SlideShare a Scribd company logo
1 of 12
Download to read offline
OSPF
Elección de DR /BDR
Objetivo:
Configurar OSPF en la siguiente Red Ethernet entre los enrutadores R1, R2 y R3, de
tal manera que R1 sea DR (Router Designado) y R2 sea BDR (Router designado de
Reserva).
Pasos a seguir
• Configure la interfaz FastEthernet0/0 de R1 con dirección IP 10.0.0.1/8
• Configure la interfaz FastEthernet0/0 de R2 con dirección 10.0.0.2/8
• Configure la interfaz FastEthernet0/0 de R3 con dirección 10.0.0.3/8
• Configure la interfaz FastEthernet0/0 de R1 con prioridad 100
• Configure la interfaz FastEthernet0/0 de R2 con prioridad 50
• Configure la interfaz FastEthernet0/0 de R3 con prioridad 0
• Configure todas las interfaces en el area 0
Preguntas a considerar
• ¿Cual es el tipo de red OSPF por defecto en segmentos Ethernet?
• ¿Este tipo de red tiene elección de DR/BDR?
• ¿Cuál es el rol del DR?
• ¿Cuál es el rol del BDR?
• ¿Cómo se da la elección del DR/BDR?
• ¿Cómo puede se influenciada la elección del DR/BDR?
• ¿Qué ocurre cuando un router de mas alta prioridad que el DR y BDR es agregado
al segmento?
Configuraciones
R1:
interface FastEthernet0/0
ip address 10.0.0.1 255.0.0.0
ip ospf priority 100
!
router ospf 1
network 10.0.0.1 0.0.0.0 area 0
R2:
interface FastEthernet0/0
ip address 10.0.0.2 255.0.0.0
ip ospf priority 50
!
router ospf 1
network 10.0.0.2 0.0.0.0 area 0
R3:
interface Ethernet0/0
ip address 10.0.0.3 255.0.0.0
ip ospf priority 0
!
router ospf 1
network 10.0.0.3 0.0.0.0 area 0
Verificación
R1#show ip ospf neighbor
Neighbor ID Pri State Dead Time Address
Interface
10.0.0.2 50 FULL/BDR 00:00:38 10.0.0.2 FastEthernet0/0
10.0.0.3 0 FULL/DROTHER 00:00:34 10.0.0.3 FastEthernet0/0
R2#show ip ospf neighbor
Neighbor ID Pri State Dead Time Address
Interface
10.0.0.3 0 FULL/DROTHER 00:00:33 10.0.0.3 FastEthernet0/0
10.0.0.1 100 FULL/DR 00:00:31 10.0.0.1 FastEthernet0/0
R3#show ip ospf neighbor
Neighbor ID Pri State Dead Time Address
Interface
10.0.0.2 50 FULL/BDR 00:00:34 10.0.0.2 Ethernet0/0
10.0.0.1 100 FULL/DR 00:00:39 10.0.0.1 Ethernet0/0
R1#show ip ospf interface ethernet0/0
Ethernet0/0 is up, line protocol is up
Internet Address 10.0.0.1/8, Area 0
Process ID 1, Router ID 10.0.0.1, Network Type BROADCAST, Cost: 10
Transmit Delay is 1 sec, State DR, Priority 100
Designated Router (ID) 10.0.0.1, Interface address 10.0.0.1
Backup Designated router (ID) 10.0.0.2, Interface address 10.0.0.2
Reflexión
El Router Designado (DR) y el Backup de Router Designado (BDR) son roles
asignados a los dispositivos en una red OSPF de tipo broadcast y no-broadcast a fin
de reducir las replicaciones de LSA en el segmento. Cuando un dispositivo quiere
enviar un LSA en la red, esta es enviada al DR. El DR es el responsable de enviar este
LSA de vuelta a todos los dispositivos en el segmento. El BDR se utiliza para
reemplazar al DR en el caso de un fallo en la red. Determinación de cual de los
dispositivos que serán el DR y BDR se basa en un proceso de erección.
Este proceso de elección es determinado por dos valores, la prioridad de interfaz y
router-id. La prioridad de interfaz es un número en el rango de 0 a 255, con valor por
defecto de 1 en todas las interfaces. Una prioridad OSPF de 0 indica que un
dispositivo no participará en la elección de DR / BDR, mientras que una prioridad de
255 indica que el dispositivo es el más probable para ser elegido DR. Si hay un
empate en la prioridad OSPF, el dispositivo con el más alto router-id será elegido.
EL router-id en OSPF puede ser seleccionado automáticamente o bien manualmente.
Para la selección automática del router elegirá la más alta dirección de loopback IP en
el router, sino hay direcciones de loopback, la dirección IP mas alta de cualquier
interfaz será la asignada. Cuando se deja la selección automática esta puede cambiar
si una nueva interfaz con una mayor dirección IP se asigna un router y el proceso
OSPF se reinicia. Como el router-id debe ser único para todo el dominio OSPF, se
recomienda que sea definido manualmente con el comando router-id en el marco del
proceso de OSPF.
Una ves dada la elección OSPF, los comandos ip ospf neighbor y show ip ospf pueden
ser utilizados para verificar cual fue electo DR y BDR.
OSPF sobre Frame Relay - Non-Broadcast
Objetivo:
Configurar OSPF sobre una red Frame Relay tipo non-broadcast entre R1, R4, y R5.
A fin de tener conectividad entre las VLAN A, VLAN B y VLAN C.
Pasos a seguir:
• Configure la interfaz Fast Ethernet de R1 con la direccion IP address 1.0.0.1/8
• Configure la interfaz Ethernet de R4 con la dirección IP 4.0.0.4/8
• Configure la interfaz Ethernet de R5 con la dirección IP 5.0.0.5/8
• Configure la interfaz serial principal de R1 con la dirección IP 10.0.0.1/8
• Configure la interfaz serial principal de R4 con la dirección 10.0.0.4/8
• Configure la interfaz serial principal de R5 con la dirección 10.0.0.5/8
• Configure la encapsulación Frame Relay en las interfaces seriales principales
de R1, R4 y R5.
• Deshabilite Frame-Relay Inverse-ARP en las interfaces seriales de R4 y R5.
• Configure un static mapping layer 3 a layer 2 en R1 para alcanzar 10.0.0.4 vía
DLCI 104 y 10.0.0.5 vía DLCI 105.
• Configure un static mapping layer 3 a layer 2 en R4 para alcanzar 10.0.0.1 y
10.0.0.5 vía DLCI 401.
• Configure un static mapping layer 3 a layer 2 en R5 para alcanzar 10.0.0.1 y
10.0.0.4 vía DLCI 501.
• Configure las interfaces seriales de R4 y R5 con prioridad OSPF 0
• Configure OSPF todas la interfaces de R1, R4 y R5 en el area 0
• Configure neighbor statements en R1 para R4 y R5 bajo el proceso OSPF
Preguntas a Considerar
• ¿Cual es el tipo de red por defecto en OSPF para una interfaz Frame Relay
multipunto?
• ¿Los LSAs para este tipo de redes son enviadas de forma unicast o multicast?
• ¿La elección DR/BDR es soportada por este tipo de redes?
Configuraciones
R1:
interface FastEthernet0/0
ip address 1.0.0.1 255.0.0.0
!
interface Serial0/0
ip address 10.0.0.1 255.0.0.0
encapsulation frame-relay
frame-relay map ip 10.0.0.4 104
