SlideShare a Scribd company logo
1 of 15
Download to read offline
Firma convenzione
Politecnico di Milano e Veneranda Fabbrica
del Duomo di Milano
Aula Magna – Rettorato
Mercoledì 27 maggio 2015
Multi‐body Dynamics:
Improvement of the designed active rollover 
control air Suspension with active 
differential braking using nonlinear  multi‐
body vehicle model
Alireza Izadi
Professors:
Federico Cheli and Pierangelo Masarati
Alireza Izadi, Multi-body Dynamics 2/15
Contents
Discussion includes:
1. Introduction
• Problems and solutions
2. Methodological approach
3. Vehicle model
4. Controller design
5. Estimator design
6. Results
7. Conclusion
Alireza Izadi, Multi-body Dynamics 3/15
Introduction: 
Problem and solutions (SATA and my PhD thesis)
A problem of heavy vehicles:
• Considerable amount of fatal accidents (35%)
• Rollover causes 38% of fatal accidents in HVs 
and it is the most horrible accident.
Preventability of rollover accidents:
• 50% are impossible to control even with 
professional drivers.
Rollover reasons:
• High center of gravity and lower rollover 
threshold
• Lack of lateral stability
Solutions:
1. Active roll controller
• Active anti‐roll bars
• Active air suspension
2. Active braking
3. Active steering
Figure 1 . Preventability of rollover accidents by driver.  
3.3
38.4
49.7
8.6
0
10
20
30
40
50
60
Possible Maybe Impossible unknown
Figure 2 . Bendix ABS‐6 advanced with ESP.  
Alireza Izadi, Multi-body Dynamics 4/15
Introduction: 
Active air suspension (the first solution)
Our proposed solution:
• Using direct control of suspension roll 
angle by implementing the existing air 
springs.
Acheievements:
Figure 3 . Active air suspension operation in a turn.
Rollover improvement (%) 8
Maximum speed in DLC (km/h) 112
Extra required parts Control Valve
Costs Very low
More improvements needed:
• To increase the efficiency of active air 
suspension,
• To deal with different active combinations 
which are useless in previous control 
strategy.
Alireza Izadi, Multi-body Dynamics 5/15
Introduction: 
Active differential braking (the second solution)
Figure 4 . Passive braking system.
Figure 5 . Active braking system is stretching vehicle by engaging the brakes.
Alireza Izadi, Multi-body Dynamics 6/15
Vehicle Model:
Multibody Model of tractor semitrailer 
• TruckSim delivers the most accurate, detailed, and efficient methods for simulating the
performance of multi-axle commercial and military vehicles. The tractor Semitrailer
model is described
• mathematically by 192 ordinary differential equations that describe its kinematical and
dynamical behavior.
• 76 bodies, 
• 30 multibody degrees of freedom, 
• 73 multibody coordinates, 
• 82 auxiliary coordinates, 
• 30 multibody speeds, 
• 7 auxiliary speeds, 
• 263 active forces,
• 135 active moments.
• Co-simulation with Simulink, LabVIEW, ETAS ASCET, Custom C/C++ programs,
Visual Basic, etc
Figure 6. 30‐dof model of TruckSim 
Alireza Izadi, Multi-body Dynamics 7/15
Integration of active controllers
Co‐simulation of MathWorks and TruckSim
Minimum order
controller
Air springs and their PID
controllers
NLT estimator
PID
controller
Braking
system
‐+
,
,
,
Direct Active Roll Controller
Active differential braking Controller
1. Active roll controller
2. Active braking controller
Figure 7. Integration of active roll controller and active braking system.
Alireza Izadi, Multi-body Dynamics 8/15
Active braking controller
NLT estimator
PID
controller
Braking
system
,
,
Active differential braking Controller
Controller details
1. PID controller
2. NLT estimator
3. ABS braking system
Figure 8. Active braking controller with ABS braking system.
Alireza Izadi, Multi-body Dynamics 9/15
Proportional Integral Derivative controller and the weighting law
, 	
	
