SlideShare a Scribd company logo
1 of 93
Download to read offline
Points to Revise 
1. Diversity : ​Large variety of anything. 
2. Biodiversity :​ Large variety of organisms. 
3. Nomenclature: ​Scientific naming of organisms. 
4. Identification : ​Correct description of organism prior to nomenclature. 
5. Classification :​ Grouping of organisms into categories on the basis of similarities & differences.   
6. Taxon :​ Concrete biological object or category of classification. 
 
1. Taxonomy :​ Process of classification of organisms. 
2. Systematics :​ branch of biology dealing with taxonomy along with evolutionary relationship 
between organisms. 
3.​ ​Species : ​Group of Individual organisms with fundamental 
similarities (with capacity if sexually reproducing). 
LEARNING TIPS 
1. Concentrate on minute points of the chapter keeping very short answer and short answer 
type questions in mind. 
2. Emphasise on concepts. 
Biology Class 11 Notes Chapter 1 LET US LEARN THE LESSON 
What is Living? 
-Objects having characteristics of cellular organisation,growth,reproduction,ability to sense 
environment & give response, metabolism etc. 
All organisms grow: 
1. -Increase in mass or number of cells characterise growth. 
2. -plants grow throughout life. 
3. -Animals grow to a certain age . 
4. -Non living objects also grow externally by accumulation of material on the surface. 
5. -Living objects grow from inside. 
6. -Growth cannot be considered as the defining property of living beings. 
NB :​ There are certain examples in which mass is decreased during growth eg. Germinating potato 
tuber. 
Reproduction: 
● -Characteristics of living beings to produce progenies possessing features of their own type. 
● -Reproduction is of sexual& asexual type. 
● -Fungi produce spores for asexual reproduction. 
● -Organism viz. Planaria reproduce by regeneration in which a fragment of the body forms the 
whole organism. 
● -Fungi,filamentous algae,protonema of moss reproduce by fragmentation also. 
● -In unicellular organisms growth & reproduction are synonymous. 
1. Certain organisms do not reproduce viz. mule ,worker bees, infertile human couple. 
-Hence reproduction ​cannot be considered as defining property ​of living beings. 
Metabolism: 
● -Several chemical reactions occur in living organisms.-Some of these reactions are anabolic 
others are catabolic. 
● -All the reactions together are called metabolic reactions & the process is called metabolism. 
● -It has no exception. 
-​It is the defining property of living beings. 
Cellular organisation: 
-living organisms consist of cells & their products. 
-​It is the defining property of living beings. 
Consciousness: Ability to sense environment & respond to environmental factors 
-Living beings sense & respond to environmental factors viz. Light,water,temperature,other 
organisms, pollutants etc. 
-It is the defining property of organisms. 
Living organisms can be considered as self replicating, evolving & self-regulating 
interactive systems capable of responding to external stimuli. 
Diversity in the living world: 
● -Described number of species range 1.7-1.8 million. 
● -Local names of organisms may not be applied at global level. 
● -Scientific names are given to organisms after identification, acceptable at global level. 
● -Nomenclature is done as per criteria given in ICBN (International code for botanical 
nomenclature)& ICZN (International code for zoological nomenclature) 
● -Binomial nomenclature was given by CAROLUS LINNAEUS. 
● First word is Generic name & second word is Specific epithet in scientific name of organism. 
● -Names are in Latin or Latinised words. 
● -Names, if hand written are separately underlined & if printed, are italicised. 
● -First word starts with capital letter & second word with small letter. Example: Mangifera 
indica (Mango) 
● -Name of author in last as abbreviation. 
● -For ease of study organisms are classified into groups or categories known as taxa. 
● 1.eg. Taxons may be Dogs, Mammals, wheat, Rice etc. 
● -Process of classification into different taxa is called taxonomy. 
● -Identification, classification, nomenclature are basic to taxonomy. 
● -Systematics studies evolutionary relationships between organisms. 
Taxonomic categories : 
● -Each rank or category of classification is termed as taxonomic category. 
● -Arrangement of categories in sequence is termed as Taxonomic Hierarchy. 
Chapter 1 biology class 11 ncert notes Taxonomical Hierarchy 
Species: Group of organisms with fundamental similarities. eg. ​Mangifera Indica 
In this species is ​indica. 
Genus​: Group of related species with common characters. 
eg. Panthera is a genus which includes lion(Pantheraleo),leopard(Pantherapardus) & Tiger 
(Pantheratigris). 
Family​: Group of related genera . 
eg. Genus Solanum,Petunia Datura belong to one family Solanaceae. 
Order ​: Group of related families. 
eg. Family Convolvulaceae,Solanaceae belong to one order- Polemoniales. 
Class ​: Group of related orders. 
eg. Order Primata Carnivora belongs to one class, Mammalia. 
Phylum​: Group of related classes. 
eg. Class Mammalia, Pisces,Amphibia,Reptilia belong to one phylum -Chordata. 
Kingdom​: Group of all related Phyla. 
eg. Kingdom Animalia-includes all animals. 
NCERT BIOLOGY notes class 11 Organisms with their Taxonomic Categories 
Common 
Name 
Biological 
Name 
Genus  Family 
Man  Homo 
sapiens 
Homo  Hominidae 
Housefly  Musca 
domestica 
Musca 
domestica 
Muscidae 
Mango  Mangifera 
indica 
Mangifera  Anacardiaceae 
Wheat  Triticuma 
estivum 
Triticum  Poaceae 
Order  Class  Phylum/Division 
Taxonomical Aids 
● -Articles helpful in correct identification & classification of organisms are called taxonomical 
aids. 
1-Herbarium​: 
● Store house of collected plant specimens that are dried, pressed & preserved on sheets. 
● -Sheets are arranged according to a universally accepted classification system. 
● -used as a ready reference in scientific studies. 
2. Botanical Gardens : 
● Collection of various living plant species in form of garden for identification purpose 
● -Used for identification of plants. 
● -Example: Royal Botanical Garden at Kew, England, Indian Botanical Garden Howrah, National 
Botanical Research Institute Lucknow etc. 
3-Museum : 
● -Collection of preserved plant &animal specimens. 
● -Specimens may be preserved in preservative solutions viz.Formalin (40%). 
● -Specimens may also be preserved as dry specimen eg. Insects and stuffed large animals. 
● -Skeleton of animals may also be museum specimens. 
● -Used as actual material for study and identification. 
CBSE Class 11 Notes Biology Chapter 1 Zoological Parks: 
Place where wild animals are kept in a protected environment under human care . eg. Alipur zoo, 
Kolkata, West Bengal 
National Zoological Park of New Delhi 
1. Used as aid to learn about food habits and behaviour, Life cycle. 
Key : 
Taxonomical aid based on contrasting characters called as couplet 
● 1. Couplet has two opposite statements, each called lead. 
● 2. Separate keys for separate taxonomic categories needed. 
● 3. Used to classify organisms. 
Primata  Mammalia  Chordata 
Diptera  Insecta  Arthropoda 
Sapinda 
les 
Dicotyledonae  Angiospermae 
Poales  Monocotyledonae  Angiospermae 
Flora : 
Actual account of habitat & distribution of plant species in an area. 
Manual : 
● •Have a description of species in an area. 
● • Used for getting information for identification of names. 
Monograph : 
1. Has information on any one taxon. 
2. Used for classification purposes. 
Points to Revise 
 
LET US LEARN THE LESSON 
Introduction : 
1.  Thallus    :  Plant body without true stem, root & Leaf. 
2.  Plankton   :  Organism living in salty areas. 
3.  Halophiles    :  Plants floating passively in water current. 
4.  Chemosynthetic  :  Using chemical reactions as energy source 
5.  Heterotrophic  :  Unable to synthesise own food and dependent on 
others for food. 
6.  Pathogenic  :  Main body of slime mould. 
7.  Plasmodium  :  Organism feeding on dead & decaying organic matter. 
8.  Saprophyte    :  Organism which depend on living host for food 
9.  Parasite  :  Two organisms living together 
10.  Symbionts   :  benefiting each other. 
11.  Plasmogamy  :  Fusion of cytoplasm. 
           
