SlideShare a Scribd company logo
1 of 5
HIGH TEMPERATURE SUPERCONDUCTIVITY 10/30/2015
ANDY HILLIER, STEPHEN GRONOW, BRADLEY REGULA, MATT
DEMATTIE
1
ABSTRACT:
Thisexperimentseekstodrawa relationshipbetweenthe resistivityof superconductingmaterialsand
temperature overtime,asthe superconductorapproachesitscritical temperatureTC.Thiswill be done
by usingtwoDVMATE GPIB devicestomeasure the resistance inthe ceramicsuperconductingyttrium
and bismuthdiscs,aswell asthe thermocouple voltage whichcorrelatestothe temperature of the disc
overtime. The temperature willbe loweredinthe ceramicdiscviacontact with liquidnitrogen. The
voltageswill be recorded withLabVIEWtocreate comma delimitedASCIIcode toconvertintoa
MicrosoftExcel workbook,aswell asto plotthe resistance andthermocouplevoltagestogethersuch
that theyare able tomap the gradual move to zeroresistance atcritical temperature TC and
superconductiveproperties. The Meissnereffectof superconductors will alsobe verified by,ina
stationaryposition,levitatingmagnetsinsituwiththe superconductingmaterial,aswell asnotingthe
critical fieldandcritical currentdensitypropertiesof superconductors.
INTRODUCTION:
ThisexperimentutilizestwoDVMATE GPIB devicestomeasure the resistance of the ceramicdiscatit
approachesitscritical temperature TC,at whichpointithas zeroresistivity.LabVIEWisusedtorecord
the data as comma delimitedASCIIcode,which will be converted intoanexcel workbooksuchthatthe
data isable to be manipulated. Beforethe firstmeasurement,the Meissnereffectisconfirmedby
achievingTC inthe disk,andplacinga magnetoverit,such that itfloatsinplace and it isable to be
rotatedon itsvertical axisbypokingit.
Image depicting Meissner Effect of superconductors. SOURCE: http://www.extremetech.com/wp-content/uploads/2014/08/meissner-effect-superconducting-
levitation-magnet-640x353.jpg
HIGH TEMPERATURE SUPERCONDUCTIVITY 10/30/2015
ANDY HILLIER, STEPHEN GRONOW, BRADLEY REGULA, MATT
DEMATTIE
2
THEORY:
Superconductorswere discoverednotlongafterthe turnof the centuryby DutchmanKamerlingh
Ohnnes.Theyare verysignificantbecauseof theirspecial properties.One of thesepropertiesis itsZero
Resistivity.Belowacritical temperature TC,the DCresistivitybecomeszero,allowingclosed
superconductingringstopersistindefinitely. Critical Field,anotherpropertyof superconductors,which
statesthat aftersome certaincritical magneticfieldBC (inthe orderof 10-2
T; the approximate strength
of a small bar magnet),normal resistivityisrestoredtothe material.Thisfieldstrengthof course
dependsonthe material inquestion,anditstemperature. Ina functionof BC/Tx10-2
vs. T/K,the
materialshave the propertiesof normal conductorsabove theirrespectivecurves.Thiscurve hasthe
formB = B0 [1-(T/TC)2
],where B0 isthe fieldatthe temperature zerotemperature limit. The Critical
CurrentDensityrelatesthe magneticfieldproducedbyacurrentin a superconductortoBC: If the fieldB
producedbythe current inthe superconductorexceedsBC,thanthe material returnstonormal
resistivity.The lastrelevantpropertyof superconductorsforthisexperimentisthe Meissnereffect.This
effectshowsthatif an external fieldBEXT (< BC) isappliedtoa superconductor,itwill produce an
opposingcurrenttothisexternal fieldinaccordance withLenz’slaw. Whenamagnetisplacedon top of
a superconductor,then,the currentIis restrictedtoa thinsurface layer,andinside the surface layerthe
effectivefieldiszero(BINT = 0). If BEXT becomesgreaterthanor equal to BC, the Critical Fieldisreached
and will returnthe material toa normal conductor;thisisreferredtoas quenching.The exclusionof
magneticflux forBEXT isnot directlycorrelatedtothe superconductor’szeroresistivity,butratherisa
fundamental propertywhichis very apparentinsuperconductors. There are twotypesof
superconductors,Type IandType II, whichare differentiatedbythe mechanismthroughwhichthey
returnto theirnormal conductingstate whenBEXT becomesgreaterthanBC at a fixedtemperature (less
than the critical temperature).Type Isuperconductorsare characterizedbyasharp transitionwhere the
entiretyof the material becomesnormal almostinstantlywhenitreachesBC;almostall elemental
superconductorsare thistype.Type IIsuperconductorsare characterizedbyagradual returnto normal
properties, notreachingitsnormal resistivitywhenBC isachieved,butgraduallyreturningbacktoit with
increasingBEXT. Thisisnormal in mostalloyandceramic superconductorsthathave a highTC, and is
causedby a ‘mixedstate’inwhichnormal propertiesappearregionallyandincrease withincreasingBEXT.
Superconductivityiscausedbythe lackof electronscatteringinthe material,whichisreflectedinits
zeroresistivityproperty.The Bardeen-CooperSchriefferTheory(BCS),formulatedaround1957, states
that insuperconductors,electrons(±1/2spinFermions) of opposite spinpairupwitheachotherto form
cooperpairswhichessentiallyexhibitthe properties of Bosons.Thisis significant,since Bosonsare not