	
, 	
	
	
Equation 1
0																													, 	
2
	 	, 	
2																												, 	
									 Equation 2
Control objective:
To minimize the NLT of each axle when axle is close to lift‐off.
Control law:
Weighting law:
• The closer is to 1, the later the controller will be activated.
• parameter shows how fast the controller should focus on minimizing the NLT.
• The smaller the difference between and is, the more quickly the performance weight
punishes the normalized load transfer.
Alireza Izadi, Multi-body Dynamics 10/15
Normalized load transfer estimator
, ,
, ,
Equation 3
measurements:
∆ 	 ,
where
, , 	=	
	∅ Equation 4
and
∅
∆ ∆
2
Equation 6
And vertical equilibrium on axle gives:
, , , , 0 Equation 6
∅
,
,
,
,
And the air spring forces are calculated by by  , , , .
Figure 9. Forces and moments on axle.
Alireza Izadi, Multi-body Dynamics 11/15
Roll angle estimations
Roll angle of axles estimated as well as normalized load transfer.
Figure 10. Active air springs in step maneuver. Estimations of axles roll angle on steer axle, drive axle, trailer axle. 
Estimation error of steer axle, drive axle and trailer axle.
The error vector is asymptotically stable, adequately fast, robust to center of payload gravity 
position and robust to  15	percent of velocity. 
Alireza Izadi, Multi-body Dynamics 12/15
Normalized load transfer estimation
Figure 11. Estimations of normalized load transfer on steer axle, drive axle, trailer axle. 
The error is converging to zero by imposing step steering input to vehicle model and in double 
lane change the error is low and the estimations and measurements are in agreement.
Alireza Izadi, Multi-body Dynamics 13/15
Results
Double lane change simulation and maximum speed
Passive Active air suspension s Active air springs + Active braking
Speed (km/h)  98 112 112 120
Final speed at t = 12 [sec] ‐ 112 98.8 114.2
Speed drop (%) ‐ 0.54 11.77 4.83
Figure 12. Normalized load transfer (a), speed reduction of different controllers (b) and brake pressure (c).
Table 1. maximum speed of tractor semitrailer in a severe double lane change steering.
The severe maneuverability is improved 14.3 percent by active air suspension or active braking
while the improvement is 22.45 % for active air suspension and active braking.
Alireza Izadi, Multi-body Dynamics 14/15
Results
Active trailer and active tractor
Table 2. Maximum speed of tractor semitrailer in a severe double lane change steering for active tractor and trailer.
Combining two controllers causes maneuverability improvement for tractor and semitrailer
evenif only one of the units has active braking.
The response of controllers when only tractor is active or trailer is active is improving by 
using active braking and active air suspension together.
Fully active air suspension 112
Fully active braking 112
Fully active air suspension & braking 120
Active air tractor 90
Active air trailer 98
Active braking tractor 98
Active braking trailer 98
Active air tractor & braking trailer 116
Activtractor braking & active air trailer 116
Alireza Izadi, Multi-body Dynamics 15/15
Conclusion remarks
Integration of two controllers
Considering the combination of actuators:
• The vehicle severe maneuverability is increased while the speed drop is less
than the only active braking controller implementation, thus this
combination is proper to be used for reducing the rollover risk in high
speeds and severe maneuvers while the .
Considering active tractor and active trailer:
• Applying this integration improves the manoeuvrability of active air tractor
and active air trailer in combination with active braking and vice versa.

More Related Content

What's hot

What's hot (10)

automatic car jack
automatic car jackautomatic car jack
automatic car jack
 
Automatic four side pneauamtic jack
Automatic four side pneauamtic jackAutomatic four side pneauamtic jack
Automatic four side pneauamtic jack
 
Fabrication of four side pneauamtic
Fabrication of four side pneauamticFabrication of four side pneauamtic
Fabrication of four side pneauamtic
 
(Powerpoint presentation)line following automated guided vehicle using hoverc...
(Powerpoint presentation)line following automated guided vehicle using hoverc...(Powerpoint presentation)line following automated guided vehicle using hoverc...
(Powerpoint presentation)line following automated guided vehicle using hoverc...
 
