SlideShare a Scribd company logo
1 of 9
Enzyme Kinetics of β-galactosidase Using Varying
Temperatures
By: Alexander Ward
CHM-352 – Dr. Lawrence
Abstract: Kineticassaysare performedtodetermine the rate anenzyme turnssubstrate intoproduct.
The concentrationof substrate ismuch greaterthanthe concentrationof enzyme,saturatingthe
enzyme tonegate backwardsreactionsinthe enzyme-substrate complex. The rate the enzyme β-
galactosidase turnsoverortho-nitrophenylgalactopyranoside (ONPG) wasmeasuredatvarying
temperaturesusingthe visiblyactive product,ortho-nitrophenolate,inbasicconditions. The
experimentallydeterminedactivationenergyof β-galactosidaseisequal to36.13 ± 4.9 KJper mol.
Introduction: Anenzyme isa catalystwhichlowersthe activationenergyof areaction. The mechanism
of an enzyme catalyzedreactionis (1) 𝐸 + 𝑆 ⥂ 𝐸𝑆 → 𝐸 + 𝑃,where E is the enzyme (β-galactosidase),S
isthe substrate (ONPG),andPisthe product (galactose andortho-nitrophenol). Because the
concentrationof the substrate will be muchgreaterthanthe concentrationof the enzyme,the enzyme
isconsideredsaturated. Thismeansthe concentrationof the enzymesubstrate complex isequaltothe
initial concentrationof enzyme. The rate constant,k, isthe rate at whichthe enzyme substrate complex
isconvertedinfree enzyme andproduct. Thisrate constant changesbasedonthe function
(2) 𝑘 = 𝐴𝑒−
𝐸 𝐴
𝑅𝑇, where A isa constant, EA is the activationenergy,Risan ideal gasconstant,and T is the
temperature. Usingspectrophotometrytomeasure asample followsBeer’sLaw, (3) A = εbc, where A is
the absorbance, ε isthe extinctioncoefficientforthe visiblyactive species,bisthe pathlength,andc is
the concentrationof the visiblyactive species. Forthisexperiment, εand b are constants,therefore the
absorbance isa functionof the concentrationof ortho-nitrophenolate,(3’)
𝑑𝐴𝑏𝑠
𝑑𝑡
= εb
𝑑[𝑃]
𝑑𝑡
,or the change
inthe concentrationof productovertime. Whenplottingthe change inA420 versestime, we can
experimentallyobtainthe value
𝑑𝐴𝑏𝑠
𝑑𝑡
. The Arrheniusplotisbasedonthe equation,
(4) ln
𝑑𝐴𝑏𝑠
𝑑𝑡
= ln 𝐴εb[ES] ×
𝐸 𝐴
𝑅𝑇
, where A isa constant andthe slope isequal to −
𝐸 𝐴
𝑅
.
Materialsand Methods:Fourseparate waterbaths at differenttemperatures,recordbefore andafter
the temperature of the waterbath. Quenchthe reactionusing1 mL of Na2CO3,whichwill also
deprotonate the ortho-nitrophenolatespecies,makingitvisiblyactive. Startthe reactionby adding0.2
mL of ONPG. The control sample hasnoenzyme present. The samplesA420 were measuredonan
VerniersSpectrophotometer.
Tube Type # of Tubes β-galactosidase Ac. Buffer ONPG
Enzyme (B) 16 0.05 mL 3.0 mL 0
Buffer(C) 4 0 3.0 mL 0
Substrate (D) 1 0 0 10 mL
Table 1: Reagent volumesand compositions.
Time Started(min) Reaction# Time Total (min)
0 1 8
1 2 6
2 3 4
3 4 2
Table 2: Reaction Scheme. Half the total time for the hottestwaterbath. 10 minutes incubationwith
the control sample.
Results:
Temperature (K) Tube # Time Incubated(min) A420
291.6 1 8 0.246
2 6 0.201
3 4 0.143
4 2 0.064
Control 10 0.003
299.6 1 8 0.433
2 6 0.327
3 4 0.161
4 2 0.099
Control 10 0.021
308.1 1 8 0.627
2 6 0.501
3 4 0.38
4 2 0.206
Control 10 -0.015
316.0 1 1 0.436
2 2 0.377
3 3 0.276
4 4 0.152
Control 5 0.004
Table 3: MeasuredA420 of each sample.
