SlideShare a Scribd company logo
1 of 10
Fig. 1. Mechanism of SHAPE with NMIA6
. A. A nucleotide in RNA will be under a constraining force which is
dependent on its interactions with other nucleotides in the RNA. If sufficiently constrained, the 2’-O-
will be in
close proximity to the phosphate O-
, preventing acylation by NMIA. If unconstrained and flexible, the 2’-O-
will
be subject to attack by the NMIA. In the hydrolysis pathway, free 2-methylaminobenzoate is produced.
In the RNA acylation pathway, CO2 is released, and a 2-methylaminobenzoate lesion is produced at the 2’
position. It is this lesion that is detected with reverse transcriptase. B. NMIA lesions (pink) interrupt cDNA
synthesis by RT.
Fig. 3. Titration of [NMIA] for bI5. 32
P-labeled RT reactions of NMIA-RNA on an 8% acrylamide gel.
Concentrations are for final [NMIA] during the acylation reaction. Note the decrease in full-length product as
[NMIA] increases and the increase in shorter fragments as [NMIA] increases.
Fig. 2. The structure of the bI5 intron. Structure as determined in previous studies4
with corresponding trace
data from Cy5-labeled sequencing experiment. Reactive regions can clearly be seen as elevations in the NMIA
acylation profile (red) over background (blue). A sequencing lane indicates the position of guanines in the cDNA.
This data has not been corrected for signal decay.
Fig. 4. Normalization scheme for drop in sequencing signal intensity. NMIA(+) trace is in red. Control trace
is in blue. A. Current model of decay approximation for the bI5 intron. The differences between regression
curves and their respective maximum value at beginning of trace are used as multiplicative factors to correct for
falloff in signal. Signal is adjusted by multiplying raw signal by this difference at each point in the trace. B.
Traces after application of normalization function.
Fig. 5. NMIA reactivity profile of the bI5 intron. Graphical representation of
decay-corrected, NMIA reactivity values above background for the bI5 intron. Cy5 fluor was used. Layout is as
in Fig. 2. Paired bases possess a lower reactivity profile than unpaired bases. Green bases in the P4-P6 region are
paired non-canonically (A·A) or adjacent to a non-canonical pair. Tertiary interaction (P11*) is evident by
suppressed reactivity in loop and bulge regions.
Fig. 8. 128-mer base unit for falloff probe. The basic stem-bulge-stem-loop design (SBSL) follows a basic
pattern of 4 paired bases followed by 4 unpaired bases. This 4-4 pattern occurs four times per SBSL, and is
repeated four times in the base unit for a final [((4+4)x4)x4] pattern as predicted by RNAstructure. This is the
only structure predicted for this sequence.
Fig. 9. Full-length, synthetic 464-mer RNA for falloff study. Transcription of RNA begins after the T7
promoter after base 20 giving a final RNA of 444 nucleotides. Pairing between ends of RNA will be disrupted by
T7 RNA polymerase.
Fig. 6. 100-mer SMN pre-mRNAs. Structures are of 100-nt fragments of SMN1 and SMN2 pre-mRNA ending
with exon 7. The ESE splice mutation (+6) is circled in red. The splice point is indicated by the arrow. The
unpaired-to-paired switch at the splice point is common in structures indicating macromolecular rearrangement.
Fig. 7. 60-mer SMN pre-mRNAs. Structures are of 60-nt fragments of SMN1 and SMN2 pre-mRNA ending
with exon 7. The ESE splice mutation (+6) is circled in red. The splice point is indicated by the arrow. The six-
base to four-base shrink in the loop is common in structures failing to show macromolecular rearrangement.
Fig. 7. 60-mer SMN pre-mRNAs. Structures are of 60-nt fragments of SMN1 and SMN2 pre-mRNA ending
with exon 7. The ESE splice mutation (+6) is circled in red. The splice point is indicated by the arrow. The six-
base to four-base shrink in the loop is common in structures failing to show macromolecular rearrangement.

