Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Simona cavalu felix2014

Adherence properties of fibroblasts to different bone substitute designed for orthopedic and dental applications

  • Login to see the comments

  • Be the first to like this

Simona cavalu felix2014

  1. 1. Prof. dr. Simona CavaluFaculty of Medicine and PharmacyUniversity of OradeaROMANIA
  2. 2. Motivation As the average age of population grows, the need for medical devices/biomaterials to replace damaged or worn tissues increases. As patients have become more and more demanding regarding esthetic and biocompatibility aspects of their dental/orthopedic restorations .
  3. 3. The field of tissue engineering is highly interdisciplinary Bringstogetherpeoplewithknowledgeinmaterialsscience,biochemistry,cellbiology,immunology,andsurgicalexpertisetosolvearangeofopenproblems. Thesuccessfuldesignoftissue-engineeredconstructsdrivestheneedtodesignnovelbiocompatiblematerialsandstudytheirinteractionswithlivingcells. Tissueengineeringevolvedfromthefieldofbiomaterialsdevelopmentandreferstothepracticeofcombiningscaffolds,cells,andbiologicallyactivemoleculesintofunctionaltissues.
  4. 4. Bioceramicsinvestigated in the present study Poly(methylmethacrylate)(PMMA) bonecements: areextensivelyusedincertaintypesoftotalhiportotalkneereplacements areofpotentialutilitywherevermechanicalattachmentsofmetaltolivingboneisnecessary Themainfunctionofthecementistoserveasinterfacialphasebetweenthehighmodulusmetallicimplantandthebone,therebyassistingtotransferanddistributeloads. Alumina/zirconiaceramicsweresuccessfullyusedintotalhip/kneearthroplastyinthelastdecades. Fordentalapplication:rootcanalposts,orthodonticbrackets,implantabutmentsandall-ceramicrestaurations isahighperformancebiocompositethatcombinestheexcellentmaterialpropertiesofaluminaintermsofchemicalstabilityandlowwear,andofzirconiawithitssuperiormechanicalstrengthandfracturetoughness.
  5. 5. PMMA bone cement Alumina/zirconiabioceramics
  6. 6. Motivation The surface modification and post-synthesis treatment also influences the performances of the bioceramicsdesigned to dental and ortopedicapplications. According to their interaction with surrounding tissue, bioceramicscan be categorized as ‘‘bioinert’’ or ‘‘bioactive.’’ Tough and strong ceramics like zirconia, alumina or alumina-zirconiacomposites are not capable of creating a biologically adherent interface layer with bone due to the chemically inert nature of these two stable oxides . PMMA cements cannot adhere to existing bone, but this disadvantage may not be as pertinent for vertebroplastyas for arthroplasty, because is injected directly into the bone instead using as an adhesive agent.
  7. 7. Surface modification: organic coating Theuseofsurfacecoveringlayers(i.e.coatings)provides methodstocontrolthebiologicalresponsetomaterialsandmaterialdevicesincludingimplantsandprostheses. Severaltypesoforganicmaterialscanbeusedtogenerateacoatingwithspecificmodulatoryeffectsonthebiologicalresponse.Examplesincludeproteins,DNA, sugars,etc. Specificbiologicalresponsesthatcanbecontrolledarecellattachmentandbehavior. Organiccoatingsconsistingofproteinsaregenerallybasedonthepresenceoftheseproteinsattheimplantlocation [S.Cavalu&all,KeyEngineeringMaterialsVol.583(2014)pp101-106]
  8. 8. Surface modification: inorganic molecules Manydifferenttechniquesarecurrentlyinusetoconditionthesurfacesofabutmentsandfixturesofimplants:surfaceblastingoracidetchingcanincreasetherateandamountofnewboneformationontheimplantsurface. TheadministrationofcomplexfluoridesascomparedwithNaFsuggeststhepossibilityofusingthemaseffectiveagentsindentalcariespreventioninhumanpopulations. Forexample,stannousfluorideconvertsthecalciummineralapatiteintofluorapatite,whichmakestoothenamelmoreresistanttobacteriageneratedacidattacks. [F. Hattab, “The State of Fluorides in Toothpastes,” J. Dent., 17, 47–54 (1989)].