frame-relay map ip 10.0.0.5 105
!
router ospf 1
network 0.0.0.0 255.255.255.255 area 0
neighbor 10.0.0.4
neighbor 10.0.0.5
R4:
interface Ethernet0/0
ip address 4.0.0.4 255.0.0.0
!
interface Serial0/0
ip address 10.0.0.4 255.0.0.0
encapsulation frame-relay
ip ospf priority 0
frame-relay map ip 10.0.0.1 401
frame-relay map ip 10.0.0.5 401
no frame-relay inverse-arp
!
router ospf 1
network 0.0.0.0 255.255.255.255 area 0
R5:
interface Ethernet0/0
ip address 5.0.0.5 255.0.0.0
!
interface Serial0/0
ip address 10.0.0.5 255.0.0.0
encapsulation frame-relay
ip ospf priority 0
frame-relay map ip 10.0.0.1 501
frame-relay map ip 10.0.0.4 501
no frame-relay inverse-arp
!
router ospf 1
network 0.0.0.0 255.255.255.255 area 0
Verificación
R1#show ip ospf neighbor
Neighbor ID Pri State Dead Time Address Interface
10.0.0.4 0 FULL/DROTHER 00:01:58 10.0.0.4 serial0/0
10.0.0.5 0 FULL/DROTHER 00:01:49 10.0.0.5 serial0/0
R4#show ip ospf neighbor
Neighbor ID Pri State Dead Time Address Interface
10.0.0.1 1 FULL/DR 00:01:47 10.0.0.1 serial0/0
R5#show ip ospf neighbor
Neighbor ID Pri State Dead Time Address Interface
10.0.0.1 1 FULL/DR 00:01:56 10.0.0.1 serial0/0
R1#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default, U - per-user static route
o - ODR, P - periodic downloaded static route
Gateway of last resort is not set
C 1.0.0.0/8 is directly connected, FastEthernet0/0
O 4.0.0.0/8 [110/74] via 10.0.0.4, 00:01:49, Serial0/0
O 5.0.0.0/8 [110/74] via 10.0.0.5, 00:01:49, Serial0/0
C 10.0.0.0/8 is directly connected, Serial0/0
R4#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default, U - per-user static route
o - ODR, P - periodic downloaded static route
Gateway of last resort is not set
O 1.0.0.0/8 [110/74] via 10.0.0.1, 00:02:26, Serial0/0
C 4.0.0.0/8 is directly connected, Ethernet0/0
O 5.0.0.0/8 [110/74] via 10.0.0.5, 00:02:26, Serial0/0
C 10.0.0.0/8 is directly connected, Serial0/0
R5#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default, U - per-user static route
o - ODR, P - periodic downloaded static route
Gateway of last resort is not set
O 1.0.0.0/8 [110/74] via 10.0.0.1, 00:00:11, Serial0/0
O 4.0.0.0/8 [110/74] via 10.0.0.4, 00:00:11, Serial0/0
C 5.0.0.0/8 is directly connected, Ethernet0/0
C 10.0.0.0/8 is directly connected, Serial0/0
Reflexión
The default OSPF network type for a multipoint Frame Relay interface is non-
broadcast.
The OSPF network type non-broadcast transmits OSPF hellos packets as unicast, and
like the broadcast network type supports the DR/BDR election. As hello packets for this
network type are unicast, devices on the segment must be manually defined on the DR
and BDR with the neighbor statement under the OSPF process. Note that in the above
example the broadcast keyword is not added to the frame-relay map commands. This
is due to the fact that broadcast support is not needed since hello packets are sent as
unicast, not multicast.
As seen in the previous example, the DR in OSPF is responsible for distributing LSAs
to other devices on the segment. In order for this to occur, the DR must have direct
layer two connectivity to all devices on the segment. In hub-and-spoke NBMA
networks, this implies that the hub, and only the hub, should be candidate for the DR
election. This is due to the fact that the hub is the only device that has direct layer two
connectivity to all devices on the network.
As seen in the previous example, the OSPF DR election is based on the OSPF priority.
An OSPF priority of 0 dictates that the router will not participate in the election, while an
OSPF priority of 255 indicates that the router is most likely to be elected the DR.
However, recall that the OSPF DR election does not support preemption, and therefore
who wins the election can be dependent on the order that devices come on to the
segment. This implies that even if the hub has a priority of 255 configured it is possible
that another device on the segment could be elected the DR. Therefore, in order to
ensure that the hub is always elected the DR, the OSPF priority must be set to 0 on the
spoke routers.
To verify that adjacency has been established issue the show ip ospf neighbor
command. To verify what the OSPF network type is and who the DR/BDR is issue the
show ip ospf interface command.
Note that in the above show ip route output the next-hop values learned via OSPF to
not mimic the underlying partially meshed layer 2 topology. In other words, the routing
table on R4 says to use the next-hop value of 10.0.0.5 to reach 5.0.0.0, while in reality
R4 must send the traffic towards R1 first. This implies that R4 must have direct layer 3
to layer 2 resolution for the address 10.0.0.5 out the Frame Relay interface, while R5
must likewise have direct layer 3 to layer 2 resolution for the address 10.0.0.4 out the
FrameRelay interface.
OSPF sobre Frame Relay – Broadcast
Objetivo:
Configurar OSPF sobre una red Frame Relay tipo broadcast entre R1, R4, y R5. A
fin de tener conectividad entre las VLAN A, VLAN B y VLAN C
R4
Pasos a Seguir:
• Configure la interfaz Fast Ethernet de R1 con la dirección IP address 1.0.0.1/8
• Configure la interfaz Ethernet de R4 con la dirección IP 4.0.0.4/8
• Configure la interfaz Ethernet de R5 con la dirección IP 5.0.0.5/8
• Configure la interfaz serial principal de R1 con la dirección IP 10.0.0.1/8
• Configure la interfaz serial principal de R4 con la dirección 10.0.0.4/8
• Configure la interfaz serial principal de R5 con la dirección 10.0.0.5/8
• Configure la encapsulación Frame Relay en las interfaces seriales principales
de R1, R4 y R5.
• Deshabilite Frame-Relay Inverse-ARP en las interfaces seriales de R4 y R5.
• Configure un static mapping layer 3 a layer 2 en R1 para alcanzar 10.0.0.4 vía
DLCI 104 y 10.0.0.5 vía DLCI 105.
• Configure un static mapping layer 3 a layer 2 en R4 para alcanzar 10.0.0.1 y
10.0.0.5 vía DLCI 401.
• Configure un static mapping layer 3 a layer 2 en R5 para alcanzar 10.0.0.1 y
10.0.0.4 vía DLCI 501.