Published Paper
Published PaperPublished Paper
Published Paper
 
Hydraulic jack motorised remote 2015
Hydraulic jack motorised  remote 2015Hydraulic jack motorised  remote 2015
Hydraulic jack motorised remote 2015
 
Motorcycle Crash Testing
Motorcycle Crash TestingMotorcycle Crash Testing
Motorcycle Crash Testing
 
Pneumatic power steering
Pneumatic power steeringPneumatic power steering
Pneumatic power steering
 
Full Frontal Crash Test
Full Frontal Crash TestFull Frontal Crash Test
Full Frontal Crash Test
 
Pneumatic Power Steering: A Review
Pneumatic Power Steering: A ReviewPneumatic Power Steering: A Review
Pneumatic Power Steering: A Review
 

Viewers also liked

Psicologia general
Psicologia generalPsicologia general
Psicologia generalma77702TE
 
Didactiek voor volwassenen WaelenBroecheler
Didactiek voor volwassenen WaelenBroechelerDidactiek voor volwassenen WaelenBroecheler
Didactiek voor volwassenen WaelenBroechelerMeike Broecheler
 
Housing Technology November 2015
Housing Technology November 2015Housing Technology November 2015
Housing Technology November 2015Grant Jones
 
Parlamento Interuniversitario
Parlamento InteruniversitarioParlamento Interuniversitario
Parlamento InteruniversitarioParlaU
 
OAPSO-Newsletter-Summer 2016
OAPSO-Newsletter-Summer 2016OAPSO-Newsletter-Summer 2016
OAPSO-Newsletter-Summer 2016Kristen Bickers
 
Waste management definition
Waste management definitionWaste management definition
Waste management definitionArman Sadeghi
 
Extia ouvre sa 9e agence, à Nantes !
Extia ouvre sa 9e agence, à Nantes !Extia ouvre sa 9e agence, à Nantes !
Extia ouvre sa 9e agence, à Nantes !Benjamin Della
 
BIWI - L5 Umgang mit Erfolg und Misserfolg
BIWI - L5 Umgang mit Erfolg und MisserfolgBIWI - L5 Umgang mit Erfolg und Misserfolg
BIWI - L5 Umgang mit Erfolg und Misserfolgionlyspy
 

Viewers also liked (14)

Psicologia general
Psicologia generalPsicologia general
Psicologia general
 
Tarea 2
Tarea 2Tarea 2
Tarea 2
 
Join DECA 2
Join DECA 2Join DECA 2
Join DECA 2
 
Company Profile
Company ProfileCompany Profile
Company Profile
 
Didactiek voor volwassenen WaelenBroecheler
Didactiek voor volwassenen WaelenBroechelerDidactiek voor volwassenen WaelenBroecheler
Didactiek voor volwassenen WaelenBroecheler
 
Dwan gant
Dwan gantDwan gant
Dwan gant
 
Housing Technology November 2015
Housing Technology November 2015Housing Technology November 2015
Housing Technology November 2015
 
Parlamento Interuniversitario
Parlamento InteruniversitarioParlamento Interuniversitario
Parlamento Interuniversitario
 
My Cv
My CvMy Cv
My Cv
 
OAPSO-Newsletter-Summer 2016
OAPSO-Newsletter-Summer 2016OAPSO-Newsletter-Summer 2016
OAPSO-Newsletter-Summer 2016
 
P-02 Projecto
P-02 ProjectoP-02 Projecto
P-02 Projecto
 
Waste management definition
Waste management definitionWaste management definition
Waste management definition
 
Extia ouvre sa 9e agence, à Nantes !
Extia ouvre sa 9e agence, à Nantes !Extia ouvre sa 9e agence, à Nantes !
Extia ouvre sa 9e agence, à Nantes !
 