1.  Karyogamy   :  Fusion of nuclei. 
2.  Dikaryon    :  A cell with two nuclei. 
3.  Dikaryophase  :  Stage of fungus with dikaryotic cells. 
4.  Isogamous    :  : Morphologically identical gametes 
5.  Anisogamous    :  Morphologically non identical Gametes. 
6.  Oogamous    :  Female gamete oosphere and Male gamete motile. 
           
● 1.Aristotle classified organisms for the first time. 
● 2. Two kingdom system includes – Plantae Animalia. 
Demerits of Two Kingdom 1.system 
● 1. No difference in Eukaryotes and Prokaryotes. 
● 2.Heterotrophic Fungi kept in Plantae. 
● 3. Five kingdom system is given by R.H Whittaker (1969) viz. Monera, Protista, Fungi, 
Plantae and Animalia. 
Kingdom Monera – 
● 1. Prokaryotic unicellular organisms. 
● 2. Most abundant. 
● 3. Also live in extreme habitats viz. Hotsprings, Snow etc. as endoparasite etc. 
● 4. eg. ​Bacteria​. 
● - Some bacteria are autotrophic others are heterotrophic. 
Archaebacteria ​– 
● - Cell Wall different from other bacteria. 
● - Live in most harsh habitats eg. Halophile. 
● - Methanogens are found in the gut of ruminants and produce methane (CH​4​) gas. 
Eubacteria – 
● - True bacteria. 
● - Rigid cell wall with or without flagellum. 
● - Cyanobacteria( Blue green algae) are also included in this group. 
● - Cyanobacteria are Photosynthetic autotrophs, unicellular, colonial or filamentous, with 
gelatinous sheath. 
● - Have Heterocyst for N2 Fixation eg. ​Nostoc, Anabaena, Oscillatoria, Rivularia, Gloeotrichia 
etc. 
● - Mostly bacteria are Heterotrophs and are useful and harmful both to humans. 
● -Reproduction occurs by fission. Also by primitive type of sexual reproduction, by 
transferring DNA piece from one bacterial cell(+ strain) to other (- strain) (called cell 
Transduction). 
 
Mycoplasma – 
● - Smallest unicellular anaerobic organisms having no cell wall. 
● - Pathogenic in plants and animals. 
Kingdom Protista – 
● - Unicellular eukaryotes. 
● - Primarily aquatic. 
● - Some have cilia and flagella. 
● - Reproduction sexual and asexual both. 
Chrysophytes​ ​– 
● - Freshwater or marine microscopic Planktons. 
● - Mostly photosynthetic and chief producer in ocean eg. Diatoms And Golden algae 
(Desmids). 
● - Diatoms with cell walls in two halves having Silica (indestructible). 
● - Diatomaceous earth is formed by cell wall deposits of Diatoms and used in polishing, 
filtration of oils and syrups, fire bricks and explosives. 
Dinoflagellates – 
● - Marine. 
● - Photosynthetic yellow , green, blue, brown or red in colour. 
● - One longitudinal and other transverse two flagella. 
● - ​Gonyaulax ​causes Red tides. 
Euglenoids – 
● - Fresh water forms. 
● - No cell wall, outermost layer pellicle. 
● - Two unequal flagella. 
● - Photosynthetic but also heterotrophic in absence of light ( Mixotroph). 
Slime moulds – 
● - Saprophytes. 
● - Body is an aggregation called „Plasmodium‟ ( multinucleate, without cell wall, irregular in 
shape and can spread over several feet ). 
● - Plasmodium produces a fruiting body having spores with walls which are highly resistant 
and spread through wind. 
Protozoans – 
● - Freshwater or marine unicellular heterotrophs. 
● - Primitive relative of animals.strong 
(a) Amoeboid Protozoans – 
● - Free living or parasites. 
● - Pseudopodia (false feet) formed eg. ​Amoeba ,Entamoeba​. 
Flagellated Protozoans – 
- Free living or Parasitic with flagella in.Trypanosoma( causes sleeping sickness). 
1. Ciliated Protozoans ​– 
- With cilia eg. ​Paramecium​(sleeper animalcule). 
(d) Sporozoans – 
- Spore like stage in life eg​. Plasmodium vivax​. 
Kingdom Fungi – 
● - Fungi are a group of achlorophyllous, heterotrophic organisms with cell wall without 
cellulose. 
● - Saprophyte or Parasite or Symbiotic. 
● - Useful and Harmful both. 
● - Prefer to grow in warm and humid places. 
● - Unicellular (eg. Yeast) to a multicellular filamentous body called ​mycelium​.   
● - One unit of ​mycelium ​and ​hyphae . 
● - ​Mycelia ​may be coenocytic (no septum) or septate. 
- ​Lichens :– ​Symbiotic association of fungus and algae. 
- ​Mycorrhiza ;– ​Symbiotic association of fungi with root of higher plants eg. ​Pinus. 
- ​ Reproduction :–​Vegetative : by fragmentation and by spores.Sexual: by gametes. 
- Three steps in sexual reproduction 
1. Plasmogamy :–​ fusion of protoplasm. 
2 .Karyogamy :-​ fusion of nuclei. 
3. Meiosis of zygote. 
Phycomycetes – 
● - Grow in aquatic places or decaying wood or damp places or obligate parasites. 
● - Mycelium aseptate, coenocytic.- ​Reproduction ​- asexual by zoospores or aplanospores. 
Sexual by zygospores. 
Ascomycetes (sac fungi)- 
● -Unicellular (eg. Yeast) or multicellular 
● -Saprophytic or parasitic. 
● -Maybe coprophilus (growing on dung) eg. peziza. 
● -Mycelium septate and branched. 
● -Reproduction – asexual by exogenously produced conidia. 
● -sexual by Ascospores produced in asci present in the fruiting body called Ascocarp. 
● -eg​Aspergillus, Claviceps, Neurospora, Saccharomyces ​(yeast) etc. 
Basidiomycetes (club fungi) – 
● - Grow on soil , logs or parasites ( rusts and smuts). 
● - Mycelium septate and branched and of two types 
● - Uninucleate 2) Dikaryophase. 
● - Reproduction – vegetative by fragmentation sexualby two somatic cells giving rise to 
Dikaryophase. 
● - Dikaryophase makes the fruiting body Basidiocarp having Basidia. 
● - Inside basidia (singular basidium) 
● - Karyogamy and meiosis occurs. 
● - Meiosis results in formation of four basidiospores. 
Deuteromycetes (Fungi- imperfecti) – 
- It is formed class – Group of Fungi whose complete life cycle is not known.-Saprophyte/parasite , 
mostly decomposers.- eg. ​Alternaria, colletotrichum, Trichoderma​. 
Kingdom Plantae – 
● - Eukaryotic, chlorophyll bearing autotrophic organisms. 
● - Only few members partial heterotrophs eg. Insectivorous plants (Bladderwort and Venus 
flytrap). 
● - Few parasites eg. ​Cuscuta 
- ​Reproduction – ​vegetative,asexual and sexual. 
● - Life cycle shows alternation of generation. 
● - eg. Algae, Bryophytes,Pteridophyte, Gymnosperms and Angiosperms. 
Kingdom Animalia – 
● - Eukaryotic, Heterotrophic organisms. 
● - No chloroplast and no cell wall. 
● -Holozoic mode of nutrition 
● - Definite shape and size and capable of locomotion. 
Reproduction 
● - sexual in general 
● - eg. frog, cockroach, cow, man etc. 
-​ Viruses, Viroids and Lichens 
- Viruses ​Connecting link between living and non living. 
● - Non cellular structure consisting of protein coat and Nucleic acid 
● - Can reproduce within a host cell. 
● - Host cell may be killed. 
● - Viruses which infect bacteria are called Bacteriophage. 
- ​Tobacco Mosaic Virus (TMV)​- 
● - Protein coat: - capsid consists of capsomers. 
● - Viruses can cause diseases viz. Mumps, Smallpox, Herpes, Influenza, AIDS etc. 
​Viroids 
- Free RNA without protein coat. 
Lichens 
● - Composite organisms. 
● -Symbiotic association between Algae (Phycobiont),Fungi (Mycobiont). 
 
