SlideShare a Scribd company logo
1 of 31
Download to read offline
Firma convenzione
Politecnico di Milano e Veneranda Fabbrica
del Duomo di Milano
Aula Magna – Rettorato
Mercoledì 27 maggio 2015
MeccPhD Evaluation
Alireza Izadi 
Cycle XXVIII  Dynamics and Vibration of Mechanical Systems and 
Vehicle
Thesis Title: 
Active roll control of an articulated heavy vehicle using
the existing air suspension
Supervisors: Prof. Edoardo Sabbioni/Prof. Federico Cheli
Tutor: Prof. Massimiliano Gobbi
Alireza Izadi, MeccPhD, Three and a half year Evaluation 2/32
Contents
1. Introduction
2. Methodological approach
3. Vehicle Modeling
4. Control Logics design
5. Actuators Modeling
6. Results
– Comparison of different control logics
– Comparison of actuators
– Active tractor and active trailer
– Robustness
7. Conclusion
8. Doctoral curriculum
Alireza Izadi, MeccPhD, Three and a half year Evaluation 3/32
Problem and solutions
The problem:
• 35 % of fatal accidents caused by HVs
• Rollover causes 38% of fatal accidents in HVs 
and it is the most horrible accident.
Preventability of rollover accidents:
• 50% are impossible to control even with 
professional drivers.
Solution:
• Active roll control is the most strong solution 
for rollover accidents
Fig 1. Preventability of rollover accidents by driver.  
Fig 2.  Passive roll control vs. active anti‐roll control application.
3.3
38.4
49.7
8.6
0
10
20
30
40
50
60
Possible Maybe Impossible unknown
Problem and 
solutions
Aim of work, main features, and 
innovative aspects
Methodological 
approach
Vehicle models Control logics Actuators Results Conclusion
(a) (b)
Alireza Izadi, MeccPhD, Three and a half year Evaluation 4/32
Aim of the work, main features and innovative aspects
Aim of the work:
is to develope a rollover controller to tilt the vehicle toward the inside of turn to minimize lateral
load transfer.
2. Main features:
 appropriate improvement with robust operation to different payloads and velocities,
 proper energy consumption, flow rate and bandwidth of actuators,
 low installation and operational costs
In comparison with the state of the art considering
 Control logics
 Actuators (active anti roll bars)
3. Innovative aspects:
o Using the full potential of existing air springs for roll control design,
o Designing the control logic based on:
o minimum measurements,
o precise and low cost estimations and
o an optimal load distribution on the axles.
Problem and solutions
Aim of work, main features, and 
innovative aspects
Methodological 
approach
Vehicle models Control logics Actuators Results Conclusion
Alireza Izadi, MeccPhD, Three and a half year Evaluation 5/32
Methodological approach
Fig 3. Methodological approach for active air suspension design.
Problem and solutions
Aim of work, main features, and 
innovative aspects
Methodological 
approach
Vehicle models Control logics Actuators Results Conclusion
1. Vehicle Modeling 2. Control Design 3. Actuator Modeling
A. Multibody VM
B. 9‐DoF VM
C. 5‐DoF roll‐plane VM
D. Logic 1
E. Logic 2
F. Logic 3
G. Active anti‐roll bars
H. Active air springs
A. Multibody VM
Actuators
Control 
Logic
+
‐
/x
4. System integration
Modeling System integration
5.The best compromise for rollover controller
Result
Alireza Izadi, MeccPhD, Three and a half year Evaluation 6/32
Active Roll control design process
1. Introduction
2. Methodological approach
3. Vehicle Modeling
4. Control Logics design
5. Actuators Modeling
6. Results
– Comparison of different control logics
– Comparison of actuators
– Active tractor and active trailer
– Robustness
7. Conclusion
Alireza Izadi, MeccPhD, Three and a half year Evaluation 7/32
1. Nonlinear multibody vehicle model
A complicated nonlinear vehicle model
includes:
• 192 ordinary differential equations,
• 76 bodies,
• 30 multibody degrees of freedom
• 73 multibody coordinates,
• Nonlinearities
 Jounce and rebounds bump stops
 5th wheel roll, pitch and yaw bumps
 Spring hysteresis
 Tire deflection
Problem and solutions
Aim of work, main features, and 
innovative aspects
Methodological 
approach
Vehicle models Control logics Actuators Results Conclusion
The multibody model is used for co‐simulating with Simulink to:
1. validate the simplified linear vehicle models and 
2. describe the response of the tractor semitrailer.
Fig 4. Visualization of nonlinear multibody 
vehicle model.
Alireza Izadi, MeccPhD, Three and a half year Evaluation 8/32
2. Linear models
‐ Simplified 9‐DoF vehicle model:                     ‐ Simplified 5‐DoF vehicle model:
		
