SlideShare a Scribd company logo
1 of 1
Download to read offline
Abstract
Introduction
Alanine Rods Cell-Rod Systems
Cell	
  replacement	
  therapy	
  through	
  transplanta2on	
  of	
  islets	
  or	
  
stem	
  cell-­‐derived	
  beta	
  cells	
  is	
  a	
  promising	
  treatment	
  for	
  type	
  
1	
  diabetes.	
  However,	
  protec2ng	
  these	
  cells	
  from	
  the	
  body’s	
  
inflammatory	
  response	
  represents	
  a	
  formidable	
  challenge	
  to	
  
the	
   success	
   of	
   the	
   transplanta2on	
   process.	
   Recent	
   studies	
  
have	
  shown	
  that	
  amino	
  acid	
  supplementa2on	
  promotes	
  islet	
  
survival	
   in	
   high-­‐density	
   cultures	
   that	
   mimic	
   the	
   hos2le	
  
transplant	
   environment.	
   Here,	
   we	
   present	
   two	
   therapies	
  
engineered	
  to	
  sa2sfy	
  the	
  role	
  of	
  nutrient	
  supplementa2on	
  in	
  
islet	
   survival.	
   First,	
   photolithography	
   was	
   used	
   to	
   generate	
  
poly(ethylene	
   glycol)	
   dimethacrylate	
   (PEG-­‐DMA)	
   hydrogel	
  
microrods	
   that	
   are	
   loaded	
   with	
   alanine.	
   Second,	
   PEG-­‐DMA	
  
microrods	
   and	
   beta	
   cells	
   were	
   func2onalized	
   with	
  
complementary	
   DNA	
   strands	
   to	
   promote	
   cell	
   adhesion	
   and	
  
nutrient	
  delivery.	
  	
  
0.0E+00	
  
2.0E+08	
  
4.0E+08	
  
6.0E+08	
  
8.0E+08	
  
1.0E+09	
  
0	
  mM	
  AEMA	
   5	
  mM	
  AEMA	
   50mM	
  AEMA	
  
Oligo	
  Units/Rod	
  
Rods	
  with	
  Primary	
  DNA	
  Strand	
  
Rods	
  without	
  Primary	
  DNA	
  Strand	
  
0.0E+00	
  
1.0E+08	
  
2.0E+08	
  
3.0E+08	
  
4.0E+08	
  
0	
  mM	
  AEMA	
   5	
  mM	
  AEMA	
   50mM	
  AEMA	
  
Oligo	
  Units/Rod	
  
Conclusions
Acknowledgements
Future Work
•  Alanine	
  supplementa2on	
  promotes	
  islet	
  survival	
  in	
  a	
  dose	
  
dependent	
  manner.	
  	
  
•  Alanine	
  release	
  from	
  20%	
  PEG-­‐DMA	
  rods	
  is	
  greater	
  than	
  in	
  80%	
  
or	
  50%	
  PEG-­‐DMA	
  rods.	
  	
  
•  FITC	
  and	
  DNA	
  labeling	
  of	
  microrods	
  increases	
  with	
  AEMA	
  
concentra2on.	
  
•  Repeat	
  release	
  study	
  for	
  20%,	
  50%,	
  and	
  80%	
  alanine	
  loaded	
  PEG-­‐
DMA	
  microrods	
  over	
  an	
  extended	
  2me	
  period.	
  
•  Conduct	
  a	
  dosing	
  study	
  on	
  the	
  20%	
  PEG-­‐DMA	
  alanine-­‐loaded	
  
microrods	
  to	
  determine	
  the	
  range	
  of	
  rod	
  concentra2ons	
  that	
  
promote	
  islet	
  survival.	
  
•  Repeat	
  the	
  DNA	
  labeling	
  of	
  beta	
  cells	
  and	
  AEMA	
  microrods.	
  
Figure	
  2.	
  Glucose	
  and	
  amino	
  acid	
  supplementa9on	
  promotes	
  
islet	
  survival	
  in	
  high	
  density	
  cultures.	
  	
