging map of fig. 6(a). It is interesting to note that external drift kriging is able to                                   
preserve the statistics of the data better than ordinary kriging, and this can possibly be tested                               
with comparisons to stochastic simulations. 
 
 
Figure 6: Kriging maps developed for data from 30.05.2012 (a) Ordinary kriging with an unbound 
variogram (note the smoothing) (b) Ordinary kriging with a variogram bound to a range of 300 m 
and (c)External drift kriging with a bound variogram (note the increased variability). 
 
 
 
Figure 7: RMSE of ordinary kriging and external drift kriging as a function of time. External drift 
kriging performs only marginally better. Also seen on the plot is the mean soil water content 
(SWC). Until 1​st​
 June 2011, there appears to be a negative correlation between mean SWC and 
RMSE. After this point there appears to be a positive correlation. 
 
 
 
As seen in fig. 7, the RMSE for external drift kriging is only marginally better, however it is worth                                     
noting that ​Famiglietti et al, 1998 observed that other factors like specific contributing area,                           
porosity and relative elevation appear to be more strongly correlated to the soil water content,                             
and hence, can be used as a more effective covariable for external drift kriging in future works. 
A further, curious observation is the variation of root­mean­squared error with time and with the                             
average soil water content. It appears that in the first half of the data (prior to 1​st
June 2011), the                                       
root­mean­squared error is negatively correlated with the mean soil water content. Beyond 1​st
                         
June 2011, however, root­mean­squared error appears to be positively correlated with mean                       
soil water content. 
This relationship is far more evident in fig. 8 which is a plot of the sum of squared errors as a                                         
function of time, with the time series of the mean soil water content for the same period. This                                   
particular plot was smoothed by a one­month moving average in order to remove the ‘noisy’                             
nature of fig. 7. This ‘inversion’ of the correlation between the error in the estimation and the                                 
mean soil water content raises the important question of whether such a correlation exists at all.                               
To answer this question a scatterplot of the sum of squared errors against the mean soil water                                 
content was developed. Fig. 9 is quite similar to the plot of the standard deviation of against                                θ  
the mean soil water content plots in ​Rosenbaum et al, 2012. ​This seems to be a further                                 
confirmation of the observations of ​Vereecken et al, 2007 which suggests that the relationship                           
between the mean soil water content and the standard deviation of the soil water content is                               
unimodal. 
Figure 8: Time series of the sum of squared errors ­ the plot was smoothed by a one­month 
moving average 
 
 
 
 
 
Figure 9: Sum of squared errors as a function of the mean soil water content 
 
The nature of figs. 8 and 9 imply that with increasing variability in the soil water content in the 
catchment, the associated errors involved in the kriging estimate increase. Kriging becomes 
more error prone as the variability in the catchment increases, and is therefore incapable of 
accurately estimating the distribution of soil water content in important stages of wetting and 
drying during which the variability is high. 
 
 
Figure 10: Kriging snapshot from 29.01.2010 ­ the region circled in red consistently appears to be 
a region of low soil water content, despite the fact that the topography suggests that the region is 
part of a valley. 
Previous studies on the soil moisture dynamics in hillslopes (​Famiglietti et al, 1998) suggest that                             
areas with higher topographical curvature tend to have a higher moisture content since they are                             
prone to water storage due to the natural depression formed in the soil surface. However, the                               
region circled in red in fig. 10 seems to be anomalous. This region was observed to have a                                   
persistent below average moisture content, even though the topography in this region seems to                           
suggest that the region ought to have a higher amount of soil moisture. It is evident that there                                   
are other factors at work in this region, which results in the observations being anomalous ­ for                                 
example, the throughfall patterns and the vegetation cover may influence the region to have a                             
lower soil water content. 
However, the importance of this anomaly is the evidence that topography and wetness index                           
alone cannot be used as reliable covariables. A more rigorous, well correlated parameter must                           
be introduced to improve the kriging results which rely on a covariable.  
 
4. CONCLUSIONS 
In this study, an effort was made to understand the principle geostatistical techniques employed                           
in the analysis of spatially referenced data. The analysis was performed on soil moisture data                             
available from the SoilNet wireless sensor network installed in the Wüstebach catchment as part                           
of the TERENO project. 
The study revealed the importance of estimating a true nugget effect by installing paired sensor                             
nodes in close proximity to each other as was done by ​Rosenbaum et al, 2012. It was shown                                   
that a poor estimate of geostatistical parameters resulted in a kriging result that was not                             
representative of the physical realities ­ the kriging output was highly smoothed, with all local                             
variability being lost. The result also showed that an artificial curtailment of the model                           
parameters to realistic values does not seem to be a viable solution, since such a curtailment                               
can cause impossibly dramatic changes in kriging outputs within short spans of time, when                           
there has been no external changes in the environment in the form of precipitation. 
The study also revealed the nature of the relationship between the error associated with kriging                             
interpolations and the mean soil water content, suggesting that the kriging error is closely                           
related to the statistical variability in soil water content ­ specifically the standard deviation.                           
Further studies are required to confirm this conjecture. 
Also, the poor performance of wetness index as a covariable for external drift kriging was                             
highlighted. Although topography plays an important role in the redistribution process of soil                         
moisture, it was shown that often, the soil water content can be persistently and prominently                             
different from what is expected at a point based on the topography. As such, it is not surprising                                   
that the wetness index does not perform as an ideal covariable. 
 
 
 
 
 
 
 
 
APPENDIX 
In the above study, it was found that the geostatistical analysis produced poor results as far as                                 
recreating the physical realities of the spatial and temporal variability of soil water content in the                               
Wüstebach catchment. The prime reason for this unsatisfactory result was the lack of an                           
accurate estimate of the true nugget effect. As mentioned earlier, in the work of ​Rosenbaum et                               
al, 2012 the data included a paired sensor configuration at each measuring station, with these                             
sensors separated by 0.05m. The semivariance produced by these ‘paired’ sensors was                       
considered to be the nugget. 
However, this current study did not include the data from both pairs of sensors at each sampling                                 
location. In order to be able to estimate the true nugget, the entire, unprocessed data set was                                 
obtained from the TERENO database. This ‘raw data’ is recorded at a temporal resolution of                             
approximately 15 minutes. However, it was found that this raw data included numerous errors,                           
and extensive pre­processing was found necessary. This section details the initial processing                       
that the data was subjected to, and possible techniques to be applied subsequently to the data. 
 
Initially, it was found that over half of the nodes (node ID 056 to 109) reported a constant,                                   
erroneous data value for more than half of the time period for which SoilNet has been installed.                                 
Therefore, the ‘processing’ was performed only on half of the time series (ie: from 06.09.2011 to                               
03.05.2013). 
The first step of processing identified situations when one of the paired nodes reported an                             
erroneous value, and the other reported an acceptable value. Under such a situation, a                           
correlation plot was developed for a short period of time (as it was found that the long term                                   
correlation was not satisfactory enough to make a prediction). 
 