BIWI - L5 Umgang mit Erfolg und Misserfolg
BIWI - L5 Umgang mit Erfolg und MisserfolgBIWI - L5 Umgang mit Erfolg und Misserfolg
BIWI - L5 Umgang mit Erfolg und Misserfolg
 

Similar to Active differential braking

Nonlinear vehicle modelling
Nonlinear vehicle modellingNonlinear vehicle modelling
Nonlinear vehicle modellingAdam Wittmann
 
2. Presentation for LinkedIn
2. Presentation for LinkedIn2. Presentation for LinkedIn
2. Presentation for LinkedInAlireza Izadi
 
Automatic Reverse Wheel Locking Mechanism
Automatic Reverse Wheel Locking MechanismAutomatic Reverse Wheel Locking Mechanism
Automatic Reverse Wheel Locking MechanismIRJET Journal
 
DESIGN & FABRICATION OF FOUR WHEEL STEERED MULTI- UTILITY VEHICLE
DESIGN & FABRICATION OF FOUR WHEEL  STEERED MULTI- UTILITY VEHICLEDESIGN & FABRICATION OF FOUR WHEEL  STEERED MULTI- UTILITY VEHICLE
DESIGN & FABRICATION OF FOUR WHEEL STEERED MULTI- UTILITY VEHICLEDelwin CK
 
90 degree steering system
90 degree steering system90 degree steering system
90 degree steering systemRohan Sharma
 
High Speed Tilting Train Technology
High Speed Tilting Train TechnologyHigh Speed Tilting Train Technology
High Speed Tilting Train TechnologyIRJET Journal
 
5 ijaems jul-2015-7-reciprocating reversible front wheel drive incorporated i...
5 ijaems jul-2015-7-reciprocating reversible front wheel drive incorporated i...5 ijaems jul-2015-7-reciprocating reversible front wheel drive incorporated i...
5 ijaems jul-2015-7-reciprocating reversible front wheel drive incorporated i...INFOGAIN PUBLICATION
 
Dynamic Balancing of the Vehicle while Cornering
Dynamic Balancing of the Vehicle while CorneringDynamic Balancing of the Vehicle while Cornering
Dynamic Balancing of the Vehicle while CorneringSiddharth Maniyar
 
Three-dimension design of EPS
Three-dimension design of EPSThree-dimension design of EPS
Three-dimension design of EPSIJRES Journal
 
Mechanism for Transverse Car Parking
Mechanism for Transverse Car ParkingMechanism for Transverse Car Parking
Mechanism for Transverse Car ParkingIJSRD
 
2- AUTOMOTIVE LONGITUDINAL DYNAMICS (ACCEL, BRAKING, CRASH)
2- AUTOMOTIVE LONGITUDINAL DYNAMICS (ACCEL, BRAKING, CRASH)2- AUTOMOTIVE LONGITUDINAL DYNAMICS (ACCEL, BRAKING, CRASH)
2- AUTOMOTIVE LONGITUDINAL DYNAMICS (ACCEL, BRAKING, CRASH)Brian Wiegand
 
Analysis of the stability and step steer maneuver of a linearized vehicle mod...
Analysis of the stability and step steer maneuver of a linearized vehicle mod...Analysis of the stability and step steer maneuver of a linearized vehicle mod...
Analysis of the stability and step steer maneuver of a linearized vehicle mod...saeid ghaffari
 
International Journal of Information Technology, Control and Automation (IJITCA)
International Journal of Information Technology, Control and Automation (IJITCA)International Journal of Information Technology, Control and Automation (IJITCA)
International Journal of Information Technology, Control and Automation (IJITCA)IJITCA Journal
 
IMPROVED CONTROL DESIGN FOR AUTONOMOUS VEHICLES
IMPROVED CONTROL DESIGN FOR AUTONOMOUS VEHICLESIMPROVED CONTROL DESIGN FOR AUTONOMOUS VEHICLES
IMPROVED CONTROL DESIGN FOR AUTONOMOUS VEHICLESIJITCA Journal
 
The International Journal of Information Technology, Control and Automation (...
The International Journal of Information Technology, Control and Automation (...The International Journal of Information Technology, Control and Automation (...
The International Journal of Information Technology, Control and Automation (...IJITCA Journal
 
The International Journal of Information Technology, Control and Automation (...
The International Journal of Information Technology, Control and Automation (...The International Journal of Information Technology, Control and Automation (...
The International Journal of Information Technology, Control and Automation (...IJITCA Journal
 
The International Journal of Information Technology, Control and Automation (...
The International Journal of Information Technology, Control and Automation (...The International Journal of Information Technology, Control and Automation (...
The International Journal of Information Technology, Control and Automation (...IJITCA Journal
 