• Asegure que los paquetes broadcast y multicast puedan ser enviados en todo
el circuito
• Configure OSPF network type broadcast en las interfaces seriales de R1, R4 y
R5.
• Configure las interfaces seriales de R4 y R5 con prioridad OSPF 0
• Configure OSPF todas la interfaces de R1, R4 y R5 en el area 0
Preguntas a Considerar
• ¿Cual es el tipo de red por defecto en OSPF para una interfaz Frame Relay
multipunto?
• ¿Los LSAs para este tipo de redes son enviadas de forma unicast o multicast?
• ¿La elección DR/BDR es soportada por este tipo de redes?
Configuraciones
R1:
interface FastEthernet0/0
ip address 1.0.0.1 255.0.0.0
!
interface Serial0/0
ip address 10.0.0.1 255.0.0.0
encapsulation frame-relay
ip ospf network broadcast
frame-relay map ip 10.0.0.4 104 broadcast
frame-relay map ip 10.0.0.5 105 broadcast
!
router ospf 1
network 0.0.0.0 255.255.255.255 area 0
R4:
interface Ethernet0/0
ip address 4.0.0.4 255.0.0.0
!
interface Serial0/0
ip address 10.0.0.4 255.0.0.0
encapsulation frame-relay
ip ospf network broadcast
ip ospf priority 0
frame-relay map ip 10.0.0.1 401 broadcast
frame-relay map ip 10.0.0.5 401
no frame-relay inverse-arp
!
router ospf 1
network 0.0.0.0 255.255.255.255 area 0
R5:
interface Ethernet0/0
ip address 5.0.0.5 255.0.0.0
!
interface Serial0/0
ip address 10.0.0.5 255.0.0.0
encapsulation frame-relay
ip ospf network broadcast
ip ospf priority 0
frame-relay map ip 10.0.0.1 501 broadcast
frame-relay map ip 10.0.0.4 501
no frame-relay inverse-arp
!
router ospf 1
network 0.0.0.0 255.255.255.255 area 0
Verificaciones
R1#show ip ospf neighbor
Neighbor ID Pri State Dead Time Address Interface
10.0.0.4 0 FULL/DROTHER 00:00:33 10.0.0.4 Serial0/0
10.0.0.5 0 FULL/DROTHER 00:00:36 10.0.0.5 Serial0/0
R4#show ip ospf neighbor
Neighbor ID Pri State Dead Time Address Interface
10.0.0.1 1 FULL/DR 00:00:39 10.0.0.1 Serial0/0
R5#show ip ospf neighbor
Neighbor ID Pri State Dead Time Address Interface
10.0.0.1 1 FULL/DR 00:00:33 10.0.0.1 Serial0/0
R1#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B –
BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default, U - per-user static
route o - ODR, P - periodic downloaded static route
Gateway of last resort is not set
C 1.0.0.0/8 is directly connected, FastEthernet0/0
O 4.0.0.0/8 [110/74] via 10.0.0.4, 00:01:49, Serial0/0
O 5.0.0.0/8 [110/74] via 10.0.0.5, 00:01:49, Serial0/0
C 10.0.0.0/8 is directly connected, Serial0/0
R4#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B –
BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, E – EGP i - IS-
IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2 ia -
IS-IS inter area, * - candidate default, U - per-user static route
o - ODR, P - periodic downloaded static route
Gateway of last resort is not set
O 1.0.0.0/8 [110/74] via 10.0.0.1, 00:02:26, Serial0/0
C 4.0.0.0/8 is directly connected, Ethernet0/0
O 5.0.0.0/8 [110/74] via 10.0.0.5, 00:02:26, Serial0/0
C 10.0.0.0/8 is directly connected, Serial0/0
R5#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B –
BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, E – EGP i - IS-
IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2 ia -
IS-IS inter area, * - candidate default, U - per-user static route
o - ODR, P - periodic downloaded static route
Gateway of last resort is not set
O 1.0.0.0/8 [110/74] via 10.0.0.1, 00:00:11, Serial0/0
O 4.0.0.0/8 [110/74] via 10.0.0.4, 00:00:11, Serial0/0
C 5.0.0.0/8 is directly connected, Ethernet0/0
C 10.0.0.0/8 is directly connected, Serial0/0
Reflexiones
The OSPF network type broadcast transmits OSPF hellos packets as multicast, and
like the non-broadcast network type supports the DR/BDR election. This network type
is default on broadcast medias such as Ethernet and Token-Ring. Note that in the
above example the broadcast keyword is added to the frame-relay map commands, as
opposed to the previous example. This is due to the fact that broadcast support is
needed since hello packets are sent as multicast, not unicast. Furthermore, since
unicast updates do not need to be configured, the neighbor statement is not required
on the DR and BDR.
As seen in the previous examples, the DR in OSPF is responsible for distributing LSAs
to other devices on the segment. In order for this to occur, the DR must have direct
layer two connectivity to all devices on the segment. In hub-and-spoke NBMA
networks, this implies that the hub, and only the hub, should be candidate for the DR
election. This is due to the fact that the hub is the only device that has direct layer two
connectivity to all devices on the network. As seen in the previous examples, the OSPF
DR election is based on the OSPF priority. An OSPF priority of 0 dictates that the
router will not participate in the election, while an OSPF priority of 255 indicates that
the router is most likely to be elected the DR.
However, recall that the OSPF DR election does not support preemption, and therefore
who wins the election can be dependent on the order that devices come on to the
segment. This implies that even if the hub has a priority of 255 configured it is possible
that another device on the segment could be elected the DR. Therefore, in order to
ensure that the hub is always elected the DR, the OSPF priority must be set to 0 on the
spoke routers.
To verify that adjacency has been established issue the show ip ospf neighbor
command. To verify what the OSPF network type is and who the DR/BDR is issue the
show ip ospf interface command. Note that in the above show ip route output the next-
hop values learned via OSPF to not mimic the underlying partially meshed layer 2
topology. In other words, the routing table on R4 says to use the next-hop value of
10.0.0.5 to reach 5.0.0.0, while in reality R4 must send the traffic towards R1 first. This
implies that R4 must have direct layer 3 to layer 2 resolution for the address 10.0.0.5
out the Frame Relay interface, while R5 must likewise have direct layer 3 to layer 2
resolution for the address 10.0.0.4 out the Frame Relay interface.