More Related Content

What's hot

Lecture 22
Lecture 22Lecture 22
Lecture 223la2
 
section 5, chapter 4
section 5, chapter 4section 5, chapter 4
section 5, chapter 4Michael Walls
 
3.19.2010
3.19.20103.19.2010
3.19.2010Greg
 
Atp adn gdp
Atp adn gdpAtp adn gdp
Atp adn gdpARTUROCC
 
Summer 2015 REU Poster AK_FINAL
Summer 2015 REU Poster AK_FINALSummer 2015 REU Poster AK_FINAL
Summer 2015 REU Poster AK_FINALAndrew Kocian
 
Translation
TranslationTranslation
TranslationNandy 91
 
Dna protein synthesis_ppt
Dna protein synthesis_pptDna protein synthesis_ppt
Dna protein synthesis_pptKarl Pointer
 
RNA & Protein Synthesis
RNA & Protein SynthesisRNA & Protein Synthesis
RNA & Protein SynthesisKarl Pointer
 
3.5 transcription & translation notes
3.5 transcription & translation notes3.5 transcription & translation notes
3.5 transcription & translation notescartlidge
 
Sulfonium-Ion Glycosidase Inhibitors and Their Derivatives
Sulfonium-Ion Glycosidase Inhibitors and Their DerivativesSulfonium-Ion Glycosidase Inhibitors and Their Derivatives
Sulfonium-Ion Glycosidase Inhibitors and Their DerivativesAndeChennaiah
 
2. protein synthesis student
2. protein synthesis student2. protein synthesis student
2. protein synthesis studentAlliusis
 
Wtk apbi och17genetoprotein
Wtk apbi och17genetoproteinWtk apbi och17genetoprotein
Wtk apbi och17genetoproteinsbarkanic
 

What's hot (20)

MMLV RNA Project Poster Summer 2010
MMLV RNA Project Poster Summer 2010MMLV RNA Project Poster Summer 2010
MMLV RNA Project Poster Summer 2010
 
Lecture 22
Lecture 22Lecture 22
Lecture 22
 
section 5, chapter 4
section 5, chapter 4section 5, chapter 4
section 5, chapter 4
 
3.19.2010
3.19.20103.19.2010
3.19.2010
 
Protein structure 3 d
Protein structure 3 dProtein structure 3 d
Protein structure 3 d
 
32 38pp bioquimica
32 38pp bioquimica32 38pp bioquimica
32 38pp bioquimica
 
Atp adn gdp
Atp adn gdpAtp adn gdp
Atp adn gdp
 
Summer 2015 REU Poster AK_FINAL
Summer 2015 REU Poster AK_FINALSummer 2015 REU Poster AK_FINAL
Summer 2015 REU Poster AK_FINAL
 
Proteins
ProteinsProteins
Proteins
 
Translation
TranslationTranslation
Translation
 
Nucleic acid
Nucleic acidNucleic acid
Nucleic acid
 
Dna protein synthesis_ppt
Dna protein synthesis_pptDna protein synthesis_ppt
Dna protein synthesis_ppt
 
RNA & Protein Synthesis
RNA & Protein SynthesisRNA & Protein Synthesis
RNA & Protein Synthesis
 
3.5 transcription & translation notes
3.5 transcription & translation notes3.5 transcription & translation notes
3.5 transcription & translation notes
 
Sulfonium-Ion Glycosidase Inhibitors and Their Derivatives
Sulfonium-Ion Glycosidase Inhibitors and Their DerivativesSulfonium-Ion Glycosidase Inhibitors and Their Derivatives
Sulfonium-Ion Glycosidase Inhibitors and Their Derivatives
 
translation RNA
translation RNAtranslation RNA
translation RNA
 
2. protein synthesis student
2. protein synthesis student2. protein synthesis student
2. protein synthesis student
 
Enzymes
EnzymesEnzymes
Enzymes
 
Translation
Translation  Translation
Translation
 
Wtk apbi och17genetoprotein
Wtk apbi och17genetoproteinWtk apbi och17genetoprotein
Wtk apbi och17genetoprotein
 

Viewers also liked

27689 9881274147eaac6007e39501d21f900d
27689 9881274147eaac6007e39501d21f900d27689 9881274147eaac6007e39501d21f900d
27689 9881274147eaac6007e39501d21f900drobinbad123100
 
34773 db3e35becf89dc361e53007dc082c3ac
34773 db3e35becf89dc361e53007dc082c3ac34773 db3e35becf89dc361e53007dc082c3ac
34773 db3e35becf89dc361e53007dc082c3acrobinbad123100
 