  9. 9. Goal InthepresentstudywearefocusedonthepossiblebeneficialeffectofPMMA/Ag2Ocollagencoatedrespectivelyandsurfacemodificationofalumina/zirconiabioceramicsbyfluoridetreatment Thesurfacemodificationsofalumina/zirconiabioceramicsareinvestigatedupondifferenttreatmentswithsodiumtetrafluoroborateandstannousfluoriderespectively. Themainobjectiveistoanalyzethebiocompatibilityofnewbonesubstituteuponsurfacetreatment,viainvitroandinvivotests.
  10. 10. Goal PMMA modified by Ag2O addition and collagen coating 80%Al2O3-20%ZrO2 modified by surface fluoride treatment Influence on fibroblasts viability, attachment and proliferation
  11. 11. Biomaterials: PMMA bone cement Ag2OdopedPMMAisproposedasanalternativetoantibioticloadedcements,silverbeingcapableofkillingover650formsofbacteria,viruses. Theantimicrobialefficacyofthesecompositesdependsontheirabilitytoreleasethesilverionsfromthesecompositesuponinteractionwithbiologicalfluids. IthasbeenpreviouslydemonstratedthatbiomimeticcoatingsconsistingofcollagentypeIaresuitablesurfacestoenhancetheirbioactivity,cellattachmentandproliferation[S.Cavalu&all.DigestJournalofNanomaterialsandBiostructures,2010]
  12. 12. PMMA/Ag2O bone cement Asantimicrobialagent,Ag2OparticleswereincorporatedinPMMAwithrespecttothetotalpowderamountinaconcentrationrangingfrom0.1%to4%w/w. Surface morphology (SEM) of the PMMA/Ag2O specimen surface before any treatment: a) 0.5%Ag2O, b) 1%Ag2O and c) 2%Ag2O.
  13. 13. Kinetics of Ag+release from the PMMA specimens with different silver oxide content, during 21 days incubation in Simulated Body Fluid 05101520250.050.100.150.200.250.300.350.400.45 0.10% 0.25% 0.50% 1.00% 2.00% 4.00% Ag+ concentration (mM) Time (days)
  14. 14. Possible mechanism of the antimicrobial action of silver ions : Isnotcompletelyknown Possibleinteractionwiththyolgroupcompoundsfoundintherespiratoryenzymesofthebacterialcells. Silverbindstothebacterialcellwallandcellmembraneandinhibitstherespirationprocess. IncaseofE-coli,silveractsbyinhibitingtheuptakeofphosphateandreleasingphosphate,mannitol, succinate,prolineandglutaminefromtheE-colicells. Inaddition,itwasshownthatAg+ionspreventDNAreplicationbybindingtothepolynucleotidemolecules,henceresultinginbacterialdeath.
  15. 15. Electrodeposition of soluble collagen type I 3500 3000 2500 2000 1500 1000 500 -0.02 0.00 0.02 0.04 0 2 4 6 8 10 0 2 4 6 8 10 640 1140 1240 1436 1722 2950 Absorbance/Arbitrary units Wavenumber / cm-1 3180 2950 1722 1635 1550 1436 1240 1140 1035 985 640 ATR FTIR spectra recorded on the surfaces of the Ag2O/PMMA before and after collagen electrodeposition. Distinct peaks of collagen: amide I at 1635 cm-1 (C=O stretching), amide II at 1550 cm-1 (N-H deformation) and amide III around 1200 cm-1 (combined N-H bending and C-N stretching).
  16. 16. ATR FTIR spectrum of native collagen type I (a), deconvoluted amide I native collagen (b) and adsorbed collagen to PMMA specimens with 0.5% Ag20 (c), 1% Ag20 (d) and 2% Ag20 (e) respectively. 1800 1600 1400 1200 1000 800 600 0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250 1228 Amide III Wavenumber cm-1 Absorbance (a.u.) 1640 Amide I 1546 Amide II a) 1600 1620 1640 1660 1680 1700 b) Absorbance (a.u.) Wavenumber (cm-1) 1600 1620 1640 1660 1680 1700 Absorbance (a.u) Wavenumber (cm-1) d) 1600 1610 1620 1630 1640 1650 1660 1670 1680 1690 -0.000005 0.000000 0.000005 0.000010 0.000015 0.000020 e) Wavenumber cm-1 Absorbance (a.u.) Collagen amide I α helix α helix α helix turns ν(cm-1) A (%) ν(cm-1) A (%) ν(cm-1) A (%) ν(cm-1) A (%) native collagen 1630 28.3 1644 33.2 1665 34.7 1682 3.8 Specimen 1 0.5% Ag2O 1625 40.2 1641 25.5 1657 23.5 1670 10.8 Specimen 2 1% Ag2O 1619 4.2 1637 37.7 1657 43.5 1682 14.6 Specimen 3 2% Ag2O 1630 34.0 1640 44.0 1663 12.0 1673 10.0
  17. 17. Characteristics of FTIR bands Specific components within the fine structure of amide I adsorbed collagen is correlated with different states of hydrogen bonding associated with the local conformations of the alpha chain peptide backbones. The highest frequency carbonyl absorption peak represents the weakest H-bonded system . The peak located in the higher region, at 1682 cm-1, represent the formation of an antiparallelβ-sheet structure (or turns). As a general behavior, one can observe a shift toward lower frequencies, a decrease in α helix total content and concomitant increase of turn percentage upon adsorption, as a consequence of denaturation.