More Related Content

What's hot

Juniper JNCIA – Juniper OSPF Route Configuration
Juniper JNCIA – Juniper OSPF Route ConfigurationJuniper JNCIA – Juniper OSPF Route Configuration
Juniper JNCIA – Juniper OSPF Route ConfigurationHamed Moghaddam
 
Chapter7ccna
Chapter7ccnaChapter7ccna
Chapter7ccnarobertoxe
 
Cisco CCNA IPV6 Static Configuration
Cisco CCNA  IPV6 Static ConfigurationCisco CCNA  IPV6 Static Configuration
Cisco CCNA IPV6 Static ConfigurationHamed Moghaddam
 
Rip version1 configuration on Cisco router
Rip version1 configuration on Cisco routerRip version1 configuration on Cisco router
Rip version1 configuration on Cisco routertcpipguru
 
Ccna 2 chapter 11 v4.0 answers 2011
Ccna 2 chapter 11 v4.0 answers 2011Ccna 2 chapter 11 v4.0 answers 2011
Ccna 2 chapter 11 v4.0 answers 2011Dân Chơi
 
Cisco CCNA- How to Configure Multi-Layer Switch
Cisco CCNA- How to Configure Multi-Layer SwitchCisco CCNA- How to Configure Multi-Layer Switch
Cisco CCNA- How to Configure Multi-Layer SwitchHamed Moghaddam
 
Eigrp and ospf comparison
Eigrp and ospf comparisonEigrp and ospf comparison
Eigrp and ospf comparisonDeepak Raj
 
Cisco CCNA GRE Tunnel Configuration
Cisco CCNA GRE Tunnel ConfigurationCisco CCNA GRE Tunnel Configuration
Cisco CCNA GRE Tunnel ConfigurationHamed Moghaddam
 
Routing basics/CEF
Routing basics/CEFRouting basics/CEF
Routing basics/CEFDmitry Figol
 
RIP (routing information protocol)
RIP (routing information protocol)RIP (routing information protocol)
RIP (routing information protocol)Netwax Lab
 
Juniper JNCIA – Juniper RIP and OSPF Route Configuration
Juniper JNCIA – Juniper RIP and OSPF Route ConfigurationJuniper JNCIA – Juniper RIP and OSPF Route Configuration
Juniper JNCIA – Juniper RIP and OSPF Route ConfigurationHamed Moghaddam
 
Introduction to Network Performance Measurement with Cisco IOS IP Service Lev...
Introduction to Network Performance Measurement with Cisco IOS IP Service Lev...Introduction to Network Performance Measurement with Cisco IOS IP Service Lev...
Introduction to Network Performance Measurement with Cisco IOS IP Service Lev...Cisco Canada
 
Linkmeup v23-compass-eos
Linkmeup v23-compass-eosLinkmeup v23-compass-eos
Linkmeup v23-compass-eoseucariot
 
Ccnav5.org ccna 3-v50_practice_final_exam_2014
Ccnav5.org ccna 3-v50_practice_final_exam_2014Ccnav5.org ccna 3-v50_practice_final_exam_2014
Ccnav5.org ccna 3-v50_practice_final_exam_2014Đồng Quốc Vương
 
Route Redistribution
Route RedistributionRoute Redistribution
Route RedistributionNetwax Lab
 

What's hot (19)

Juniper JNCIA – Juniper OSPF Route Configuration
Juniper JNCIA – Juniper OSPF Route ConfigurationJuniper JNCIA – Juniper OSPF Route Configuration
Juniper JNCIA – Juniper OSPF Route Configuration
 
Chapter7ccna
Chapter7ccnaChapter7ccna
Chapter7ccna
 
Cisco CCNA IPV6 Static Configuration
Cisco CCNA  IPV6 Static ConfigurationCisco CCNA  IPV6 Static Configuration
Cisco CCNA IPV6 Static Configuration
 
Rip version1 configuration on Cisco router
Rip version1 configuration on Cisco routerRip version1 configuration on Cisco router
Rip version1 configuration on Cisco router
 
Ccna 2 chapter 11 v4.0 answers 2011
Ccna 2 chapter 11 v4.0 answers 2011Ccna 2 chapter 11 v4.0 answers 2011
Ccna 2 chapter 11 v4.0 answers 2011
 
Cisco CCNA- How to Configure Multi-Layer Switch
Cisco CCNA- How to Configure Multi-Layer SwitchCisco CCNA- How to Configure Multi-Layer Switch
Cisco CCNA- How to Configure Multi-Layer Switch
 
Eigrp and ospf comparison
Eigrp and ospf comparisonEigrp and ospf comparison
Eigrp and ospf comparison
 
Cisco CCNA GRE Tunnel Configuration
Cisco CCNA GRE Tunnel ConfigurationCisco CCNA GRE Tunnel Configuration
Cisco CCNA GRE Tunnel Configuration
 
Practice Lab CSC
Practice Lab CSCPractice Lab CSC
Practice Lab CSC
 
Routing basics/CEF
Routing basics/CEFRouting basics/CEF
Routing basics/CEF
 
CCNA Lab Guide
CCNA Lab GuideCCNA Lab Guide
CCNA Lab Guide
 
RIP (routing information protocol)
RIP (routing information protocol)RIP (routing information protocol)
RIP (routing information protocol)
 
Ospf
OspfOspf
Ospf
 
Juniper JNCIA – Juniper RIP and OSPF Route Configuration
Juniper JNCIA – Juniper RIP and OSPF Route ConfigurationJuniper JNCIA – Juniper RIP and OSPF Route Configuration
Juniper JNCIA – Juniper RIP and OSPF Route Configuration
 
Introduction to Network Performance Measurement with Cisco IOS IP Service Lev...
Introduction to Network Performance Measurement with Cisco IOS IP Service Lev...Introduction to Network Performance Measurement with Cisco IOS IP Service Lev...
Introduction to Network Performance Measurement with Cisco IOS IP Service Lev...
 