  
Figure	
   1.	
   Cell	
   encapsula9on	
   devices	
   and	
   engineered	
  
microenvironments	
  promote	
  beta	
  cell	
  survival.	
  
Figure	
   3.	
   Fabrica9on	
   of	
   alanine	
   loaded	
   microrods.	
   Alanine	
   was	
  
encapsulated	
   within	
   20%,	
   50%,	
   and	
   80%	
   PEG-­‐DMA	
   microrods	
   using	
  
standard	
  photolithography	
  techniques:	
  
B	
  
C	
  
A	
  
Figure	
  7.	
  Higher	
  AEMA	
  concentra9ons	
  increase	
  both	
  specific	
  and	
  
non-­‐specific	
  DNA	
  aKachment.	
  (A)	
  Schema2c	
  of	
  the	
  DNA	
  labeling	
  
process.	
   (B)	
   Both	
   surface	
   DNA	
   concentra2on	
   and	
   non-­‐specific	
  
binding	
  increase	
  with	
  amine	
  surface	
  concentra2on.	
  (C)	
  Net	
  binding	
  
of	
   fluorescent	
   oligonucleo2des	
   indicates	
   high	
   surface	
  
concentra2ons	
  of	
  DNA	
  per	
  rod.	
  	
  
•  PEG-­‐DMA	
  microrods	
  constructed	
  by	
  photolithography	
  are	
  easily	
  
manufactured	
  and	
  can	
  impact	
  cell	
  behavior.	
  	
  
•  Drugs	
  and	
  other	
  materials	
  can	
  be	
  encapsulated	
  within	
  these	
  
microstructures,	
  and	
  their	
  release	
  profiles	
  controlled	
  by	
  rod	
  
cross-­‐linking	
  densi2es.	
  
•  Millimolar	
  concentra2ons	
  of	
  alanine	
  appear	
  to	
  increase	
  islet	
  
survival	
  in	
  high	
  density	
  cultures,	
  with	
  higher	
  concentra2ons	
  being	
  
more	
  effec2ve.	
  
•  Delivery	
  of	
  amino	
  acids	
  may	
  be	
  enhanced	
  by	
  proximity	
  to	
  
nutrient	
  source.	
  	
  
Improved Survival of Pancreatic Islets through Delivery of
Alanine from PEG-DMA Microparticles
Alison Long1, Long Le2, Robert Weber3, Gaetano Faleo, PhD4, Tejal Desai, PhD2
1	
  College	
  of	
  Engineering,	
  University	
  of	
  California,	
  Berkeley	
  	
  2	
  Department	
  of	
  Bioengineering	
  and	
  Therapeu2c	
  Sciences,	
  University	
  of	
  California,	
  San	
  Francisco	
  
3Department	
  of	
  Chemistry	
  and	
  Chemical	
  Biology,	
  University	
  of	
  California,	
  San	
  Francisco	
  4	
  Department	
  of	
  Surgery,	
  University	
  of	
  California,	
  San	
  Francisco	
  	
  
Tejal	
  Desai,	
  PhD	
  
Long	
  Le	
  
Rob	
  Weber	
  
Gaetano	
  Faleo,	
  PhD	
  
Phin	
  Peng	
  
Colin	
  Zamecnik	
  
Cade	
  Fox	
  
Jean	
  Kim	
  
Kevin	
  Lance	
  
Ryan	
  Chang	
  
UCSF	
  SRTP	
  
Lawrence	
  Lin	
  	
  
Geneva	
  Jost	
  	
  
Ta2ana	
  Neherfield	
  	
  
Carmen	
  Conroy	
  	
  
Nyitray	
  et	
  al.,	
  ACS	
  Nano,	
  2015.	
  	
  	
  
Nyitray	
  et	
  al.,	
  Tissue	
  Engineering:	
  Part	
  A,	
  2014.	
  	