Improved Control Design for Autonomous Vehicles
Improved Control Design for Autonomous VehiclesImproved Control Design for Autonomous Vehicles
Improved Control Design for Autonomous VehiclesIJITCA Journal
 
Design and Development of Linkage based Four Wheel Steering Mechanism for Veh...
Design and Development of Linkage based Four Wheel Steering Mechanism for Veh...Design and Development of Linkage based Four Wheel Steering Mechanism for Veh...
Design and Development of Linkage based Four Wheel Steering Mechanism for Veh...IRJET Journal
 

Similar to Active differential braking (20)

Nonlinear vehicle modelling
Nonlinear vehicle modellingNonlinear vehicle modelling
Nonlinear vehicle modelling
 
2. Presentation for LinkedIn
2. Presentation for LinkedIn2. Presentation for LinkedIn
2. Presentation for LinkedIn
 
Automatic Reverse Wheel Locking Mechanism
Automatic Reverse Wheel Locking MechanismAutomatic Reverse Wheel Locking Mechanism
Automatic Reverse Wheel Locking Mechanism
 
DESIGN & FABRICATION OF FOUR WHEEL STEERED MULTI- UTILITY VEHICLE
DESIGN & FABRICATION OF FOUR WHEEL  STEERED MULTI- UTILITY VEHICLEDESIGN & FABRICATION OF FOUR WHEEL  STEERED MULTI- UTILITY VEHICLE
DESIGN & FABRICATION OF FOUR WHEEL STEERED MULTI- UTILITY VEHICLE
 
90 degree steering system
90 degree steering system90 degree steering system
90 degree steering system
 
High Speed Tilting Train Technology
High Speed Tilting Train TechnologyHigh Speed Tilting Train Technology
High Speed Tilting Train Technology
 
K031202058062
K031202058062K031202058062
K031202058062
 
5 ijaems jul-2015-7-reciprocating reversible front wheel drive incorporated i...
5 ijaems jul-2015-7-reciprocating reversible front wheel drive incorporated i...5 ijaems jul-2015-7-reciprocating reversible front wheel drive incorporated i...
5 ijaems jul-2015-7-reciprocating reversible front wheel drive incorporated i...
 
Dynamic Balancing of the Vehicle while Cornering
Dynamic Balancing of the Vehicle while CorneringDynamic Balancing of the Vehicle while Cornering
Dynamic Balancing of the Vehicle while Cornering
 
Three-dimension design of EPS
Three-dimension design of EPSThree-dimension design of EPS
Three-dimension design of EPS
 
Mechanism for Transverse Car Parking
Mechanism for Transverse Car ParkingMechanism for Transverse Car Parking
Mechanism for Transverse Car Parking
 
2- AUTOMOTIVE LONGITUDINAL DYNAMICS (ACCEL, BRAKING, CRASH)
2- AUTOMOTIVE LONGITUDINAL DYNAMICS (ACCEL, BRAKING, CRASH)2- AUTOMOTIVE LONGITUDINAL DYNAMICS (ACCEL, BRAKING, CRASH)
2- AUTOMOTIVE LONGITUDINAL DYNAMICS (ACCEL, BRAKING, CRASH)
 
Analysis of the stability and step steer maneuver of a linearized vehicle mod...
Analysis of the stability and step steer maneuver of a linearized vehicle mod...Analysis of the stability and step steer maneuver of a linearized vehicle mod...
Analysis of the stability and step steer maneuver of a linearized vehicle mod...
 
International Journal of Information Technology, Control and Automation (IJITCA)
International Journal of Information Technology, Control and Automation (IJITCA)International Journal of Information Technology, Control and Automation (IJITCA)
International Journal of Information Technology, Control and Automation (IJITCA)
 
IMPROVED CONTROL DESIGN FOR AUTONOMOUS VEHICLES
IMPROVED CONTROL DESIGN FOR AUTONOMOUS VEHICLESIMPROVED CONTROL DESIGN FOR AUTONOMOUS VEHICLES
IMPROVED CONTROL DESIGN FOR AUTONOMOUS VEHICLES
 
The International Journal of Information Technology, Control and Automation (...
The International Journal of Information Technology, Control and Automation (...The International Journal of Information Technology, Control and Automation (...
The International Journal of Information Technology, Control and Automation (...
 