When a set of erroneous data was found, a correlation plot for data up to 1 month on either                                     
direction of time was generated. A linear relationship was found to be a good model to fit with                                   
the  
 
Figure 11: Correlation between paired nodes for short time periods of up to 1 month 
(Pearson R=0.97) 
 
Pearson co­efficient of correlation being well above 0.90 in most cases. 
 
Once this correction was made, the bigger problem of correlating different nodes was                         
encountered, in the case where both sensors at one sampling location returned an erroneous                           
value. 
 
This correction could not be implemented due to time constraints but a basic strategy has been                               
thought of.  
 
 
Figure 12: Time series of erroneous readings for all nodes 
 
Fig. 12 shows, as coloured bars, all the periods in time during which both sensors at a particular                                   
node returned erroneous readings. It is disconcerting to note that there is a periodicity in the                               
errors, and that there are periods during which all nodes, essentially, are returning wrong                           
values, which implies that no correlation is possible. 
However, intermediate periods show only a few nodes which are erroneous, and the technique                           
of correlation can be used effectively in recovering this data. 
It is proposed that a particular node is chosen, based on its performance in a given period, and                                   
all erroneous nodes are correlated to this particular node. As long as the coefficient of                             
correlation is of an acceptable value, say 0.90, then this is accepted as a fairly well correlated                                 
data set and the predictions are accepted. If a good correlation with the selected node is not                                 
possible, a subsequent node is chosen and the correlation plots are developed once more. 
However, it is important to note that such a method may have the associated problem of losing                                 
the local variability, because the correlation, especially for long periods in time, need not hold                             
true. To overcome this, it is also possible to correlate nodes to the nearest neighbour which                               
performs satisfactorily in a given period. 
 
 
ACKNOWLEDGEMENTS 
I would like to place on record my sincere thanks and gratitude to Dr. Heye Bogena and Dr.                                   
Michael Herbst, who played instrumental roles in guiding me during my stay at the                           
Forschungszentrum Jülich. They were extremely approachable and were encouraging at all                     
stages of the project. I hope I have repaid their investment of time and effort in me in some                                     
small way. 
 
I would also like to thank Dr. Harry Vereecken, who was kind enough to permit my stay at the                                     
institute IBG­3. 
 
I am extremely indebted to Bernd Schilling, Inge Wiekenkamp, Nina Gottselig, Dr. Sander                         
Huisman, Anna Missong, Dr. Thomas Putz, Dr. Lutz Weihermüller, Roland Baatz and the rest of                             
the team that was part of the soil sampling campaign at Wüstebach ­ who included me into the                                   
IBG­3 family through their warm hospitality and jovial camaraderie. 
 
Lastly, my extreme gratitude to the DAAD for providing financially and logistically, since this                           
experience would not have been possible without their aid. 
 
 
 
 
Arjun Narayanan 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
REFERENCES 
 
Beven, K.J., Kirkby, M.J. 1979. A physically based variable contributing area model of basin                           
hydrology. Hydrological Sciences Bulletin, 24:1, 43­69, doi:10.1080/02626667909491834. 
 
Bogena, H.R., Herbst, M., Huisman, J.A., Rosenbaum, U., Weuthen, A., Vereecken, H. 2010.                         
Potential of wireless sensor networks for measuring soil water content variability. Vadose Zone                         
J. 9:1002–1013 doi:10.2136/vzj2009.0173. 
 
Chen, D., Lu C., Kou, Y., Chen, F. 2007. On detecting spatial outliers. Geoinformatica (2008)                             
12:455–475 doi10.1007/s10707­007­0038­8. 
 
Deutsch, C.V., Journel, A.G. 1998. GSLIB: Geostatistical software library and user’s guide.                       
Oxford University Press. ISBN 0195100158. 
 
Famiglietti, J.S., Rudnicki J.W., Rodell, M. 1998. Variability in surface moisture content along a                           
hillslope transect: Rattlesnake hill, Texas. Journal of Hydrology, 210, 259­281. 
 
Huaxing, B., Xiaoyin, L., Xin, L., Mengxia, G., Jun, L. 2009. A case study of spatial                               
heterogeneity of soil moisture in the Loess plateau, western China: A geostatistical approach.                         
International Journal of Sediment Research ,24 ,63–73. 
 
Ivanov, V.Y., Fatichi, S., Jenerette, G.D., Espeleta, J.F., Troch, P.A., Huxman, T.E. 2010.                         
Hysteresis of soil moisture spatial heterogeneity and the “homogenizing” effect of vegetation.                       
Water Resources Research, 46, W09521, doi:10.1029/2009WR008611. 
 
Kou, Y., Lu, C., Chen, D. Spatial weighted outlier detection. SIAM meeting. 
 
Rosenbaum, U., H. Bogena, M. Herbst, J.A. Huisman, T.J. Peterson, A. Weuthen, Vereecken,                         
H., 2012. Seasonal and event dynamics of spatial soil moisture patterns at the small catchment                             
scale. Water Resources Research, doi: 10.1029/2011WR011518. 
 
Vereecken, H., T. Kamai, T. Harter, R. Kasteel, J. Hopmans, and J. Vanderborght. 2007.                           
Explaining soil moisture variability as a function of mean soil moisture: A stochastic unsaturated                           
flow perspective. Geophysical Research Letters 34:L22402, doi:10.1029/2007GL031813. 
 
Western, A.W., Blöschl, G. 1999. On the spatial scaling of soil moisture. Journal of Hydrology                             
217 (1999) 203–224. 
 
 
 
 

More Related Content

What's hot

APPLICATION OF KRIGING IN GROUND WATER STUDIES
APPLICATION OF KRIGING IN GROUND WATER STUDIESAPPLICATION OF KRIGING IN GROUND WATER STUDIES
APPLICATION OF KRIGING IN GROUND WATER STUDIESAbhiram Kanigolla
 
Limitations of simplified methods for estimating seismic settlements linked i...
Limitations of simplified methods for estimating seismic settlements linked i...Limitations of simplified methods for estimating seismic settlements linked i...
Limitations of simplified methods for estimating seismic settlements linked i...Robert Pyke
 
Interpolation of meteodata using the method of regression-kriging
Interpolation of meteodata using the method of regression-krigingInterpolation of meteodata using the method of regression-kriging
Interpolation of meteodata using the method of regression-krigingAlexander Mkrtchian
 
Improved analysis of potential lateral spreading displacements
Improved analysis of potential lateral spreading displacementsImproved analysis of potential lateral spreading displacements
Improved analysis of potential lateral spreading displacementsRobert Pyke
 