  	
  
y	
  =	
  2E+08x	
  +	
  4E+07	
  
R²	
  =	
  0.99987	
  
0	
  
2E+09	
  
4E+09	
  
6E+09	
  
8E+09	
  
1E+10	
  
1.2E+10	
  
0	
   20	
   40	
   60	
  
FITC	
  Units/Rod	
  
AEMA	
  (mM)	
  
A	
  
C	
  
B	
  
Figure	
  6.	
  FITC	
  labeling	
  scales	
  linearly	
  with	
  microrod	
  aminoethyl	
  
methacrylate	
   (AEMA)	
   concentra9on.	
   (A)	
   Schema2c	
   of	
   AEMA	
  
labeling.	
   (B)	
   Microrods	
   with	
   0,	
   1,	
   5,	
   10,	
   and	
   50	
   mM	
  
concentra2ons	
   of	
   AEMA	
   were	
   labeled	
   with	
   fluorescein-­‐N-­‐
hydroxysuccinimide	
   (FITC-­‐NHS).	
   (C)	
   Fluorescence	
   of	
   microrods	
  
visibly	
   increases	
   with	
   AEMA	
   concentra2on.	
   Scale	
   bars	
   =	
   100	
  
microns.	
  
0	
  
2	
  
4	
  
6	
  
8	
  
10	
  
12	
  
14	
  
16	
  
18	
  
LD	
   HD	
   0.1mM	
  ALA	
   1mM	
  ALA	
   10mM	
  ALA	
  
20	
  islets/mL	
   1000	
  islets/mL	
  
5	
  hrs	
  
%PI+	
  
0	
  
5	
  
10	
  
15	
  
20	
  
25	
  
0	
   50	
   100	
   150	
  
Cumula9ve	
  Alanine	
  	
  
Release	
  (nmol)	
  	
  	
  
	
  
Time	
  (hours)	
  
80%	
  Rods	
   50%	
  Rods	
   20%	
  Rods	
  
Figure	
  4.	
  Alanine-­‐loaded	
  PEG-­‐DMA	
  microrods	
  have	
  sustained	
  release	
  
of	
   alanine	
   over	
   at	
   least	
   	
   5	
   days.	
   (A)	
   Release	
   profiles	
   of	
   alanine	
  
microrods	
  of	
  different	
  cross	
  linking	
  density.	
  (B)	
  Microrods	
  are	
  discrete	
  
and	
  uniform	
  in	
  size	
  and	
  shape.	
  (i)	
  and	
  (ii)	
  show	
  20%	
  rods,	
  with	
  a	
  more	
  
transparent	
  and	
  flexible	
  appearance.	
  (iii)	
  and	
  (iv)	
  show	
  50%	
  rods	
  and	
  (v)	
  
and	
  (vi)	
  are	
  80%	
  rods.	
  Scale	
  bars	
  =	
  100	
  microns.	
  	
  
A	
   B	
  
1)  Alanine	
  was	
  preloaded	
  into	
  the	
  hydrogel	
  precursor	
  solu2on.	
  
2)  The	
  hydrogel	
  solu2on	
  was	
  deposited	
  onto	
  a	
  silicon	
  wafer.	
  	
  
3)  A	
  mask	
  with	
  the	
  desired	
  microstructures	
  was	
  placed	
  on	
  top	
  of	
  the	
  
wafer	
  and	
  the	
  system	
  was	
  exposed	
  to	
  UV	
  light.	
  
4)  The	
  wafer	
  was	
  developed	
  to	
  remove	
  any	
  uncrosslinked	
  residue.	
  
5)  The	
  rods	
  were	
  collected	
  from	
  the	
  wafer	
  with	
  a	
  cell	
  scraper.	
  
