SlideShare a Scribd company logo
1 of 1
Download to read offline
 
Valida'on	
  of	
  vascular	
  permeability	
  as	
  preclinical	
  diagnos'c	
  tool	
  for	
  
diabe'c	
  re'nopathy	
  using	
  fluorescein	
  videoangiography	
  tracer	
  kine'cs	
  
Adriane	
  Walther,	
  Kenneth	
  M.	
  Tichauer,	
  Jennifer	
  J.	
  Kang-­‐Mieler,	
  
BME,	
  Theme:	
  Health	
  
Introduc?on	
  
Purpose	
  
Theory	
  
Methods	
  
Results	
  
Diabe?c	
  re?nopathy	
  is	
  characterized	
  by	
  abnormal	
  hemodynamics	
  in	
  the	
  neovasculature	
  of	
  
the	
  eye	
  is	
  not	
  detectable	
  un?l	
  it	
  reaches	
  an	
  irreversible	
  stage,	
  at	
  least	
  by	
  today’s	
  treatment	
  
standards.	
  Therefore,	
  methods	
  of	
  detec?on	
  for	
  its	
  onset	
  are	
  in	
  demand.	
  This	
  study	
  aims	
  to	
  
use	
  an	
  adiaba?c	
  approxima?on	
  to	
  ?ssue	
  homogeneity	
  model	
  and	
  tracer	
  kine?c	
  modeling	
  
to	
  validate	
  the	
  quan?fica?on	
  of	
  vascular	
  permeability	
  as	
  a	
  “sub-­‐clinical”	
  diagnos?c	
  tool	
  of	
  
diabe?c	
  re?nopathy.	
  Re?nal	
  videoangiographic	
  data,	
  using	
  fluorescein	
  as	
  a	
  radiopaque	
  
tracer,	
  obtained	
  from	
  diabetes	
  induced	
  rats	
  was	
  evaluated	
  to	
  validate	
  the	
  capacity	
  of	
  
vascular	
  permeability	
  as	
  an	
  early	
  indicator	
  of	
  diabe?c	
  re?nopathy.	
  
	
  
In	
  this	
  study,	
  a	
  method	
  for	
  quan?ta?vely	
  mapping	
  volumetric	
  flow	
  
and	
  re?nal	
  permeability	
  using	
  fluorescein	
  videoangiography	
  is	
  
proposed	
  using	
  tracer	
  kine?c	
  modeling	
  and	
  the	
  theories	
  of	
  linear	
  
systems	
  theory.	
  	
  
dCf (t)
dt
= −keCf (t)
)()()( thtFCtFC av ∗=
Q(t) = F Ca (u)du−
0
t
∫ F Ca (u)∗h(u)du
0
t
∫
Q(t) = FCa (t)∗ R(t)
R(t) =1− h(u)du
0
t
∫
Adiaba&c	
  Approxima&on	
  to	
  the	
  Tissue	
  Homogeneity	
  Model	
  
The	
  concentra?on	
  of	
  imaging	
  agent,	
  Q(t),	
  was	
  treated	
  as	
  a	
  black-­‐box	
  model	
  with	
  arterial	
  input	
  and	
  
venous	
  output	
  func?on.	
  The	
  input	
  is	
  defined	
  as	
  product	
  of	
  the	
  volumetric	
  flow,	
  F,	
  and	
  the	
  upflow	
  of	
  
arterial	
  blood	
  flow,	
  Ca(t),	
  called	
  the	
  arterial	
  input	
  func?on	
  while	
  the	
  output	
  is	
  defined	
  as	
  the	
  product	
  of	
  
the	
  volumetric	
  flow	
  and	
  the	
  ouRake	
  of	
  venous	
  blood	
  flow.	
  	
  
	
  
where	
  *	
  represents	
  the	
  convolu?on	
  operator.	
  	