The International Journal of Information Technology, Control and Automation (...
The International Journal of Information Technology, Control and Automation (...The International Journal of Information Technology, Control and Automation (...
The International Journal of Information Technology, Control and Automation (...
 
The International Journal of Information Technology, Control and Automation (...
The International Journal of Information Technology, Control and Automation (...The International Journal of Information Technology, Control and Automation (...
The International Journal of Information Technology, Control and Automation (...
 
Improved Control Design for Autonomous Vehicles
Improved Control Design for Autonomous VehiclesImproved Control Design for Autonomous Vehicles
Improved Control Design for Autonomous Vehicles
 
Design and Development of Linkage based Four Wheel Steering Mechanism for Veh...
Design and Development of Linkage based Four Wheel Steering Mechanism for Veh...Design and Development of Linkage based Four Wheel Steering Mechanism for Veh...
Design and Development of Linkage based Four Wheel Steering Mechanism for Veh...
 

Active differential braking

  • 1. Firma convenzione Politecnico di Milano e Veneranda Fabbrica del Duomo di Milano Aula Magna – Rettorato Mercoledì 27 maggio 2015 Multi‐body Dynamics: Improvement of the designed active rollover  control air Suspension with active  differential braking using nonlinear  multi‐ body vehicle model Alireza Izadi Professors: Federico Cheli and Pierangelo Masarati
  • 2. Alireza Izadi, Multi-body Dynamics 2/15 Contents Discussion includes: 1. Introduction • Problems and solutions 2. Methodological approach 3. Vehicle model 4. Controller design 5. Estimator design 6. Results 7. Conclusion
  • 3. Alireza Izadi, Multi-body Dynamics 3/15 Introduction:  Problem and solutions (SATA and my PhD thesis) A problem of heavy vehicles: • Considerable amount of fatal accidents (35%) • Rollover causes 38% of fatal accidents in HVs  and it is the most horrible accident. Preventability of rollover accidents: • 50% are impossible to control even with  professional drivers. Rollover reasons: • High center of gravity and lower rollover  threshold • Lack of lateral stability Solutions: 1. Active roll controller • Active anti‐roll bars • Active air suspension 2. Active braking 3. Active steering Figure 1 . Preventability of rollover accidents by driver.   3.3 38.4 49.7 8.6 0 10 20 30 40 50 60 Possible Maybe Impossible unknown Figure 2 . Bendix ABS‐6 advanced with ESP.  
  • 4. Alireza Izadi, Multi-body Dynamics 4/15 Introduction:  Active air suspension (the first solution) Our proposed solution: • Using direct control of suspension roll  angle by implementing the existing air  springs. Acheievements: Figure 3 . Active air suspension operation in a turn. Rollover improvement (%) 8 Maximum speed in DLC (km/h) 112 Extra required parts Control Valve Costs Very low More improvements needed: • To increase the efficiency of active air  suspension, • To deal with different active combinations  which are useless in previous control  strategy.
  • 5. Alireza Izadi, Multi-body Dynamics 5/15 Introduction:  Active differential braking (the second solution) Figure 4 . Passive braking system. Figure 5 . Active braking system is stretching vehicle by engaging the brakes.
  • 6. Alireza Izadi, Multi-body Dynamics 6/15 Vehicle Model: Multibody Model of tractor semitrailer  • TruckSim delivers the most accurate, detailed, and efficient methods for simulating the performance of multi-axle commercial and military vehicles. The tractor Semitrailer model is described • mathematically by 192 ordinary differential equations that describe its kinematical and dynamical behavior. • 76 bodies,  • 30 multibody degrees of freedom,  • 73 multibody coordinates,  • 82 auxiliary coordinates,  • 30 multibody speeds,  • 7 auxiliary speeds,  • 263 active forces, • 135 active moments. • Co-simulation with Simulink, LabVIEW, ETAS ASCET, Custom C/C++ programs, Visual Basic, etc Figure 6. 30‐dof model of TruckSim 