StreamFlow Variability of 21 Watersheds, Oregon
StreamFlow Variability of 21 Watersheds, OregonStreamFlow Variability of 21 Watersheds, Oregon
StreamFlow Variability of 21 Watersheds, OregonDonnych Diaz
 
6. patriche c., vasiliniuc i. aspects regarding the usefulness of geographi...
6. patriche c., vasiliniuc i.   aspects regarding the usefulness of geographi...6. patriche c., vasiliniuc i.   aspects regarding the usefulness of geographi...
6. patriche c., vasiliniuc i. aspects regarding the usefulness of geographi...Vasiliniuc Ionut
 
SOIL MOISTURE ASSESSMENT BY REMOTE SENSING AND GIS
SOIL MOISTURE ASSESSMENT BY REMOTE SENSING AND GISSOIL MOISTURE ASSESSMENT BY REMOTE SENSING AND GIS
SOIL MOISTURE ASSESSMENT BY REMOTE SENSING AND GISuzma shaikh
 
LandsatOLI_Lake_Assessment _BakerJ
LandsatOLI_Lake_Assessment _BakerJLandsatOLI_Lake_Assessment _BakerJ
LandsatOLI_Lake_Assessment _BakerJJeffrey Baker
 
Molecular water detected on the sunlit Moon by SOFIA
Molecular water detected on the sunlit Moon by SOFIAMolecular water detected on the sunlit Moon by SOFIA
Molecular water detected on the sunlit Moon by SOFIASérgio Sacani
 
Micro cold traps on the Moon
Micro cold traps on the MoonMicro cold traps on the Moon
Micro cold traps on the MoonSérgio Sacani
 
Examination of Total Precipitable Water using MODIS measurements and Comparis...
Examination of Total Precipitable Water using MODIS measurements and Comparis...Examination of Total Precipitable Water using MODIS measurements and Comparis...
Examination of Total Precipitable Water using MODIS measurements and Comparis...inventionjournals
 
Spatial variation in surface runoff at catchment scale, the case study of adi...
Spatial variation in surface runoff at catchment scale, the case study of adi...Spatial variation in surface runoff at catchment scale, the case study of adi...
Spatial variation in surface runoff at catchment scale, the case study of adi...Alexander Decker
 
Design and-construction-of-soil-moisture-measurement-system
Design and-construction-of-soil-moisture-measurement-systemDesign and-construction-of-soil-moisture-measurement-system
Design and-construction-of-soil-moisture-measurement-systemTarek Erin
 
FIELD AND THEORETICAL ANALYSIS OF ACCELERATED CONSOLIDATION USING VERTICAL DR...
FIELD AND THEORETICAL ANALYSIS OF ACCELERATED CONSOLIDATION USING VERTICAL DR...FIELD AND THEORETICAL ANALYSIS OF ACCELERATED CONSOLIDATION USING VERTICAL DR...
FIELD AND THEORETICAL ANALYSIS OF ACCELERATED CONSOLIDATION USING VERTICAL DR...P singh
 
Matthew Cahalan Georgia Water Resources Conference Presentation
Matthew Cahalan Georgia Water Resources Conference PresentationMatthew Cahalan Georgia Water Resources Conference Presentation
Matthew Cahalan Georgia Water Resources Conference PresentationMatthew Cahalan
 

What's hot (20)

APPLICATION OF KRIGING IN GROUND WATER STUDIES
APPLICATION OF KRIGING IN GROUND WATER STUDIESAPPLICATION OF KRIGING IN GROUND WATER STUDIES
APPLICATION OF KRIGING IN GROUND WATER STUDIES
 
Limitations of simplified methods for estimating seismic settlements linked i...
Limitations of simplified methods for estimating seismic settlements linked i...Limitations of simplified methods for estimating seismic settlements linked i...
Limitations of simplified methods for estimating seismic settlements linked i...
 
Interpolation of meteodata using the method of regression-kriging
Interpolation of meteodata using the method of regression-krigingInterpolation of meteodata using the method of regression-kriging
Interpolation of meteodata using the method of regression-kriging
 
Improved analysis of potential lateral spreading displacements
Improved analysis of potential lateral spreading displacementsImproved analysis of potential lateral spreading displacements
Improved analysis of potential lateral spreading displacements
 
StreamFlow Variability of 21 Watersheds, Oregon
StreamFlow Variability of 21 Watersheds, OregonStreamFlow Variability of 21 Watersheds, Oregon
StreamFlow Variability of 21 Watersheds, Oregon
 
6. patriche c., vasiliniuc i. aspects regarding the usefulness of geographi...
6. patriche c., vasiliniuc i.   aspects regarding the usefulness of geographi...6. patriche c., vasiliniuc i.   aspects regarding the usefulness of geographi...
6. patriche c., vasiliniuc i. aspects regarding the usefulness of geographi...
 
WCEE2012_1941
WCEE2012_1941WCEE2012_1941
WCEE2012_1941
 
ESPL1351
ESPL1351ESPL1351
ESPL1351
 
SOIL MOISTURE ASSESSMENT BY REMOTE SENSING AND GIS
SOIL MOISTURE ASSESSMENT BY REMOTE SENSING AND GISSOIL MOISTURE ASSESSMENT BY REMOTE SENSING AND GIS
SOIL MOISTURE ASSESSMENT BY REMOTE SENSING AND GIS
 
Alberto Bellin
Alberto BellinAlberto Bellin
Alberto Bellin
 
LandsatOLI_Lake_Assessment _BakerJ
LandsatOLI_Lake_Assessment _BakerJLandsatOLI_Lake_Assessment _BakerJ
LandsatOLI_Lake_Assessment _BakerJ
 
Molecular water detected on the sunlit Moon by SOFIA
Molecular water detected on the sunlit Moon by SOFIAMolecular water detected on the sunlit Moon by SOFIA
Molecular water detected on the sunlit Moon by SOFIA
 
Research Plan
Research PlanResearch Plan
Research Plan
 
Micro cold traps on the Moon
Micro cold traps on the MoonMicro cold traps on the Moon
Micro cold traps on the Moon
 
Examination of Total Precipitable Water using MODIS measurements and Comparis...
Examination of Total Precipitable Water using MODIS measurements and Comparis...Examination of Total Precipitable Water using MODIS measurements and Comparis...
Examination of Total Precipitable Water using MODIS measurements and Comparis...
 
Spatial variation in surface runoff at catchment scale, the case study of adi...
Spatial variation in surface runoff at catchment scale, the case study of adi...Spatial variation in surface runoff at catchment scale, the case study of adi...
Spatial variation in surface runoff at catchment scale, the case study of adi...
 