affectedbythe Pauli ExclusionPrinciple,andthe cooperpairscan thereforoccupythe same energy
state.BelowTC,all of the material’scooperpairsoccupythe groundstate energylevel (Bose-Einstein
condensation).Thisessentiallyallowsall of the cooperpairsinthe material to move freelyacrossthe
material withnochange inenergy,whichmeansnoscatteringisobservedandthe material exhibitszero
resistivity. Cooperpairsformtoachieve a lower energystate (the energyof acooperpairislessthan
that of individual electronsintheirhigherenergystates).The conservationof energythenshowsthat
the energyreleasedthatwasheldbythe electronsbefore theybecame acooperpairisremovedby
conversiontophononsinitsexchange interaction;phononsbeingatype of longitudinal wave. The
exchange interactionshowsthatthe individual electronslose energytoapositive ion,exhibitingvirtual
attraction.Thistheorydoesnotexplainwhy1-2-3materials,though,superconduct.Inthese materials,
HIGH TEMPERATURE SUPERCONDUCTIVITY 10/30/2015
ANDY HILLIER, STEPHEN GRONOW, BRADLEY REGULA, MATT
DEMATTIE
3
tunnelingexperimentshave shownthathighTC granulesexhibitsuperconductingpropertiesregionally
inside,butathinsemiconductinglayeroutside. Whilenotheoryexplainsgenerallywhythis
superconductingoccurs,itcan be saidthat the mechanismsthroughwhichitdoesoccurare affected
heavilybystoichiometry,the amountof oxygendeficienciesinthe material’slattice,anditsexposureto
water.Some materialsonlyexhibitsuperconductingincertaincrystal planes.
PROCEDURE:
We hadfirstset upthisexperimentbytakingoursuperconductingdisc (yttrium),andrunningacurrent
throughit usingone of our DVMs. The blackleadsfromthe disc were connectedtoa 500mA current
source,and connectingthe thermocouple wiretothe 5 ½ digitDVMto measure temperature.The
yellowleadsandalligatorclipsare connectedtothe otherDVMto measure the potential dropacross
the sample. AfterturningonourATE, we submergedourdiscinliquidnitrogento bringitdowntoits
critical temperature TC.We had thenverifiedthe Meissnereffectbyplacingasmall rare earthmagnet
on the ceramicdisc andwatchingit float.Toobserve the effectfurther,we hadpokedandproddedthe
magnetto rotate it aroundin place. We had nextusedLabVIEWtorecord the data in 5 runs, afterthe
4th
run usinga bismuthceramicdiscinplace of the yttriumdisc.The savedASCIIcode hadthenbeen
convertedintoacomma delimitedExcel workbook,whichwe manipulatedtoshow our data in the form
of a resistivityvstemperaturegraph,inwhichthe firstX-interceptisthe TC value.
DATA:
-0.0004
-0.0003
-0.0002
-0.0001
0
0.0001
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007
Resistance(mV)
Thermocouple Voltage (mV)
Run 1 (Yttrium)
-0.0004
-0.0003
-0.0002
-0.0001
0
0.0001
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007
Resistance(mV)
Thermocouple Voltage (mV)
Run 2 (Yttrium)
HIGH TEMPERATURE SUPERCONDUCTIVITY 10/30/2015
ANDY HILLIER, STEPHEN GRONOW, BRADLEY REGULA, MATT
DEMATTIE
4
-0.0004
-0.0003
-0.0002
-0.0001
0
0.0001
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007
Resistance(mV)
Thermocouple Voltage (mV)
Run 3 (Yttrium)
-0.0005
-0.0004
-0.0003
-0.0002
-0.0001
0
0.0001
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007
Resistance(mV)
Thermocouple Voltage (mV)
Run 4 (Yttrium)
-0.0008
-0.0006
-0.0004
-0.0002
0
0.0002
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007
Resistance(mV)
Thermocouple Voltage (mV)
Run 5 (Bismuth)
HIGH TEMPERATURE SUPERCONDUCTIVITY 10/30/2015
ANDY HILLIER, STEPHEN GRONOW, BRADLEY REGULA, MATT
DEMATTIE
5
CONCLUSION/ERROR ANALYSIS:
Thisexperimenthadsoughttodraw a relationshipbetweenthe resistivityof superconductingmaterials
and temperature overtime, asthe superconductorapproached itscritical temperature TC.Thishadbeen
done byusingtwo DVMATE GPIB devicestomeasure the resistance inthe ceramicsuperconducting
yttriumandbismuthdiscs,aswell asthe thermocouple voltage whichcorrelatestothe temperatureof
the disc overtime.The temperature hadbeen loweredinthe ceramicdiscviacontact withliquid
nitrogen.The voltageshadbeen recordedwithLabVIEWtocreate commadelimitedASCIIcode thatwas
converted intoaMicrosoftExcel workbook,aswell asto plotthe resistance andthermocouple voltages
togethersuchthat theywere able tomap the gradual move to zeroresistance atcritical temperature TC
and superconductiveproperties.The Meissnereffectof superconductors alsowas verifiedby,ina
stationaryposition,levitatingmagnetsinsituwiththe superconductingmaterial. The critical fieldand
critical currentdensitypropertiesof superconductorswasalsonoted.The biggestsource of errorinthis
experimentwasthe lackof insulationtocreate a steadiermove toTC.The gradual move toTC was a
reflectionof the coalescingof the superconductinggrainstoallow the free flow of currentwithoutthe
interference of the semiconductive layer,andthe temperature’seffectonthe oxygendeficienciesinthe
lattice.