0	
  
5	
  
10	
  
15	
  
20	
  
25	
  
30	
  
35	
  
40	
  
LD	
  1	
   HD	
  1	
   HD	
  10mM	
  
ALA	
  
HD	
  10k	
  
Rods-­‐ALA	
  
HD	
  20k	
  
Rods-­‐ALA	
  
20	
  islets/
mL	
  
1000	
  islets/mL	
  
5	
  hrs	
  
%PI+	
  
Figure	
  5.	
  20%	
  PEG-­‐DMA	
  microrods	
  loaded	
  with	
  alanine	
  increase	
  islet	
  
survival	
  in	
  a	
  dose	
  dependent	
  manner.	
  10,000	
  and	
  20,000	
  rods	
  cultured	
  
with	
  high	
  density	
  islets	
  increase	
  islet	
  survival	
  compared	
  to	
  free	
  10	
  mM	
  
alanine.	
  	
  	
  
A	
   B	
  
Figure	
  8.	
  Cellular	
  adhesion	
  to	
  microrods	
  increases	
  in	
  microrods	
  with	
  
higher	
  AEMA	
  concentra9on.	
  (A)	
  Schema2c	
  of	
  beta	
  cell	
  DNA	
  labeling.	
  
(i)	
  0	
  mM	
  AEMA	
  rods,	
  (ii)	
  5	
  mM	
  AEMA	
  rods,	
  and	
  (iii)	
  50	
  mM	
  AEMA	
  rods.	
  
Cells	
  appear	
  to	
  have	
  a	
  greater	
  affinity	
  for	
  control	
  rods	
  than	
  for	
  DNA-­‐	
  
labeled	
  rods.	
  The	
  presence	
  of	
  nega2vely	
  charged	
  DNA	
  on	
  microrods	
  
also	
   seems	
   to	
   reduce	
   unlabeled	
   cell	
   affinity	
   for	
   the	
   rods.	
   This	
   data	
  
suggests	
   that	
   AEMA	
   alone	
   is	
   sufficient	
   to	
   form	
   bonds	
   between	
   rods	
  
and	
  cells.	
  Scale	
  bars	
  =	
  100	
  microns.	
  
Microrods	
  without	
  DNA	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Cells	
  with	
  DNA	
  
Microrods	
  without	
  DNA	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Cells	
  without	
  DNA	
  
Microrods	
  with	
  DNA	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Cells	
  with	
  DNA	
  
Microrods	
  with	
  DNA	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Cells	
  without	
  DNA	
  
B	
  
A	
  
(ii)	
  
(iii)	
  
(i)	
  
(ii)	
  
(iii)	
  
(i)	
   (ii)	
  
(iii)	
   (iv)	
  
(v)	
   (vi)	
  
0	
  mM	
   1	
  mM	
   5	
  mM	
   10	
  mM	
   50	
  mM	
  
FITC%NHS)
*)
%NH2))))
%NH2))))
H2
N%))))
H2N%))))
*)
*)*)
*)
*) *) *)
*)
%NH—)))
!NH2%%%%
!NH2%%%%
H2
N!%%%%
H2N!%%%%
!NH—%%%
Fluorescent%
Oligonucleo4des%%
Anchor%
DNA%
Strand%%
y	
  =	
  2E+08x	
  +	
  4E+07	
  
R²	
  =	
  0.99987	
  
0	
  
2E+09	
  
4E+09	
  
6E+09	
  
8E+09	
  
1E+10	
  
1.2E+10	
  
0	
   20	
   40	
   60	
  
FITC	
  Units/Rod	
  
AEMA	
  (mM)	
  
A	
  
C	
  
B	
  
!NH2%%%%
!NH2%%%%
H2
N!%%%%
H2N!%%%%
PEGDMA'
Photo+'
ini.ator'
Alanine'
Water'
UV'Light'
Figure' 3.' Fabrica.on' of' alanine' loaded' microrods.' Alanine' was'
encapsulated' within' 20%,' 50%,' and' 80%' PEG?DMA' microrods' using'
standard'photolithography'techniques:'

More Related Content

Similar to Alison Long Poster ABRCMS

Jparodi 2012 molecules and cells
Jparodi 2012 molecules and cellsJparodi 2012 molecules and cells
Jparodi 2012 molecules and cells
Jorge Parodi
 