Report B.Tech
Report B.TechReport B.Tech
Report B.Tech
 
Design and-construction-of-soil-moisture-measurement-system
Design and-construction-of-soil-moisture-measurement-systemDesign and-construction-of-soil-moisture-measurement-system
Design and-construction-of-soil-moisture-measurement-system
 
FIELD AND THEORETICAL ANALYSIS OF ACCELERATED CONSOLIDATION USING VERTICAL DR...
FIELD AND THEORETICAL ANALYSIS OF ACCELERATED CONSOLIDATION USING VERTICAL DR...FIELD AND THEORETICAL ANALYSIS OF ACCELERATED CONSOLIDATION USING VERTICAL DR...
FIELD AND THEORETICAL ANALYSIS OF ACCELERATED CONSOLIDATION USING VERTICAL DR...
 
Matthew Cahalan Georgia Water Resources Conference Presentation
Matthew Cahalan Georgia Water Resources Conference PresentationMatthew Cahalan Georgia Water Resources Conference Presentation
Matthew Cahalan Georgia Water Resources Conference Presentation
 

Similar to Report - Forschungszentrum Jülich

Mapping spatial variability of soil physical properties for site-specific man...
Mapping spatial variability of soil physical properties for site-specific man...Mapping spatial variability of soil physical properties for site-specific man...
Mapping spatial variability of soil physical properties for site-specific man...IRJET Journal
 
MODELAÇÃO DO SOLO-PAISAGEM – A IMPORTÂNCIA DA LOCALIZAÇÃO
MODELAÇÃO DO SOLO-PAISAGEM – A IMPORTÂNCIA DA LOCALIZAÇÃOMODELAÇÃO DO SOLO-PAISAGEM – A IMPORTÂNCIA DA LOCALIZAÇÃO
MODELAÇÃO DO SOLO-PAISAGEM – A IMPORTÂNCIA DA LOCALIZAÇÃORicardo Brasil
 
TH4.L10.1: SMOS SMAP SYNERGISMS FOR THE RETRIEVAL OF SOIL MOISTURE
  TH4.L10.1: SMOS SMAP SYNERGISMS FOR THE RETRIEVAL OF SOIL MOISTURE  TH4.L10.1: SMOS SMAP SYNERGISMS FOR THE RETRIEVAL OF SOIL MOISTURE
TH4.L10.1: SMOS SMAP SYNERGISMS FOR THE RETRIEVAL OF SOIL MOISTUREgrssieee
 
An expert system model for identifying and mapping tropical wetlands and peat...
An expert system model for identifying and mapping tropical wetlands and peat...An expert system model for identifying and mapping tropical wetlands and peat...
An expert system model for identifying and mapping tropical wetlands and peat...CIFOR-ICRAF
 
soil moisture retrieval.pptx
soil moisture retrieval.pptxsoil moisture retrieval.pptx
soil moisture retrieval.pptxgrssieee
 
soil moisture retrieval.pptx
soil moisture retrieval.pptxsoil moisture retrieval.pptx
soil moisture retrieval.pptxgrssieee
 
SOIL MOISTURE: A key variable for linking small scale catchment hydrology to ...
SOIL MOISTURE: A key variable for linking small scale catchment hydrology to ...SOIL MOISTURE: A key variable for linking small scale catchment hydrology to ...
SOIL MOISTURE: A key variable for linking small scale catchment hydrology to ...Luca Brocca
 
Heritage hetherington lidar_pdf[1]
Heritage hetherington lidar_pdf[1]Heritage hetherington lidar_pdf[1]
Heritage hetherington lidar_pdf[1]llica
 
A knowledge-based model for identifying and mapping tropical wetlands and pea...
A knowledge-based model for identifying and mapping tropical wetlands and pea...A knowledge-based model for identifying and mapping tropical wetlands and pea...
A knowledge-based model for identifying and mapping tropical wetlands and pea...ExternalEvents
 
4_bindlish_igarss2011.pptx
4_bindlish_igarss2011.pptx4_bindlish_igarss2011.pptx
4_bindlish_igarss2011.pptxgrssieee
 
Application of GIS in Mine Contamination and Associated Environmental Impacts
Application of GIS in Mine Contamination and Associated Environmental ImpactsApplication of GIS in Mine Contamination and Associated Environmental Impacts
Application of GIS in Mine Contamination and Associated Environmental ImpactsArsalan Syed, PMP
 
MethodologyThe methodology of mapping used in RainWater Harvest.docx
MethodologyThe methodology of mapping used in RainWater Harvest.docxMethodologyThe methodology of mapping used in RainWater Harvest.docx
MethodologyThe methodology of mapping used in RainWater Harvest.docxARIV4
 
Igarss-Slides-2011-Fung.ppt
Igarss-Slides-2011-Fung.pptIgarss-Slides-2011-Fung.ppt
Igarss-Slides-2011-Fung.pptgrssieee
 
Igarss-Slides-2011-Fung.ppt
Igarss-Slides-2011-Fung.pptIgarss-Slides-2011-Fung.ppt
Igarss-Slides-2011-Fung.pptgrssieee
 
Igarss-Slides-2011-Fung.ppt
Igarss-Slides-2011-Fung.pptIgarss-Slides-2011-Fung.ppt
Igarss-Slides-2011-Fung.pptgrssieee
 

Similar to Report - Forschungszentrum Jülich (20)

Mapping spatial variability of soil physical properties for site-specific man...
Mapping spatial variability of soil physical properties for site-specific man...Mapping spatial variability of soil physical properties for site-specific man...
Mapping spatial variability of soil physical properties for site-specific man...
 
MODELAÇÃO DO SOLO-PAISAGEM – A IMPORTÂNCIA DA LOCALIZAÇÃO
MODELAÇÃO DO SOLO-PAISAGEM – A IMPORTÂNCIA DA LOCALIZAÇÃOMODELAÇÃO DO SOLO-PAISAGEM – A IMPORTÂNCIA DA LOCALIZAÇÃO
MODELAÇÃO DO SOLO-PAISAGEM – A IMPORTÂNCIA DA LOCALIZAÇÃO
 
TH4.L10.1: SMOS SMAP SYNERGISMS FOR THE RETRIEVAL OF SOIL MOISTURE
  TH4.L10.1: SMOS SMAP SYNERGISMS FOR THE RETRIEVAL OF SOIL MOISTURE  TH4.L10.1: SMOS SMAP SYNERGISMS FOR THE RETRIEVAL OF SOIL MOISTURE
TH4.L10.1: SMOS SMAP SYNERGISMS FOR THE RETRIEVAL OF SOIL MOISTURE
 
An expert system model for identifying and mapping tropical wetlands and peat...
An expert system model for identifying and mapping tropical wetlands and peat...An expert system model for identifying and mapping tropical wetlands and peat...
An expert system model for identifying and mapping tropical wetlands and peat...
 
soil moisture retrieval.pptx
soil moisture retrieval.pptxsoil moisture retrieval.pptx
soil moisture retrieval.pptx
 
soil moisture retrieval.pptx
soil moisture retrieval.pptxsoil moisture retrieval.pptx
soil moisture retrieval.pptx
 
SOIL MOISTURE: A key variable for linking small scale catchment hydrology to ...
SOIL MOISTURE: A key variable for linking small scale catchment hydrology to ...SOIL MOISTURE: A key variable for linking small scale catchment hydrology to ...
SOIL MOISTURE: A key variable for linking small scale catchment hydrology to ...
 