  • 7. Alireza Izadi, Multi-body Dynamics 7/15 Integration of active controllers Co‐simulation of MathWorks and TruckSim Minimum order controller Air springs and their PID controllers NLT estimator PID controller Braking system ‐+ , , , Direct Active Roll Controller Active differential braking Controller 1. Active roll controller 2. Active braking controller Figure 7. Integration of active roll controller and active braking system.
  • 8. Alireza Izadi, Multi-body Dynamics 8/15 Active braking controller NLT estimator PID controller Braking system , , Active differential braking Controller Controller details 1. PID controller 2. NLT estimator 3. ABS braking system Figure 8. Active braking controller with ABS braking system.
  • 9. Alireza Izadi, Multi-body Dynamics 9/15 Proportional Integral Derivative controller and the weighting law , , Equation 1 0 , 2 , 2 , Equation 2 Control objective: To minimize the NLT of each axle when axle is close to lift‐off. Control law: Weighting law: • The closer is to 1, the later the controller will be activated. • parameter shows how fast the controller should focus on minimizing the NLT. • The smaller the difference between and is, the more quickly the performance weight punishes the normalized load transfer.
  • 10. Alireza Izadi, Multi-body Dynamics 10/15 Normalized load transfer estimator , , , , Equation 3 measurements: ∆ , where , , = ∅ Equation 4 and ∅ ∆ ∆ 2 Equation 6 And vertical equilibrium on axle gives: , , , , 0 Equation 6 ∅ , , , , And the air spring forces are calculated by by  , , , . Figure 9. Forces and moments on axle.
  • 11. Alireza Izadi, Multi-body Dynamics 11/15 Roll angle estimations Roll angle of axles estimated as well as normalized load transfer. Figure 10. Active air springs in step maneuver. Estimations of axles roll angle on steer axle, drive axle, trailer axle.  Estimation error of steer axle, drive axle and trailer axle. The error vector is asymptotically stable, adequately fast, robust to center of payload gravity  position and robust to  15 percent of velocity. 
  • 12. Alireza Izadi, Multi-body Dynamics 12/15 Normalized load transfer estimation Figure 11. Estimations of normalized load transfer on steer axle, drive axle, trailer axle.  The error is converging to zero by imposing step steering input to vehicle model and in double  lane change the error is low and the estimations and measurements are in agreement.
  • 13. Alireza Izadi, Multi-body Dynamics 13/15 Results Double lane change simulation and maximum speed Passive Active air suspension s Active air springs + Active braking Speed (km/h)  98 112 112 120 Final speed at t = 12 [sec] ‐ 112 98.8 114.2 Speed drop (%) ‐ 0.54 11.77 4.83 Figure 12. Normalized load transfer (a), speed reduction of different controllers (b) and brake pressure (c). Table 1. maximum speed of tractor semitrailer in a severe double lane change steering. The severe maneuverability is improved 14.3 percent by active air suspension or active braking while the improvement is 22.45 % for active air suspension and active braking.
  • 14. Alireza Izadi, Multi-body Dynamics 14/15 Results Active trailer and active tractor Table 2. Maximum speed of tractor semitrailer in a severe double lane change steering for active tractor and trailer. Combining two controllers causes maneuverability improvement for tractor and semitrailer evenif only one of the units has active braking. The response of controllers when only tractor is active or trailer is active is improving by  using active braking and active air suspension together. Fully active air suspension 112 Fully active braking 112 Fully active air suspension & braking 120 Active air tractor 90 Active air trailer 98 Active braking tractor 98 Active braking trailer 98 Active air tractor & braking trailer 116 Activtractor braking & active air trailer 116
  • 15. Alireza Izadi, Multi-body Dynamics 15/15 Conclusion remarks Integration of two controllers Considering the combination of actuators: • The vehicle severe maneuverability is increased while the speed drop is less than the only active braking controller implementation, thus this combination is proper to be used for reducing the rollover risk in high speeds and severe maneuvers while the . Considering active tractor and active trailer: • Applying this integration improves the manoeuvrability of active air tractor and active air trailer in combination with active braking and vice versa.