Each sample hasa nearlylinearchange inabsorbance verseschange intime. Whenplotted,we
can observe aslope equal to
𝑑𝐴𝑏𝑠
𝑑𝑡
=
∆𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 𝑈𝑛𝑖𝑡𝑠 (𝐴𝑈)
∆𝑇𝑖 𝑚 𝑒 (𝑚𝑖𝑛𝑢𝑡𝑒𝑠)
. Because the concentrationof substrate is
much greaterthanthe concentrationof enzyme,the slope shouldbe linearandnotevenoff (
𝑑𝐴𝑏𝑠
𝑑𝑡
≠ 0)
towardsthe endof the time the sample isincubated.
Figure 1: Kineticsof β-Galactosidase at291.6K. Plotbasedonlinearfit. The slope of the line is0.0302 ±
0.003 AU perminute. AU isequal to absorbance units.
Figure 2: 291.6K Residuals.
.06
.11
.16
.21
.26
.31
2 3 4 5 6 7 8
A420
Time (min)
-2.E-2
-1.5E-2
-1.E-2
-5.E-3
0.E0
5.E-3
1.E-2
1.5E-2
2.E-2
2.5E-2
3.E-2
2 3 4 5 6 7 8
A420Residual
Time (min)
Figure 3: Kineticsof β-Galactosidase at299.6K. Plotbasedonlinearfit. The slope of the line is0.0584 ±
0.007 AU perminute.
Figure 4: 299.6K Residuals.
.09
.14
.19
.24
.29
.34
.39
.44
.49
2 3 4 5 6 7 8
A420
Time (min)
-8.E-2
-6.E-2
-4.E-2
-2.E-2
0.E0
2.E-2
4.E-2
6.E-2
8.E-2
2 3 4 5 6 7 8
A420Residual
Time (min)
Figure 5: Kineticsof β-Galactosidase at308.1K. Plotbasedonlinearfit. The slope of the line isequal to
0.0692 ± 0.004 AU perminute.
Figure 6: 308.1K Residuals.
.2
.25
.3
.35
.4
.45
.5
.55
.6
.65
.7
2 3 4 5 6 7 8
A420
Time (min)
-4.E-2
-3.E-2
-2.E-2
-1.E-2
0.E0
1.E-2
2.E-2
3.E-2
4.E-2
5.E-2
6.E-2
2 3 4 5 6 7 8
A420Residual
Time (min)
Figure 7: Kineticsof β-Galactosidase at316.0K. Potbasedon linearfit. The slope isequal to0.0953 ±
0.01 AU perminute.
Figure 8: 316.0 K Residuals.
.1
.15
.2
.25
.3
.35
.4
.45
.5
1 2 3 4
A420
Time (min)
-4.E-2
-3.E-2
-2.E-2
-1.E-2
0.E0
1.E-2
2.E-2
3.E-2
4.E-2
5.E-2
6.E-2
1 2 3 4
A420Residual
Time (min)
Temperature (K) 𝑑𝐴𝑏𝑠
𝑑𝑡
219.6 0.0302 ± 0.003
299.6 0.0584 ± 0.007
308.1 0.0692 ± 0.004
316.0 0.0953 ± 0.01
Table 4: Arrhenius Data. Valuesare derivedfromthe change inA420 vs time at a specifictemperature.
Figure 9: ArrheniusFit Plotconsisting of291.6 K, 299.6 K, and 308.1 K reaction rates. Arrheniusplot
usingthe natural log of slopesatdifferenttemperatures,ina linearfitwithweightedregression. The
sample at316.2 K was omitteddue tonon-linearity,denaturationof the enzymeoccursat high
temperatures. The slope of the line isequal to -4345.9 ± 586 K.
-3.8
-3.6
-3.4
-3.2
-3.
-2.8
-2.6
.0032 .00325 .0033 .00335 .0034 .00345
ln(𝑑Abs/𝑑𝑡)
1/K
Figure 10: ArrheniusPlot Residuals.
Usingequation 4, the slope of the Arrheniusplot isequal tothe activationenergydividedbythe
gas constantR, in thiscase -4345.9 ± 586 K. Multiplythe slope byRto findthe activationenergyforβ-
galactosidase,whichisequal 36.13± 4.9 KJ permol.
Conclusion/Discussion:The enzyme unit β-Galactosidaseisnota heatstable protein. The sample inthe
316 K conditionshadareducedreactionrate,due to the hightemperature denaturingthe enzyme. The
Arrheniusplotshows,basedonanatural logscale,a lineardownwardtrend,indicatingincreased
reactionrate basedon increasedtemperature. The activationenergydeterminedbythe experimentis
38.74 ± 4.9 KJ permol. There isnot a literature value due tothe amountof variationinthe enzyme,
such as thermostabilityorwhichspeciesthe enzymewasisolatedfrom.
-2.E-1
-1.E-1
0.E0
1.E-1
2.E-1
3.E-1
4.E-1
5.E-1
.0032457 .0032957 .0033457 .0033957 .0034457
YResidual
X
ArrheniusPlot Residuals