Ccnpswitch
CcnpswitchCcnpswitch
Ccnpswitch
 
Linkmeup v23-compass-eos
Linkmeup v23-compass-eosLinkmeup v23-compass-eos
Linkmeup v23-compass-eos
 
Ccnav5.org ccna 3-v50_practice_final_exam_2014
Ccnav5.org ccna 3-v50_practice_final_exam_2014Ccnav5.org ccna 3-v50_practice_final_exam_2014
Ccnav5.org ccna 3-v50_practice_final_exam_2014
 
Route Redistribution
Route RedistributionRoute Redistribution
Route Redistribution
 

Similar to Labs ospf

Ospf Cisco
Ospf CiscoOspf Cisco
Ospf CiscoAlp isik
 
Lab routing protocols eigrp
Lab routing protocols eigrpLab routing protocols eigrp
Lab routing protocols eigrpzafar85
 
ospf ahmed tawfeek CCNA dump for Exam12
ospf  ahmed tawfeek CCNA dump for Exam12ospf  ahmed tawfeek CCNA dump for Exam12
ospf ahmed tawfeek CCNA dump for Exam12ym7md88
 
Routing and OSPF
Routing and OSPFRouting and OSPF
Routing and OSPFarpit
 
ENSA_Module_2.pptx
ENSA_Module_2.pptxENSA_Module_2.pptx
ENSA_Module_2.pptxserieux1
 
ENSA_Module_2 Packet Tracer - Single-Area OSPFv2 Configuration
ENSA_Module_2 Packet Tracer - Single-Area OSPFv2 ConfigurationENSA_Module_2 Packet Tracer - Single-Area OSPFv2 Configuration
ENSA_Module_2 Packet Tracer - Single-Area OSPFv2 Configurationkecatem465
 
Ospf Last Modified Eng
Ospf  Last Modified EngOspf  Last Modified Eng
Ospf Last Modified EngAlp isik
 
Eigrp on a cisco asa firewall configuration
Eigrp on a cisco asa firewall configurationEigrp on a cisco asa firewall configuration
Eigrp on a cisco asa firewall configuration3Anetwork com
 
Network virtualization beyond vla ns-part2
Network virtualization beyond vla ns-part2Network virtualization beyond vla ns-part2
Network virtualization beyond vla ns-part2IT Tech
 

Similar to Labs ospf (20)

Chapter7ccna
Chapter7ccnaChapter7ccna
Chapter7ccna
 
Chapter7ccna
Chapter7ccnaChapter7ccna
Chapter7ccna
 
Ospf Cisco
Ospf CiscoOspf Cisco
Ospf Cisco
 
Lab routing protocols eigrp
Lab routing protocols eigrpLab routing protocols eigrp
Lab routing protocols eigrp
 
OSPF_multi.pdf
OSPF_multi.pdfOSPF_multi.pdf
OSPF_multi.pdf
 
OSPFv2 on IOS XR
OSPFv2 on IOS XROSPFv2 on IOS XR
OSPFv2 on IOS XR
 
OSPF 3
OSPF 3OSPF 3
OSPF 3
 
OSPF 3
OSPF 3OSPF 3
OSPF 3
 
Icnd210 s04l01
Icnd210 s04l01Icnd210 s04l01
Icnd210 s04l01
 
Day 12 enabling ospf
Day 12 enabling ospfDay 12 enabling ospf
Day 12 enabling ospf
 
ospf ahmed tawfeek CCNA dump for Exam12
ospf  ahmed tawfeek CCNA dump for Exam12ospf  ahmed tawfeek CCNA dump for Exam12
ospf ahmed tawfeek CCNA dump for Exam12
 
Routing and OSPF
Routing and OSPFRouting and OSPF
Routing and OSPF
 
ENSA_Module_2.pptx
ENSA_Module_2.pptxENSA_Module_2.pptx
ENSA_Module_2.pptx
 
ENSA_Module_2.pptx
ENSA_Module_2.pptxENSA_Module_2.pptx
ENSA_Module_2.pptx
 
ENSA_Module_2 Packet Tracer - Single-Area OSPFv2 Configuration
ENSA_Module_2 Packet Tracer - Single-Area OSPFv2 ConfigurationENSA_Module_2 Packet Tracer - Single-Area OSPFv2 Configuration
ENSA_Module_2 Packet Tracer - Single-Area OSPFv2 Configuration
 
06 tk 1073 network layer
06   tk 1073 network layer06   tk 1073 network layer
06 tk 1073 network layer
 
acit mumbai - ospf rouitng
acit mumbai - ospf rouitng acit mumbai - ospf rouitng
acit mumbai - ospf rouitng
 
Ospf Last Modified Eng
Ospf  Last Modified EngOspf  Last Modified Eng
Ospf Last Modified Eng
 
Eigrp on a cisco asa firewall configuration
Eigrp on a cisco asa firewall configurationEigrp on a cisco asa firewall configuration
Eigrp on a cisco asa firewall configuration
 
Network virtualization beyond vla ns-part2
Network virtualization beyond vla ns-part2Network virtualization beyond vla ns-part2
Network virtualization beyond vla ns-part2
 

More from Abraham Salgado Garcia (8)

Proyecto de camaras p3 n
Proyecto de camaras p3 nProyecto de camaras p3 n
Proyecto de camaras p3 n
 
Acceso radiomovil
Acceso radiomovilAcceso radiomovil
Acceso radiomovil
 
415
415415
415
 
Elaborar prototipo
Elaborar prototipoElaborar prototipo
Elaborar prototipo
 
Ley general de transporte terrestre
Ley general de transporte terrestreLey general de transporte terrestre
Ley general de transporte terrestre
 
Variables de estudio
Variables de estudioVariables de estudio
Variables de estudio
 