9‐DoF tractor semitrailer 
model.   ∅
∅
∅ ∅ ∅
∅ ∅ ∅ 	∅ 	∅ ∅ 	∅ 	∅ 	∅ ∅
Fig 5. 9‐DoF tractor semitrailer model and states is used 
in the full state and partial state feedback controllers.   
Fig 6. 5‐DoF roll plane model and states is used in reduced 
order controller design.   
Problem and solutions
Aim of work, main features, and 
innovative aspects
Methodological 
approach
Vehicle models Control logics Actuators Results Conclusion
This model is used for designing our full state 
feedback controller.
This model is applied for designing our 
minimum order controller.
Validated by Nonlinear Multibody Model
∅ 	∅ 	 	 	∅ 	∅ 	∅ 	∅ 	 	 ∅
Alireza Izadi, MeccPhD, Three and a half year Evaluation 9/32
Comparison of linear and nonlinear vehicle model
Fig 7. Trajectory of tractor semitrailer.   
Fig 12. load transfer on wheels.
Fig 11. Suspension roll angle.   Fig 8. Yaw angle of tractor semitrailer.   
Fig 9. Yaw rate of tractor semitrailer.    Fig 10. Lateral acceleration of tractor semitrailer.   
Problem and solutions
Aim of work, main features, and 
innovative aspects
Methodological 
approach
Vehicle models Control logics Actuators Results Conclusion
Alireza Izadi, MeccPhD, Three and a half year Evaluation 10/32
Active Roll control design process
1. Introduction
2. Methodological approach
3. Vehicle Modeling
4. Control Logics design
5. Actuators Modeling
6. Results
– Comparison of different control logics
– Comparison of actuators
– Active tractor and active trailer
– Robustness
7. Conclusion
Alireza Izadi, MeccPhD, Three and a half year Evaluation 11/32
Control logics
Control objective of all controllers:
• Reducing the load transfer by tilting the vehicle towards the turn.
Control logics:
Logic 1: Proportional lateral acceleration feedback control
Logic 2: Full-State feedback control
Logic 3: Optimal minimum order control
Selection criteria:
• The controllers response in transient and steady state condition(reliability),
• Robustness
• Number of measurements
• Estimation precision and costs
• implementability
Problem and solutions
Aim of work, main features, and 
innovative aspects
Methodological 
approach
Vehicle models Control logics Actuators Results Conclusion
Alireza Izadi, MeccPhD, Three and a half year Evaluation 12/32
Logic 1: Proportional lateral acceleration feedback
PD 
Controller
PD 
Controller
ActuatorsActuators
Multi‐body 
Vehicle
Multi‐body 
Vehicle
	,
Fig 13. Proportional lateral acceleration feedback control logic. 
LOGIC 1 (Specifications): 
1. The simplest controller includes only a proportional gain.
2. Minimum number of measurements. 
Problem and solutions
Aim of work, main features, and 
innovative aspects
Methodological 
approach
Vehicle models Control logics Actuators Results Conclusion
Gain selection :
The control law is:
  .
The proportional gain is tuned to have a proper suspension roll angle in opposite
direction of the roll moment caused by the lateral acceleration.
Alireza Izadi, MeccPhD, Three and a half year Evaluation 13/32
Logic 2: Full-state feedback controller (LQR)
LOGIC 2 (Specifications):
1. It is a multivariable optimal controller with disturbance rejection properties.
2. It needs the highest number of measurements among the controllers.
Problem and solutions
Aim of work, main features, and 
innovative aspects
Methodological 
approach
Vehicle models Control logics Actuators Results Conclusion
Linear Quadratic 
Regulator
Actuation System
,
Control technique:
To use the linear quadratic optimization to regulate the load transfer in the presence of 
steering disturbance.
∅ 		∅ 		 	 	 	∅ 	 		∅ 		 			 		∅ 		
Fig 14. State feedback control logic algorithm. 
Alireza Izadi, MeccPhD, Three and a half year Evaluation 14/32
Logic 2: Full-state feedback controller (LQR)
Control gain matrix calculation :
1. Considering the linear dynamic system:
2. Control problem:
The control minimizes the quadratic performance index:
Q : the relative weighting of the performance output x
R : the weighting matrix of control input u(t).
3. Optimal control law:
Where
												 	