укр. літ. хр. 10
укр. літ. хр. 10укр. літ. хр. 10
укр. літ. хр. 10robinbad123100
 
домашняя работа к уч. алгебра 8кл. макарычев ю.н. и др 2010 288с
домашняя работа к уч. алгебра 8кл. макарычев ю.н. и др 2010  288сдомашняя работа к уч. алгебра 8кл. макарычев ю.н. и др 2010  288с
домашняя работа к уч. алгебра 8кл. макарычев ю.н. и др 2010 288сrobinbad123100
 
34075 d1c99b1cf3ab0ff129953f3703f6e768
34075 d1c99b1cf3ab0ff129953f3703f6e76834075 d1c99b1cf3ab0ff129953f3703f6e768
34075 d1c99b1cf3ab0ff129953f3703f6e768robinbad123100
 
35543 e9acb5a970840dd174f829ed7f051b77
35543 e9acb5a970840dd174f829ed7f051b7735543 e9acb5a970840dd174f829ed7f051b77
35543 e9acb5a970840dd174f829ed7f051b77robinbad123100
 
34073 b9e2cee4ef067abe42d699c59fda857d
34073 b9e2cee4ef067abe42d699c59fda857d34073 b9e2cee4ef067abe42d699c59fda857d
34073 b9e2cee4ef067abe42d699c59fda857drobinbad123100
 
Bibliotecas y TIC
Bibliotecas y TICBibliotecas y TIC
Bibliotecas y TICTeresaIzq
 
35541 3e53ae57bf97ce8df3b752fa37bb113a
35541 3e53ae57bf97ce8df3b752fa37bb113a35541 3e53ae57bf97ce8df3b752fa37bb113a
35541 3e53ae57bf97ce8df3b752fa37bb113arobinbad123100
 
194 элементы-прикладной_математики_зельдович_мышкис_1972
194  элементы-прикладной_математики_зельдович_мышкис_1972194  элементы-прикладной_математики_зельдович_мышкис_1972
194 элементы-прикладной_математики_зельдович_мышкис_1972robinbad123100
 
29529 bc0d74- bookgdz.ru
29529 bc0d74- bookgdz.ru29529 bc0d74- bookgdz.ru
29529 bc0d74- bookgdz.rurobinbad123100
 
19 2 французский язы
19 2  французский язы19 2  французский язы
19 2 французский языrobinbad123100
 
Powerpoint for py356 project
Powerpoint for py356 projectPowerpoint for py356 project
Powerpoint for py356 projectcwemmerke
 
35829 3eca8fca1734e7362674214ac6eaf69c
35829 3eca8fca1734e7362674214ac6eaf69c35829 3eca8fca1734e7362674214ac6eaf69c
35829 3eca8fca1734e7362674214ac6eaf69crobinbad123100
 

Viewers also liked (20)

27689 9881274147eaac6007e39501d21f900d
27689 9881274147eaac6007e39501d21f900d27689 9881274147eaac6007e39501d21f900d
27689 9881274147eaac6007e39501d21f900d
 
34773 db3e35becf89dc361e53007dc082c3ac
34773 db3e35becf89dc361e53007dc082c3ac34773 db3e35becf89dc361e53007dc082c3ac
34773 db3e35becf89dc361e53007dc082c3ac
 
gмавпвап
gмавпвапgмавпвап
gмавпвап
 
укр. літ. хр. 10
укр. літ. хр. 10укр. літ. хр. 10
укр. літ. хр. 10
 
10kl%20fiz
10kl%20fiz10kl%20fiz
10kl%20fiz
 
Images
ImagesImages
Images
 
Gdz ladyzhen(2)
Gdz ladyzhen(2)Gdz ladyzhen(2)
Gdz ladyzhen(2)
 
домашняя работа к уч. алгебра 8кл. макарычев ю.н. и др 2010 288с
домашняя работа к уч. алгебра 8кл. макарычев ю.н. и др 2010  288сдомашняя работа к уч. алгебра 8кл. макарычев ю.н. и др 2010  288с
домашняя работа к уч. алгебра 8кл. макарычев ю.н. и др 2010 288с
 
34075 d1c99b1cf3ab0ff129953f3703f6e768
34075 d1c99b1cf3ab0ff129953f3703f6e76834075 d1c99b1cf3ab0ff129953f3703f6e768
34075 d1c99b1cf3ab0ff129953f3703f6e768
 