 
 
 
Economically useful as- 
 
a) Large photo synthesiser, release 02 . 
b)Food for aquatic animals, humans. 
c)Produce Algin (Brown algae), carrageen (red algae), agar (​gelidium, gracilaria​) 
 
- ​Chlorella, Spirullina​- in space travel as protein rich food. 
1-  Phylogeny  -     Evolutionary history of organisms . 
2-  Zoospores  -     Motile spores with flagella . 
3-  Gametophyte  -     Haploid stage of plant, producing gametes. 
4-  Sporophyte  -     Diploid stage of plants producing spores. 
5-  Archegonium  -     Female reproductive structure. 
6-  Antheridium  -     Male reproductive structure. 
7-  Megasporangium  -     The structure which bears megaspores. 
8-  Sporophyll  -     Leaf bearing sporangia producing spores. 
   -  Numerical 
taxonomy 
-     based on several features compared collectively by 
computer. 
   -  Cytotaxonomy  -     based on cytological features. 
   -  Chemotaxonomy  -     based on chemical constituents. 
Algae 
– 
              
   -  Group of chlorophyllous, simple, thalloid plants. 
   -  Largely aquatic, grow on soil, stone, wood etc or symbiotic. 
   -  Unicellular to large filamentous. 
 
Bryophytes ( Amphibians of plant Kingdom) –  
​Group of autotrophic plants with thallus having true roots, stem and leaves with multi cellular sex 
organs. 
​Occurs on damp, humid and shaded soil. 
​Root like rhizoids present. 
-​Main plant body gametophyte bears Antheridia and Archegonia.​ ​Biflagellate antherozoids produced 
from Antheridium and reach through water to egg in Archegonium. 
-​Zygote forms sporophyte which produces haploid spores to give rise to new plants. 
 
Types of Bryophytes 
 
Chlorophyceae  Phaeophyceae  Rhodophyceae 
- Green algae chlorophyll 
a&b dominant. 
Unicellular to 
filamentous. 
- Chloroplast of different 
shape( cup, spiral, 
ribbon) with pyrenoids . 
- Stored food starch. 
- Reproduction 
– 
vegetative-fragmentation 
Asexual 
- by zoospores 
- Sexual 
- by gametes(iso, aniso 
and oogamous). 
- eg​Volvox, Ulothrix, 
Spirogyra, Chara ​etc. 
-Brown algae. 
- Xanthophyll, Fucoxanthin 
dominant, others are chl. a, c 
carotenoid. 
- Simple branched filamentous 
to a profusely branched large 
body. 
- Gelatinous coating on cell wall. 
- Stored food Mannitoland 
Laminarin.Reproduction 
- Vegetative by fragmentation 
Asexual By biflagellate (lateral) 
zoospores. 
Sexual by gametes(Iso, Aniso 
and Oogamy). 
- eg. ​Laminaria,Sargassum. 
- phycoerythrin 
(dominant) and others 
chlorophyll a and d. 
- Marine on surface or in 
great depths, multi 
cellular. 
- Stored food 
– Floridean starch. 
-Red algae 
- Reproduction 
Vegetative by 
fragmentation Asexual 
by non motile spores 
Sexual by oogamy. 
- eg. ​Gracilaria, Gelidium 
Liverworts  Mosses 
 
1.Thallus dorsiventrally flattened (Liver shaped), leafy 
members with leaf like appendages. 
2. Asexual reproduction by fragmentation , gemmae 
formation. 
3.Sexual reproduction - antheridia and archegonia 
produced. 
4. Antherozoids fuse with eggs to form zygotes which 
give rise to Sporophyte. 
5. Sporophyte - with foot, seta & capsule. 
6. Spores give rise to new plants (gametophyte). 
eg. ​Riccia, Marchantia ​etc. 
Marchantia 
- Thallus : ​Two stages 
(gametophyte) – 
(a) Thread like Protonema (b)erect 
Leafy stage. 
1. Reproduction : 
Vegetative by Fragmentation of 
protonema 
& Sexual by antherozoids & egg. 
2. Zygote forms Sporophyte with foot, 
seta 
capsule. 
-Sporophyte forms spores which 
germinate to form protonema. 
eg. ​Funaria, Polytrichum ​etc. 
 
Funaria 
   Pteridophyte:       
      -  Group of first terrestrial plants having vascular tissue viz. 
Xylem & Phloem. 
      -  True stem, root & leaf. 
      -  ​Found in damp, shady places.​ ​Sporophyte makes the 
main plant body. 
      -  Sporophylls of Sporophyte bear sporangia (sori) on the 
ventral side producing haploid spores. 
      -  spores give rise to Prothallus which is leafy & autotrophic. 
      -  Prothallus bears sex organs – male – Antheridium and 
female- Archegonium. 
      -  Fertilisation leads into zygote formation which produces 
diploid Sporophyte. 
   Heterospory and 
Seed habit: 
     
      -  Two types of spores Microspore and Megaspore are 
produced in some members viz. ​Selaginella, Salvinia. 
      -  called Heterospory. 
 
 
-Androecium is male part and one unit is stamen. 
-Gynoecium is the female part and one unit is carpel and has ovules. 
-Ovule bears embryo sac. 
-Embryo sac is seven celled and has Egg   
 
01 – haploid. Synergids  
02 – haploid. Antipodals    
03 - haploid. Secondary nucleus   
04 – diploid. 
 
-Reproduction by vegetative and sexual methods. 
      -  Heterospory is considered as the beginning of seed habit 
in terrestrial plants. 
         eg. ​Pteris, Dryopteris ​etc. 
   GYMNOSPERMS       
      -  Medium sized trees and shrubs. 
      -  Main plant body Sporophyte 
      -  In some members roots may have a fungal association 
called Mycorrhiza. 
   -bilus.       
      -  Microspore i.e. pollens reaches to ovules.Pollen tubes 
help to transfer male gametes up to egg of archegonia 
present in female gametophyte of ovule. 
         Zygote develops in an embryo inside seed 
      -  e.g. ​Cycas, Pinus ,Cedrus​etc. 
   ANGIOSPERMS       
         Large no. of plants in varied habitats, small microscopic 
plants (​Wolfia​) to large trees 
      -  ​Group of plants having covered seeds in fruits. 
      -  Produce ​flowers ​having reproductive organs. 
      -  Most evolved plants. 
-In sexual reproduction pollens shed off and reach the stigma of Gynoecium by pollination. 
-Pollen germinates to form pollen tubes with two male gametes and one tube nucleus. 
-One gamete fuses with egg (Syngamy) and other with secondary nucleus to form PEN 
(primary endosperm nucleus). The whole process is called Double fertilization. 
-Zygote forms embryo and PEN forms Endosperm in ovule which changes into seed inside fruit. 
-Ovary wall changes into Pericarp (fruit wall). 
-Alternation of generation occurs. 
 