												 	 	
Problem and solutions
Aim of work, main features, and 
innovative aspects
Methodological 
approach
Vehicle models Control logics Actuators Results Conclusion
	, Eqn. 1
x x Eqn. 2
x δ Eqn. 3
S is the unique solution of algebraic Riccati formula.
Linear Quadratic 
Regulator
Actuation System
,
Alireza Izadi, MeccPhD, Three and a half year Evaluation 15/32
Disadvantages of logic 2:
1. It requires all the internal states of the system and all the disturbance 
states available for feedback,
2. difficult and expensive to measure states,
3. the sensor output signals are corrupted by noise.
Logic 2: Full-state feedback controller (LQR)
Problem and solutions
Aim of work, main features, and 
innovative aspects
Methodological 
approach
Vehicle models Control logics Actuators Results Conclusion
A practical proposition is:
• to measure selected vehicle states
• Estimate the unmeasured states
• Filter measurement noise
1. An optimal controller with minimum measurements and proper estimations
2. Reasonable estimation cost
Logic 3: An optimal minimum order controller
Alireza Izadi, MeccPhD, Three and a half year Evaluation 16/32
The minimum order controller consists 
1. A state estimator 
2. An optimal controller
Logic 3: Optimal minimum order controller
Fig 15. The designed minimum order controller.
ActuatorsForce control
MB
Vehicle
,
,
State Estimator
LQR
, ∆∅ ∅ ∅ 	∅ 	∅ ∅ 	∅ 	∅ 	∅ ∅
Problem and solutions
Aim of work, main features, and 
innovative aspects
Methodological 
approach
Vehicle models Control logics Actuators Results Conclusion
Measurements
Speed Steer angle Lateral acceleration Air springs elongation Air spring pressure
Table 1. Measurements of minimum order controller.
The estimations are in a very good agreement with measurements.√
Alireza Izadi, MeccPhD, Three and a half year Evaluation 17/32
Active Roll control design process
1. Introduction
2. Methodological approach
3. Vehicle Modeling
4. Control Logics design
5. Actuators Modeling
6. Results
– Comparison of different control logics
– Comparison of actuators
– Active tractor and active trailer
– Robustness
7. Conclusion
Alireza Izadi, MeccPhD, Three and a half year Evaluation 18/32
Actuators
.
Fig 16. ARB system configuration (SATA). Fig 17. Air springs configuration.
1. Active anti-roll bars 2. Active air springs
Problem and solutions
Aim of work, main features, and 
innovative aspects
Methodological 
approach
Vehicle models Control logics Actuators Results Conclusion
Two actuator models were developed:
1. Active anti‐roll bars with 4 Hz bandwidth
2. Active air springs with 2 Hz bandwidth
Alireza Izadi, MeccPhD, Three and a half year Evaluation 19/32
Active air springs configuration
Axle Bandwidth L1 (mm) L2 (mm) Load reduction (%)
Steer
2 Hz
‐ ‐ 20
Drive 500 500 50
Trailer 500 480 46
Problem and solutions
Aim of work, main features, and 
innovative aspects
Methodological 
approach
Vehicle models Control logics Actuators Results Conclusion
Steer axle Drive axle Trailer axles
Table 2: BPW 360K‐1 air springs with 360 mm diameter. 
Fig 18. Air springs configuration on steer axle (a), drive axle (b) and trailer axle (c).
(a) (b) (c)
Fig 19. air spring installation on trailer axle. 
Alireza Izadi, MeccPhD, Three and a half year Evaluation 20/32
Active Roll control design process
1. Introduction
2. Methodological approach
3. Vehicle Modeling
4. Control Logics design
5. Actuators Modeling
6. Results
– Comparison of different control logics
– Comparison of actuators
– Active tractor and active trailer
– Robustness
7. Conclusion
Alireza Izadi, MeccPhD, Three and a half year Evaluation 21/32
Suspension response by using controllers
- Ramp steering (steady state maneuver, 60 km/h)
1. The controllers have small and acceptable deviations, thus they have satisfactory
response for active air springs system.
2. Suspension tilts inward the turn to reach the maximum capacity of air springs and
then it tilts backward.
3. All in all, there is a considerable improvement in rollover threshold.
Fig 21. Normalized load transfer vs. lateral acceleration.  Fig 22. Suspension roll angle vs. lateral acceleration.
Comparison of Controllers
Active air springs
Actuators 
capability
Actuators 
comparison
Active combinations 
and 5th wheel study
Robustness AnalysisRESULTS:RESULTS:
Alireza Izadi, MeccPhD, Three and a half year Evaluation 22/32
Suspension response by using controllers
- Double lane change steering (Transient maneuver, 60 km/h)
• In DLC the optimal controllers are performing very good.
• The response of optimal controllers are better than proportional lateral acceleration
feedback controller which causes higher improvement for them.
Fig 23. Normalized load transfer vs. lateral acceleration.  Fig 24. Suspension roll angle vs. lateral acceleration. 
Comparison of Controllers
Active air springs
Actuators 
capability
Actuators 
comparison
Active combinations 
and 5th wheel study
Robustness AnalysisRESULTS:RESULTS:
Alireza Izadi, MeccPhD, Three and a half year Evaluation 23/32
Controller selection
 The minimum order control logic is the most appropriate control logic for the roll 
control purpose. 
Comparison of Controllers
Active air springs
Actuators 
capability
Actuators 
comparison
Active combinations 
and 5th wheel study
Robustness AnalysisRESULTS:RESULTS:
Specifications of control logic 3
• low number of measurements,
• reasonable estimation cost,
• very good response in steady state and transient condition,
• with disturbance rejection properties.
Alireza Izadi, MeccPhD, Three and a half year Evaluation 24/32
Active Roll control design process
1. Introduction
2. Methodological approach
3. Vehicle Modeling
4. Control Logics design
5. Actuators Modeling
6. Results
– Comparison of different control logics
– Comparison of actuators
– Active tractor and active trailer
– Robustness
7. Conclusion
Alireza Izadi, MeccPhD, Three and a half year Evaluation 25/32
Actuators comparison
- Ramp steering (steady state maneuver, 60 km/h, )
Maximum Improvement Active anti‐roll bars Active air springs
Normalized load transfer (%) 16.81 9.81
Rollover threshold (%) 17.99 7.64
Comparison of Controllers
Active air springs
Actuators 
capability
Actuators 
comparison
Active combinations 
and 5th wheel study
Robustness AnalysisRESULTS:RESULTS:
Table 4. Normalized load transfer and rollover threshold improvements. 
Fig 25.  Active and passive normalized load transfer for active anti‐roll bars (a) and active air springs (b).
Active anti‐roll bars Active air springs
Although active anti‐roll bars have higher capabilities, air springs have a considerable 
improvement within their potentials.
(a) (b)
Active anti‐roll bars Active air springs
17.99 7.64
Alireza Izadi, MeccPhD, Three and a half year Evaluation 26/32
Active Roll control design process
1. Introduction
2. Methodological approach
3. Vehicle Modeling
4. Control Logics design
5. Actuators Modeling
6. Results
– Comparison of different control logics
– Comparison of actuators
– Active tractor and active trailer
– Robustness
7. Conclusion
Alireza Izadi, MeccPhD, Three and a half year Evaluation 27/32
• Active tractor has the worst maneuverability, even worse than passive vehicle,
• Both combinations are worsening the rollover threshold and the active roll control is
recommended to use only for fully active vehicle.
Active combinations
Comparison of Controllers
Active air springs
Actuators 
capability
Actuators 
comparison
Active combinations 
and 5th wheel study
Robustness AnalysisRESULTS:RESULTS:
Active combinations:
1. Active tractor
2. Active semitrailer
The comparison considers:
1. Rollover threshold improvement in steady state maneuver
2. Maximum speed for a severe DLC maneuver
Fully Active Active Tractor Active Semitrailer Passive
Rollover threshold Improvement (%) 7.64 ‐15.96 ‐4.59 0
Maximum speed in DLC (km/h) 112 90 102 98
Table 5. Rollover improvements in steady state maneuver and maximum speed in a severe transient maneuver 
for active combinations. 
90
Active Tractor
112
Fully Active
Alireza Izadi, MeccPhD, Three and a half year Evaluation 28/32
Active Roll control design process
1. Introduction
2. Methodological approach
3. Vehicle Modeling
4. Control Logics design
5. Actuators Modeling
6. Results
– Comparison of different control logics
– Comparison of actuators
– Active tractor and active trailer
– Robustness
7. Conclusion
Alireza Izadi, MeccPhD, Three and a half year Evaluation 29/32
Robustness to payload position
Ramp steering (steady state maneuver, 60 km/h)
Payload position for three controllers
Standard X +15% X ‐15% X ‐25% Z +15% Z ‐15% X +15% Z +15%
Improvement (%) 7.6 9.4 8.7 8.8 7.5 6.0 10.4
Comparison of Controllers
Active air springs
Actuators 
capability
Actuators 
comparison
Active combinations 
and 5th wheel study
Robustness AnalysisRESULTS:RESULTS:
The robustness analysis was done for different positions of maximum payload
• X is the distance of center of payload to hitch
• Z is the height of center of gravity of payload
Table 7. Robustness of active air springs to different payload positions and different controllers. 
• All the three controllers are robust to payload positions and even the improvement
in the worst condition is more than standard position
• The robustness of minimum order optimal controller is very good for our roll control
system.
• Minimum order control is confirmed for its robustness
Alireza Izadi, MeccPhD, Three and a half year Evaluation 30/32
Conclusion
Within the constraints and limitation of our system:
1. The improvement is comparable with active anti-roll bars
2. The energy consumption is low
3. The costs are very low and easy to implement
Active air springs Active anti‐roll bars
Main features
Rollover preventability (%) 7.64  17.99
Robustness  
Energy consumption of actuators [W] 1650 2118
Installation cost 0 high
Operational cost Very low high
All in all, considering the actuators, rollover threshold improvement, load
trasnfer reduction, energy consumption and costs:
Active air springs are the most proper compromise for this rollover controller.
Alireza Izadi, MeccPhD, Three and a half year Evaluation 31/32
I APPRECIATE YOUR CONSIDERATION.
Alireza Izadi