35543 e9acb5a970840dd174f829ed7f051b77
35543 e9acb5a970840dd174f829ed7f051b7735543 e9acb5a970840dd174f829ed7f051b77
35543 e9acb5a970840dd174f829ed7f051b77
 
34073 b9e2cee4ef067abe42d699c59fda857d
34073 b9e2cee4ef067abe42d699c59fda857d34073 b9e2cee4ef067abe42d699c59fda857d
34073 b9e2cee4ef067abe42d699c59fda857d
 
Bibliotecas y TIC
Bibliotecas y TICBibliotecas y TIC
Bibliotecas y TIC
 
35541 3e53ae57bf97ce8df3b752fa37bb113a
35541 3e53ae57bf97ce8df3b752fa37bb113a35541 3e53ae57bf97ce8df3b752fa37bb113a
35541 3e53ae57bf97ce8df3b752fa37bb113a
 
194 элементы-прикладной_математики_зельдович_мышкис_1972
194  элементы-прикладной_математики_зельдович_мышкис_1972194  элементы-прикладной_математики_зельдович_мышкис_1972
194 элементы-прикладной_математики_зельдович_мышкис_1972
 
29529 bc0d74- bookgdz.ru
29529 bc0d74- bookgdz.ru29529 bc0d74- bookgdz.ru
29529 bc0d74- bookgdz.ru
 
19 2 французский язы
19 2  французский язы19 2  французский язы
19 2 французский язы
 
Powerpoint for py356 project
Powerpoint for py356 projectPowerpoint for py356 project
Powerpoint for py356 project
 
Images (4)
Images (4)Images (4)
Images (4)
 
21133 dc2d2
21133 dc2d2 21133 dc2d2
21133 dc2d2
 
35829 3eca8fca1734e7362674214ac6eaf69c
35829 3eca8fca1734e7362674214ac6eaf69c35829 3eca8fca1734e7362674214ac6eaf69c
35829 3eca8fca1734e7362674214ac6eaf69c
 

Similar to AR_Figures

Honors Biology -Molecular Biology
Honors Biology -Molecular BiologyHonors Biology -Molecular Biology
Honors Biology -Molecular BiologyMichael Edgar
 
RNA_splicing_ppt.ppt
RNA_splicing_ppt.pptRNA_splicing_ppt.ppt
RNA_splicing_ppt.pptGizatAlmaw1
 
13-miller-chap-8-lecture (1).ppt
13-miller-chap-8-lecture (1).ppt13-miller-chap-8-lecture (1).ppt
13-miller-chap-8-lecture (1).pptMasihUllah11
 
Riboswitches madiated regulaton
Riboswitches madiated regulatonRiboswitches madiated regulaton
Riboswitches madiated regulatonSwastik Kar
 
Presentation biotechnn
Presentation biotechnnPresentation biotechnn
Presentation biotechnnAwwad_afia
 
13-miller-chap-4b-lecture.ppt
13-miller-chap-4b-lecture.ppt13-miller-chap-4b-lecture.ppt
13-miller-chap-4b-lecture.pptPatrickMukoso
 
translation rna.pptx in detail with diagram
translation rna.pptx in detail with diagramtranslation rna.pptx in detail with diagram
translation rna.pptx in detail with diagramarooshmirza78695
 
13-miller-chap-4b-lecture.urey miller experiment.
13-miller-chap-4b-lecture.urey miller experiment.13-miller-chap-4b-lecture.urey miller experiment.
13-miller-chap-4b-lecture.urey miller experiment.MAKSGreenworld
 
Genetic codons and translation of proteins
Genetic codons and translation of proteinsGenetic codons and translation of proteins
Genetic codons and translation of proteinsHar Kamboj
 
356 MHR • Calculus and Vectors • Chapter 6Eighth pages.docx
356 MHR • Calculus and Vectors • Chapter 6Eighth pages.docx356 MHR • Calculus and Vectors • Chapter 6Eighth pages.docx
356 MHR • Calculus and Vectors • Chapter 6Eighth pages.docxtamicawaysmith
 
RNAProcessingCh12.pdf
RNAProcessingCh12.pdfRNAProcessingCh12.pdf
RNAProcessingCh12.pdfBekeleAlemayo
 