More Related Content

Viewers also liked

Immobilization of beta galactosidase.pptx
Immobilization of beta galactosidase.pptxImmobilization of beta galactosidase.pptx
Immobilization of beta galactosidase.pptxVikram Ramakrishnan
 
Kinetics of multi substrate enzyme catalyzed reaction
Kinetics of multi substrate enzyme catalyzed reactionKinetics of multi substrate enzyme catalyzed reaction
Kinetics of multi substrate enzyme catalyzed reactionHina Qaiser
 
Ensenyament Idiomes
Ensenyament IdiomesEnsenyament Idiomes
Ensenyament Idiomesfrancescfs
 
Artifact 1 Powerpoint
Artifact 1 PowerpointArtifact 1 Powerpoint
Artifact 1 Powerpointjrweathe
 
La pintura y la escultura romanica
La pintura y la escultura romanicaLa pintura y la escultura romanica
La pintura y la escultura romanicarocii11
 
Base metals monthly 18th jan'17
Base metals monthly   18th jan'17Base metals monthly   18th jan'17
Base metals monthly 18th jan'17choice broking
 
Web Application Penetration Test
Web Application Penetration TestWeb Application Penetration Test
Web Application Penetration Testmartinvoelk
 
3Com 3C410011
3Com 3C4100113Com 3C410011
3Com 3C410011savomir
 
Derramedepetrleoenelper 161128011858
Derramedepetrleoenelper 161128011858Derramedepetrleoenelper 161128011858
Derramedepetrleoenelper 161128011858Jhandry Ramirez
 
ขั้นตอนการสมัครขายของบน Amazon แบบจับมือทำ
ขั้นตอนการสมัครขายของบน Amazon แบบจับมือทำขั้นตอนการสมัครขายของบน Amazon แบบจับมือทำ
ขั้นตอนการสมัครขายของบน Amazon แบบจับมือทำParinya Kamta
 
Código lyoko reloaded
Código lyoko reloadedCódigo lyoko reloaded
Código lyoko reloadedlyoko4ever
 
PT Samsung-Electronics-Indonesia
PT Samsung-Electronics-IndonesiaPT Samsung-Electronics-Indonesia
PT Samsung-Electronics-IndonesiaRiza Putro
 
O Enetworking
O EnetworkingO Enetworking
O Enetworkingshrm
 
Colorado Solar Thermal Roadmap
Colorado Solar Thermal RoadmapColorado Solar Thermal Roadmap
Colorado Solar Thermal RoadmapLeslie Martel Baer
 
HealthWorks Theatre
HealthWorks TheatreHealthWorks Theatre
HealthWorks TheatreTom Tresser
 

Viewers also liked (19)

Immobilization of beta galactosidase.pptx
Immobilization of beta galactosidase.pptxImmobilization of beta galactosidase.pptx
Immobilization of beta galactosidase.pptx
 
Kinetics of multi substrate enzyme catalyzed reaction
Kinetics of multi substrate enzyme catalyzed reactionKinetics of multi substrate enzyme catalyzed reaction
Kinetics of multi substrate enzyme catalyzed reaction
 
Ensenyament Idiomes
Ensenyament IdiomesEnsenyament Idiomes
Ensenyament Idiomes
 
Artifact 1 Powerpoint
Artifact 1 PowerpointArtifact 1 Powerpoint
Artifact 1 Powerpoint
 
La pintura y la escultura romanica
La pintura y la escultura romanicaLa pintura y la escultura romanica
La pintura y la escultura romanica
 
2006 friends
2006 friends2006 friends
2006 friends
 
Base metals monthly 18th jan'17
Base metals monthly   18th jan'17Base metals monthly   18th jan'17
Base metals monthly 18th jan'17
 
Web Application Penetration Test
Web Application Penetration TestWeb Application Penetration Test
Web Application Penetration Test
 