More Related Content

Viewers also liked

Nature - Optical generation of excitonic valley coherence in monolayer WSe2
Nature - Optical generation of excitonic valley coherence in monolayer WSe2Nature - Optical generation of excitonic valley coherence in monolayer WSe2
Nature - Optical generation of excitonic valley coherence in monolayer WSe2Bo Zhao
 
Eng7 academic writing vs creative writing
Eng7 academic writing vs creative writingEng7 academic writing vs creative writing
Eng7 academic writing vs creative writingTine Lachica
 
Active Air Suspension System
Active Air Suspension SystemActive Air Suspension System
Active Air Suspension SystemSuchit Moon
 

Viewers also liked (6)

Web 20
Web 20Web 20
Web 20
 
Getting Started
Getting StartedGetting Started
Getting Started
 
juwel(1)
juwel(1)juwel(1)
juwel(1)
 
Nature - Optical generation of excitonic valley coherence in monolayer WSe2
Nature - Optical generation of excitonic valley coherence in monolayer WSe2Nature - Optical generation of excitonic valley coherence in monolayer WSe2
Nature - Optical generation of excitonic valley coherence in monolayer WSe2
 
Eng7 academic writing vs creative writing
Eng7 academic writing vs creative writingEng7 academic writing vs creative writing
Eng7 academic writing vs creative writing
 
Active Air Suspension System
Active Air Suspension SystemActive Air Suspension System
Active Air Suspension System
 

Similar to 2. Presentation for LinkedIn

Safe Driving Advisor and Evaluator.pptx
Safe Driving Advisor and Evaluator.pptxSafe Driving Advisor and Evaluator.pptx
Safe Driving Advisor and Evaluator.pptxHazem Fahmy
 
Project Proposal Presentation
Project Proposal PresentationProject Proposal Presentation
Project Proposal PresentationNadeem Qandeel
 
presentation_v0.ppt
presentation_v0.pptpresentation_v0.ppt
presentation_v0.pptVickyCool15
 
STUDY AND ANALYSIS OF DIFFERENTIAL CONTROLLED CONTINUOUSLY VARIABLE DRIVE
STUDY AND ANALYSIS OF DIFFERENTIAL CONTROLLED CONTINUOUSLY VARIABLE DRIVESTUDY AND ANALYSIS OF DIFFERENTIAL CONTROLLED CONTINUOUSLY VARIABLE DRIVE
STUDY AND ANALYSIS OF DIFFERENTIAL CONTROLLED CONTINUOUSLY VARIABLE DRIVEJournal For Research
 
Active differential braking
Active differential brakingActive differential braking
Active differential brakingAlireza Izadi
 
Road traffic rules synthesis using ge
Road traffic rules synthesis using geRoad traffic rules synthesis using ge
Road traffic rules synthesis using geJacopo Talamini
 
Energies 08-06820
Energies 08-06820Energies 08-06820
Energies 08-06820AmineHarir2
 
EE323 Mini-Project - Line tracing robot
EE323 Mini-Project - Line tracing robotEE323 Mini-Project - Line tracing robot
EE323 Mini-Project - Line tracing robotPraneel Chand
 
virtual-system-integration-and-early-functional-validation-in-the-whole-vehic...
virtual-system-integration-and-early-functional-validation-in-the-whole-vehic...virtual-system-integration-and-early-functional-validation-in-the-whole-vehic...
virtual-system-integration-and-early-functional-validation-in-the-whole-vehic...Uvaiz2
 
Control systems project report (180501008)(180501016)(180501018)(180501020)
Control systems project report (180501008)(180501016)(180501018)(180501020)Control systems project report (180501008)(180501016)(180501018)(180501020)
Control systems project report (180501008)(180501016)(180501018)(180501020)khang31
 
4yp exhibition posterfinal
4yp exhibition posterfinal4yp exhibition posterfinal
4yp exhibition posterfinalLeke Abolade
 
ModulED. Next generation powertrains for electric vehicles
ModulED. Next generation powertrains for electric vehiclesModulED. Next generation powertrains for electric vehicles
ModulED. Next generation powertrains for electric vehiclesLeonardo ENERGY
 