  
Linear	
  Systems	
  Theory	
  
By	
  linear	
  systems	
  theory,	
  the	
  output	
  can	
  also	
  be	
  defined	
  as	
  the	
  convolu?on	
  of	
  the	
  arterial	
  input	
  
func?on	
  with	
  the	
  func?onal	
  response	
  of	
  the	
  system	
  to	
  a	
  Dirac	
  Delta	
  func?on,	
  h(t).	
  Then,	
  by	
  the	
  law	
  
of	
  conserva?on	
  of	
  mass,	
  the	
  concentra?on	
  of	
  fluorescein	
  in	
  the	
  vessels	
  is	
  equal	
  to	
  the	
  difference	
  of	
  
the	
  input	
  and	
  output	
  func?ons.	
  
	
  
where u represents a dummy integra?on variable. This can then be simplified to:	
  
where	
  R(t)	
  is	
  the	
  impulse	
  residue	
  func?on,	
  defined	
  as:	
  
	
  
Plug	
  Flow	
  Model	
  
Because	
  the	
  ini?al	
  value	
  of	
  R(t)	
  must	
  equal	
  1,	
  because	
  h(0)=0,	
  it	
  can	
  be	
  said	
  that	
  FR(t)	
  is	
  equivalent	
  to	
  
the	
  volumetric	
  blood	
  flow,	
  F.	
  Furthermore,	
  the	
  dynamics	
  of	
  the	
  fluorescein	
  concentra?on	
  is	
  used	
  to	
  
approximate	
  the	
  leakage	
  of	
  blood	
  out	
  of	
  	
  the	
  vessels	
  and	
  into	
  extravascular	
  ?ssue,	
  “extrac?on	
  
frac?on”	
  E,	
  by	
  assuming	
  a	
  “plug-­‐flow”	
  model	
  sta?ng	
  that	
  the	
  rate	
  at	
  which	
  imagining	
  agent	
  is	
  washed	
  
out	
  of	
  the	
  ?ssue	
  and	
  back	
  into	
  the	
  blood	
  stream	
  can	
  be	
  represented	
  by	
  a	
  first	
  order	
  equa?on:	
  
	
  
where	
  ke	
  is	
  a	
  constant	
  rela?ng	
  the	
  efflux	
  back	
  into	
  the	
  vessel.	
  
Streptozocin-­‐induced	
  Long-­‐Evans	
  rats	
  were	
  anesthe?zed	
  with	
  ketamine	
  (80	
  mg/kg	
  BW)	
  and	
  xylazine	
  
(10	
  mg.kg	
  BW)	
  through	
  the	
  tail	
  vein	
  and	
  videoangiograms	
  were	
  recorded	
  with	
  a	
  scanning	
  laser	
  
ophthalmoscope.	
  Volumetric	
  blood	
  flow	
  and	
  vascular	
  permeability	
  are	
  then	
  determined	
  using	
  
MATLAB	
  in	
  accordance	
  with	
  the	
  mathema?cal	
  models	
  named	
  previously.	
  
Diabetic
a)
b)
Diabetic
a)
b)
In	
  conclusion,	
  a	
  method	
  for	
  quan?ta?vely	
  mapping	
  
volumetric	
  blood	
  flow	
  and	
  re?nal	
  permeability	
  using	
  
fluorescein	
  videoangiography	
  is	
  proposed	
  as	
  an	
  alterna?ve,	
  
noninvasive,	
  and	
  clinically	
  translatable	
  is	
  validated.	
  Since	
  
fluorescein	
  is	
  FDA	
  approved	
  and	
  commonly	
  used	
  in	
  
ophthalmology,	
  the	
  poten?al	
  for	
  expedited	
  clinical	
  
applica?on	
  providing	
  early	
  indica?on	
  of	
  diabe?c	
  
re?nopathy.	
  	