2015 SURP Poster Presentation (Final)
2015 SURP Poster Presentation (Final)2015 SURP Poster Presentation (Final)
2015 SURP Poster Presentation (Final)
Prisca Diala
 
Perrault & Hahn 2014 Addressing the Instability of DNA Nanostrctures in Tissu...
Perrault & Hahn 2014 Addressing the Instability of DNA Nanostrctures in Tissu...Perrault & Hahn 2014 Addressing the Instability of DNA Nanostrctures in Tissu...
Perrault & Hahn 2014 Addressing the Instability of DNA Nanostrctures in Tissu...
Steven Perrault
 
INFECTION AND IMMUNrrY, June 1977, P. 734-737Copyright © 197.docx
INFECTION AND IMMUNrrY, June 1977, P. 734-737Copyright © 197.docxINFECTION AND IMMUNrrY, June 1977, P. 734-737Copyright © 197.docx
INFECTION AND IMMUNrrY, June 1977, P. 734-737Copyright © 197.docx
jaggernaoma
 
MemPER Plus ASBMB2015 final
MemPER Plus ASBMB2015 finalMemPER Plus ASBMB2015 final
MemPER Plus ASBMB2015 final
joanna geddes
 
Analysis of myc antibody specificity
Analysis of myc antibody specificityAnalysis of myc antibody specificity
Analysis of myc antibody specificity
Cameron McInnes
 
Cell and Molec Poster FINAL
Cell and Molec Poster FINALCell and Molec Poster FINAL
Cell and Molec Poster FINAL
Hailey Medder
 
S. pyogenes, its virulence, antibiotic, phytochemicals
S. pyogenes, its virulence, antibiotic, phytochemicalsS. pyogenes, its virulence, antibiotic, phytochemicals
S. pyogenes, its virulence, antibiotic, phytochemicals
Université Laval
 
Nature - 454 Sequencing
Nature - 454 SequencingNature - 454 Sequencing
Nature - 454 Sequencing
Michael Weiner
 
RoswellResearchPoster2015-ver2smaller-1
RoswellResearchPoster2015-ver2smaller-1RoswellResearchPoster2015-ver2smaller-1
RoswellResearchPoster2015-ver2smaller-1
Korry Wirth
 

Similar to Alison Long Poster ABRCMS (20)

summerspowerpoint2013 (2)
summerspowerpoint2013 (2)summerspowerpoint2013 (2)
summerspowerpoint2013 (2)
 
Jparodi 2012 molecules and cells
Jparodi 2012 molecules and cellsJparodi 2012 molecules and cells
Jparodi 2012 molecules and cells
 
Final Version of Poster for Exeter
Final Version of Poster for ExeterFinal Version of Poster for Exeter
Final Version of Poster for Exeter
 
How to use deep learning on biological data
How to use deep learning on biological dataHow to use deep learning on biological data
How to use deep learning on biological data
 
2015 SURP Poster Presentation (Final)
2015 SURP Poster Presentation (Final)2015 SURP Poster Presentation (Final)
2015 SURP Poster Presentation (Final)
 
Perrault & Hahn 2014 Addressing the Instability of DNA Nanostrctures in Tissu...
Perrault & Hahn 2014 Addressing the Instability of DNA Nanostrctures in Tissu...Perrault & Hahn 2014 Addressing the Instability of DNA Nanostrctures in Tissu...
Perrault & Hahn 2014 Addressing the Instability of DNA Nanostrctures in Tissu...
 
Ion exchange fractionation of rabbits seminal fluid
Ion exchange fractionation of rabbits seminal fluidIon exchange fractionation of rabbits seminal fluid
Ion exchange fractionation of rabbits seminal fluid
 
INFECTION AND IMMUNrrY, June 1977, P. 734-737Copyright © 197.docx
INFECTION AND IMMUNrrY, June 1977, P. 734-737Copyright © 197.docxINFECTION AND IMMUNrrY, June 1977, P. 734-737Copyright © 197.docx
INFECTION AND IMMUNrrY, June 1977, P. 734-737Copyright © 197.docx
 
anti tumor 1.doc
anti tumor 1.docanti tumor 1.doc
anti tumor 1.doc
 
MemPER Plus ASBMB2015 final
MemPER Plus ASBMB2015 finalMemPER Plus ASBMB2015 final
MemPER Plus ASBMB2015 final
 