Speeding Up Vectorized Benchmarking of Optimization Algorithms
Speeding Up Vectorized Benchmarking of Optimization AlgorithmsSpeeding Up Vectorized Benchmarking of Optimization Algorithms
Speeding Up Vectorized Benchmarking of Optimization AlgorithmsUniversity of Maribor
 
Lec 02(VDI dr mohamed)
Lec 02(VDI  dr mohamed)Lec 02(VDI  dr mohamed)
Lec 02(VDI dr mohamed)Mohamed Atef
 
Regenerative braking system
Regenerative braking system Regenerative braking system
Regenerative braking system Abhishek Patel
 
DESIGN & FABRICATION OF FOUR WHEEL STEERED MULTI- UTILITY VEHICLE
DESIGN & FABRICATION OF FOUR WHEEL  STEERED MULTI- UTILITY VEHICLEDESIGN & FABRICATION OF FOUR WHEEL  STEERED MULTI- UTILITY VEHICLE
DESIGN & FABRICATION OF FOUR WHEEL STEERED MULTI- UTILITY VEHICLEDelwin CK
 
Four Wheel Active Steering / Without Videos
Four Wheel Active Steering / Without VideosFour Wheel Active Steering / Without Videos
Four Wheel Active Steering / Without VideosGoodarz Mehr
 

Similar to 2. Presentation for LinkedIn (20)

Safe Driving Advisor and Evaluator.pptx
Safe Driving Advisor and Evaluator.pptxSafe Driving Advisor and Evaluator.pptx
Safe Driving Advisor and Evaluator.pptx
 
V13I1006.pdf
V13I1006.pdfV13I1006.pdf
V13I1006.pdf
 
Project Proposal Presentation
Project Proposal PresentationProject Proposal Presentation
Project Proposal Presentation
 
presentation_v0.ppt
presentation_v0.pptpresentation_v0.ppt
presentation_v0.ppt
 
STUDY AND ANALYSIS OF DIFFERENTIAL CONTROLLED CONTINUOUSLY VARIABLE DRIVE
STUDY AND ANALYSIS OF DIFFERENTIAL CONTROLLED CONTINUOUSLY VARIABLE DRIVESTUDY AND ANALYSIS OF DIFFERENTIAL CONTROLLED CONTINUOUSLY VARIABLE DRIVE
STUDY AND ANALYSIS OF DIFFERENTIAL CONTROLLED CONTINUOUSLY VARIABLE DRIVE
 
Active differential braking
Active differential brakingActive differential braking
Active differential braking
 
Road traffic rules synthesis using ge
Road traffic rules synthesis using geRoad traffic rules synthesis using ge
Road traffic rules synthesis using ge
 
Energies 08-06820
Energies 08-06820Energies 08-06820
Energies 08-06820
 
energies-08-06820.pdf
energies-08-06820.pdfenergies-08-06820.pdf
energies-08-06820.pdf
 
EE323 Mini-Project - Line tracing robot
EE323 Mini-Project - Line tracing robotEE323 Mini-Project - Line tracing robot
EE323 Mini-Project - Line tracing robot
 
virtual-system-integration-and-early-functional-validation-in-the-whole-vehic...
virtual-system-integration-and-early-functional-validation-in-the-whole-vehic...virtual-system-integration-and-early-functional-validation-in-the-whole-vehic...
virtual-system-integration-and-early-functional-validation-in-the-whole-vehic...
 
Control systems project report (180501008)(180501016)(180501018)(180501020)
Control systems project report (180501008)(180501016)(180501018)(180501020)Control systems project report (180501008)(180501016)(180501018)(180501020)
Control systems project report (180501008)(180501016)(180501018)(180501020)
 
4yp exhibition posterfinal
4yp exhibition posterfinal4yp exhibition posterfinal
4yp exhibition posterfinal
 
ModulED. Next generation powertrains for electric vehicles
ModulED. Next generation powertrains for electric vehiclesModulED. Next generation powertrains for electric vehicles
ModulED. Next generation powertrains for electric vehicles
 
Speeding Up Vectorized Benchmarking of Optimization Algorithms
Speeding Up Vectorized Benchmarking of Optimization AlgorithmsSpeeding Up Vectorized Benchmarking of Optimization Algorithms
Speeding Up Vectorized Benchmarking of Optimization Algorithms
 
Lec 02(VDI dr mohamed)
Lec 02(VDI  dr mohamed)Lec 02(VDI  dr mohamed)
Lec 02(VDI dr mohamed)
 
Regenerative braking system
Regenerative braking system Regenerative braking system
Regenerative braking system
 
DESIGN & FABRICATION OF FOUR WHEEL STEERED MULTI- UTILITY VEHICLE
DESIGN & FABRICATION OF FOUR WHEEL  STEERED MULTI- UTILITY VEHICLEDESIGN & FABRICATION OF FOUR WHEEL  STEERED MULTI- UTILITY VEHICLE
DESIGN & FABRICATION OF FOUR WHEEL STEERED MULTI- UTILITY VEHICLE
 
Four Wheel Active Steering / Without Videos
Four Wheel Active Steering / Without VideosFour Wheel Active Steering / Without Videos
Four Wheel Active Steering / Without Videos
 