Factura pic
Factura picFactura pic
Factura pic
 
Añadir
AñadirAñadir
Añadir
 

Labs ospf

  • 1. OSPF Elección de DR /BDR Objetivo: Configurar OSPF en la siguiente Red Ethernet entre los enrutadores R1, R2 y R3, de tal manera que R1 sea DR (Router Designado) y R2 sea BDR (Router designado de Reserva). Pasos a seguir • Configure la interfaz FastEthernet0/0 de R1 con dirección IP 10.0.0.1/8 • Configure la interfaz FastEthernet0/0 de R2 con dirección 10.0.0.2/8 • Configure la interfaz FastEthernet0/0 de R3 con dirección 10.0.0.3/8 • Configure la interfaz FastEthernet0/0 de R1 con prioridad 100 • Configure la interfaz FastEthernet0/0 de R2 con prioridad 50 • Configure la interfaz FastEthernet0/0 de R3 con prioridad 0 • Configure todas las interfaces en el area 0
  • 2. Preguntas a considerar • ¿Cual es el tipo de red OSPF por defecto en segmentos Ethernet? • ¿Este tipo de red tiene elección de DR/BDR? • ¿Cuál es el rol del DR? • ¿Cuál es el rol del BDR? • ¿Cómo se da la elección del DR/BDR? • ¿Cómo puede se influenciada la elección del DR/BDR? • ¿Qué ocurre cuando un router de mas alta prioridad que el DR y BDR es agregado al segmento? Configuraciones R1: interface FastEthernet0/0 ip address 10.0.0.1 255.0.0.0 ip ospf priority 100 ! router ospf 1 network 10.0.0.1 0.0.0.0 area 0 R2: interface FastEthernet0/0 ip address 10.0.0.2 255.0.0.0 ip ospf priority 50 ! router ospf 1 network 10.0.0.2 0.0.0.0 area 0 R3: interface Ethernet0/0 ip address 10.0.0.3 255.0.0.0 ip ospf priority 0 ! router ospf 1 network 10.0.0.3 0.0.0.0 area 0 Verificación R1#show ip ospf neighbor Neighbor ID Pri State Dead Time Address Interface 10.0.0.2 50 FULL/BDR 00:00:38 10.0.0.2 FastEthernet0/0 10.0.0.3 0 FULL/DROTHER 00:00:34 10.0.0.3 FastEthernet0/0 R2#show ip ospf neighbor Neighbor ID Pri State Dead Time Address Interface 10.0.0.3 0 FULL/DROTHER 00:00:33 10.0.0.3 FastEthernet0/0 10.0.0.1 100 FULL/DR 00:00:31 10.0.0.1 FastEthernet0/0
  • 3. R3#show ip ospf neighbor Neighbor ID Pri State Dead Time Address Interface 10.0.0.2 50 FULL/BDR 00:00:34 10.0.0.2 Ethernet0/0 10.0.0.1 100 FULL/DR 00:00:39 10.0.0.1 Ethernet0/0 R1#show ip ospf interface ethernet0/0 Ethernet0/0 is up, line protocol is up Internet Address 10.0.0.1/8, Area 0 Process ID 1, Router ID 10.0.0.1, Network Type BROADCAST, Cost: 10 Transmit Delay is 1 sec, State DR, Priority 100 Designated Router (ID) 10.0.0.1, Interface address 10.0.0.1 Backup Designated router (ID) 10.0.0.2, Interface address 10.0.0.2 Reflexión El Router Designado (DR) y el Backup de Router Designado (BDR) son roles asignados a los dispositivos en una red OSPF de tipo broadcast y no-broadcast a fin de reducir las replicaciones de LSA en el segmento. Cuando un dispositivo quiere enviar un LSA en la red, esta es enviada al DR. El DR es el responsable de enviar este LSA de vuelta a todos los dispositivos en el segmento. El BDR se utiliza para reemplazar al DR en el caso de un fallo en la red. Determinación de cual de los dispositivos que serán el DR y BDR se basa en un proceso de erección. Este proceso de elección es determinado por dos valores, la prioridad de interfaz y router-id. La prioridad de interfaz es un número en el rango de 0 a 255, con valor por defecto de 1 en todas las interfaces. Una prioridad OSPF de 0 indica que un dispositivo no participará en la elección de DR / BDR, mientras que una prioridad de 255 indica que el dispositivo es el más probable para ser elegido DR. Si hay un empate en la prioridad OSPF, el dispositivo con el más alto router-id será elegido. EL router-id en OSPF puede ser seleccionado automáticamente o bien manualmente. Para la selección automática del router elegirá la más alta dirección de loopback IP en el router, sino hay direcciones de loopback, la dirección IP mas alta de cualquier interfaz será la asignada. Cuando se deja la selección automática esta puede cambiar si una nueva interfaz con una mayor dirección IP se asigna un router y el proceso OSPF se reinicia. Como el router-id debe ser único para todo el dominio OSPF, se recomienda que sea definido manualmente con el comando router-id en el marco del proceso de OSPF. Una ves dada la elección OSPF, los comandos ip ospf neighbor y show ip ospf pueden ser utilizados para verificar cual fue electo DR y BDR.
  • 4. OSPF sobre Frame Relay - Non-Broadcast Objetivo: Configurar OSPF sobre una red Frame Relay tipo non-broadcast entre R1, R4, y R5. A fin de tener conectividad entre las VLAN A, VLAN B y VLAN C. Pasos a seguir: • Configure la interfaz Fast Ethernet de R1 con la direccion IP address 1.0.0.1/8 • Configure la interfaz Ethernet de R4 con la dirección IP 4.0.0.4/8 • Configure la interfaz Ethernet de R5 con la dirección IP 5.0.0.5/8 • Configure la interfaz serial principal de R1 con la dirección IP 10.0.0.1/8 • Configure la interfaz serial principal de R4 con la dirección 10.0.0.4/8 • Configure la interfaz serial principal de R5 con la dirección 10.0.0.5/8
  • 5. • Configure la encapsulación Frame Relay en las interfaces seriales principales de R1, R4 y R5. • Deshabilite Frame-Relay Inverse-ARP en las interfaces seriales de R4 y R5. • Configure un static mapping layer 3 a layer 2 en R1 para alcanzar 10.0.0.4 vía DLCI 104 y 10.0.0.5 vía DLCI 105. • Configure un static mapping layer 3 a layer 2 en R4 para alcanzar 10.0.0.1 y 10.0.0.5 vía DLCI 401. • Configure un static mapping layer 3 a layer 2 en R5 para alcanzar 10.0.0.1 y 10.0.0.4 vía DLCI 501. • Configure las interfaces seriales de R4 y R5 con prioridad OSPF 0 • Configure OSPF todas la interfaces de R1, R4 y R5 en el area 0 • Configure neighbor statements en R1 para R4 y R5 bajo el proceso OSPF Preguntas a Considerar • ¿Cual es el tipo de red por defecto en OSPF para una interfaz Frame Relay multipunto? • ¿Los LSAs para este tipo de redes son enviadas de forma unicast o multicast? • ¿La elección DR/BDR es soportada por este tipo de redes? Configuraciones R1: interface FastEthernet0/0 ip address 1.0.0.1 255.0.0.0 ! interface Serial0/0 ip address 10.0.0.1 255.0.0.0 encapsulation frame-relay frame-relay map ip 10.0.0.4 104 frame-relay map ip 10.0.0.5 105 ! router ospf 1 network 0.0.0.0 255.255.255.255 area 0 neighbor 10.0.0.4 neighbor 10.0.0.5 R4: interface Ethernet0/0 ip address 4.0.0.4 255.0.0.0 ! interface Serial0/0 ip address 10.0.0.4 255.0.0.0 encapsulation frame-relay