  
References	
  
A	
  future	
  study	
  will	
  use	
  a	
  lesser	
  concentra?on	
  of	
  fluorescein	
  
dye	
  to	
  alleviate	
  camera	
  satura?on,	
  16-­‐bit	
  camera	
  to	
  increase	
  
sensi?vity	
  in	
  local	
  changes	
  of	
  blood	
  flow,	
  modifica?on	
  to	
  
mo?on	
  correc?on,	
  and	
  the	
  addi?on	
  of	
  user	
  interface	
  
checking	
  modali?es	
  for	
  op?mal	
  data	
  selec?on.	
  	
  
	
  	
  
Goals	
  include	
  the	
  replica?on	
  of	
  this	
  procedure	
  with	
  non-­‐
saturated	
  videoangiography	
  data	
  to	
  produce	
  quan?fied	
  
blood	
  flow	
  maps	
  and	
  extrac?on	
  frac?on	
  es?mates,	
  based	
  on	
  
the	
  parameter,	
  E,	
  valida?ng	
  there	
  use	
  for	
  “sub-­‐clinical”	
  
biomarkers	
  for	
  diabe?c	
  re?nopathy.	
  	
  
[1]	
  K.M.	
  Tichauer,	
  M.	
  Guthrie,	
  L.	
  Hones,	
  L.	
  Sinha,	
  K.	
  St.	
  Lawrence,	
  
J.J.	
  Kang-­‐Mieler.	
  “Quan?ta?ve	
  re?nal	
  blood	
  flow	
  mapping	
  from	
  
fluorescein	
  videoangiography	
  using	
  tracer	
  kine?c	
  modeling,”	
  
Op?cs	
  LeRers,	
  vol.	
  40,	
  no.	
  10,	
  pp.	
  1–4.	
  
[2]	
  K.	
  S.	
  St	
  Lawrence,	
  and	
  T.	
  Y.	
  Lee,	
  “An	
  adiaba?c	
  approxima?on	
  
to	
  the	
  ?ssue	
  homogeneity	
  model	
  for	
  water	
  exchange	
  in	
  the	
  
brain:	
  II.	
  Experimental	
  valida?on,”	
  J	
  Cereb	
  Blood	
  Flow	
  Metab,	
  
18(12),	
  1378-­‐85	
  (1998).	
  
Future	
  Work	
  &	
  Goals	
  
Conclusion	
  
Figure	
  1:	
  Demonstra?on	
  of	
  blood	
  flow	
  mapping	
  and	
  vascular	
  
permiability	
  for	
  fluorescein	
  videoangiography	
  data	
  in	
  the	
  
re?na	
  with	
  streptozotocin-­‐induced	
  diabetes	
  
Arterial	
  ROI	
  
Venous	
  ROI	
  
Tissue	
  ROI	
  
Quan'ta've	
  Mapping	
  
Selec'on	
  of	
  Regions	
  of	
  Interest	
  

More Related Content

Viewers also liked (12)

Teesing Marktflyer Medische Apparatuur
Teesing Marktflyer Medische ApparatuurTeesing Marktflyer Medische Apparatuur
Teesing Marktflyer Medische Apparatuur
 
shaikh aleem
shaikh aleemshaikh aleem
shaikh aleem
 
shaikh aleem
shaikh aleemshaikh aleem
shaikh aleem
 
Press release
Press releasePress release
Press release
 
punto7
punto7punto7
punto7
 
Tp 18
Tp 18Tp 18
Tp 18
 
Presentation submitt for newer article writings for ** leo search for fathe...
Presentation submitt for  newer  article writings for ** leo search for fathe...Presentation submitt for  newer  article writings for ** leo search for fathe...
Presentation submitt for newer article writings for ** leo search for fathe...
 
shaikh aleem
shaikh aleemshaikh aleem
shaikh aleem
 
Genero y educación
Genero y educaciónGenero y educación
Genero y educación
 
Sistemas de información administrativo
Sistemas de información administrativoSistemas de información administrativo
Sistemas de información administrativo
 