Plant life cycle and alternation of Generation – 
 
-​Alternate stages of haploid (n) and Diploid (2n) phases in life cycle of plants. 
 
- Three Patterns - 
 
Haplontic  Diplontic  Haplodiplontic 
- Dominating phase 
haploid (n). 
-only zygote diploid (2n). 
-Haploid spores form 
the main plant body 
eg. ​Algae  viz. 
Ulothrix,Spirogyra ​etc. 
-Dominating phase diploid 
(2n). 
-Haploid phase only in a single 
cell or few celled gametophytes. 
-Zygote forms embryo which 
forms Sporophyte (main plant 
body). 
eg.    
Gymnosperms Or Angiosperms 
-Intermediate i.e.haploid & 
diploid stages equal. 
-Gametophyte & Sporophyte 
stages both may be free living. 
eg. Bryophytes & Pteridophyte. 
1-  Phylogeny  -     Evolutionary history of organisms . 
2-  Zoospores  -     Motile spores with flagella . 
3-  Gametophyte  -     Haploid stage of plant, producing gametes. 
4-  Sporophyte  -     Diploid stage of plants producing spores. 
5-  Archegonium  -     Female reproductive structure. 
6-  Antheridium  -     Male reproductive structure. 
7-  Megasporangium  -     The structure which bears megaspores. 
8-  Sporophyll  -     Leaf bearing sporangia producing spores. 
 
 
 
Economically useful as- 
 
a) Large photo synthesiser, release 02 . 
b)Food for aquatic animals, humans. 
c)Produce Algin (Brown algae), carrageen (red algae), agar (​gelidium, gracilaria​) 
 
- ​Chlorella, Spirullina​- in space travel as protein rich food. 
   -  Numerical 
taxonomy 
-     based on several features compared collectively by 
computer. 
   -  Cytotaxonomy  -     based on cytological features. 
   -  Chemotaxonomy  -     based on chemical constituents. 
Algae 
– 
              
   -  Group of chlorophyllous, simple, thalloid plants. 
   -  Largely aquatic, grow on soil, stone, wood etc or symbiotic. 
   -  Unicellular to large filamentous. 
Chlorophyceae  Phaeophyceae  Rhodophyceae 
 
Bryophytes ( Amphibians of plant Kingdom) –  
​Group of autotrophic plants with thallus having true roots, stem and leaves with multi cellular sex 
organs. 
​Occurs on damp, humid and shaded soil. 
​Root like rhizoids present. 
-​Main plant body gametophyte bears Antheridia and Archegonia.​ ​Biflagellate antherozoids produced 
from Antheridium and reach through water to egg in Archegonium. 
-​Zygote forms sporophyte which produces haploid spores to give rise to new plants. 
 
Types of Bryophytes 
 
- Green algae chlorophyll 
a&b dominant. 
Unicellular to 
filamentous. 
- Chloroplast of different 
shape( cup, spiral, 
ribbon) with pyrenoids . 
- Stored food starch. 
- Reproduction 
– 
vegetative-fragmentation 
Asexual 
- by zoospores 
- Sexual 
- by gametes(iso, aniso 
and oogamous). 
- eg​Volvox, Ulothrix, 
Spirogyra, Chara ​etc. 
-Brown algae. 
- Xanthophyll, Fucoxanthin 
dominant, others are chl. a, c 
carotenoid. 
- Simple branched filamentous 
to a profusely branched large 
body. 
- Gelatinous coating on cell wall. 
- Stored food Mannitoland 
Laminarin.Reproduction 
- Vegetative by fragmentation 
Asexual By biflagellate (lateral) 
zoospores. 
Sexual by gametes(Iso, Aniso 
and Oogamy). 
- eg. ​Laminaria,Sargassum. 
- phycoerythrin 
(dominant) and others 
chlorophyll a and d. 
- Marine on surface or in 
great depths, multi 
cellular. 
- Stored food 
– Floridean starch. 
-Red algae 
- Reproduction 
Vegetative by 
fragmentation Asexual 
by non motile spores 
Sexual by oogamy. 
- eg. ​Gracilaria, Gelidium 
Liverworts  Mosses 
 
1.Thallus dorsiventrally flattened (Liver shaped), leafy 
members with leaf like appendages. 
2. Asexual reproduction by fragmentation , gemmae 
formation. 
3.Sexual reproduction - antheridia and archegonia 
produced. 
4. Antherozoids fuse with eggs to form zygote which 
gives rise to Sporophyte. 
5. Sporophyte - with foot, seta & capsule. 
6. Spores give rise to new plants (gametophyte). 
eg. ​Riccia, Marchantia ​etc. 
Marchantia 
- Thallus : ​Two stages 
(gametophyte) – 
(a) Thread like Protonema (b)erect 
Leafy stage. 
1. Reproduction : 
Vegetative by Fragmentation of 
protonema 
& Sexual by antherozoids & egg. 
2. Zygote forms Sporophyte with foot, 
seta 
capsule. 
-Sporophyte forms spores which 
germinate to form protonema. 
eg. ​Funaria, Polytrichum ​etc. 
 
Funaria 
   Pteridophyte:       
      -  Group of first terrestrial plants having vascular tissue viz. 
Xylem & Phloem. 
      -  True stem, root & leaf. 
      -  ​Found in damp, shady places.​ ​Sporophyte makes the 
main plant body. 
      -  Sporophylls of Sporophyte bear sporangia (sori) on the 
ventral side producing haploid spores. 
      -  spores give rise to Prothallus which is leafy & autotrophic. 
      -  Prothallus bears sex organs – male – Antheridium and 
female- Archegonium. 
      -  Fertilisation leads into zygote formation which produces 
diploid Sporophyte. 
   Heterospory and 
Seed habit: 
     
      -  Two types of spores Microspore and Megaspore are 
produced in some members viz. ​Selaginella, Salvinia. 
      -  called Heterospory. 
 
 
-Androecium is male part and one unit is stamen. 
-Gynoecium is the female part and one unit is carpel and has ovules. 
-Ovule bears embryo sac. 
-Embryo sac is seven celled and has Egg   
 
01 – haploid. Synergids  
02 – haploid. Antipodals    
03 - haploid. Secondary nucleus   
04 – diploid. 
 
-Reproduction by vegetative and sexual methods. 
      -  Heterospory is considered as the beginning of seed habit 
in terrestrial plants. 
         eg. ​Pteris, Dryopteris ​etc. 
   GYMNOSPERMS       
      -  Medium sized trees and shrubs. 
      -  Main plant body Sporophyte 
      -  In some members roots may have fungal association 
called Mycorrhiza. 
   -bilus.       
      -  Microspore i.e. pollens reaches to ovules.Pollen tubes 
help to transfer male gametes up to egg of archegonia 
present in female gametophyte of ovule. 
         Zygote develops in an embryo inside seed 
      -  e.g. ​Cycas, Pinus ,Cedrus​etc. 
   ANGIOSPERMS       
         Large no. of plants in varied habitats, small microscopic 
plants (​Wolfia​) to large trees 
      -  ​Group of plants having covered seeds in fruits. 
      -  Produce ​flowers ​having reproductive organs. 
      -  Most evolved plants. 
-In sexual reproduction pollens shed off and reach the stigma of Gynoecium by pollination. 
-Pollen germinates to form pollen tubes with two male gametes and one tube nucleus. 
-One gamete fuses with egg (Syngamy) and other with secondary nucleus to form PEN 
(primary endosperm nucleus). The whole process is called Double fertilization. 
-Zygote forms embryo and PEN forms Endosperm in ovule which changes into seed inside fruit. 
-Ovary wall changes into Pericarp (fruit wall). 
-Alternation of generation occurs. 
 