Project management
Project managementProject management
Project management
 

2. Presentation for LinkedIn

  • 1. Firma convenzione Politecnico di Milano e Veneranda Fabbrica del Duomo di Milano Aula Magna – Rettorato Mercoledì 27 maggio 2015 MeccPhD Evaluation Alireza Izadi  Cycle XXVIII  Dynamics and Vibration of Mechanical Systems and  Vehicle Thesis Title:  Active roll control of an articulated heavy vehicle using the existing air suspension Supervisors: Prof. Edoardo Sabbioni/Prof. Federico Cheli Tutor: Prof. Massimiliano Gobbi
  • 2. Alireza Izadi, MeccPhD, Three and a half year Evaluation 2/32 Contents 1. Introduction 2. Methodological approach 3. Vehicle Modeling 4. Control Logics design 5. Actuators Modeling 6. Results – Comparison of different control logics – Comparison of actuators – Active tractor and active trailer – Robustness 7. Conclusion 8. Doctoral curriculum
  • 3. Alireza Izadi, MeccPhD, Three and a half year Evaluation 3/32 Problem and solutions The problem: • 35 % of fatal accidents caused by HVs • Rollover causes 38% of fatal accidents in HVs  and it is the most horrible accident. Preventability of rollover accidents: • 50% are impossible to control even with  professional drivers. Solution: • Active roll control is the most strong solution  for rollover accidents Fig 1. Preventability of rollover accidents by driver.   Fig 2.  Passive roll control vs. active anti‐roll control application. 3.3 38.4 49.7 8.6 0 10 20 30 40 50 60 Possible Maybe Impossible unknown Problem and  solutions Aim of work, main features, and  innovative aspects Methodological  approach Vehicle models Control logics Actuators Results Conclusion (a) (b)
  • 4. Alireza Izadi, MeccPhD, Three and a half year Evaluation 4/32 Aim of the work, main features and innovative aspects Aim of the work: is to develope a rollover controller to tilt the vehicle toward the inside of turn to minimize lateral load transfer. 2. Main features:  appropriate improvement with robust operation to different payloads and velocities,  proper energy consumption, flow rate and bandwidth of actuators,  low installation and operational costs In comparison with the state of the art considering  Control logics  Actuators (active anti roll bars) 3. Innovative aspects: o Using the full potential of existing air springs for roll control design, o Designing the control logic based on: o minimum measurements, o precise and low cost estimations and o an optimal load distribution on the axles. Problem and solutions Aim of work, main features, and  innovative aspects Methodological  approach Vehicle models Control logics Actuators Results Conclusion
  • 5. Alireza Izadi, MeccPhD, Three and a half year Evaluation 5/32 Methodological approach Fig 3. Methodological approach for active air suspension design. Problem and solutions Aim of work, main features, and  innovative aspects Methodological  approach Vehicle models Control logics Actuators Results Conclusion 1. Vehicle Modeling 2. Control Design 3. Actuator Modeling A. Multibody VM B. 9‐DoF VM C. 5‐DoF roll‐plane VM D. Logic 1 E. Logic 2 F. Logic 3 G. Active anti‐roll bars H. Active air springs A. Multibody VM Actuators Control  Logic + ‐ /x 4. System integration Modeling System integration 5.The best compromise for rollover controller Result
  • 6. Alireza Izadi, MeccPhD, Three and a half year Evaluation 6/32 Active Roll control design process 1. Introduction 2. Methodological approach 3. Vehicle Modeling 4. Control Logics design 5. Actuators Modeling 6. Results – Comparison of different control logics – Comparison of actuators – Active tractor and active trailer – Robustness 7. Conclusion
  • 7. Alireza Izadi, MeccPhD, Three and a half year Evaluation 7/32 1. Nonlinear multibody vehicle model A complicated nonlinear vehicle model includes: • 192 ordinary differential equations, • 76 bodies, • 30 multibody degrees of freedom • 73 multibody coordinates, • Nonlinearities  Jounce and rebounds bump stops  5th wheel roll, pitch and yaw bumps  Spring hysteresis  Tire deflection Problem and solutions Aim of work, main features, and  innovative aspects Methodological  approach Vehicle models Control logics Actuators Results Conclusion The multibody model is used for co‐simulating with Simulink to: 1. validate the simplified linear vehicle models and  2. describe the response of the tractor semitrailer. Fig 4. Visualization of nonlinear multibody  vehicle model.
  • 8. Alireza Izadi, MeccPhD, Three and a half year Evaluation 8/32 2. Linear models ‐ Simplified 9‐DoF vehicle model:                     ‐ Simplified 5‐DoF vehicle model: 9‐DoF tractor semitrailer  model.   ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ Fig 5. 9‐DoF tractor semitrailer model and states is used  in the full state and partial state feedback controllers.    Fig 6. 5‐DoF roll plane model and states is used in reduced  order controller design.    Problem and solutions Aim of work, main features, and  innovative aspects Methodological  approach Vehicle models Control logics Actuators Results Conclusion This model is used for designing our full state  feedback controller. This model is applied for designing our  minimum order controller. Validated by Nonlinear Multibody Model ∅ ∅ ∅ ∅ ∅ ∅ ∅
  • 9. Alireza Izadi, MeccPhD, Three and a half year Evaluation 9/32 Comparison of linear and nonlinear vehicle model Fig 7. Trajectory of tractor semitrailer.    Fig 12. load transfer on wheels. Fig 11. Suspension roll angle.   Fig 8. Yaw angle of tractor semitrailer.    Fig 9. Yaw rate of tractor semitrailer.    Fig 10. Lateral acceleration of tractor semitrailer.    Problem and solutions Aim of work, main features, and  innovative aspects Methodological  approach Vehicle models Control logics Actuators Results Conclusion
  • 10. Alireza Izadi, MeccPhD, Three and a half year Evaluation 10/32 Active Roll control design process 1. Introduction 2. Methodological approach 3. Vehicle Modeling 4. Control Logics design 5. Actuators Modeling 6. Results – Comparison of different control logics – Comparison of actuators – Active tractor and active trailer – Robustness 7. Conclusion