PFO_SBI_2015
PFO_SBI_2015PFO_SBI_2015
PFO_SBI_2015
 
Analysis of myc antibody specificity
Analysis of myc antibody specificityAnalysis of myc antibody specificity
Analysis of myc antibody specificity
 
NanoSAFE Poster
NanoSAFE PosterNanoSAFE Poster
NanoSAFE Poster
 
Cell and Molec Poster FINAL
Cell and Molec Poster FINALCell and Molec Poster FINAL
Cell and Molec Poster FINAL
 
Nagabhushana_poster
Nagabhushana_posterNagabhushana_poster
Nagabhushana_poster
 
2013 - Correlating exoenzyme activities, operacional parameters, cellular via...
2013 - Correlating exoenzyme activities, operacional parameters, cellular via...2013 - Correlating exoenzyme activities, operacional parameters, cellular via...
2013 - Correlating exoenzyme activities, operacional parameters, cellular via...
 
S. pyogenes, its virulence, antibiotic, phytochemicals
S. pyogenes, its virulence, antibiotic, phytochemicalsS. pyogenes, its virulence, antibiotic, phytochemicals
S. pyogenes, its virulence, antibiotic, phytochemicals
 
Simona cavalu felix2014
Simona cavalu felix2014Simona cavalu felix2014
Simona cavalu felix2014
 
Nature - 454 Sequencing
Nature - 454 SequencingNature - 454 Sequencing
Nature - 454 Sequencing
 
RoswellResearchPoster2015-ver2smaller-1
RoswellResearchPoster2015-ver2smaller-1RoswellResearchPoster2015-ver2smaller-1
RoswellResearchPoster2015-ver2smaller-1
 