Cs 3 t2 els paisatges de la terra
Cs 3 t2 els paisatges de la terraCs 3 t2 els paisatges de la terra
Cs 3 t2 els paisatges de la terra
 
RCA_13
RCA_13RCA_13
RCA_13
 

Similar to ArmourRD_Poster_Adriane_Walther

Research Poster
Research PosterResearch Poster
Research Poster
Yan Teng
 
accurate monitoring of intravascular fluid volume
accurate monitoring of intravascular fluid volumeaccurate monitoring of intravascular fluid volume
accurate monitoring of intravascular fluid volume
Philip Binkley MD, MPH
 
Vasopresores a dosis altas
Vasopresores a dosis altasVasopresores a dosis altas
Vasopresores a dosis altas
Residentes1hun
 
Study on viscosity induced contrast in ultrasound color flow imaging of carot...
Study on viscosity induced contrast in ultrasound color flow imaging of carot...Study on viscosity induced contrast in ultrasound color flow imaging of carot...
Study on viscosity induced contrast in ultrasound color flow imaging of carot...
IJECEIAES
 

Similar to ArmourRD_Poster_Adriane_Walther (20)

Research Poster
Research PosterResearch Poster
Research Poster
 
Chris worledgeportfolio
Chris worledgeportfolioChris worledgeportfolio
Chris worledgeportfolio
 
Bloodless Haemoglobin level Detection using Deep Convolution Neural Network
Bloodless Haemoglobin level Detection using Deep Convolution Neural NetworkBloodless Haemoglobin level Detection using Deep Convolution Neural Network
Bloodless Haemoglobin level Detection using Deep Convolution Neural Network
 
Volume overhydration in dialysis patients
Volume overhydration in dialysis patientsVolume overhydration in dialysis patients
Volume overhydration in dialysis patients
 
Master Thesis Abstract
Master Thesis AbstractMaster Thesis Abstract
Master Thesis Abstract
 
Hemodynamic monitoring of critically ill patients
Hemodynamic monitoring of critically ill patientsHemodynamic monitoring of critically ill patients
Hemodynamic monitoring of critically ill patients
 
Dr masjedi hemodynamic monitoring in ICU
Dr masjedi hemodynamic monitoring in ICUDr masjedi hemodynamic monitoring in ICU
Dr masjedi hemodynamic monitoring in ICU
 
Echocardiography to assess Fluid Responsiveness in icu
Echocardiography to assess Fluid Responsiveness in icuEchocardiography to assess Fluid Responsiveness in icu
Echocardiography to assess Fluid Responsiveness in icu
 
Fluckiger_myo_sat
Fluckiger_myo_satFluckiger_myo_sat
Fluckiger_myo_sat
 
J r echo
J r echo J r echo
J r echo
 
Comparison of transfusion requirements between open and robotic assisted lapa...
Comparison of transfusion requirements between open and robotic assisted lapa...Comparison of transfusion requirements between open and robotic assisted lapa...
Comparison of transfusion requirements between open and robotic assisted lapa...
 
Value Analysis Committee Presentation - PleuraFlow® ACT® System
Value Analysis Committee Presentation - PleuraFlow® ACT® SystemValue Analysis Committee Presentation - PleuraFlow® ACT® System
Value Analysis Committee Presentation - PleuraFlow® ACT® System
 
accurate monitoring of intravascular fluid volume
accurate monitoring of intravascular fluid volumeaccurate monitoring of intravascular fluid volume
accurate monitoring of intravascular fluid volume
 
Icsh platelet counting reference method ajcp 2001
Icsh platelet counting reference method ajcp 2001Icsh platelet counting reference method ajcp 2001
Icsh platelet counting reference method ajcp 2001
 
Vasopresores a dosis altas
Vasopresores a dosis altasVasopresores a dosis altas
Vasopresores a dosis altas
 