More Related Content

Similar to SUPERCONDUCTOR EXPERIMENT

Superconductors 141120114326-conversion-gate01
Superconductors 141120114326-conversion-gate01Superconductors 141120114326-conversion-gate01
Superconductors 141120114326-conversion-gate01ayush parikh
 
2014 APS March Meeting Presentation
2014 APS March Meeting Presentation2014 APS March Meeting Presentation
2014 APS March Meeting PresentationCorbyn Mellinger
 
Quantum levitation
Quantum levitationQuantum levitation
Quantum levitationabhik_24
 
Zero resistance superconductivity
Zero resistance   superconductivityZero resistance   superconductivity
Zero resistance superconductivityKundan Parmar
 
TunnelSpectroscopy v2
TunnelSpectroscopy v2TunnelSpectroscopy v2
TunnelSpectroscopy v2Arash Zeinali
 
Superconductivity
SuperconductivitySuperconductivity
Superconductivityilmyong
 
Fundamentals of Superconductivity and its applications
Fundamentals of Superconductivity and its applicationsFundamentals of Superconductivity and its applications
Fundamentals of Superconductivity and its applicationsPraveen Vaidya
 
Super conductors and its applications by vivek kushwaha
Super conductors and its applications by vivek kushwahaSuper conductors and its applications by vivek kushwaha
Super conductors and its applications by vivek kushwahaVivek Kushwaha
 
Superconductivity
SuperconductivitySuperconductivity
SuperconductivitySounak Guha
 
superconductivity in engineering materials
superconductivity in engineering materialssuperconductivity in engineering materials
superconductivity in engineering materialsPragyanandSingh4
 
An Overview of Superconductivity with Special Attention on Thermodynamic Aspe...
An Overview of Superconductivity with Special Attention on Thermodynamic Aspe...An Overview of Superconductivity with Special Attention on Thermodynamic Aspe...
An Overview of Superconductivity with Special Attention on Thermodynamic Aspe...Thomas Templin
 

Similar to SUPERCONDUCTOR EXPERIMENT (20)

superconductivity
 superconductivity superconductivity
superconductivity
 
Superconductors 141120114326-conversion-gate01
Superconductors 141120114326-conversion-gate01Superconductors 141120114326-conversion-gate01
Superconductors 141120114326-conversion-gate01
 