3Com 3C410011
3Com 3C4100113Com 3C410011
3Com 3C410011
 
Derramedepetrleoenelper 161128011858
Derramedepetrleoenelper 161128011858Derramedepetrleoenelper 161128011858
Derramedepetrleoenelper 161128011858
 
ขั้นตอนการสมัครขายของบน Amazon แบบจับมือทำ
ขั้นตอนการสมัครขายของบน Amazon แบบจับมือทำขั้นตอนการสมัครขายของบน Amazon แบบจับมือทำ
ขั้นตอนการสมัครขายของบน Amazon แบบจับมือทำ
 
Ob m
Ob mOb m
Ob m
 
Lernning 15
Lernning 15Lernning 15
Lernning 15
 
Código lyoko reloaded
Código lyoko reloadedCódigo lyoko reloaded
Código lyoko reloaded
 
PT Samsung-Electronics-Indonesia
PT Samsung-Electronics-IndonesiaPT Samsung-Electronics-Indonesia
PT Samsung-Electronics-Indonesia
 
O Enetworking
O EnetworkingO Enetworking
O Enetworking
 
Colorado Solar Thermal Roadmap
Colorado Solar Thermal RoadmapColorado Solar Thermal Roadmap
Colorado Solar Thermal Roadmap
 
HealthWorks Theatre
HealthWorks TheatreHealthWorks Theatre
HealthWorks Theatre
 
Local WIsdom Development
Local WIsdom DevelopmentLocal WIsdom Development
Local WIsdom Development
 

Similar to PCHEM Assignment Enzyme Kinetics

Carboxy-terminal Degradation of Peptides using Perfluoroacyl Anhydrides : C-T...
Carboxy-terminal Degradation of Peptides using Perfluoroacyl Anhydrides : C-T...Carboxy-terminal Degradation of Peptides using Perfluoroacyl Anhydrides : C-T...
Carboxy-terminal Degradation of Peptides using Perfluoroacyl Anhydrides : C-T...Keiji Takamoto
 
Marcia Cortes Poster 2010
Marcia Cortes Poster 2010Marcia Cortes Poster 2010
Marcia Cortes Poster 2010Marcia Cortes
 
Supercritical Thermal Power plant
Supercritical Thermal Power plantSupercritical Thermal Power plant
Supercritical Thermal Power plantOjes Sai Pogiri
 
Biochem research paper for summer2
Biochem research paper for summer2Biochem research paper for summer2
Biochem research paper for summer2Lucy Ingaiza
 
Bond-Specific Chemical Cleavages of Peptides & Proteins with Perfluoric Acid ...
Bond-Specific Chemical Cleavages of Peptides & Proteins with Perfluoric Acid ...Bond-Specific Chemical Cleavages of Peptides & Proteins with Perfluoric Acid ...
Bond-Specific Chemical Cleavages of Peptides & Proteins with Perfluoric Acid ...Keiji Takamoto
 
postertemplate_plc_v36_final2
postertemplate_plc_v36_final2postertemplate_plc_v36_final2
postertemplate_plc_v36_final2Patrick Cavins
 
Poster-mAbChem-ppt file
Poster-mAbChem-ppt filePoster-mAbChem-ppt file
Poster-mAbChem-ppt fileRongliang Lou
 
Cwea Me Hg Presentation Er
Cwea Me Hg Presentation ErCwea Me Hg Presentation Er
Cwea Me Hg Presentation Ernoel_enoki
 
Novel composite electrodes:Preparation and application to the electroanalytic...
Novel composite electrodes:Preparation and application to the electroanalytic...Novel composite electrodes:Preparation and application to the electroanalytic...
Novel composite electrodes:Preparation and application to the electroanalytic...Université de Dschang
 
Liquid liquid equilibrium for the ternary system of isopropyl acetate 2 propa...
Liquid liquid equilibrium for the ternary system of isopropyl acetate 2 propa...Liquid liquid equilibrium for the ternary system of isopropyl acetate 2 propa...
Liquid liquid equilibrium for the ternary system of isopropyl acetate 2 propa...Josemar Pereira da Silva
 
STUDIES ON INTEGRATED BIO-HYDROGEN PRODUCTION PROCESS-EXPERIMENTAL AND MODELING
STUDIES ON INTEGRATED BIO-HYDROGEN PRODUCTION PROCESS-EXPERIMENTAL AND MODELINGSTUDIES ON INTEGRATED BIO-HYDROGEN PRODUCTION PROCESS-EXPERIMENTAL AND MODELING
STUDIES ON INTEGRATED BIO-HYDROGEN PRODUCTION PROCESS-EXPERIMENTAL AND MODELINGArghya_D
 