Study on viscosity induced contrast in ultrasound color flow imaging of carot...
Study on viscosity induced contrast in ultrasound color flow imaging of carot...Study on viscosity induced contrast in ultrasound color flow imaging of carot...
Study on viscosity induced contrast in ultrasound color flow imaging of carot...
 
fluid management monitor - Baxter Starling
fluid management monitor - Baxter Starlingfluid management monitor - Baxter Starling
fluid management monitor - Baxter Starling
 
Ijebea14 222
Ijebea14 222Ijebea14 222
Ijebea14 222
 
Supratentorial intracerebral hemorrhage volume and other CT variables predict...
Supratentorial intracerebral hemorrhage volume and other CT variables predict...Supratentorial intracerebral hemorrhage volume and other CT variables predict...
Supratentorial intracerebral hemorrhage volume and other CT variables predict...
 
Reunion Anual Madeira 2015 Imagen y análisis funcional intracoronarios
Reunion Anual Madeira 2015 Imagen y análisis funcional intracoronariosReunion Anual Madeira 2015 Imagen y análisis funcional intracoronarios
Reunion Anual Madeira 2015 Imagen y análisis funcional intracoronarios
 

ArmourRD_Poster_Adriane_Walther

  • 1.   Valida'on  of  vascular  permeability  as  preclinical  diagnos'c  tool  for   diabe'c  re'nopathy  using  fluorescein  videoangiography  tracer  kine'cs   Adriane  Walther,  Kenneth  M.  Tichauer,  Jennifer  J.  Kang-­‐Mieler,   BME,  Theme:  Health   Introduc?on   Purpose   Theory   Methods   Results   Diabe?c  re?nopathy  is  characterized  by  abnormal  hemodynamics  in  the  neovasculature  of   the  eye  is  not  detectable  un?l  it  reaches  an  irreversible  stage,  at  least  by  today’s  treatment   standards.  Therefore,  methods  of  detec?on  for  its  onset  are  in  demand.  This  study  aims  to   use  an  adiaba?c  approxima?on  to  ?ssue  homogeneity  model  and  tracer  kine?c  modeling   to  validate  the  quan?fica?on  of  vascular  permeability  as  a  “sub-­‐clinical”  diagnos?c  tool  of   diabe?c  re?nopathy.  Re?nal  videoangiographic  data,  using  fluorescein  as  a  radiopaque   tracer,  obtained  from  diabetes  induced  rats  was  evaluated  to  validate  the  capacity  of   vascular  permeability  as  an  early  indicator  of  diabe?c  re?nopathy.     In  this  study,  a  method  for  quan?ta?vely  mapping  volumetric  flow   and  re?nal  permeability  using  fluorescein  videoangiography  is   proposed  using  tracer  kine?c  modeling  and  the  theories  of  linear   systems  theory.     dCf (t) dt = −keCf (t) )()()( thtFCtFC av ∗= Q(t) = F Ca (u)du− 0 t ∫ F Ca (u)∗h(u)du 0 t ∫ Q(t) = FCa (t)∗ R(t) R(t) =1− h(u)du 0 t ∫ Adiaba&c  Approxima&on  to  the  Tissue  Homogeneity  Model   The  concentra?on  of  imaging  agent,  Q(t),  was  treated  as  a  black-­‐box  model  with  arterial  input  and   venous  output  func?on.  The  input  is  defined  as  product  of  the  volumetric  flow,  F,  and  the  upflow  of   arterial  blood  flow,  Ca(t),  called  the  arterial  input  func?on  while  the  output  is  defined  as  the  product  of   the  volumetric  flow  and  the  ouRake  of  venous  blood  flow.       where  *  represents  the  convolu?on  operator.     Linear  Systems  Theory   By  linear  systems  theory,  the  output  can  also  be  defined  as  the  convolu?on  of  the  arterial  input   func?on  with  the  func?onal  response  of  the  system  to  a  Dirac  Delta  func?on,  h(t).  