  • 6. ip ospf priority 0 frame-relay map ip 10.0.0.1 401 frame-relay map ip 10.0.0.5 401 no frame-relay inverse-arp ! router ospf 1 network 0.0.0.0 255.255.255.255 area 0 R5: interface Ethernet0/0 ip address 5.0.0.5 255.0.0.0 ! interface Serial0/0 ip address 10.0.0.5 255.0.0.0 encapsulation frame-relay ip ospf priority 0 frame-relay map ip 10.0.0.1 501 frame-relay map ip 10.0.0.4 501 no frame-relay inverse-arp ! router ospf 1 network 0.0.0.0 255.255.255.255 area 0 Verificación R1#show ip ospf neighbor Neighbor ID Pri State Dead Time Address Interface 10.0.0.4 0 FULL/DROTHER 00:01:58 10.0.0.4 serial0/0 10.0.0.5 0 FULL/DROTHER 00:01:49 10.0.0.5 serial0/0 R4#show ip ospf neighbor Neighbor ID Pri State Dead Time Address Interface 10.0.0.1 1 FULL/DR 00:01:47 10.0.0.1 serial0/0 R5#show ip ospf neighbor Neighbor ID Pri State Dead Time Address Interface 10.0.0.1 1 FULL/DR 00:01:56 10.0.0.1 serial0/0 R1#show ip route Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2 ia - IS-IS inter area, * - candidate default, U - per-user static route o - ODR, P - periodic downloaded static route Gateway of last resort is not set C 1.0.0.0/8 is directly connected, FastEthernet0/0 O 4.0.0.0/8 [110/74] via 10.0.0.4, 00:01:49, Serial0/0 O 5.0.0.0/8 [110/74] via 10.0.0.5, 00:01:49, Serial0/0 C 10.0.0.0/8 is directly connected, Serial0/0 R4#show ip route Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2 ia - IS-IS inter area, * - candidate default, U - per-user static route o - ODR, P - periodic downloaded static route
  • 7. Gateway of last resort is not set O 1.0.0.0/8 [110/74] via 10.0.0.1, 00:02:26, Serial0/0 C 4.0.0.0/8 is directly connected, Ethernet0/0 O 5.0.0.0/8 [110/74] via 10.0.0.5, 00:02:26, Serial0/0 C 10.0.0.0/8 is directly connected, Serial0/0 R5#show ip route Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2 ia - IS-IS inter area, * - candidate default, U - per-user static route o - ODR, P - periodic downloaded static route Gateway of last resort is not set O 1.0.0.0/8 [110/74] via 10.0.0.1, 00:00:11, Serial0/0 O 4.0.0.0/8 [110/74] via 10.0.0.4, 00:00:11, Serial0/0 C 5.0.0.0/8 is directly connected, Ethernet0/0 C 10.0.0.0/8 is directly connected, Serial0/0 Reflexión The default OSPF network type for a multipoint Frame Relay interface is non- broadcast. The OSPF network type non-broadcast transmits OSPF hellos packets as unicast, and like the broadcast network type supports the DR/BDR election. As hello packets for this network type are unicast, devices on the segment must be manually defined on the DR and BDR with the neighbor statement under the OSPF process. Note that in the above example the broadcast keyword is not added to the frame-relay map commands. This is due to the fact that broadcast support is not needed since hello packets are sent as unicast, not multicast. As seen in the previous example, the DR in OSPF is responsible for distributing LSAs to other devices on the segment. In order for this to occur, the DR must have direct layer two connectivity to all devices on the segment. In hub-and-spoke NBMA networks, this implies that the hub, and only the hub, should be candidate for the DR election. This is due to the fact that the hub is the only device that has direct layer two connectivity to all devices on the network. As seen in the previous example, the OSPF DR election is based on the OSPF priority. An OSPF priority of 0 dictates that the router will not participate in the election, while an OSPF priority of 255 indicates that the router is most likely to be elected the DR. However, recall that the OSPF DR election does not support preemption, and therefore who wins the election can be dependent on the order that devices come on to the segment. This implies that even if the hub has a priority of 255 configured it is possible that another device on the segment could be elected the DR. Therefore, in order to ensure that the hub is always elected the DR, the OSPF priority must be set to 0 on the spoke routers. To verify that adjacency has been established issue the show ip ospf neighbor command. To verify what the OSPF network type is and who the DR/BDR is issue the show ip ospf interface command.
  • 8. Note that in the above show ip route output the next-hop values learned via OSPF to not mimic the underlying partially meshed layer 2 topology. In other words, the routing table on R4 says to use the next-hop value of 10.0.0.5 to reach 5.0.0.0, while in reality R4 must send the traffic towards R1 first. This implies that R4 must have direct layer 3 to layer 2 resolution for the address 10.0.0.5 out the Frame Relay interface, while R5 must likewise have direct layer 3 to layer 2 resolution for the address 10.0.0.4 out the FrameRelay interface. OSPF sobre Frame Relay – Broadcast Objetivo: Configurar OSPF sobre una red Frame Relay tipo broadcast entre R1, R4, y R5. A fin de tener conectividad entre las VLAN A, VLAN B y VLAN C R4
  • 9. Pasos a Seguir: • Configure la interfaz Fast Ethernet de R1 con la dirección IP address 1.0.0.1/8 • Configure la interfaz Ethernet de R4 con la dirección IP 4.0.0.4/8 • Configure la interfaz Ethernet de R5 con la dirección IP 5.0.0.5/8 • Configure la interfaz serial principal de R1 con la dirección IP 10.0.0.1/8 • Configure la interfaz serial principal de R4 con la dirección 10.0.0.4/8 • Configure la interfaz serial principal de R5 con la dirección 10.0.0.5/8 • Configure la encapsulación Frame Relay en las interfaces seriales principales de R1, R4 y R5. • Deshabilite Frame-Relay Inverse-ARP en las interfaces seriales de R4 y R5. • Configure un static mapping layer 3 a layer 2 en R1 para alcanzar 10.0.0.4 vía DLCI 104 y 10.0.0.5 vía DLCI 105. • Configure un static mapping layer 3 a layer 2 en R4 para alcanzar 10.0.0.1 y 10.0.0.5 vía DLCI 401. • Configure un static mapping layer 3 a layer 2 en R5 para alcanzar 10.0.0.1 y 10.0.0.4 vía DLCI 501. • Asegure que los paquetes broadcast y multicast puedan ser enviados en todo el circuito • Configure OSPF network type broadcast en las interfaces seriales de R1, R4 y R5. • Configure las interfaces seriales de R4 y R5 con prioridad OSPF 0 • Configure OSPF todas la interfaces de R1, R4 y R5 en el area 0 Preguntas a Considerar • ¿Cual es el tipo de red por defecto en OSPF para una interfaz Frame Relay multipunto? • ¿Los LSAs para este tipo de redes son enviadas de forma unicast o multicast? • ¿La elección DR/BDR es soportada por este tipo de redes? Configuraciones R1: interface FastEthernet0/0 ip address 1.0.0.1 255.0.0.0 ! interface Serial0/0 ip address 10.0.0.1 255.0.0.0