Spettroscopia di neutroni e dinamica proteica
Spettroscopia di neutroni e dinamica proteicaSpettroscopia di neutroni e dinamica proteica
Spettroscopia di neutroni e dinamica proteicanipslab
 
Liquid liquid equilibria data for ethylbenzene or p xylene with alkane and 1 ...
Liquid liquid equilibria data for ethylbenzene or p xylene with alkane and 1 ...Liquid liquid equilibria data for ethylbenzene or p xylene with alkane and 1 ...
Liquid liquid equilibria data for ethylbenzene or p xylene with alkane and 1 ...Josemar Pereira da Silva
 
Asymmetric Multipole Plasmon-Mediated Catalysis Shifts the Product Selectivit...
Asymmetric Multipole Plasmon-Mediated Catalysis Shifts the Product Selectivit...Asymmetric Multipole Plasmon-Mediated Catalysis Shifts the Product Selectivit...
Asymmetric Multipole Plasmon-Mediated Catalysis Shifts the Product Selectivit...Pawan Kumar
 
нагдалян
нагдаляннагдалян
нагдалянgeniando
 

Similar to PCHEM Assignment Enzyme Kinetics (20)

Carboxy-terminal Degradation of Peptides using Perfluoroacyl Anhydrides : C-T...
Carboxy-terminal Degradation of Peptides using Perfluoroacyl Anhydrides : C-T...Carboxy-terminal Degradation of Peptides using Perfluoroacyl Anhydrides : C-T...
Carboxy-terminal Degradation of Peptides using Perfluoroacyl Anhydrides : C-T...
 
Marcia Cortes Poster 2010
Marcia Cortes Poster 2010Marcia Cortes Poster 2010
Marcia Cortes Poster 2010
 
NOS 2009
NOS 2009NOS 2009
NOS 2009
 
Supercritical Thermal Power plant
Supercritical Thermal Power plantSupercritical Thermal Power plant
Supercritical Thermal Power plant
 
Biochem research paper for summer2
Biochem research paper for summer2Biochem research paper for summer2
Biochem research paper for summer2
 
Posterviena
PostervienaPosterviena
Posterviena
 
105_pdf
105_pdf105_pdf
105_pdf
 
Bond-Specific Chemical Cleavages of Peptides & Proteins with Perfluoric Acid ...
Bond-Specific Chemical Cleavages of Peptides & Proteins with Perfluoric Acid ...Bond-Specific Chemical Cleavages of Peptides & Proteins with Perfluoric Acid ...
Bond-Specific Chemical Cleavages of Peptides & Proteins with Perfluoric Acid ...
 
Vapour-Liquid and Solid-Vapour-Liquid Equilibria of the System (CO2 + H2) at ...
Vapour-Liquid and Solid-Vapour-Liquid Equilibria of the System (CO2 + H2) at ...Vapour-Liquid and Solid-Vapour-Liquid Equilibria of the System (CO2 + H2) at ...
Vapour-Liquid and Solid-Vapour-Liquid Equilibria of the System (CO2 + H2) at ...
 
postertemplate_plc_v36_final2
postertemplate_plc_v36_final2postertemplate_plc_v36_final2
postertemplate_plc_v36_final2
 
Poster-mAbChem-ppt file
Poster-mAbChem-ppt filePoster-mAbChem-ppt file
Poster-mAbChem-ppt file
 
Cwea Me Hg Presentation Er
Cwea Me Hg Presentation ErCwea Me Hg Presentation Er
Cwea Me Hg Presentation Er
 
Novel composite electrodes:Preparation and application to the electroanalytic...
Novel composite electrodes:Preparation and application to the electroanalytic...Novel composite electrodes:Preparation and application to the electroanalytic...
Novel composite electrodes:Preparation and application to the electroanalytic...
 
Liquid liquid equilibrium for the ternary system of isopropyl acetate 2 propa...
Liquid liquid equilibrium for the ternary system of isopropyl acetate 2 propa...Liquid liquid equilibrium for the ternary system of isopropyl acetate 2 propa...
Liquid liquid equilibrium for the ternary system of isopropyl acetate 2 propa...
 