Alison Long Poster ABRCMS

  • 1. Abstract Introduction Alanine Rods Cell-Rod Systems Cell  replacement  therapy  through  transplanta2on  of  islets  or   stem  cell-­‐derived  beta  cells  is  a  promising  treatment  for  type   1  diabetes.  However,  protec2ng  these  cells  from  the  body’s   inflammatory  response  represents  a  formidable  challenge  to   the   success   of   the   transplanta2on   process.   Recent   studies   have  shown  that  amino  acid  supplementa2on  promotes  islet   survival   in   high-­‐density   cultures   that   mimic   the   hos2le   transplant   environment.   Here,   we   present   two   therapies   engineered  to  sa2sfy  the  role  of  nutrient  supplementa2on  in   islet   survival.   First,   photolithography   was   used   to   generate   poly(ethylene   glycol)   dimethacrylate   (PEG-­‐DMA)   hydrogel   microrods   that   are   loaded   with   alanine.   Second,   PEG-­‐DMA   microrods   and   beta   cells   were   func2onalized   with   complementary   DNA   strands   to   promote   cell   adhesion   and   nutrient  delivery.     0.0E+00   2.0E+08   4.0E+08   6.0E+08   8.0E+08   1.0E+09   0  mM  AEMA   5  mM  AEMA   50mM  AEMA   Oligo  Units/Rod   Rods  with  Primary  DNA  Strand   Rods  without  Primary  DNA  Strand   0.0E+00   1.0E+08   2.0E+08   3.0E+08   4.0E+08   0  mM  AEMA   5  mM  AEMA   50mM  AEMA   Oligo  Units/Rod   Conclusions Acknowledgements Future Work •  Alanine  supplementa2on  promotes  islet  survival  in  a  dose   dependent  manner.     •  Alanine  release  from  20%  PEG-­‐DMA  rods  is  greater  than  in  80%   or  50%  PEG-­‐DMA  rods.     •  FITC  and  DNA  labeling  of  microrods  increases  with  AEMA   concentra2on.   •  Repeat  release  study  for  20%,  50%,  and  80%  alanine  loaded  PEG-­‐ DMA  microrods  over  an  extended  2me  period.   •  Conduct  a  dosing  study  on  the  20%  PEG-­‐DMA  alanine-­‐loaded   microrods  to  determine  the  range  of  rod  concentra2ons  that   promote  islet  survival.   •  Repeat  the  DNA  labeling  of  beta  cells  and  AEMA  microrods.   Figure  2.  Glucose  and  amino  acid  supplementa9on  promotes   islet  survival  in  high  density  cultures.     Figure   1.   Cell   encapsula9on   devices   and   engineered   microenvironments  promote  beta  cell  survival.   Figure   3.   Fabrica9on   of   alanine   loaded   microrods.   Alanine   was   encapsulated   within   20%,   50%,   and   80%   PEG-­‐DMA   microrods   using   standard  photolithography  techniques:   B   C   A   Figure  7.  Higher  AEMA  concentra9ons  increase  both  specific  and   non-­‐specific  DNA  aKachment.  (A)  Schema2c  of  the  DNA  labeling   process.   (B)   Both   surface   DNA   concentra2on   and   non-­‐specific   binding  increase  with  amine  surface  concentra2on.  (C)  Net  binding   of   fluorescent   oligonucleo2des   indicates   high   surface   concentra2ons  of  DNA  per  rod.     •  PEG-­‐DMA  microrods  constructed  by  photolithography  are  easily   manufactured  and  can  impact  cell  behavior.     •  Drugs  and  other  materials  can  be  encapsulated  within  these   microstructures,  and  their  release  profiles  controlled  by  rod   cross-­‐linking  densi2es.   •  Millimolar  concentra2ons  of  alanine  appear  to  increase  islet   survival  in  high  density  cultures,  with  higher  concentra2ons  being   more  effec2ve.   •  Delivery  of  amino  acids  may  be  enhanced  by  proximity  to   nutrient  source.     Improved Survival of Pancreatic Islets through Delivery of Alanine from PEG-DMA Microparticles Alison Long1, Long Le2, Robert Weber3, Gaetano Faleo, PhD4, Tejal Desai, PhD2 1  College  of  Engineering,  University  of  California,  Berkeley    2  Department  of  Bioengineering  and  Therapeu2c  Sciences,  University  of  California,  San  Francisco   3Department  of  Chemistry  and  Chemical  Biology,  University  of  California,  San  Francisco  4  Department  of  Surgery,  University  of  California,  San  Francisco     Tejal  Desai,  PhD   Long  Le   Rob  Weber   Gaetano  Faleo,  PhD   Phin  Peng   Colin  Zamecnik   Cade  Fox   Jean  Kim   Kevin  Lance   Ryan  Chang   UCSF  SRTP   Lawrence  Lin     Geneva  Jost     Ta2ana  Neherfield     Carmen  Conroy     Nyitray  et  al.,  ACS  Nano,  2015.       