Systems Microbiology
Systems MicrobiologySystems Microbiology
Systems MicrobiologyAsiya Naaz
 
SNP genotyping of markers with nearby secondary polymorphisms using Affymetri...
SNP genotyping of markers with nearby secondary polymorphisms using Affymetri...SNP genotyping of markers with nearby secondary polymorphisms using Affymetri...
SNP genotyping of markers with nearby secondary polymorphisms using Affymetri...Affymetrix
 
Lecture 5. Transcription.ppt
Lecture 5. Transcription.pptLecture 5. Transcription.ppt
Lecture 5. Transcription.pptDr Vishnu Kumar
 
Post transcriptional modification
Post transcriptional modificationPost transcriptional modification
Post transcriptional modificationTehreem Sarwar
 
Biology PROBLEM SET #2 Part I To study the control of ge
Biology PROBLEM SET #2 Part I To study the control of geBiology PROBLEM SET #2 Part I To study the control of ge
Biology PROBLEM SET #2 Part I To study the control of geChantellPantoja184
 
Biology problem set #2 part i to study the control of ge
Biology problem set #2 part i to study the control of geBiology problem set #2 part i to study the control of ge
Biology problem set #2 part i to study the control of gessuserf9c51d
 

Similar to AR_Figures (20)

Honors Biology -Molecular Biology
Honors Biology -Molecular BiologyHonors Biology -Molecular Biology
Honors Biology -Molecular Biology
 
RNA_splicing_ppt.ppt
RNA_splicing_ppt.pptRNA_splicing_ppt.ppt
RNA_splicing_ppt.ppt
 
13-miller-chap-8-lecture (1).ppt
13-miller-chap-8-lecture (1).ppt13-miller-chap-8-lecture (1).ppt
13-miller-chap-8-lecture (1).ppt
 
Presentation
PresentationPresentation
Presentation
 
Riboswitches madiated regulaton
Riboswitches madiated regulatonRiboswitches madiated regulaton
Riboswitches madiated regulaton
 
Presentation biotechnn
Presentation biotechnnPresentation biotechnn
Presentation biotechnn
 
Motiffs
MotiffsMotiffs
Motiffs
 
Kieran_ccpNMR
Kieran_ccpNMRKieran_ccpNMR
Kieran_ccpNMR
 
13-miller-chap-4b-lecture.ppt
13-miller-chap-4b-lecture.ppt13-miller-chap-4b-lecture.ppt
13-miller-chap-4b-lecture.ppt
 
translation rna.pptx in detail with diagram
translation rna.pptx in detail with diagramtranslation rna.pptx in detail with diagram
translation rna.pptx in detail with diagram
 
13-miller-chap-4b-lecture.urey miller experiment.
13-miller-chap-4b-lecture.urey miller experiment.13-miller-chap-4b-lecture.urey miller experiment.
13-miller-chap-4b-lecture.urey miller experiment.
 
Genetic codons and translation of proteins
Genetic codons and translation of proteinsGenetic codons and translation of proteins
Genetic codons and translation of proteins
 
356 MHR • Calculus and Vectors • Chapter 6Eighth pages.docx
356 MHR • Calculus and Vectors • Chapter 6Eighth pages.docx356 MHR • Calculus and Vectors • Chapter 6Eighth pages.docx
356 MHR • Calculus and Vectors • Chapter 6Eighth pages.docx
 
RNAProcessingCh12.pdf
RNAProcessingCh12.pdfRNAProcessingCh12.pdf
RNAProcessingCh12.pdf
 
Systems Microbiology
Systems MicrobiologySystems Microbiology
Systems Microbiology
 
SNP genotyping of markers with nearby secondary polymorphisms using Affymetri...
SNP genotyping of markers with nearby secondary polymorphisms using Affymetri...SNP genotyping of markers with nearby secondary polymorphisms using Affymetri...
SNP genotyping of markers with nearby secondary polymorphisms using Affymetri...
 