Roy-document-3
Roy-document-3Roy-document-3
Roy-document-3
 
2014 APS March Meeting Presentation
2014 APS March Meeting Presentation2014 APS March Meeting Presentation
2014 APS March Meeting Presentation
 
Superconductivity
SuperconductivitySuperconductivity
Superconductivity
 
Superconductors
SuperconductorsSuperconductors
Superconductors
 
Quantum levitation
Quantum levitationQuantum levitation
Quantum levitation
 
Zero resistance superconductivity
Zero resistance   superconductivityZero resistance   superconductivity
Zero resistance superconductivity
 
TunnelSpectroscopy v2
TunnelSpectroscopy v2TunnelSpectroscopy v2
TunnelSpectroscopy v2
 
Superconductivity
SuperconductivitySuperconductivity
Superconductivity
 
Fundamentals of Superconductivity and its applications
Fundamentals of Superconductivity and its applicationsFundamentals of Superconductivity and its applications
Fundamentals of Superconductivity and its applications
 
Super conductors and its applications by vivek kushwaha
Super conductors and its applications by vivek kushwahaSuper conductors and its applications by vivek kushwaha
Super conductors and its applications by vivek kushwaha
 
Super conducter
Super conducterSuper conducter
Super conducter
 
Superconductivity
SuperconductivitySuperconductivity
Superconductivity
 
superconductivity in engineering materials
superconductivity in engineering materialssuperconductivity in engineering materials
superconductivity in engineering materials
 
Superconductivity
SuperconductivitySuperconductivity
Superconductivity
 
superconductivity
 superconductivity superconductivity
superconductivity
 
n-p-p Silicon solar Cells.PDF
n-p-p Silicon solar Cells.PDFn-p-p Silicon solar Cells.PDF
n-p-p Silicon solar Cells.PDF
 
An Overview of Superconductivity with Special Attention on Thermodynamic Aspe...
An Overview of Superconductivity with Special Attention on Thermodynamic Aspe...An Overview of Superconductivity with Special Attention on Thermodynamic Aspe...
An Overview of Superconductivity with Special Attention on Thermodynamic Aspe...
 