STUDIES ON INTEGRATED BIO-HYDROGEN PRODUCTION PROCESS-EXPERIMENTAL AND MODELING
STUDIES ON INTEGRATED BIO-HYDROGEN PRODUCTION PROCESS-EXPERIMENTAL AND MODELINGSTUDIES ON INTEGRATED BIO-HYDROGEN PRODUCTION PROCESS-EXPERIMENTAL AND MODELING
STUDIES ON INTEGRATED BIO-HYDROGEN PRODUCTION PROCESS-EXPERIMENTAL AND MODELING
 
Spettroscopia di neutroni e dinamica proteica
Spettroscopia di neutroni e dinamica proteicaSpettroscopia di neutroni e dinamica proteica
Spettroscopia di neutroni e dinamica proteica
 
Liquid liquid equilibria data for ethylbenzene or p xylene with alkane and 1 ...
Liquid liquid equilibria data for ethylbenzene or p xylene with alkane and 1 ...Liquid liquid equilibria data for ethylbenzene or p xylene with alkane and 1 ...
Liquid liquid equilibria data for ethylbenzene or p xylene with alkane and 1 ...
 
Asymmetric Multipole Plasmon-Mediated Catalysis Shifts the Product Selectivit...
Asymmetric Multipole Plasmon-Mediated Catalysis Shifts the Product Selectivit...Asymmetric Multipole Plasmon-Mediated Catalysis Shifts the Product Selectivit...
Asymmetric Multipole Plasmon-Mediated Catalysis Shifts the Product Selectivit...
 
Oligosaccharide Analysis Using High-Performance Anion-Exchange Chromatography...
Oligosaccharide Analysis Using High-Performance Anion-Exchange Chromatography...Oligosaccharide Analysis Using High-Performance Anion-Exchange Chromatography...
Oligosaccharide Analysis Using High-Performance Anion-Exchange Chromatography...
 
нагдалян
нагдаляннагдалян
нагдалян
 

More from Alexander Ward

PCHEM Assignment Bomb Calorimetry
PCHEM Assignment Bomb CalorimetryPCHEM Assignment Bomb Calorimetry
PCHEM Assignment Bomb CalorimetryAlexander Ward
 
Seminar Presentation - Tk subtilisin
Seminar Presentation - Tk subtilisinSeminar Presentation - Tk subtilisin
Seminar Presentation - Tk subtilisinAlexander Ward
 
Sequence Analysis - 2-16-16 (1)
Sequence Analysis - 2-16-16 (1)Sequence Analysis - 2-16-16 (1)
Sequence Analysis - 2-16-16 (1)Alexander Ward
 
CMB 426 Final Presentation
CMB 426 Final PresentationCMB 426 Final Presentation
CMB 426 Final PresentationAlexander Ward
 
CHM462 Poster Presentation By Alexander Ward (1)
CHM462 Poster Presentation By Alexander Ward (1)CHM462 Poster Presentation By Alexander Ward (1)
CHM462 Poster Presentation By Alexander Ward (1)Alexander Ward
 

More from Alexander Ward (6)

PCHEM Assignment Bomb Calorimetry
PCHEM Assignment Bomb CalorimetryPCHEM Assignment Bomb Calorimetry
PCHEM Assignment Bomb Calorimetry
 
Seminar Presentation - Tk subtilisin
Seminar Presentation - Tk subtilisinSeminar Presentation - Tk subtilisin
Seminar Presentation - Tk subtilisin
 
Sequence Analysis - 2-16-16 (1)
Sequence Analysis - 2-16-16 (1)Sequence Analysis - 2-16-16 (1)
Sequence Analysis - 2-16-16 (1)
 
CMB 426 Final Report
CMB 426 Final ReportCMB 426 Final Report
CMB 426 Final Report
 
CMB 426 Final Presentation
CMB 426 Final PresentationCMB 426 Final Presentation
CMB 426 Final Presentation
 
CHM462 Poster Presentation By Alexander Ward (1)
CHM462 Poster Presentation By Alexander Ward (1)CHM462 Poster Presentation By Alexander Ward (1)
CHM462 Poster Presentation By Alexander Ward (1)
 