  • 11. Alireza Izadi, MeccPhD, Three and a half year Evaluation 11/32 Control logics Control objective of all controllers: • Reducing the load transfer by tilting the vehicle towards the turn. Control logics: Logic 1: Proportional lateral acceleration feedback control Logic 2: Full-State feedback control Logic 3: Optimal minimum order control Selection criteria: • The controllers response in transient and steady state condition(reliability), • Robustness • Number of measurements • Estimation precision and costs • implementability Problem and solutions Aim of work, main features, and  innovative aspects Methodological  approach Vehicle models Control logics Actuators Results Conclusion
  • 12. Alireza Izadi, MeccPhD, Three and a half year Evaluation 12/32 Logic 1: Proportional lateral acceleration feedback PD  Controller PD  Controller ActuatorsActuators Multi‐body  Vehicle Multi‐body  Vehicle , Fig 13. Proportional lateral acceleration feedback control logic.  LOGIC 1 (Specifications):  1. The simplest controller includes only a proportional gain. 2. Minimum number of measurements.  Problem and solutions Aim of work, main features, and  innovative aspects Methodological  approach Vehicle models Control logics Actuators Results Conclusion Gain selection : The control law is:   . The proportional gain is tuned to have a proper suspension roll angle in opposite direction of the roll moment caused by the lateral acceleration.
  • 13. Alireza Izadi, MeccPhD, Three and a half year Evaluation 13/32 Logic 2: Full-state feedback controller (LQR) LOGIC 2 (Specifications): 1. It is a multivariable optimal controller with disturbance rejection properties. 2. It needs the highest number of measurements among the controllers. Problem and solutions Aim of work, main features, and  innovative aspects Methodological  approach Vehicle models Control logics Actuators Results Conclusion Linear Quadratic  Regulator Actuation System , Control technique: To use the linear quadratic optimization to regulate the load transfer in the presence of  steering disturbance. ∅ ∅ ∅ ∅ ∅ Fig 14. State feedback control logic algorithm. 
  • 14. Alireza Izadi, MeccPhD, Three and a half year Evaluation 14/32 Logic 2: Full-state feedback controller (LQR) Control gain matrix calculation : 1. Considering the linear dynamic system: 2. Control problem: The control minimizes the quadratic performance index: Q : the relative weighting of the performance output x R : the weighting matrix of control input u(t). 3. Optimal control law: Where Problem and solutions Aim of work, main features, and  innovative aspects Methodological  approach Vehicle models Control logics Actuators Results Conclusion , Eqn. 1 x x Eqn. 2 x δ Eqn. 3 S is the unique solution of algebraic Riccati formula. Linear Quadratic  Regulator Actuation System ,
  • 15. Alireza Izadi, MeccPhD, Three and a half year Evaluation 15/32 Disadvantages of logic 2: 1. It requires all the internal states of the system and all the disturbance  states available for feedback, 2. difficult and expensive to measure states, 3. the sensor output signals are corrupted by noise. Logic 2: Full-state feedback controller (LQR) Problem and solutions Aim of work, main features, and  innovative aspects Methodological  approach Vehicle models Control logics Actuators Results Conclusion A practical proposition is: • to measure selected vehicle states • Estimate the unmeasured states • Filter measurement noise 1. An optimal controller with minimum measurements and proper estimations 2. Reasonable estimation cost Logic 3: An optimal minimum order controller
  • 16. Alireza Izadi, MeccPhD, Three and a half year Evaluation 16/32 The minimum order controller consists  1. A state estimator  2. An optimal controller Logic 3: Optimal minimum order controller Fig 15. The designed minimum order controller. ActuatorsForce control MB Vehicle , , State Estimator LQR , ∆∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ Problem and solutions Aim of work, main features, and  innovative aspects Methodological  approach Vehicle models Control logics Actuators Results Conclusion Measurements Speed Steer angle Lateral acceleration Air springs elongation Air spring pressure Table 1. Measurements of minimum order controller. The estimations are in a very good agreement with measurements.√
  • 17. Alireza Izadi, MeccPhD, Three and a half year Evaluation 17/32 Active Roll control design process 1. Introduction 2. Methodological approach 3. Vehicle Modeling 4. Control Logics design 5. Actuators Modeling 6. Results – Comparison of different control logics – Comparison of actuators – Active tractor and active trailer – Robustness 7. Conclusion
  • 18. Alireza Izadi, MeccPhD, Three and a half year Evaluation 18/32 Actuators . Fig 16. ARB system configuration (SATA). Fig 17. Air springs configuration. 1. Active anti-roll bars 2. Active air springs Problem and solutions Aim of work, main features, and  innovative aspects Methodological  approach Vehicle models Control logics Actuators Results Conclusion Two actuator models were developed: 1. Active anti‐roll bars with 4 Hz bandwidth 2. Active air springs with 2 Hz bandwidth
  • 19. Alireza Izadi, MeccPhD, Three and a half year Evaluation 19/32 Active air springs configuration Axle Bandwidth L1 (mm) L2 (mm) Load reduction (%) Steer 2 Hz ‐ ‐ 20 Drive 500 500 50 Trailer 500 480 46 Problem and solutions Aim of work, main features, and  innovative aspects Methodological  approach Vehicle models Control logics Actuators Results Conclusion Steer axle Drive axle Trailer axles Table 2: BPW 360K‐1 air springs with 360 mm diameter.  Fig 18. Air springs configuration on steer axle (a), drive axle (b) and trailer axle (c). (a) (b) (c) Fig 19. air spring installation on trailer axle. 
  • 20. Alireza Izadi, MeccPhD, Three and a half year Evaluation 20/32 Active Roll control design process 1. Introduction 2. Methodological approach 3. Vehicle Modeling 4. Control Logics design 5. Actuators Modeling 6. Results – Comparison of different control logics – Comparison of actuators – Active tractor and active trailer – Robustness 7. Conclusion