Akselrod article 3
Akselrod article 3Akselrod article 3
Akselrod article 3
 

SUPERCONDUCTOR EXPERIMENT

  • 1. HIGH TEMPERATURE SUPERCONDUCTIVITY 10/30/2015 ANDY HILLIER, STEPHEN GRONOW, BRADLEY REGULA, MATT DEMATTIE 1 ABSTRACT: Thisexperimentseekstodrawa relationshipbetweenthe resistivityof superconductingmaterialsand temperature overtime,asthe superconductorapproachesitscritical temperatureTC.Thiswill be done by usingtwoDVMATE GPIB devicestomeasure the resistance inthe ceramicsuperconductingyttrium and bismuthdiscs,aswell asthe thermocouple voltage whichcorrelatestothe temperature of the disc overtime. The temperature willbe loweredinthe ceramicdiscviacontact with liquidnitrogen. The voltageswill be recorded withLabVIEWtocreate comma delimitedASCIIcode toconvertintoa MicrosoftExcel workbook,aswell asto plotthe resistance andthermocouplevoltagestogethersuch that theyare able tomap the gradual move to zeroresistance atcritical temperature TC and superconductiveproperties. The Meissnereffectof superconductors will alsobe verified by,ina stationaryposition,levitatingmagnetsinsituwiththe superconductingmaterial,aswell asnotingthe critical fieldandcritical currentdensitypropertiesof superconductors. INTRODUCTION: ThisexperimentutilizestwoDVMATE GPIB devicestomeasure the resistance of the ceramicdiscatit approachesitscritical temperature TC,at whichpointithas zeroresistivity.LabVIEWisusedtorecord the data as comma delimitedASCIIcode,which will be converted intoanexcel workbooksuchthatthe data isable to be manipulated. Beforethe firstmeasurement,the Meissnereffectisconfirmedby achievingTC inthe disk,andplacinga magnetoverit,such that itfloatsinplace and it isable to be rotatedon itsvertical axisbypokingit. Image depicting Meissner Effect of superconductors. SOURCE: http://www.extremetech.com/wp-content/uploads/2014/08/meissner-effect-superconducting- levitation-magnet-640x353.jpg
  • 2. HIGH TEMPERATURE SUPERCONDUCTIVITY 10/30/2015 ANDY HILLIER, STEPHEN GRONOW, BRADLEY REGULA, MATT DEMATTIE 2 THEORY: Superconductorswere discoverednotlongafterthe turnof the centuryby DutchmanKamerlingh Ohnnes.Theyare verysignificantbecauseof theirspecial properties.One of thesepropertiesis itsZero Resistivity.Belowacritical temperature TC,the DCresistivitybecomeszero,allowingclosed superconductingringstopersistindefinitely. Critical Field,anotherpropertyof superconductors,which statesthat aftersome certaincritical magneticfieldBC (inthe orderof 10-2 T; the approximate strength of a small bar magnet),normal resistivityisrestoredtothe material.Thisfieldstrengthof course dependsonthe material inquestion,anditstemperature. Ina functionof BC/Tx10-2 vs. T/K,the materialshave the propertiesof normal conductorsabove theirrespectivecurves.Thiscurve hasthe formB = B0 [1-(T/TC)2 ],where B0 isthe fieldatthe temperature zerotemperature limit. The Critical CurrentDensityrelatesthe magneticfieldproducedbyacurrentin a superconductortoBC: If the fieldB producedbythe current inthe superconductorexceedsBC,thanthe material returnstonormal resistivity.The lastrelevantpropertyof superconductorsforthisexperimentisthe Meissnereffect.This effectshowsthatif an external fieldBEXT (< BC) isappliedtoa superconductor,itwill produce an opposingcurrenttothisexternal fieldinaccordance withLenz’slaw. Whenamagnetisplacedon top of a superconductor,then,the currentIis restrictedtoa thinsurface layer,andinside the surface layerthe effectivefieldiszero(BINT = 0). If BEXT becomesgreaterthanor equal to BC, the Critical Fieldisreached and will returnthe material toa normal conductor;thisisreferredtoas quenching.The exclusionof magneticflux forBEXT isnot directlycorrelatedtothe superconductor’szeroresistivity,butratherisa fundamental propertywhichis very apparentinsuperconductors. There are twotypesof superconductors,Type IandType II, whichare differentiatedbythe mechanismthroughwhichthey returnto theirnormal conductingstate whenBEXT becomesgreaterthanBC at a fixedtemperature (less than the critical temperature).Type Isuperconductorsare characterizedbyasharp transitionwhere the entiretyof the material becomesnormal almostinstantlywhenitreachesBC;almostall elemental superconductorsare thistype.Type IIsuperconductorsare characterizedbyagradual returnto normal properties, notreachingitsnormal resistivitywhenBC isachieved,butgraduallyreturningbacktoit with increasingBEXT. Thisisnormal in mostalloyandceramic superconductorsthathave a highTC, and is causedby a ‘mixedstate’inwhichnormal propertiesappearregionallyandincrease withincreasingBEXT. Superconductivityiscausedbythe lackof electronscatteringinthe material,whichisreflectedinits zeroresistivityproperty.The Bardeen-CooperSchriefferTheory(BCS),formulatedaround1957, states that insuperconductors,electrons(±1/2spinFermions) of opposite spinpairupwitheachotherto form cooperpairswhichessentiallyexhibitthe