Plant life cycle and alternation of Generation – 
 
-​Alternate stages of haploid (n) and Diploid (2n) phase in the life cycle of plants. 
 
- Three Patterns - 
 
Haplontic  Diplontic  Haplodiplontic 
- Dominating phase 
haploid (n). 
-only zygote diploid (2n). 
-Haploid spores form 
the main plant body 
eg. ​Algae  viz. 
Ulothrix,Spirogyra ​etc. 
-Dominating phase diploid 
(2n). 
-Haploid phase only in single cell 
or few celled gametophytes. 
-Zygote forms embryo which 
forms Sporophyte (main plant 
body). 
eg.    
Gymnosperms Or Angiosperms 
-Intermediate i.e.haploid & 
diploid stages equal. 
-Gametophyte & Sporophyte 
stages both may be free living. 
eg. Bryophytes & Pteridophyte. 
      1              Symmetry  :     Distribution of body parts around a 
      2              hypothetical 
axis. 
:     Ostia : Minute pores on the body of the 
sponge. 
      3              Osculum  :     Large outlet in body of sponge. 
      4              Hermaphrodite  :     Bisexual. 
      5              Polyp  :     Sessile cylindrical form of coelenterate 
(Asexual). 
      6              Medusa  :     Umbrella shaped free swimming sexual 
stage of coelenterate. 
      7              Acoelomate  :     No coelom. 
      8              Pseudocoelom  :     With false coelom (cavity not underlined 
by mesoderm). 
      9              Dioecious  :     Unisexual. 
      1
0 
            Operculum  :     Cover over gills in fish 
      1
1 
            Notochord  :     Dorsal rod like bone 
      1
2 
            Homoiotherms  :     Warm blooded. 
      1
3 
            Bioluminescence  :     Emit light. 
-Levels of organisation 
        
      i)  Cellular level- loose cell aggregates, small division of labour eg. Sponges 
      ii)  Tissues grouped into organs eg. 
Coelenterate. 
      iii)  Organ level-Tissues grouped into organs eg. Higher animals. 
Circulatory system 
      a)  Open type- No blood vessels, blood flows in sinuses. 
      b)  Close type- Blood flows in closed vessels. 
Symmetry 
       
      -  Asymmetrical – No symmetry eg. Sponges. 
      -      
      -  Radial Symmetry – Any plane passing through the central axis divides the body in two 
equal halves. 
      -  Bilateral Symmetry – Body can be divided into two equal halves through one plane 
only. 
 
Diploblastic and Triploblastic organisation – 
     
      -  Two embryonic layers – Ectoderm and Endoderm – Diploblastic. 
      -  Three embryonic layers- Ectoderm, Mesoderm and endoderm- Triploblastic. 
Coelom – 
        
      -  Body cavity lined by mesoderm- True Coelom. 
      -  Body cavity not lined by mesoderm Pseudo Coelom. 
 
 
 
      -   
No body cavity – Acoelomate. 
Segmentation – 
        
      -  True segments- Metameres (Body divided internally and externally). 
Notochord – 
        
      -  With notochord – Chordates. 
      -  Without notochord – Non-Chordates. 
  
Classification of Animals – 
        
Phylum Porifera – 
  
           
   -  Marine.    
      -  Multicellular, cellular grade body.      
      -  Asymmetrical.    
      -  Water canal system for food, respiration and excretion.    
      -  Body wall with many pores – Ostia.    
      -  Diploblastic.    
      -  Water enters through Ostia and goes out through Osculum.    
      -  Skeleton of spicules or spongin fibres.    
      -  Hermaphrodite.    
      -  Reproduction asexual by fragmentation and sexual by gametes.    
      -  Fertilisation is internal, development indirect.    
      -  eg. ​Sycon, Spongilla, Euspongia​etc.    
    
Phylum Coelenterata (Cnidaria) – 
  
              
      -  Aquatic (marine), Sessile or free living.    
      -  Presence of Cnidoblasts or Cnidocytes – Stinging cells.    
      -  Cnidoblasts are for defence, anchorage or predation.    
      -  Tissue level body organisation.    
      -  Diploblastic.    
      -  Central gastrovascular cavity, single opening mouth.    
      -  Two body forms – Polyp (Asexual), Medusa (Sexual) stage.    
      -   
eg Hydra​, Physalia, Obelia, Aurelia ​etc. 
  
 
  
Phylum Ctenophora (sea walnuts or comb jellies) – 
              
      -  Marine, radial symmetry, Diploblastic, tissue grade.    
      -  Eight external rows of Comb Plates.    
      -  Bioluminescence.    
      -  eg. ​Ctenoplana, Pleurobrachia ​etc.    
      -  Reproduction sexual.    
  
 
     
Phylum Platyhelminthes (Flatworms) – 
  
              
      -  Body dorsoventrally flattened.    
      -  Endoparasite.    
      -  Triploblastic, bilateral symmetry.    
      -  Acoelomate    
      -   
-Flame cells- for excretion & osmoregulation. 
  
      -   
-Flame cells- for excretion & osmoregulation. 
  
      -  Hermaphrodite    
      -  Reproduction – Sexual - Fertilisation internal.    
      -  Organ level organisation.    
      -  eg. ​Taenia Solium​(Tapeworm), ​Fasciola hepatica ​(liver fluke).    
     
Phylum Aschelminthes (Roundworm) –    
              
      -  Free living or parasitic, aquatic and terrestrial. Bilateral symmetry and 
Triploblastic. 
  
      -  Pseudocoelomate. Muscular pharynx.    
      -  Male smaller and thinner than female. Fertilisation internal, development direct 
or indirect. 
  
      -   
eg. ​Ascaris Lumbricoides, Wucher Aria Bancroftii Etc​. 
  
     
Phylum Annelida –    
              
      -  Aquatic or terrestrial.    
      -  Free living or parasitic.    
      -  Organ system level body bilateral symmetry and Triploblastic coelomate.    
      -  Nephridia for excretion.    
      -  Ventral double Nerve cord.    
      -  Monoecious or Dioecious.    
      -   
Reproduction – Sexual. eg. 
  
      -  Earthworm(​Pheretima​),​Nereis ​etc.    
      -  Metameric segmentation.    
     
Phylum Arthropoda( Jointed Legs) – 
  
              
      -  Largest phylum.    
      -  Bilateral symmetry, Triploblastic, segmented coelomate.    
      -  Body - Head, Thorax and Abdomen(three parts).    
      -  Blood without haemoglobin and circulatory system open.    
      -  Respiration by gills, book lungs and trachea.    
      -  Excretion by malpighian tubules.    
     
Phylum Mollusca – 
  
              
      -  Soft body animals. Second largest phylum.    
      -   
Aquatic, bilateral symmetry, triploblastic, coelomate. Body unsegmented 
divided into head, muscular foot and visceral hump. 
  