  • 21. Alireza Izadi, MeccPhD, Three and a half year Evaluation 21/32 Suspension response by using controllers - Ramp steering (steady state maneuver, 60 km/h) 1. The controllers have small and acceptable deviations, thus they have satisfactory response for active air springs system. 2. Suspension tilts inward the turn to reach the maximum capacity of air springs and then it tilts backward. 3. All in all, there is a considerable improvement in rollover threshold. Fig 21. Normalized load transfer vs. lateral acceleration.  Fig 22. Suspension roll angle vs. lateral acceleration. Comparison of Controllers Active air springs Actuators  capability Actuators  comparison Active combinations  and 5th wheel study Robustness AnalysisRESULTS:RESULTS:
  • 22. Alireza Izadi, MeccPhD, Three and a half year Evaluation 22/32 Suspension response by using controllers - Double lane change steering (Transient maneuver, 60 km/h) • In DLC the optimal controllers are performing very good. • The response of optimal controllers are better than proportional lateral acceleration feedback controller which causes higher improvement for them. Fig 23. Normalized load transfer vs. lateral acceleration.  Fig 24. Suspension roll angle vs. lateral acceleration.  Comparison of Controllers Active air springs Actuators  capability Actuators  comparison Active combinations  and 5th wheel study Robustness AnalysisRESULTS:RESULTS:
  • 23. Alireza Izadi, MeccPhD, Three and a half year Evaluation 23/32 Controller selection  The minimum order control logic is the most appropriate control logic for the roll  control purpose.  Comparison of Controllers Active air springs Actuators  capability Actuators  comparison Active combinations  and 5th wheel study Robustness AnalysisRESULTS:RESULTS: Specifications of control logic 3 • low number of measurements, • reasonable estimation cost, • very good response in steady state and transient condition, • with disturbance rejection properties.
  • 24. Alireza Izadi, MeccPhD, Three and a half year Evaluation 24/32 Active Roll control design process 1. Introduction 2. Methodological approach 3. Vehicle Modeling 4. Control Logics design 5. Actuators Modeling 6. Results – Comparison of different control logics – Comparison of actuators – Active tractor and active trailer – Robustness 7. Conclusion
  • 25. Alireza Izadi, MeccPhD, Three and a half year Evaluation 25/32 Actuators comparison - Ramp steering (steady state maneuver, 60 km/h, ) Maximum Improvement Active anti‐roll bars Active air springs Normalized load transfer (%) 16.81 9.81 Rollover threshold (%) 17.99 7.64 Comparison of Controllers Active air springs Actuators  capability Actuators  comparison Active combinations  and 5th wheel study Robustness AnalysisRESULTS:RESULTS: Table 4. Normalized load transfer and rollover threshold improvements.  Fig 25.  Active and passive normalized load transfer for active anti‐roll bars (a) and active air springs (b). Active anti‐roll bars Active air springs Although active anti‐roll bars have higher capabilities, air springs have a considerable  improvement within their potentials. (a) (b) Active anti‐roll bars Active air springs 17.99 7.64
  • 26. Alireza Izadi, MeccPhD, Three and a half year Evaluation 26/32 Active Roll control design process 1. Introduction 2. Methodological approach 3. Vehicle Modeling 4. Control Logics design 5. Actuators Modeling 6. Results – Comparison of different control logics – Comparison of actuators – Active tractor and active trailer – Robustness 7. Conclusion
  • 27. Alireza Izadi, MeccPhD, Three and a half year Evaluation 27/32 • Active tractor has the worst maneuverability, even worse than passive vehicle, • Both combinations are worsening the rollover threshold and the active roll control is recommended to use only for fully active vehicle. Active combinations Comparison of Controllers Active air springs Actuators  capability Actuators  comparison Active combinations  and 5th wheel study Robustness AnalysisRESULTS:RESULTS: Active combinations: 1. Active tractor 2. Active semitrailer The comparison considers: 1. Rollover threshold improvement in steady state maneuver 2. Maximum speed for a severe DLC maneuver Fully Active Active Tractor Active Semitrailer Passive Rollover threshold Improvement (%) 7.64 ‐15.96 ‐4.59 0 Maximum speed in DLC (km/h) 112 90 102 98 Table 5. Rollover improvements in steady state maneuver and maximum speed in a severe transient maneuver  for active combinations.  90 Active Tractor 112 Fully Active
  • 28. Alireza Izadi, MeccPhD, Three and a half year Evaluation 28/32 Active Roll control design process 1. Introduction 2. Methodological approach 3. Vehicle Modeling 4. Control Logics design 5. Actuators Modeling 6. Results – Comparison of different control logics – Comparison of actuators – Active tractor and active trailer – Robustness 7. Conclusion
  • 29. Alireza Izadi, MeccPhD, Three and a half year Evaluation 29/32 Robustness to payload position Ramp steering (steady state maneuver, 60 km/h) Payload position for three controllers Standard X +15% X ‐15% X ‐25% Z +15% Z ‐15% X +15% Z +15% Improvement (%) 7.6 9.4 8.7 8.8 7.5 6.0 10.4 Comparison of Controllers Active air springs Actuators  capability Actuators  comparison Active combinations  and 5th wheel study Robustness AnalysisRESULTS:RESULTS: The robustness analysis was done for different positions of maximum payload • X is the distance of center of payload to hitch • Z is the height of center of gravity of payload Table 7. Robustness of active air springs to different payload positions and different controllers.  • All the three controllers are robust to payload positions and even the improvement in the worst condition is more than standard position • The robustness of minimum order optimal controller is very good for our roll control system. • Minimum order control is confirmed for its robustness
  • 30. Alireza Izadi, MeccPhD, Three and a half year Evaluation 30/32 Conclusion Within the constraints and limitation of our system: 1. The improvement is comparable with active anti-roll bars 2. The energy consumption is low 3. The costs are very low and easy to implement Active air springs Active anti‐roll bars Main features Rollover preventability (%) 7.64  17.99 Robustness   Energy consumption of actuators [W] 1650 2118 Installation cost 0 high Operational cost Very low high All in all, considering the actuators, rollover threshold improvement, load trasnfer reduction, energy consumption and costs: Active air springs are the most proper compromise for this rollover controller.
  • 31. Alireza Izadi, MeccPhD, Three and a half year Evaluation 31/32 I APPRECIATE YOUR CONSIDERATION. Alireza Izadi