Heritage hetherington lidar_pdf[1]
Heritage hetherington lidar_pdf[1]Heritage hetherington lidar_pdf[1]
Heritage hetherington lidar_pdf[1]
 
A knowledge-based model for identifying and mapping tropical wetlands and pea...
A knowledge-based model for identifying and mapping tropical wetlands and pea...A knowledge-based model for identifying and mapping tropical wetlands and pea...
A knowledge-based model for identifying and mapping tropical wetlands and pea...
 
APCBEE
APCBEEAPCBEE
APCBEE
 
Comparison of Spatial Interpolation Methods for Precipitation in Ningxia, China
Comparison of Spatial Interpolation Methods for Precipitation in Ningxia, ChinaComparison of Spatial Interpolation Methods for Precipitation in Ningxia, China
Comparison of Spatial Interpolation Methods for Precipitation in Ningxia, China
 
4_bindlish_igarss2011.pptx
4_bindlish_igarss2011.pptx4_bindlish_igarss2011.pptx
4_bindlish_igarss2011.pptx
 
Scheel et al_2011_trmm_andes
Scheel et al_2011_trmm_andesScheel et al_2011_trmm_andes
Scheel et al_2011_trmm_andes
 
247 - 252_Malam1
247 - 252_Malam1247 - 252_Malam1
247 - 252_Malam1
 
Application of GIS in Mine Contamination and Associated Environmental Impacts
Application of GIS in Mine Contamination and Associated Environmental ImpactsApplication of GIS in Mine Contamination and Associated Environmental Impacts
Application of GIS in Mine Contamination and Associated Environmental Impacts
 
MethodologyThe methodology of mapping used in RainWater Harvest.docx
MethodologyThe methodology of mapping used in RainWater Harvest.docxMethodologyThe methodology of mapping used in RainWater Harvest.docx
MethodologyThe methodology of mapping used in RainWater Harvest.docx
 
Igarss-Slides-2011-Fung.ppt
Igarss-Slides-2011-Fung.pptIgarss-Slides-2011-Fung.ppt
Igarss-Slides-2011-Fung.ppt
 
Igarss-Slides-2011-Fung.ppt
Igarss-Slides-2011-Fung.pptIgarss-Slides-2011-Fung.ppt
Igarss-Slides-2011-Fung.ppt
 
Igarss-Slides-2011-Fung.ppt
Igarss-Slides-2011-Fung.pptIgarss-Slides-2011-Fung.ppt
Igarss-Slides-2011-Fung.ppt
 