  18. 18. Surface morphology of the PMMA specimens surface after collagen electrodeposition(d, e, f) and upon incubation in SBF during 21 days (g, h, i). 0.5%Ag2O 1%Ag2O 2%Ag2O The formation of hydroxyapatitecrystals was strongly influenced by the presence of collagen layer, but dependent on the silver oxide concentration as well. [S. Cavalu& all, 2010]
  19. 19. Morphology of fibroblasts after 24 h incubation with PMMA specimens. The fibroblasts showed a wide variety of shapes: spread multipolaror round , as well as spindle shaped, elongated cells 0.5% 1% 2% Human fibroblasts (HSFs) in a density of 2x104cells/cm3were seeded upon each PMMA specimen substrate
  20. 20. ResultsshowsviablefibroblastscellswithrespecttocontrolandPMMA/Agwithdifferentconcentrationofsilveroxideafter3,12and24hoursofculture(p<0.05). Initialcellsattachmentisinfluencedbythesilvercontentinthesamples. Theresultsshowsaprogressivedecreaseinopticaldensityafter3hours,withhighersilverconcentration.Thesamplecontaining1%silveroxideexhibitscomparablebehaviortothatofcontrol(commercialcement). Fibroblasts viability by MTT assay
  21. 21. Biomaterials: Alumina/zirconiaceramic •Composition : 80%Al2O320%3YSZ; •Prepared using a spark plasma sintering method •Characterization made by FTIR and XRD spectroscopy •Morphological details of the surface investigated by SEM. S. Cavalu & all, Int. J. Appl. Ceram. Tech. (2014)
  22. 22. Surface treatment with fluoride ATR FTIR evidence Fig. 1 ATR FTIR spectra of SnF2 and NaBF4 powders as received from the supplier . Fig. 2 ATR FTIR spectra recorded on specimen surface before and after treatment using SnF2 and NaBF4. Al-O Zr-O
  23. 23. Surface treatment with fluoride- XPS evidence 1200 1000 800 600 400 200 0 F 1s Al 2s Zr 3d Al 2p C 1s N 1s O 1s Sn 4d Zr 4p F 2s Sn 3p1 Sn 3d Zr 3d N 1s F 1s Al 2p Na 1s O 1s C 1s Intensity (a.u) Binding Energy (eV) Sn 3p3 Al 2s O Auger Zr 4p Specimen 2 SnF 2 NaBF 4
  24. 24. Why fluoride? Administration of complex fluorides suggests the possibility of using them as effective agents in dental caries prevention. Stannous fluoride converts the calcium mineral apatite into fluorapatite, which makes tooth enamel more resistant to bacteria generated acid attacks. NaFhas been known to be one of the most effective agents for the treatment of vertebral osteoporosis by its stimulating effect on new bone formation.