Nyitray  et  al.,  Tissue  Engineering:  Part  A,  2014.       y  =  2E+08x  +  4E+07   R²  =  0.99987   0   2E+09   4E+09   6E+09   8E+09   1E+10   1.2E+10   0   20   40   60   FITC  Units/Rod   AEMA  (mM)   A   C   B   Figure  6.  FITC  labeling  scales  linearly  with  microrod  aminoethyl   methacrylate   (AEMA)   concentra9on.   (A)   Schema2c   of   AEMA   labeling.   (B)   Microrods   with   0,   1,   5,   10,   and   50   mM   concentra2ons   of   AEMA   were   labeled   with   fluorescein-­‐N-­‐ hydroxysuccinimide   (FITC-­‐NHS).   (C)   Fluorescence   of   microrods   visibly   increases   with   AEMA   concentra2on.   Scale   bars   =   100   microns.   0   2   4   6   8   10   12   14   16   18   LD   HD   0.1mM  ALA   1mM  ALA   10mM  ALA   20  islets/mL   1000  islets/mL   5  hrs   %PI+   0   5   10   15   20   25   0   50   100   150   Cumula9ve  Alanine     Release  (nmol)         Time  (hours)   80%  Rods   50%  Rods   20%  Rods   Figure  4.  Alanine-­‐loaded  PEG-­‐DMA  microrods  have  sustained  release   of   alanine   over   at   least     5   days.   (A)   Release   profiles   of   alanine   microrods  of  different  cross  linking  density.  (B)  Microrods  are  discrete   and  uniform  in  size  and  shape.  (i)  and  (ii)  show  20%  rods,  with  a  more   transparent  and  flexible  appearance.  (iii)  and  (iv)  show  50%  rods  and  (v)   and  (vi)  are  80%  rods.  Scale  bars  =  100  microns.     A   B   1)  Alanine  was  preloaded  into  the  hydrogel  precursor  solu2on.   2)  The  hydrogel  solu2on  was  deposited  onto  a  silicon  wafer.     3)  A  mask  with  the  desired  microstructures  was  placed  on  top  of  the   wafer  and  the  system  was  exposed  to  UV  light.   4)  The  wafer  was  developed  to  remove  any  uncrosslinked  residue.   5)  The  rods  were  collected  from  the  wafer  with  a  cell  scraper.   0   5   10   15   20   25   30   35   40   LD  1   HD  1   HD  10mM   ALA   HD  10k   Rods-­‐ALA   HD  20k   Rods-­‐ALA   20  islets/ mL   1000  islets/mL   5  hrs   %PI+   Figure  5.  20%  PEG-­‐DMA  microrods  loaded  with  alanine  increase  islet   survival  in  a  dose  dependent  manner.  10,000  and  20,000  rods  cultured   with  high  density  islets  increase  islet  survival  compared  to  free  10  mM   alanine.       A   B   Figure  8.  Cellular  adhesion  to  microrods  increases  in  microrods  with   higher  AEMA  concentra9on.  (A)  Schema2c  of  beta  cell  DNA  labeling.   (i)  0  mM  AEMA  rods,  (ii)  5  mM  AEMA  rods,  and  (iii)  50  mM  AEMA  rods.   Cells  appear  to  have  a  greater  affinity  for  control  rods  than  for  DNA-­‐   labeled  rods.  The  presence  of  nega2vely  charged  DNA  on  microrods   also   seems   to   reduce   unlabeled   cell   affinity   for   the   rods.   This   data   suggests   that   AEMA   alone   is   sufficient   to   form   bonds   between   rods   and  cells.  Scale  bars  =  100  microns.   Microrods  without  DNA                                 Cells  with  DNA   Microrods  without  DNA                                 Cells  without  DNA   Microrods  with  DNA                                 Cells  with  DNA   Microrods  with  DNA                                 Cells  without  DNA   B   A   (ii)   (iii)   (i)   (ii)   (iii)   (i)   (ii)   (iii)   (iv)   (v)   (vi)   0  mM   1  mM   5  mM   10  mM   50  mM   FITC%NHS) *) %NH2)))) %NH2)))) H2 N%)))) H2N%)))) *) *)*) *) *) *) *) *) %NH—))) !NH2%%%% !NH2%%%% H2 N!%%%% H2N!%%%% !NH—%%% Fluorescent% Oligonucleo4des%% Anchor% DNA% Strand%% y  =  2E+08x  +  4E+07   R²  =  0.99987   0   2E+09   4E+09   6E+09   8E+09   1E+10   1.2E+10   0   20   40   60   FITC  Units/Rod   AEMA  (mM)   A   C   B   !NH2%%%% !NH2%%%% H2 N!%%%% H2N!%%%% PEGDMA' Photo+' ini.ator' Alanine' Water' UV'Light' Figure' 3.' Fabrica.on' of' alanine' loaded' microrods.' Alanine' was' encapsulated' within' 20%,' 50%,' and' 80%' PEG?DMA' microrods' using' standard'photolithography'techniques:'