PCHEM Assignment Enzyme Kinetics

  • 1. Enzyme Kinetics of β-galactosidase Using Varying Temperatures By: Alexander Ward CHM-352 – Dr. Lawrence
  • 2. Abstract: Kineticassaysare performedtodetermine the rate anenzyme turnssubstrate intoproduct. The concentrationof substrate ismuch greaterthanthe concentrationof enzyme,saturatingthe enzyme tonegate backwardsreactionsinthe enzyme-substrate complex. The rate the enzyme β- galactosidase turnsoverortho-nitrophenylgalactopyranoside (ONPG) wasmeasuredatvarying temperaturesusingthe visiblyactive product,ortho-nitrophenolate,inbasicconditions. The experimentallydeterminedactivationenergyof β-galactosidaseisequal to36.13 ± 4.9 KJper mol. Introduction: Anenzyme isa catalystwhichlowersthe activationenergyof areaction. The mechanism of an enzyme catalyzedreactionis (1) 𝐸 + 𝑆 ⥂ 𝐸𝑆 → 𝐸 + 𝑃,where E is the enzyme (β-galactosidase),S isthe substrate (ONPG),andPisthe product (galactose andortho-nitrophenol). Because the concentrationof the substrate will be muchgreaterthanthe concentrationof the enzyme,the enzyme isconsideredsaturated. Thismeansthe concentrationof the enzymesubstrate complex isequaltothe initial concentrationof enzyme. The rate constant,k, isthe rate at whichthe enzyme substrate complex isconvertedinfree enzyme andproduct. Thisrate constant changesbasedonthe function (2) 𝑘 = 𝐴𝑒− 𝐸 𝐴 𝑅𝑇, where A isa constant, EA is the activationenergy,Risan ideal gasconstant,and T is the temperature. Usingspectrophotometrytomeasure asample followsBeer’sLaw, (3) A = εbc, where A is the absorbance, ε isthe extinctioncoefficientforthe visiblyactive species,bisthe pathlength,andc is the concentrationof the visiblyactive species. Forthisexperiment, εand b are constants,therefore the absorbance isa functionof the concentrationof ortho-nitrophenolate,(3’) 𝑑𝐴𝑏𝑠 𝑑𝑡 = εb 𝑑[𝑃] 𝑑𝑡 ,or the change inthe concentrationof productovertime. Whenplottingthe change inA420 versestime, we can experimentallyobtainthe value 𝑑𝐴𝑏𝑠 𝑑𝑡 . The Arrheniusplotisbasedonthe equation, (4) ln 𝑑𝐴𝑏𝑠 𝑑𝑡 = ln 𝐴εb[ES] × 𝐸 𝐴 𝑅𝑇 , where A isa constant andthe slope isequal to − 𝐸 𝐴 𝑅 . Materialsand Methods:Fourseparate waterbaths at differenttemperatures,recordbefore andafter the temperature of the waterbath. Quenchthe reactionusing1 mL of Na2CO3,whichwill also deprotonate the ortho-nitrophenolatespecies,makingitvisiblyactive. Startthe reactionby adding0.2 mL of ONPG. The control sample hasnoenzyme present. The samplesA420 were measuredonan VerniersSpectrophotometer. Tube Type # of Tubes β-galactosidase Ac. Buffer ONPG Enzyme (B) 16 0.05 mL 3.0 mL 0 Buffer(C) 4 0 3.0 mL 0 Substrate (D) 1 0 0 10 mL Table 1: Reagent volumesand compositions. Time Started(min) Reaction# Time Total (min) 0 1 8 1 2 6 2 3 4 3 4 2 Table 2: Reaction Scheme. Half the total time for the hottestwaterbath. 10 minutes incubationwith the control sample.
  • 3. Results: Temperature (K) Tube # Time Incubated(min) A420 291.6 1 8 0.246 2 6 0.201 3 4 0.143 4 2 0.064 Control 10 0.003 299.6 1 8 0.433 2 6 0.327 3 4 0.161 4 2 0.099 Control 10 0.021 308.1 1 8 0.627 2 6 0.501 3 4 0.38 4 2 0.206 Control 10 -0.015 316.0 1 1 0.436 2 2 0.377 3 3 0.276 4 4 0.152 Control 5 0.004 Table 3: MeasuredA420 of each sample. Each sample hasa nearlylinearchange inabsorbance verseschange intime. Whenplotted,we can observe aslope equal to 𝑑𝐴𝑏𝑠 𝑑𝑡 = ∆𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 𝑈𝑛𝑖𝑡𝑠 (𝐴𝑈) ∆𝑇𝑖 𝑚 𝑒 (𝑚𝑖𝑛𝑢𝑡𝑒𝑠) . Because the concentrationof substrate is much greaterthanthe concentrationof enzyme,the slope shouldbe linearandnotevenoff ( 𝑑𝐴𝑏𝑠 𝑑𝑡 ≠ 0) towardsthe endof the time the sample isincubated.