Lecture 5. Transcription.ppt
Lecture 5. Transcription.pptLecture 5. Transcription.ppt
Lecture 5. Transcription.ppt
 
Post transcriptional modification
Post transcriptional modificationPost transcriptional modification
Post transcriptional modification
 
Biology PROBLEM SET #2 Part I To study the control of ge
Biology PROBLEM SET #2 Part I To study the control of geBiology PROBLEM SET #2 Part I To study the control of ge
Biology PROBLEM SET #2 Part I To study the control of ge
 
Biology problem set #2 part i to study the control of ge
Biology problem set #2 part i to study the control of geBiology problem set #2 part i to study the control of ge
Biology problem set #2 part i to study the control of ge
 

AR_Figures

  • 1. Fig. 1. Mechanism of SHAPE with NMIA6 . A. A nucleotide in RNA will be under a constraining force which is dependent on its interactions with other nucleotides in the RNA. If sufficiently constrained, the 2’-O- will be in close proximity to the phosphate O- , preventing acylation by NMIA. If unconstrained and flexible, the 2’-O- will be subject to attack by the NMIA. In the hydrolysis pathway, free 2-methylaminobenzoate is produced. In the RNA acylation pathway, CO2 is released, and a 2-methylaminobenzoate lesion is produced at the 2’ position. It is this lesion that is detected with reverse transcriptase. B. NMIA lesions (pink) interrupt cDNA synthesis by RT.
  • 2. Fig. 3. Titration of [NMIA] for bI5. 32 P-labeled RT reactions of NMIA-RNA on an 8% acrylamide gel. Concentrations are for final [NMIA] during the acylation reaction. Note the decrease in full-length product as [NMIA] increases and the increase in shorter fragments as [NMIA] increases.
  • 3. Fig. 2. The structure of the bI5 intron. Structure as determined in previous studies4 with corresponding trace data from Cy5-labeled sequencing experiment. Reactive regions can clearly be seen as elevations in the NMIA acylation profile (red) over background (blue). A sequencing lane indicates the position of guanines in the cDNA. This data has not been corrected for signal decay.
  • 4. Fig. 4. Normalization scheme for drop in sequencing signal intensity. NMIA(+) trace is in red. Control trace is in blue. A. Current model of decay approximation for the bI5 intron. The differences between regression curves and their respective maximum value at beginning of trace are used as multiplicative factors to correct for falloff in signal. Signal is adjusted by multiplying raw signal by this difference at each point in the trace. B. Traces after application of normalization function.
  • 5. Fig. 5. NMIA reactivity profile of the bI5 intron. Graphical representation of decay-corrected, NMIA reactivity values above background for the bI5 intron. Cy5 fluor was used. Layout is as in Fig. 2. Paired bases possess a lower reactivity profile than unpaired bases. Green bases in the P4-P6 region are paired non-canonically (A·A) or adjacent to a non-canonical pair. Tertiary interaction (P11*) is evident by suppressed reactivity in loop and bulge regions.
  • 6. Fig. 8. 128-mer base unit for falloff probe. The basic stem-bulge-stem-loop design (SBSL) follows a basic pattern of 4 paired bases followed by 4 unpaired bases. This 4-4 pattern occurs four times per SBSL, and is repeated four times in the base unit for a final [((4+4)x4)x4] pattern as predicted by RNAstructure. This is the only structure predicted for this sequence.
  • 7. Fig. 9. Full-length, synthetic 464-mer RNA for falloff study. Transcription of RNA begins after the T7 promoter after base 20 giving a final RNA of 444 nucleotides. Pairing between ends of RNA will be disrupted by T7 RNA polymerase.
  • 8. Fig. 6. 100-mer SMN pre-mRNAs. Structures are of 100-nt fragments of SMN1 and SMN2 pre-mRNA ending with exon 7. The ESE splice mutation (+6) is circled in red. The splice point is indicated by the arrow. The unpaired-to-paired switch at the splice point is common in structures indicating macromolecular rearrangement.
  • 9. Fig. 7. 60-mer SMN pre-mRNAs. Structures are of 60-nt fragments of SMN1 and SMN2 pre-mRNA ending with exon 7. The ESE splice mutation (+6) is circled in red. The splice point is indicated by the arrow. The six- base to four-base shrink in the loop is common in structures failing to show macromolecular rearrangement.
  • 10. Fig. 7. 60-mer SMN pre-mRNAs. Structures are of 60-nt fragments of SMN1 and SMN2 pre-mRNA ending with exon 7. The ESE splice mutation (+6) is circled in red. The splice point is indicated by the arrow. The six- base to four-base shrink in the loop is common in structures failing to show macromolecular rearrangement.