properties of Bosons.Thisis significant,since Bosonsare not affectedbythe Pauli ExclusionPrinciple,andthe cooperpairscan thereforoccupythe same energy state.BelowTC,all of the material’scooperpairsoccupythe groundstate energylevel (Bose-Einstein condensation).Thisessentiallyallowsall of the cooperpairsinthe material to move freelyacrossthe material withnochange inenergy,whichmeansnoscatteringisobservedandthe material exhibitszero resistivity. Cooperpairsformtoachieve a lower energystate (the energyof acooperpairislessthan that of individual electronsintheirhigherenergystates).The conservationof energythenshowsthat the energyreleasedthatwasheldbythe electronsbefore theybecame acooperpairisremovedby conversiontophononsinitsexchange interaction;phononsbeingatype of longitudinal wave. The exchange interactionshowsthatthe individual electronslose energytoapositive ion,exhibitingvirtual attraction.Thistheorydoesnotexplainwhy1-2-3materials,though,superconduct.Inthese materials,
  • 3. HIGH TEMPERATURE SUPERCONDUCTIVITY 10/30/2015 ANDY HILLIER, STEPHEN GRONOW, BRADLEY REGULA, MATT DEMATTIE 3 tunnelingexperimentshave shownthathighTC granulesexhibitsuperconductingpropertiesregionally inside,butathinsemiconductinglayeroutside. Whilenotheoryexplainsgenerallywhythis superconductingoccurs,itcan be saidthat the mechanismsthroughwhichitdoesoccurare affected heavilybystoichiometry,the amountof oxygendeficienciesinthe material’slattice,anditsexposureto water.Some materialsonlyexhibitsuperconductingincertaincrystal planes. PROCEDURE: We hadfirstset upthisexperimentbytakingoursuperconductingdisc (yttrium),andrunningacurrent throughit usingone of our DVMs. The blackleadsfromthe disc were connectedtoa 500mA current source,and connectingthe thermocouple wiretothe 5 ½ digitDVMto measure temperature.The yellowleadsandalligatorclipsare connectedtothe otherDVMto measure the potential dropacross the sample. AfterturningonourATE, we submergedourdiscinliquidnitrogento bringitdowntoits critical temperature TC.We had thenverifiedthe Meissnereffectbyplacingasmall rare earthmagnet on the ceramicdisc andwatchingit float.Toobserve the effectfurther,we hadpokedandproddedthe magnetto rotate it aroundin place. We had nextusedLabVIEWtorecord the data in 5 runs, afterthe 4th run usinga bismuthceramicdiscinplace of the yttriumdisc.The savedASCIIcode hadthenbeen convertedintoacomma delimitedExcel workbook,whichwe manipulatedtoshow our data in the form of a resistivityvstemperaturegraph,inwhichthe firstX-interceptisthe TC value. DATA: -0.0004 -0.0003 -0.0002 -0.0001 0 0.0001 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 Resistance(mV) Thermocouple Voltage (mV) Run 1 (Yttrium) -0.0004 -0.0003 -0.0002 -0.0001 0 0.0001 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 Resistance(mV) Thermocouple Voltage (mV) Run 2 (Yttrium)
  • 4. HIGH TEMPERATURE SUPERCONDUCTIVITY 10/30/2015 ANDY HILLIER, STEPHEN GRONOW, BRADLEY REGULA, MATT DEMATTIE 4 -0.0004 -0.0003 -0.0002 -0.0001 0 0.0001 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 Resistance(mV) Thermocouple Voltage (mV) Run 3 (Yttrium) -0.0005 -0.0004 -0.0003 -0.0002 -0.0001 0 0.0001 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 Resistance(mV) Thermocouple Voltage (mV) Run 4 (Yttrium) -0.0008 -0.0006 -0.0004 -0.0002 0 0.0002 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 Resistance(mV) Thermocouple Voltage (mV) Run 5 (Bismuth)
  • 5. HIGH TEMPERATURE SUPERCONDUCTIVITY 10/30/2015 ANDY HILLIER, STEPHEN GRONOW, BRADLEY REGULA, MATT DEMATTIE 5 CONCLUSION/ERROR ANALYSIS: Thisexperimenthadsoughttodraw a relationshipbetweenthe resistivityof superconductingmaterials and temperature overtime, asthe superconductorapproached itscritical temperature TC.Thishadbeen done byusingtwo DVMATE GPIB devicestomeasure the resistance inthe ceramicsuperconducting yttriumandbismuthdiscs,aswell asthe thermocouple voltage whichcorrelatestothe temperatureof the disc overtime.The temperature hadbeen loweredinthe ceramicdiscviacontact withliquid nitrogen.The voltageshadbeen recordedwithLabVIEWtocreate commadelimitedASCIIcode thatwas converted intoaMicrosoftExcel workbook,aswell asto plotthe resistance andthermocouple voltages togethersuchthat theywere able tomap the gradual move to zeroresistance atcritical temperature TC and superconductiveproperties.The Meissnereffectof superconductors alsowas verifiedby,ina stationaryposition,levitatingmagnetsinsituwiththe superconductingmaterial. The critical fieldand critical currentdensitypropertiesof superconductorswasalsonoted.The biggestsource of errorinthis experimentwasthe lackof insulationtocreate a steadiermove toTC.The gradual move toTC was a reflectionof the coalescingof the superconductinggrainstoallow the free flow of currentwithoutthe interference of the semiconductive layer,andthe temperature’seffectonthe oxygendeficienciesinthe lattice.