test
testtest
test
 

Report - Forschungszentrum Jülich

  • 1. Understanding Soil Moisture Dynamics at the Small Catchment Scale:  A Geostatistical Approach      1. INTRODUCTION  The spatial and temporal variability in soil moisture is a phenomenon that has been well                              documented ​[Western and Blöschl, 1998]​. The underlying processes involved in the                      redistribution of soil moisture include complex, non­linear phenomenon ​[Famiglietti et al, 1998]                        like soil texture, grain size distribution and atmospheric forcing. However, the successful                        modelling of many ecological phenomenon, including sub­surface flow and terrestrial energy                      exchange, benefit largely from a better understanding of soil moisture dynamics ​[Ivanov et al,                            2010]​. In this study, data from the SoilNet wireless sensor networks (WSN) ​[Bogena et. al, 2010]                                was used in order to understand soil moisture dynamics at a catchment scale. The sensors in                                question are installed in the Wüstebach catchment, a sub­catchment of the river Rur, situated                            within the Eifel National Park. The catchment is a part of the TERENO Eifel/lower Rhine Valley                                Observatory. A detailed description of the geographical location, topography, soil type and the                          local climate can be found in ​Rosenbaum et al, 2012 ​as well as ​Bogena et al, 2010.  In order to ascertain the various influences on the dynamics of the soil moisture, geostatistical                              analysis was performed on the data.    2. METHODS  As an initial step, the data was prepared as a time series, extending over a period of three years                                      and nine months, from 1​st July 2009 to 11​th March 2013. Although data from SoilNet is available                                  at a temporal resolution of 15 minutes, this particular study utilized data on a daily basis, since                                  the objective of the study was to understand the seasonal dynamics of soil moisture. Further, for                                the purposes of this study, data was used only from 111 of the 150 end­devices installed in the                                    Wüstebach catchment. These 111 end­devices were chosen because of their more consistent                        output in data over the study period, and since they were least plagued by instrumental errors.                                On many occasions, it was found that end­devices or router units did not perform according to                                expectations, mainly due to issues of maintenance ​[Rosenbaum et al, 2012]​.    The following procedures were employed in order to perform geostatistical analysis on the soil                            moisture data.    2.1. Outlier Detection  The existence of outliers in spatially referenced data can have an influential effect on                            geostatistical analysis. This is mainly because spatial outliers, being inconsistent data points,                        can disrupt the stationarity of data that is an intrinsic assumption in geostatistical analysis                            [Deutsch and Journel, 1992]​. It is important to note that spatial outliers are local aberrations,                              and as such, are only detected as outliers based on the data sourced from spatial neighbours                                [Kou et al, 2006]​, and not from the ensemble data. The procedure adopted in order to detect the                                    existence of spatial outliers is discussed in detail in ​Kou et al, 2006 ​and in ​Chen et al, 2007​. 
  • 2. It was assumed that the data was normally distributed. Under such an assumption, a probability                              distribution function can be developed for a particular neighbourhood in which the data­point in                            question is located. Further, confidence intervals are inferred from this probability distribution                        function, and the confidence value associated with the value of the data­point under                          consideration is evaluated. The data­point is then accepted or rejected, based on the                          confidence value. In this particular study, the neighbourhood was defined by the ten nearest                            neighbours of the data­point in question. This definition of the neighbourhood was adopted                          since it was felt that the estimate made at a particular point must be consistently made from the                                    same number of neighbours. This, however, can be a particular disadvantage, especially for                          points located at the boundaries of the study­area, since the ten nearest neighbours for this                              point will be quite distant from the point itself.  The data­point was discarded if it was found to be outside the 98% confidence interval. In other                                  words, the point was discarded if the probability of the data coming from the normal distribution                                adopted was less than 2%. On an average, it was found that around 3 to 4 data points per time                                        slice were rejected in this manner.  Additionally, it was found that a few sampling points in particular were consistently reported as                              outliers. In many cases, the sampling points which performed poorly in the outlier test (ie: they                                were reported as outliers for a large portion of the time­series) were found to be points located                                  in groundwater influenced areas. It is therefore important to appreciate that the outlier test has                              its own limitations. It is suggested that the outlier detection is performed on a regional basis ­ ie:                                    the outlier detection is performed separately for groundwater influenced areas and groundwater                        distant areas. Such a distinction could possibly be made from the soil­map.    2.2. Geostatistical Analysis  Geostatistical analysis has been used in the past ​[Rosenbaum et al, 2012; Western et al, 1999;                                Huaxing et al, 2009] in order to ascertain the spatial structure of soil moisture distribution. As                                such, geostatistics provides a rigorous, well defined method by which to study the distribution of                              any form of spatially referenced data.  In this study, the data was analyzed by programs available from the Geostatistical Software                            Library (GSLIB) ​[Deutsch and Journel, 1992]​.  The ​gamv routine of GSLIB was used to calculate semivariances. The number of lags was fixed                                at 7 and the lag distance was 30 meters with a lag tolerance of 15 meters. It was generally                                      observed that an exponential model was often the best fit available, and hence it was uniformly                                adopted in all cases (as was the case in ​Rosenbaum et al, 2012​).                                           ​(1)(h)  c  γ =   0 + c1 1[ − e( )a −3h ]   Here is the model semivariance as a function of the lag ‘h’, is the nugget, is the  (h) γ                        c0        c1     structural semivariance (also known as the sill), and ​a​ is the range.  It is to be noted that, unlike ​Rosenbam et al, 2012​, no accurate estimate of the “true” nugget                                    variance could be made, as the data set in question was devoid of the paired sensors                                (separated by 0.05 meters) available in the case of ​Rosenbaum et al, 2012​. Due to this                                limitation, it must be mentioned that the fit parameters were not of a desirable quality and in                                  many cases were found to be unrealistic, since the data often displayed an unbound nature. It                               
  • 3. was found in many cases that the model that was fit to the data had ranges and sills which were                                        of the order of 10​6 meters, which is more than three orders of magnitude higher than the                                  expected sill and range. In order to avoid this, the fitting algorithms was developed in such a                                  way, so as to ensure that the nugget variance was never negative (it was curtailed to a                                  minimum value of zero), and the range never exceeded 300 meters, as it was assumed that                                spatial autocorrelation cannot exist beyond 300 meters. However, it must be noted that in the                              case of ​Rosenbaum et al, 2012 data for which the model range exceeded 300 meters was                                discarded, and was not used for further analysis.  In order to understand the spatial distribution of the data, kriging interpolation was performed on                              the data set. Both, ​ordinary kriging and ​external drift kriging was performed on the data set. The                                  GSLIB routine ​kt3d was used to develop kriging results. The co­variable for ​external drift kriging                              was composed of a combination of the wetness index ​[Beven and Kirkby, 1979] and the soil                                texture class. In order to compare the results of ​ordinary kriging ​and ​external drift kriging​, cross                                validation was performed and the root­mean­square error (RMSE) was calculated for the                        estimated value and the true value at the measurement points.      3. RESULTS AND DISCUSSION    3.1. Variogram Analysis  As mentioned earlier, due to the unavailability of data from paired sensors separated by 0.05                              meters at each sampling location, as in the case of ​Rosenbaum et al, 2012​, a rigorous estimate                                  of the ‘true’ nugget variance was not possible. This was mainly because the nugget had to be                                  obtained by means of extrapolation of the model that was fit to the data. In the case of                                    Rosenbaum et al, 2012​, the nugget variance rarely approached 50 (vol%)​2​ , and was often                            around 30 (vol%)​2 for the sensors placed at 5cm depth. However, when an extrapolation of the                                data is made to estimate the nugget, the nugget variance is comparatively much higher. The                              nugget variance was consistently above 50 (vol%)​2​ , except for short periods between late                          January and early March, during which the nugget took a constant value of 0 (vol%)​2​ . This                                constant zero value is a consequence of the fitting algorithm which forces the nugget to zero if                                  the initial estimate is negative.    Further, of the 1403 days for which the data was analyzed, it was observed that around 900                                  days of data displayed a model variogram that was unbound in nature, ie: the estimated range                                was well above 300 meters. This incorrect estimate can also be attributed to the lack of a ‘true’                                    nugget.           