  25. 25. In vitro test: cells culture Human fibroblast (HLF) seeded in a concentration of 2x104/cm2 cells on the surface of each sample (SnF2 respectively NaBF4 treated ) and cultured for 3h, 7h and 24h. Cell nuclei were stained with 5 mMDraq5 diluted 1:1000 in distilled water for 5 min at room temperature. A B C D Visual inspection demonstrating initial adherence and proliferation of fibroblasts. 3h 24 hSnF2NaBF4
  26. 26. Fibroblasts adherence/proliferation evidence by confocalmicroscopySnF2NaBF4 24 h 7 hSnF2NaBF4 7 h 24 h 3 h
  27. 27. SEM –initial stage of adherence 3hSnF2NaBF4
  28. 28. 7hNaBF4SnF2
  29. 29. 24 hSnF2NaBF4
  30. 30. MTTassayresultsshowingviablefibroblastscellswithrespecttocontrolandsurfacetreatedalumina/zirconiaspecimensafter3,7and24hoursofculture. The label * indicates p<0.001 versus control, **indicates p<0.01 and *** indicates a p<0.001 with respect to specimen 1. SnF2NaBF4
  31. 31. In vivo tests: animal model (rabbit)
  32. 32. 50μm Implant site Haversiancanal New bone proliferation Interface bone-implant Haversiancanal New bone proliferation Interface bone-implantHistology; implant 1 = SnF2 treatment
  33. 33. 50μm Implant site Haversiancanal New bone proliferation Interface bone-implant Haversiancanal New bone proliferation Interface bone-implant 50μm Implant site
  34. 34. 50μm 50μm Implant site Haversiancanal New bone proliferation Interface bone-implant Interface bone-implant Haversiancanal New bone proliferationHistology; implant 2 = NaBF4 treatment
  35. 35. Summary 1.Wehavedevelopedinthisworkanewstrategyfororthopedic/dentalimplantsbasedonbothconceptsimprovement:bioactivityandantibacterialactivitybyincorporatingdifferentconcentrationofAg2OinPMMAbonecementfollowedbycollagenelectrodeposition. 2.Initialcellsattachmentisinfluencedbythesilvercontentinthesamples. 3.Collagenlayerseemstobeaneffectiveagentwithrespecttofibroblastsattachmentandproliferation. 4.Fluoride-basedtreatmentisproposedtoconditionthesurfacesbyimprovingthebioactivityofalumina/zirconiacomposites.SnF2treatmentismoreeffectivethanNaBF4.5.Bothtreatmentsshowssimilarresults,butcolonizationcapabilityseemstobepromotedbytheSnF2treatment. 6.MorphologicaldetailsofthefibroblastsattachedonthesurfaceswereemphasizedbySEMshowingtheformationofashell-likecoatingafter24hoursincubation. 7.Histologicalimagesdemonstratedthebiocompatibilityofthetreatedimplantsasnogaps,fibroustissue,multinucleatedcellsorinflamationwerefoundattheboneimplantinterface.AbetterbonetoimplantcontactwasnoticedinthecaseofSnF2treatment.
  36. 36. 1.Simona Cavalu, V. Simon, C. Ratiu, I. Oswald, S. Vlad, O. Ponta, Alternative Approaches Using Animal Model for Implant Biomaterials: Advantages and Disadvantages, Key Engineering Materials Vol. 583 (2014) pp 101-106. 2.Simona Cavalu, V. Simon, F. Banica, I. Akin, G. Goller, Surface modification of alumina/zirconia bioceramics upon different fluoride-based treatments, Int. J. Appl. Ceram. Technol.,1-9(2013) DOI:10.1111/ijac.12075. 3.SimonaCavalu, V. Simon, C. Ratiu, I. Oswald,R. Gabor, O. Ponta, I. Akin, G. Goller, Correlation between structural properties and in vivo biocompatibility of alumina/zirconia bioceramics, Key Engineering Materials vols. 493-494, 1-6, 2012. 4.SimonaCavalu, V. Simon, I. Akin, G. Goller, Improving the bioactivity and biocompatibility of acrylic cements by collagen coating, Key Engineering Materials vols. 493-494, 391-3966, 2012. 5.Simona Cavalu, V. Simon, G. Goller, I. Akin, Bioactivity and antimicrobial properties of PMMA/Ag2O acrylic bone cements collagen coated, Digest J. Nanomaterialsand Biostructures, vol.6/.2 April-June, 779-790, 2011. 6.S. Cavalu, V. Simon, F. Banica, In vitro study of collagen coating by elecrodepositionon acrylic bone cement with antimicrobial potential, Digest J. Nanomaterialsand Biostructures,vol.6, nr.1 January-March, 87-97, 2010
  37. 37. Acknowledgments: Romania-Turkey Bilateral Cooperation 2011-2012 and CNCS-UEFISCDIproject PNII-ID-PCE 2011-3-0441 contract nr. 237/2011. •Prof. dr. VioricaSimonBabes-BolyaiUniversity, Faculty of Physics & Institute of Interdisciplinary Research in Bio-Nano- Sciences, Cluj-Napoca, Romania. •Dr. Ioan Oswaldand Silviu Vlad, University of Oradea, Faculty of Medicine and Pharmaceutics, Oradea, Romania. •Dr. Dumitrita Rugina, USAMV Cluj- Napoca. •Prof. dr. GultekinGollerand assist. prof. Ipek Akin, Istanbul Technical University, Materials Science Department.

×