Then,  by  the  law   of  conserva?on  of  mass,  the  concentra?on  of  fluorescein  in  the  vessels  is  equal  to  the  difference  of   the  input  and  output  func?ons.     where u represents a dummy integra?on variable. This can then be simplified to:   where  R(t)  is  the  impulse  residue  func?on,  defined  as:     Plug  Flow  Model   Because  the  ini?al  value  of  R(t)  must  equal  1,  because  h(0)=0,  it  can  be  said  that  FR(t)  is  equivalent  to   the  volumetric  blood  flow,  F.  Furthermore,  the  dynamics  of  the  fluorescein  concentra?on  is  used  to   approximate  the  leakage  of  blood  out  of    the  vessels  and  into  extravascular  ?ssue,  “extrac?on   frac?on”  E,  by  assuming  a  “plug-­‐flow”  model  sta?ng  that  the  rate  at  which  imagining  agent  is  washed   out  of  the  ?ssue  and  back  into  the  blood  stream  can  be  represented  by  a  first  order  equa?on:     where  ke  is  a  constant  rela?ng  the  efflux  back  into  the  vessel.   Streptozocin-­‐induced  Long-­‐Evans  rats  were  anesthe?zed  with  ketamine  (80  mg/kg  BW)  and  xylazine   (10  mg.kg  BW)  through  the  tail  vein  and  videoangiograms  were  recorded  with  a  scanning  laser   ophthalmoscope.  Volumetric  blood  flow  and  vascular  permeability  are  then  determined  using   MATLAB  in  accordance  with  the  mathema?cal  models  named  previously.   Diabetic a) b) Diabetic a) b) In  conclusion,  a  method  for  quan?ta?vely  mapping   volumetric  blood  flow  and  re?nal  permeability  using   fluorescein  videoangiography  is  proposed  as  an  alterna?ve,   noninvasive,  and  clinically  translatable  is  validated.  Since   fluorescein  is  FDA  approved  and  commonly  used  in   ophthalmology,  the  poten?al  for  expedited  clinical   applica?on  providing  early  indica?on  of  diabe?c   re?nopathy.     References   A  future  study  will  use  a  lesser  concentra?on  of  fluorescein   dye  to  alleviate  camera  satura?on,  16-­‐bit  camera  to  increase   sensi?vity  in  local  changes  of  blood  flow,  modifica?on  to   mo?on  correc?on,  and  the  addi?on  of  user  interface   checking  modali?es  for  op?mal  data  selec?on.         Goals  include  the  replica?on  of  this  procedure  with  non-­‐ saturated  videoangiography  data  to  produce  quan?fied   blood  flow  maps  and  extrac?on  frac?on  es?mates,  based  on   the  parameter,  E,  valida?ng  there  use  for  “sub-­‐clinical”   biomarkers  for  diabe?c  re?nopathy.     [1]  K.M.  Tichauer,  M.  Guthrie,  L.  Hones,  L.  Sinha,  K.  St.  Lawrence,   J.J.  Kang-­‐Mieler.  “Quan?ta?ve  re?nal  blood  flow  mapping  from   fluorescein  videoangiography  using  tracer  kine?c  modeling,”   Op?cs  LeRers,  vol.  40,  no.  10,  pp.  1–4.   [2]  K.  S.  St  Lawrence,  and  T.  Y.  Lee,  “An  adiaba?c  approxima?on   to  the  ?ssue  homogeneity  model  for  water  exchange  in  the   brain:  II.  Experimental  valida?on,”  J  Cereb  Blood  Flow  Metab,   18(12),  1378-­‐85  (1998).   Future  Work  &  Goals   Conclusion   Figure  1:  Demonstra?on  of  blood  flow  mapping  and  vascular   permiability  for  fluorescein  videoangiography  data  in  the   re?na  with  streptozotocin-­‐induced  diabetes   Arterial  ROI   Venous  ROI   Tissue  ROI   Quan'ta've  Mapping   Selec'on  of  Regions  of  Interest