  • 4. Figure 1: Kineticsof β-Galactosidase at291.6K. Plotbasedonlinearfit. The slope of the line is0.0302 ± 0.003 AU perminute. AU isequal to absorbance units. Figure 2: 291.6K Residuals. .06 .11 .16 .21 .26 .31 2 3 4 5 6 7 8 A420 Time (min) -2.E-2 -1.5E-2 -1.E-2 -5.E-3 0.E0 5.E-3 1.E-2 1.5E-2 2.E-2 2.5E-2 3.E-2 2 3 4 5 6 7 8 A420Residual Time (min)
  • 5. Figure 3: Kineticsof β-Galactosidase at299.6K. Plotbasedonlinearfit. The slope of the line is0.0584 ± 0.007 AU perminute. Figure 4: 299.6K Residuals. .09 .14 .19 .24 .29 .34 .39 .44 .49 2 3 4 5 6 7 8 A420 Time (min) -8.E-2 -6.E-2 -4.E-2 -2.E-2 0.E0 2.E-2 4.E-2 6.E-2 8.E-2 2 3 4 5 6 7 8 A420Residual Time (min)
  • 6. Figure 5: Kineticsof β-Galactosidase at308.1K. Plotbasedonlinearfit. The slope of the line isequal to 0.0692 ± 0.004 AU perminute. Figure 6: 308.1K Residuals. .2 .25 .3 .35 .4 .45 .5 .55 .6 .65 .7 2 3 4 5 6 7 8 A420 Time (min) -4.E-2 -3.E-2 -2.E-2 -1.E-2 0.E0 1.E-2 2.E-2 3.E-2 4.E-2 5.E-2 6.E-2 2 3 4 5 6 7 8 A420Residual Time (min)
  • 7. Figure 7: Kineticsof β-Galactosidase at316.0K. Potbasedon linearfit. The slope isequal to0.0953 ± 0.01 AU perminute. Figure 8: 316.0 K Residuals. .1 .15 .2 .25 .3 .35 .4 .45 .5 1 2 3 4 A420 Time (min) -4.E-2 -3.E-2 -2.E-2 -1.E-2 0.E0 1.E-2 2.E-2 3.E-2 4.E-2 5.E-2 6.E-2 1 2 3 4 A420Residual Time (min)
  • 8. Temperature (K) 𝑑𝐴𝑏𝑠 𝑑𝑡 219.6 0.0302 ± 0.003 299.6 0.0584 ± 0.007 308.1 0.0692 ± 0.004 316.0 0.0953 ± 0.01 Table 4: Arrhenius Data. Valuesare derivedfromthe change inA420 vs time at a specifictemperature. Figure 9: ArrheniusFit Plotconsisting of291.6 K, 299.6 K, and 308.1 K reaction rates. Arrheniusplot usingthe natural log of slopesatdifferenttemperatures,ina linearfitwithweightedregression. The sample at316.2 K was omitteddue tonon-linearity,denaturationof the enzymeoccursat high temperatures. The slope of the line isequal to -4345.9 ± 586 K. -3.8 -3.6 -3.4 -3.2 -3. -2.8 -2.6 .0032 .00325 .0033 .00335 .0034 .00345 ln(𝑑Abs/𝑑𝑡) 1/K
  • 9. Figure 10: ArrheniusPlot Residuals. Usingequation 4, the slope of the Arrheniusplot isequal tothe activationenergydividedbythe gas constantR, in thiscase -4345.9 ± 586 K. Multiplythe slope byRto findthe activationenergyforβ- galactosidase,whichisequal 36.13± 4.9 KJ permol. Conclusion/Discussion:The enzyme unit β-Galactosidaseisnota heatstable protein. The sample inthe 316 K conditionshadareducedreactionrate,due to the hightemperature denaturingthe enzyme. The Arrheniusplotshows,basedonanatural logscale,a lineardownwardtrend,indicatingincreased reactionrate basedon increasedtemperature. The activationenergydeterminedbythe experimentis 38.74 ± 4.9 KJ permol. There isnot a literature value due tothe amountof variationinthe enzyme, such as thermostabilityorwhichspeciesthe enzymewasisolatedfrom. -2.E-1 -1.E-1 0.E0 1.E-1 2.E-1 3.E-1 4.E-1 5.E-1 .0032457 .0032957 .0033457 .0033957 .0034457 YResidual X ArrheniusPlot Residuals