      -  Soft mantle over visceral hump. Respiration and excretion through gills.    
      -   
Unisexual. 
  
      -  Sensory tentacles on head and Radula in mouth.    
      -  Oviparous.    
      -  -eg.​Pila, ​Octopus etc    
     
PHYLUM ECHINODERMATA 
  
              
      -  Body surface spiny, (due to calcareous ossicles)    
      -  Marine , organ system level, adult radially symmetrical, triploblastic coelomate.    
         Mouth ventral    
      1  Water vascular system present for locomotion, capture and transport of food 
and respiration. 
  
      2  Sexes separate fertilization external, development indirect    
      -  e.g. ​Asterias ​(Starfish), ​Sea urchin ​(Echinus), etc.    
     
PHYLUM HEMICHORDATA 
  
              
      1  Marine    
      2  Bilateral symmetry, triploblastic, coelomate    
      3  Body    
      i  Proboscis    
      ii  Collar    
      iii  Trunk      
      4  Circulatory system open    
      5  Gills for respiration    
      6  Proboscis gland for ​excretion    
         Sexes separate fertilization external, development indirect, e.g. ​Balanoglossus​.    
PHYLUM- CHORDATA 
  
Distinguishing features    
      1  Presence of Notochord    
      2  Dorsal hollow nerve cord    
      3  Paired pharyngeal gills slits    
      4  Post anal tail present    
      5  Heart is ventral    
  
SUB PHYLA – 
 
  
      1  Urochordata ​or ​Tunicata​, Notochord only in larval tail e.g. ​Ascidia    
      2  Cephalochordata ​notochord head to tail in all stage e.g. ​Branchiostoma    
      3  Vertebrata​: Notochord replaced by a vertebral column. 
  
  
SUBPHYLUM- VERTEBRATA 
 
AGNATHA-without jaw    
      CLASS- Cyclostomata-    
      Ectoparasite on fish    
      -  C ircular mouth    
      -  No scales and paired fins    
      -  Marine but go in fresh water for spawning and die. Larva returns to ocean.    
      -  Eg. ​Petromyzon, Myxine​.    
Gnathostomata – with jaws    
      Class ​- Chondrichthyes    
      -  Aquatic and terrestrial both.    
      -  Two pairs of limbs.    
      -  No neck.    
      -  Body has head and trunk only.    
      -  No external ear, tympanum on surface.    
      -  Heart three chambered.    
      -  Cloaca present.    
      -  Respiration by gills, skin and lungs.    
      -  Sexes separate.    
      -  Fertilisation external, development direct    
      -  eg​. Ranatigrina, Bufo, Hyla ​etc.    
Class Reptilia – 
  
      -  Creeping or crawling mode of locomotion.    
      -  Skin with scales/scutes.    
      -  Tympanum on surface.    
      -  Heart three chambered (Four chambered in crocodile).    
      -  Fertilisation internal, development direct.    
      -  eg. ​Chelone, Testudo, Naja, Hemidactylus etc​.    
Class Aves – 
      -  presence of feather, beak and forelimb in form of wing.    
      -  Hind limb adapted to clasping, walking and swimming.    
      -  No glands on skin (only oil gland at tail base).    
      -  Hollow bones (pneumatic).    
      -  Air sacs connected to lungs to supplement respiration.    
      -  Crop and gizzard are additional chambers in digestive system.    
      -  Warm blooded.    
      -  Heart four chambered.    
      -  Sexes separate.    
      -  Fertilisation internal and development direct.eg.    
      -  ​Columba, Psittacula ​etc.    
Class Mammalia –    
      -  Aquatic, terrestrial and aerial.    
      -  Mammary glands present for milk production.    
      -  Two pairs of limbs.    
      -  Skin with hair.    
      -  Ear with pinna.    
      -  Homoiothermic.    
      -  Heart four chambered.    
      -  Excretion by kidneys.    
      -  .Sexes separate.    
         Internal fertilisation, vivipary (exception ​Platypus​).    
      -  eg. Whale, Rat , Man, Tiger etc.    
      -  Respiration by lungs    
 
Morphology
The study of various external features of the organism is known as morphology. The angiosperms 
are characterized by the presence of roots, stems, leaves, flowers and fruits. 
 
 
 
 
 
 
The Root:​The root is the underground part of the plant and develops from elongation of the 
radicle of the embryo. 
Various types of root 
1.  Tap root: ​Originates from radicle. Dicotyledonous plants eg.​, ​mustard,gram, mango. 
2.  Fibrous root: ​Originates from base of the stem. Monocotyledonous plants ​e.g., ​wheat, 
paddy. 
3.  Adventitious root: ​Originates from parts of the plant other than radicle. Banyan tree 
(Prop roots)Maize (Stilt roots) 
Root Cap:​The root is covered at the apex by the thimble-like structure which protects the 
tender apical part o 
the root. 
Regions of the root: 
1.  Region of 
meristematic activity 
:     Cells of this region have the capability to divide. 
2.  Region of elongation        Cells of this region are elongated and enlarged, 
responsible for root growth. 
3.  Region of Maturation        Maturation:This region has differentiated and matured 
cells. Some of the epidermal cells o 
thi read-like root hairs for absorption of water and 
minerals. 
           
Roots are modified for support, storage of food, respiration. 
 
Modifications of Root 
 
 
 
 
Modifications of Stem 
•  For support  :     Prop roots in Banyan tree, stilt roots in maize and sugarcane. 
•  For respiration  :     Pneumatophores in Rhizophora (Mangrove). 
•  For storage of 
food 
:     Fusiform (radish), Napiform (turnip), Conical (carrot). 
              
The Stem  :     Stem is the aerial part of the plant and develops from plumule of the 
embryo.It bears ​nodes and 
internodes 
Modifications of 
Stem 
      In some plants the stems are modified to perform the function of 
storage of food, support, protection 
and vegetative propagation 
•  For food storage  :     Rhizome​ (ginger), ​Tuber ​(potato), ​Bulb​ (onion), and 
Corm(colocasia). 
•  For support  :     Stem ​tendrils ​of watermelon, pumpkin, cucumber. 
•  For protection  :     Axillary buds of the stem of Citrus Bougainvillea get modified 
into pointed ​thorns​. 
•  For vegetative 
propagation 
:     Underground stems of grass, strawberry, lateral branches of 
mint and 
jasmine. 
•  For assimilation of 
food 
:     Flattened stem of Opuntia contains chlorophyll and performs 
photosynthesis 
Venation  :     The arrangement of veins and veinlets in the lamina of leaf. 
 
 
 
  
 
The Leaf  :     Develops from shoot apical meristem, flattened, green 
structure, manufacture the 
food by photosynthesis. It has buds in the axle. A typical leaf 
has​ leaf base, petiole ​and ​lamina. 
Types of Venation: 
1.  Reticulate  :     Veinlets form a network as in leaves of dicotyledonous plants(China 
rose, Peepal). 
Parallel 
2.  Parallel  :     Veins run parallel to each other as in leaves of monocotyledonous plants 
(grass, maize). 
Modifications of Leaves 
•  Tendrils  :     (Climbing) −Sweet wild pea 
•  Spines  :     (Protection) −Aloe, Opuntia, Argemone 
   Fleshy  :     (Storage) −Onion 
•  Pitcher  :     (Nitrogen Nutrition) −Nepenthes 
The Inflorescence        The arrangement of flowers on the floral axis. 
Main types of Inflorescence 
1.  Racemose  :     Main axis is unlimited in growth-Radish, Mustard, Amaranthus. 
2.  Cymose  :     Main axis is limited in growth-Cotton, Jasmine, Calotropis. 
3.  Special type        Ficus, Salvia, Euphorbia. 
Symmetry of flower  On the basis of no. 
of 
floral appendages 
On the basis of position of 
calyx,corolla, 
androecium with respect to ovary 
 
 
Actinomorphic 
(radial 
symmetry) 
Trimerous  Hypogynous (superior ovary) 
Zygomorphic 
(bilateral 
symmetry) 
Tetramerous  Perigynous (half inferior ovary) 
Asymmetric 
(irregular) 
Pentamerous  Epigynous (inferior ovary) 
1.  Calyx  :     Sepals, green in colour, leaf like.Gamosepalous− (Sepals united) 
Polysepalous− (Sepals free) 
2.  Corolla  :     Petals, usually brightly coloured to attract insects 
forpollinationGamopetalous− (Petals 
united)Polypetalous − (Petals free) 
           
Aestivation  :     The mode of arrangement of sepals or petals in floral bud with 
respect to other members of the 
same whore. 
  