  • 4.   Figure 1: An example of the zero nugget phenomenon (19.02.2011)    Figure 2: An example of an unbound variogram (30.07.2009)    The variogram is an important tool in geostatistics, and the data that is generated from the                                variogram model is used subsequently in kriging analysis. Keeping this in mind, it is important                              that the variogram is as accurate as possible and is able to represent the physical realities of                                  the study area. In this regard, the method of geostatistical analysis employed by ​Rosenbaum et                              al, 2012​, seems to be the only rigorous and accurate method of estimating the true nugget, and                                  in the light of the lower quality fits generated in this study, it must be emphasized that an                                    estimate of the true nugget is indispensable.  Another observation made in the variogram of most of the data­sets was a sudden, anomalous                              increase in the semivariance for a lag distance of 150 meters. 
  • 5.   Figure 3: Increased semivariance at 150 meters lag distance (27.08.2010)      This high value of semivariance was observed to be a consistent phenomenon, but the intensity                              of the heightened semivariance differed with time ­ with the difference being prominent during                            the dry summer months, and almost non­existent during the wet winter months. It was proposed                              that the cause of this increased semivariance can be attributed to the hillslope length. Since the                                valley regions are groundwater influenced, it is expected that these regions continue to remain                            wet during the summer months, while the rest of the catchment is relatively dry. Since the 150                                  meter lag bin (ie: with a lag tolerance of 15 meters) would consist mainly of pairs composed                                  from valley bottom and hillslope top (very wet and very dry, respectively), we expect this                              variance to be particularly high. Further, it is to be noted that the total sill (a measure of overall                                      variance) during the summer months is comparatively higher than the total sill during the winter                              months ­ which suggests that overall variances increase during the summer months.    3.2. Kriging Analysis  As a second step in the geostatistical analysis of the data, kriging analysis was performed in                                order to understand the spatial distribution of soil moisture.  As a first step, ordinary kriging was performed. The discretization of the area was done by 10m                                  X 10m grids in both x and y directions. The estimate at a particular grid was made with data                                      from all points in the catchment, suitably weighted by the semivariance as obtained from the                              variogram model ­ which is the principle of kriging interpolation.  It was evident that the variogram had a very influential role in the final kriging output that was                                    created. It was observed that the variograms which were unbound and showed very high sills                              and ranges, not to mention higher than expected nuggets, showed a distinct amount of                            smoothing. These variograms resulted in a kriging map devoid of the expected variability in the                              surface soil moisture. Further, it was also observed that the correction that was introduced,                            which restricted nuggets to a minimum value of zero, was not physically sound since                            subsequent time slices showed marked differences in the kriging map, even though there was                            no significant precipitation event.     
  • 6.                             Figure 4: Kriging map (15.11.2009)                                      Figure 5: Kriging map (16.11.2009)                   note the unbound variogram                                               note the zero nugget and                 and the high degree of smoothing                                       the high local variability      It is to be noted in the runoff­precipitation graphs in both fig. 4 and fig. 5 that there was no                                        significant precipitation event during this period, yet the kriging outputs look surprisingly                        different. In fig. 4 there is a marked smoothing effect, with all local variability being averaged out                                  ­ this is due to the unbound variogram which results in an almost equal weightage for all pairs of                                      points. Fig. 5 shows a high degree of local variability, which can be attributed to the zero nugget                                    variance. Such a model would give very high weightage to nearby points and very low                              weightage to distant points while calculating the interpolated estimate at a point. It is further                              important to note that both situations ­ unbound variogram with a high nugget, and a zero                                nugget variogram ­ are not representative of the physical realities which can only be closely                              matched with an estimate of the true nugget.  In order to improve the estimate at a given point, ​external drift kriging was performed with a                                  covariable that was composed of a combination of the wetness index and the soil texture class.                                In order to quantify the improvement in the estimate, cross validation was performed by a                              resampling routine that compares the estimated value to the measured value. This cross                          validation can be used to calculate the average root­mean­squared error (RMSE) for a given                            period.  It was observed that external drift kriging performed only marginally better in the cross­validation                            tests. However, the advantage of external drift kriging lies in the reintroduction of local variability                              in the data, as seen in fig. 6 (a,b,c).  The increased variability that external drift kriging permits is, in fact, representative of the input                              data, since the input data showed certain measurement stations with a moisture content well                            above 50 vol.% and well below 30 vol.% ­ both of these values are found to be missing in the                                        ordinary kriging map of fig. 6(a). It is interesting to note that external drift kriging is able to                                    preserve the statistics of the data better than ordinary kriging, and this can possibly be tested                                with comparisons to stochastic simulations. 
  • 8.   As seen in fig. 7, the RMSE for external drift kriging is only marginally better, however it is worth                                      noting that ​Famiglietti et al, 1998 observed that other factors like specific contributing area,                            porosity and relative elevation appear to be more strongly correlated to the soil water content,                              and hence, can be used as a more effective covariable for external drift kriging in future works.  A further, curious observation is the variation of root­mean­squared error with time and with the                              average soil water content. It appears that in the first half of the data (prior to 1​st June 2011), the                                        root­mean­squared error is negatively correlated with the mean soil water content. Beyond 1​st                           June 2011, however, root­mean­squared error appears to be positively correlated with mean                        soil water content.  This relationship is far more evident in fig. 8 which is a plot of the sum of squared errors as a                                          function of time, with the time series of the mean soil water content for the same period. This                                    particular plot was smoothed by a one­month moving average in order to remove the ‘noisy’                              nature of fig. 7. This ‘inversion’ of the correlation between the error in the estimation and the                                  mean soil water content raises the important question of whether such a correlation exists at all.                                To answer this question a scatterplot of the sum of squared errors against the mean soil water                                  content was developed. Fig. 9 is quite similar to the plot of the standard deviation of against                                θ   the mean soil water content plots in ​Rosenbaum et al, 2012. ​This seems to be a further                                  confirmation of the observations of ​Vereecken et al, 2007 which suggests that the relationship                            between the mean soil water content and the standard deviation of the soil water content is                                unimodal.  Figure 8: Time series of the sum of squared errors ­ the plot was smoothed by a one­month  moving average         
  • 9.   Figure 9: Sum of squared errors as a function of the mean soil water content    The nature of figs. 8 and 9 imply that with increasing variability in the soil water content in the  catchment, the associated errors involved in the kriging estimate increase. Kriging becomes  more error prone as the variability in the catchment increases, and is therefore incapable of  accurately estimating the distribution of soil water content in important stages of wetting and  drying during which the variability is high.      Figure 10: Kriging snapshot from 29.01.2010 ­ the region circled in red consistently appears to be  a region of low soil water content, despite the fact that the topography suggests that the region is  part of a valley. 