  • 10. encapsulation frame-relay ip ospf network broadcast frame-relay map ip 10.0.0.4 104 broadcast frame-relay map ip 10.0.0.5 105 broadcast ! router ospf 1 network 0.0.0.0 255.255.255.255 area 0 R4: interface Ethernet0/0 ip address 4.0.0.4 255.0.0.0 ! interface Serial0/0 ip address 10.0.0.4 255.0.0.0 encapsulation frame-relay ip ospf network broadcast ip ospf priority 0 frame-relay map ip 10.0.0.1 401 broadcast frame-relay map ip 10.0.0.5 401 no frame-relay inverse-arp ! router ospf 1 network 0.0.0.0 255.255.255.255 area 0 R5: interface Ethernet0/0 ip address 5.0.0.5 255.0.0.0 ! interface Serial0/0 ip address 10.0.0.5 255.0.0.0 encapsulation frame-relay ip ospf network broadcast ip ospf priority 0 frame-relay map ip 10.0.0.1 501 broadcast frame-relay map ip 10.0.0.4 501 no frame-relay inverse-arp ! router ospf 1 network 0.0.0.0 255.255.255.255 area 0 Verificaciones R1#show ip ospf neighbor Neighbor ID Pri State Dead Time Address Interface 10.0.0.4 0 FULL/DROTHER 00:00:33 10.0.0.4 Serial0/0 10.0.0.5 0 FULL/DROTHER 00:00:36 10.0.0.5 Serial0/0 R4#show ip ospf neighbor Neighbor ID Pri State Dead Time Address Interface 10.0.0.1 1 FULL/DR 00:00:39 10.0.0.1 Serial0/0 R5#show ip ospf neighbor Neighbor ID Pri State Dead Time Address Interface 10.0.0.1 1 FULL/DR 00:00:33 10.0.0.1 Serial0/0
  • 11. R1#show ip route Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B – BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2 ia - IS-IS inter area, * - candidate default, U - per-user static route o - ODR, P - periodic downloaded static route Gateway of last resort is not set C 1.0.0.0/8 is directly connected, FastEthernet0/0 O 4.0.0.0/8 [110/74] via 10.0.0.4, 00:01:49, Serial0/0 O 5.0.0.0/8 [110/74] via 10.0.0.5, 00:01:49, Serial0/0 C 10.0.0.0/8 is directly connected, Serial0/0 R4#show ip route Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B – BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2, E – EGP i - IS- IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2 ia - IS-IS inter area, * - candidate default, U - per-user static route o - ODR, P - periodic downloaded static route Gateway of last resort is not set O 1.0.0.0/8 [110/74] via 10.0.0.1, 00:02:26, Serial0/0 C 4.0.0.0/8 is directly connected, Ethernet0/0 O 5.0.0.0/8 [110/74] via 10.0.0.5, 00:02:26, Serial0/0 C 10.0.0.0/8 is directly connected, Serial0/0 R5#show ip route Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B – BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2, E – EGP i - IS- IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2 ia - IS-IS inter area, * - candidate default, U - per-user static route o - ODR, P - periodic downloaded static route Gateway of last resort is not set O 1.0.0.0/8 [110/74] via 10.0.0.1, 00:00:11, Serial0/0 O 4.0.0.0/8 [110/74] via 10.0.0.4, 00:00:11, Serial0/0 C 5.0.0.0/8 is directly connected, Ethernet0/0 C 10.0.0.0/8 is directly connected, Serial0/0 Reflexiones The OSPF network type broadcast transmits OSPF hellos packets as multicast, and like the non-broadcast network type supports the DR/BDR election. This network type is default on broadcast medias such as Ethernet and Token-Ring. Note that in the above example the broadcast keyword is added to the frame-relay map commands, as opposed to the previous example. This is due to the fact that broadcast support is needed since hello packets are sent as multicast, not unicast. Furthermore, since
  • 12. unicast updates do not need to be configured, the neighbor statement is not required on the DR and BDR. As seen in the previous examples, the DR in OSPF is responsible for distributing LSAs to other devices on the segment. In order for this to occur, the DR must have direct layer two connectivity to all devices on the segment. In hub-and-spoke NBMA networks, this implies that the hub, and only the hub, should be candidate for the DR election. This is due to the fact that the hub is the only device that has direct layer two connectivity to all devices on the network. As seen in the previous examples, the OSPF DR election is based on the OSPF priority. An OSPF priority of 0 dictates that the router will not participate in the election, while an OSPF priority of 255 indicates that the router is most likely to be elected the DR. However, recall that the OSPF DR election does not support preemption, and therefore who wins the election can be dependent on the order that devices come on to the segment. This implies that even if the hub has a priority of 255 configured it is possible that another device on the segment could be elected the DR. Therefore, in order to ensure that the hub is always elected the DR, the OSPF priority must be set to 0 on the spoke routers. To verify that adjacency has been established issue the show ip ospf neighbor command. To verify what the OSPF network type is and who the DR/BDR is issue the show ip ospf interface command. Note that in the above show ip route output the next- hop values learned via OSPF to not mimic the underlying partially meshed layer 2 topology. In other words, the routing table on R4 says to use the next-hop value of 10.0.0.5 to reach 5.0.0.0, while in reality R4 must send the traffic towards R1 first. This implies that R4 must have direct layer 3 to layer 2 resolution for the address 10.0.0.5 out the Frame Relay interface, while R5 must likewise have direct layer 3 to layer 2 resolution for the address 10.0.0.4 out the Frame Relay interface.