Types of aestivation 
1.  Valvate  :     Sepals or petals do not overlap the sepal or petal at 
margins as in​Calotropis. 
2.  Twisted  :     Sepals or petals overlap the next sepal or petal as in 
China rose. 
3.  Imbricate  :     margins of sepals or petals overlap one another but not 
in any definite direction as in Gulmohar. 
4.  Vexillary  :     largest petal overlaps the two lateral petals which in 
turn overlap two smallest anterior petals as in Pea​. 
(Papilionaceous) 
   Vexillary  :     If calyx and corolla are not distinguishable (sepals), 
they are called perianth 
   Perianth          
3.  Androecium  :     If calyx and corolla are not distinguishable (sepals), 
they are called perianth 
4.  Gynoecium  :     Made up of one or more carpels, ​the female 
reproductive part consists​ of ​stigma​, ​style ​and 
ovary​, ovary bears one or more ​ovules​. Carpels may 
be ​apocarpous​(free) or ​syncarpous ​(united). After 
fertilisation, ovules develop into seeds and ovary into 
fruit. 
 
Placentation : ​The arrangement of ovules within the ovary. 
Types of Placentation : 
   Marginal : ​Placenta forms a ridge along the ventral 
suture of ovary as in pea. 
   Parietal : ​Ovules develop on inner wall of ovary as in 
mustard. 
      ree central : ​Ovules borne on central axis, lacking 
septa as in ​Dianthus​. 
:     Basal : ​Placenta develops at the base of ovary as in 
sunflower. 
The fruit : ​After fertilization, the mature ovary develops into fruit. The ​parthenocarpic 
fruits are formed from ovary without fertilization. 
 
 
 
 
  
  
  
Structure of a Dicotyledonous Seed: 
 
 
 
Structure of a Monocotyledonous Seed: 
 
 
 
Description of Some Important Families: 
 
1.​Fabaceae (Pulse Family) 
 
 
 
2.Solanaceae (Potato Family) 
Floral formula: % K​(5)​ C1 + ​2​ + ​(2)​ A​(9)​ + ​1​ G​1 
 
 
 
 
POINTS TO REMEMBER 
 
Anatomy : ​Anatomy is the study of internal structure of organisms. Plant anatomy includes 
organisation and structure of tissues. 
 
Tissue : ​A group of similar cells along with intercellular substances which perform a specific 
function. 
 
Meristematic tissues :​ The meristematic tissue is made up of the cells which have the capability 
to divide. Meristems in plants are restricted to a specialised region and responsible to the growth of 
plants. 
 
Axillary bud : ​The buds which are present in the axils of leaves and are responsible for forming 
branches or flowers. 
 
Permanent tissues : ​The permanent tissues are derived from meristematic tissue and are 
composed of cells, which have lost the ability to divide. 
 
Collenchyma : ​It is formed of living, closely packed isodiametric cells. It’s cells are thickened at 
the corners due to deposition of cellulose and pectin. It provides mechanical support to the growing 
parts of the plant. 
 
Sclerenchyma : ​It is formed of dead cells with thick and lignified walls. They have two types of 
cells : fibres and sclereids. 
 
Xylem : ​Xylem consists of tracheids, vessels, xylem fibres and xylem parenchyma. It conducts 
water and minerals from roots to other parts of the plant. Protoxylem : The first formed primary 
xylem elements. Metaxylem : The later formed primary xylem. 
 
Endarch :​ Protoxylem lies towards the centre and metaxylem towards the periphery of the organ. 
 
Phloem :​ Phloem consists of sieve tube elements, companion cells, phloem fibres and phloem 
parenchyma. Phloem transports the food material from leaves to various parts of the plant. 
Protophloem : First formed phloem with narrow sieve tubes. Metaxylem : Later formed phloem with 
bigger sieve tubes. 
 
The Tissue System 
 
1. Epidermal tissue system :​ It includes cuticle, epidermis, epidermal hairs, root hairs, trichomes 
and stomata. 
 
2. The ground tissue system :​ It is made up of parenchyma, collenchyma, sclerenchyma. In 
dicot stems and roots the ground tissue is divided into hypodermis cortex, endodermis, pericycle, 
medullary rays and pith. 
 
3. The vascular tissue system :​ It includes vascular bundles which are made up of xylem and 
phloem. 
 
Secondary growth in dicot stem : 
 
An increase in the girth (diameter) in plants. Vascular cambium and cork cambium (lateral 
meristems) are involved in secondary growth. 
 
1. Formation of cambial ring : Intrafascicular cambium + interfascicular cambium. 
2. Formation of secondary xylem and secondary phloem from cambial ring. 
3. Formation of spring wood and autumn wood. 
4. Development of cork cambium (phellogen) 
 
 
(Phellogen + Phellem + Phelloderm) = Periderm 
 
Secondary growth in dicot roots :​ Secondary growth in dicot root occurs with the activity of 
secondary meristems (vascular cambium). This cambium is produced in the stele and cortex, and 
results in increasing the girth of dicot roots. 
POINTS TO REMEMBER 
 
Tissue : ​A group of similar cells along with intercellular substances which perform a specific 
function. 
 
Simple epithelium :​ is composed of a single layer of cells resting on a basement membrane. 
 
Compound epithelium : ​consists of two or more cell layers and has protective function. 
 
Areolar tissue :​ is a type of loose connective tissue present beneath the skin. 
 
Adipose tissue :​ is a type of loose connective tissue which has cells specialised to store fats. 
 
Neuroglia :​ A delicate connective tissue which supports and binds together the nerve tissue in the 
Central Nervous Tissue. 
 
Malpighian tubules :​ Yellow coloured thin, filamentous tubules present at the junction of midgut 
and hindgut in cockroach; helps in excretion. 
 
Uricotelic :​ Animals which excrete nitrogenous waste in the form of uric acid. 
 
Tight junctions :​ Plasma membranes of adjacent cells are fused at intervals. They help to stop 
substances from leaking across a tissue. 
 
Adherens junctions :​ Perform cementing function to keep neighbouring cells together. 
 
Gap junction :​ Facilitate the cells to communicate with each other by connecting the cytoplasm of 
adjoining cells for rapid transfer of ions, small molecules and sometimes big molecules. 
 
Compound 
 
•Made of more than one layer of cells. 
• Provide protection against chemical and mechanical stresses. 
• Cover dry surface of skin, moist cavity, pharynx, inner lining of ducts of salivary glands and 
pancreatic ducts. 
 