  • 10. Previous studies on the soil moisture dynamics in hillslopes (​Famiglietti et al, 1998) suggest that                              areas with higher topographical curvature tend to have a higher moisture content since they are                              prone to water storage due to the natural depression formed in the soil surface. However, the                                region circled in red in fig. 10 seems to be anomalous. This region was observed to have a                                    persistent below average moisture content, even though the topography in this region seems to                            suggest that the region ought to have a higher amount of soil moisture. It is evident that there                                    are other factors at work in this region, which results in the observations being anomalous ­ for                                  example, the throughfall patterns and the vegetation cover may influence the region to have a                              lower soil water content.  However, the importance of this anomaly is the evidence that topography and wetness index                            alone cannot be used as reliable covariables. A more rigorous, well correlated parameter must                            be introduced to improve the kriging results which rely on a covariable.     4. CONCLUSIONS  In this study, an effort was made to understand the principle geostatistical techniques employed                            in the analysis of spatially referenced data. The analysis was performed on soil moisture data                              available from the SoilNet wireless sensor network installed in the Wüstebach catchment as part                            of the TERENO project.  The study revealed the importance of estimating a true nugget effect by installing paired sensor                              nodes in close proximity to each other as was done by ​Rosenbaum et al, 2012. It was shown                                    that a poor estimate of geostatistical parameters resulted in a kriging result that was not                              representative of the physical realities ­ the kriging output was highly smoothed, with all local                              variability being lost. The result also showed that an artificial curtailment of the model                            parameters to realistic values does not seem to be a viable solution, since such a curtailment                                can cause impossibly dramatic changes in kriging outputs within short spans of time, when                            there has been no external changes in the environment in the form of precipitation.  The study also revealed the nature of the relationship between the error associated with kriging                              interpolations and the mean soil water content, suggesting that the kriging error is closely                            related to the statistical variability in soil water content ­ specifically the standard deviation.                            Further studies are required to confirm this conjecture.  Also, the poor performance of wetness index as a covariable for external drift kriging was                              highlighted. Although topography plays an important role in the redistribution process of soil                          moisture, it was shown that often, the soil water content can be persistently and prominently                              different from what is expected at a point based on the topography. As such, it is not surprising                                    that the wetness index does not perform as an ideal covariable.                 
  • 11. APPENDIX  In the above study, it was found that the geostatistical analysis produced poor results as far as                                  recreating the physical realities of the spatial and temporal variability of soil water content in the                                Wüstebach catchment. The prime reason for this unsatisfactory result was the lack of an                            accurate estimate of the true nugget effect. As mentioned earlier, in the work of ​Rosenbaum et                                al, 2012 the data included a paired sensor configuration at each measuring station, with these                              sensors separated by 0.05m. The semivariance produced by these ‘paired’ sensors was                        considered to be the nugget.  However, this current study did not include the data from both pairs of sensors at each sampling                                  location. In order to be able to estimate the true nugget, the entire, unprocessed data set was                                  obtained from the TERENO database. This ‘raw data’ is recorded at a temporal resolution of                              approximately 15 minutes. However, it was found that this raw data included numerous errors,                            and extensive pre­processing was found necessary. This section details the initial processing                        that the data was subjected to, and possible techniques to be applied subsequently to the data.    Initially, it was found that over half of the nodes (node ID 056 to 109) reported a constant,                                    erroneous data value for more than half of the time period for which SoilNet has been installed.                                  Therefore, the ‘processing’ was performed only on half of the time series (ie: from 06.09.2011 to                                03.05.2013).  The first step of processing identified situations when one of the paired nodes reported an                              erroneous value, and the other reported an acceptable value. Under such a situation, a                            correlation plot was developed for a short period of time (as it was found that the long term                                    correlation was not satisfactory enough to make a prediction).    When a set of erroneous data was found, a correlation plot for data up to 1 month on either                                      direction of time was generated. A linear relationship was found to be a good model to fit with                                    the     Figure 11: Correlation between paired nodes for short time periods of up to 1 month 
  • 12. (Pearson R=0.97)    Pearson co­efficient of correlation being well above 0.90 in most cases.    Once this correction was made, the bigger problem of correlating different nodes was                          encountered, in the case where both sensors at one sampling location returned an erroneous                            value.    This correction could not be implemented due to time constraints but a basic strategy has been                                thought of.       Figure 12: Time series of erroneous readings for all nodes    Fig. 12 shows, as coloured bars, all the periods in time during which both sensors at a particular                                    node returned erroneous readings. It is disconcerting to note that there is a periodicity in the                                errors, and that there are periods during which all nodes, essentially, are returning wrong                            values, which implies that no correlation is possible.  However, intermediate periods show only a few nodes which are erroneous, and the technique                            of correlation can be used effectively in recovering this data.  It is proposed that a particular node is chosen, based on its performance in a given period, and                                    all erroneous nodes are correlated to this particular node. As long as the coefficient of                              correlation is of an acceptable value, say 0.90, then this is accepted as a fairly well correlated                                  data set and the predictions are accepted. If a good correlation with the selected node is not                                  possible, a subsequent node is chosen and the correlation plots are developed once more.  However, it is important to note that such a method may have the associated problem of losing                                  the local variability, because the correlation, especially for long periods in time, need not hold                              true. To overcome this, it is also possible to correlate nodes to the nearest neighbour which                                performs satisfactorily in a given period.   
  • 13.   ACKNOWLEDGEMENTS  I would like to place on record my sincere thanks and gratitude to Dr. Heye Bogena and Dr.                                    Michael Herbst, who played instrumental roles in guiding me during my stay at the                            Forschungszentrum Jülich. They were extremely approachable and were encouraging at all                      stages of the project. I hope I have repaid their investment of time and effort in me in some                                      small way.    I would also like to thank Dr. Harry Vereecken, who was kind enough to permit my stay at the                                      institute IBG­3.    I am extremely indebted to Bernd Schilling, Inge Wiekenkamp, Nina Gottselig, Dr. Sander                          Huisman, Anna Missong, Dr. Thomas Putz, Dr. Lutz Weihermüller, Roland Baatz and the rest of                              the team that was part of the soil sampling campaign at Wüstebach ­ who included me into the                                    IBG­3 family through their warm hospitality and jovial camaraderie.    Lastly, my extreme gratitude to the DAAD for providing financially and logistically, since this                            experience would not have been possible without their aid.          Arjun Narayanan                                         
  • 14.   REFERENCES    Beven, K.J., Kirkby, M.J. 1979. A physically based variable contributing area model of basin                            hydrology. Hydrological Sciences Bulletin, 24:1, 43­69, doi:10.1080/02626667909491834.    Bogena, H.R., Herbst, M., Huisman, J.A., Rosenbaum, U., Weuthen, A., Vereecken, H. 2010.                          Potential of wireless sensor networks for measuring soil water content variability. Vadose Zone                          J. 9:1002–1013 doi:10.2136/vzj2009.0173.    Chen, D., Lu C., Kou, Y., Chen, F. 2007. On detecting spatial outliers. Geoinformatica (2008)                              12:455–475 doi10.1007/s10707­007­0038­8.    Deutsch, C.V., Journel, A.G. 1998. GSLIB: Geostatistical software library and user’s guide.                        Oxford University Press. ISBN 0195100158.    Famiglietti, J.S., Rudnicki J.W., Rodell, M. 1998. Variability in surface moisture content along a                            hillslope transect: Rattlesnake hill, Texas. Journal of Hydrology, 210, 259­281.    Huaxing, B., Xiaoyin, L., Xin, L., Mengxia, G., Jun, L. 2009. A case study of spatial                                heterogeneity of soil moisture in the Loess plateau, western China: A geostatistical approach.                          International Journal of Sediment Research ,24 ,63–73.    Ivanov, V.Y., Fatichi, S., Jenerette, G.D., Espeleta, J.F., Troch, P.A., Huxman, T.E. 2010.                          Hysteresis of soil moisture spatial heterogeneity and the “homogenizing” effect of vegetation.                        Water Resources Research, 46, W09521, doi:10.1029/2009WR008611.    Kou, Y., Lu, C., Chen, D. Spatial weighted outlier detection. SIAM meeting.    Rosenbaum, U., H. Bogena, M. Herbst, J.A. Huisman, T.J. Peterson, A. Weuthen, Vereecken,                          H., 2012. Seasonal and event dynamics of spatial soil moisture patterns at the small catchment                              scale. Water Resources Research, doi: 10.1029/2011WR011518.    Vereecken, H., T. Kamai, T. Harter, R. Kasteel, J. Hopmans, and J. Vanderborght. 2007.                            Explaining soil moisture variability as a function of mean soil moisture: A stochastic unsaturated                            flow perspective. Geophysical Research Letters 34:L22402, doi:10.1029/2007GL031813.    Western, A.W., Blöschl, G. 1999. On the spatial scaling of soil moisture. Journal of Hydrology                              217 (1999) 203–224.