CONNECTIVE TISSUE 
 
Loose Connective Tissue (has cells and fibres loosely arranged in semi-fluid ground substance) 
 
(i) Areolar Tissue : 
• present beneath the skin. 
• contains fibroblasts, macrophages and mast cells. 
• serves as a support framework for epithelium. 
 
(ii) Adipose Tissue : 
• located beneath the skin. 
• cells are specialised to store fats. Dense Connective Tissue Fibres and fibroblasts are compactly 
packed. 
 
(i) Dense Regular : 
• Collagen fibres present in rows. 
• Tendons attach skeletal muscle to bone. 
• Ligaments attach bone to bone. 
 
(ii) Dense Irregular : 
• Has collagen fibres and fibroblasts oriented differently. 
• This tissue is present in the skin. Specialised Connective Tissue 
 
(i) Cartilage made up of chondrocytes and collagen fibres. 
(ii) Bones Ground substance is rich in calcium salts and collagen fibres Osteocytes are present in 
lacunae 
(iii) Blood Fluid connective tissue, consists of plasma and blood cells Muscle Tissue Consists of 
long, highly contractile cells called fibres; bring about move- ment and locomotion. 
 
(i) Skeletal Muscle : 
• Consists of long cylindrical, multinucleated fibres. 
• Closely attached to skeletal bones. 
• Striated. 
 
(ii) Smooth Muscles : 
• Consists of spindle like, uninucleate fibres. 
• Do not show striations. 
• Wall of internal organs such as blood vessels, stomach and intestine. 
 
(iii) Cardiac Muscles : 
• Short, cylindrical, uninucleate fibres. 
• Occur in the heart wall. 
• Intercalated discs for communication. Neural Tissue 
• Neurons are the functional unit and are excitable cells. 
• Neuroglial cells make up more than half the volume of neural tissue. 
 
They protect and support neurons. Cockroach − Periplaneta americana is a terrestrial, nocturnal, 
omnivorous, unisexual, oviparous insect. Body covered by a chitinous, hard exoskeleton of hard 
plates called sclerites. 
 
Head : ​Triangular, formed by fusion of 6 segments. Bears a pair of anten- nae, compound eyes. 
Mouth parts consist of labrum (upper lip), a pair of mandibles, a pair of maxillae, labium (lower lip), 
hypopharynx (acts as tongue). 
 
Thorax : ​3 segments; prothorax, mesothorax and metathorax. 
 
Bears 2 pairs of wings :​ Forewings : tegmina (mesothoracic). Hindwings : transparent, 
membranous (metathoracic) and 3 pairs of legs in thoracic segments. 
 
Abdomen : ​10 segments. Bears a pair of long, segmented anal cerci in both sexes and a pair of 
short, unjoined anal styles in males only. Also has anus and genital aperture at the hind end. Genital 
aperture is surrounded by external genitalia called gonapophysis or phallomere. 
 
Anatomy : ​Study of the morphology of internal organs. Alimentary canal : Divided into foregut, 
midgut and hindgut. 
Mouth → Pharynx → Oesophagus → Crop (stores food) → Gizzard (grind- ing of food) → Hepatic 
caeca (at junction of fore and midgut; secretes digestive juice) → Hindgut (ileum, colon, rectum) → 
Anus. 
 
Blood vascular system : ​Open type, visceral organs bathed in haemolymph (colourless plasma 
and haemocytes). Heart consists of an elongated muscular tube and differentiated into funnel 
shaped chambers with ostia on either side. Blood from sinuses enters heart through ostia and is 
pumped anteriorly to sinuses again. Blood colourless (hemolymph). 
 
Respiratory system :​ Network of trachea which open through 10 spiracles. Spiracles regulated by 
sphincters. Oxygen delivered directly to cells. Excretion and osmoregulation by Malpighian tubules; 
uricotelic (Uric acid as excretory product). 
 
Nervous system : ​Consists of series of fused segmentally arranged ganglia joined by paired 
longitudinally connectives on the ventral side. three ganglia in thorax, six in abdomen. Brain 
represented by supra-oesophageal ganglion. 
 
Reproductive system :​ Male − Pair of testes (4th-6th segments) → vas deferens → ejaculatory 
duct → male gonopore. Glands − Seminal vesicle (stores sperms), mushroom shaped gland (6th- 7th 
segment). 
 
Female reproductive system :​ A pair of ovaries (with 8 ovarian tubules) → Oviduct → Genital 
chamberSperms transferred through spermatophores. Fertilised eggs encased in caps- sules called 
ootheca; development of P. americana paurometabolous (incomplete metamorphosis). 
 
Nymph grows by moulting 13 times to reach adult form. Interaction with man 
• Pests destroy food and contaminate it. 
• Can transmit a variety of bacterial diseases (Vector). 
POINTS TO REMEMBER 
 
Gram positive bacteria :​ Bacteria that take up gram stain. 
 
Gram negative bacteria :​ Bacteria that do not take up gram stain. 
 
Prokaryotic cells : ​Cells which lack a well defined nucleus and membrane bound cell organelles. 
e.g., bacteria, cyanobacteria, mycoplasma. 
 
Eukaryotic cells : ​Cells which have a well defined nucleus and membrane bound cell organelles. 
e.g., all protists, plants, animals and fungi cells. 
 
Passive transport : ​Transport of molecules across a membrane along the con- centration 
gradient, i.e., from higher to lower concentration without the consumption of energy. 
 
Active transport : ​Transport of molecules against concentration gradient, i.e., from lower to higher 
concentration with the consumption of energy (ATP). 
 
Polyribosome/polysome :​ A chain-like structure formed when several ribosomes are attached to 
a single mRNA. PPLO : Pleuropneumonia Like 
 
Organisms. Cell : Cell is the structural and functional unit of life. Cell Theory was formu- lated by 
Scheleiden and Schwann and was modified by 
Rudolf virchow states : 
(a) All living organisms are composed of cells and products of cells. 
(b) All cells arise from pre-existing cells. Prokaryotic cells Genetic material is not enveloped by a 
nuclear envelope. 
 
Many bacteria contain extra chromosomal DNA − plasmids. Cell Envelope Prokaryotic cells have a 
chemically complex cell envelope which consists of a tightly bound 3 layered structure i.e., 
outermost ​glycocalyx​ followed by ​cell wall ​and then p​lasma membrane. 
 
A specialised structure − ​mesosome​ is formed by the ​extension of plasma ​membrane into the 
cell. Mesosomes help in cell wall formation, DNA replication and distribution to daughter cells, 
respiration, secretion process, to increase surface area of plasma-membrane and enzymatic 
content. 
 
Bacterial cells may be motile or non-motile. Motile bacterias have ​flagella​ composed of three parts 
− filament, hook and basal body. Pili and fimbriae are surface structures which do not play any role 
in motility. These structures help the bacteria to attach with rocks and the host tissues. 
 
70S ribosomes are associated with plasma membranes and are made of two subunits − 50S and 
30S. Ribosomes are a site of protein synthesis. 
Eukaryotic cells 
 
Possess an organized nucleus with nuclear envelope and have a variety of complex locomotory and 
cytoskeletal structures. 
 
Cell Membrane 
 
Singer and Nicolson (1972) gave ‘Fluid mosaic model’. According to this the quasi-fluid nature of 
lipid enables lateral movement of proteins within the overall bilayer 
 
Functions : ​Selectively permeable. 
 
Cell Wall ​is a non-living rigid structure which gives shape to the cell and protects the cell from 
mechanical damage and infection, helps in cell-to-cell interaction and provides a barrier to 
undesirable macromolecules. 
 
Cell wall of algae is made of cellulose, galactans, mannans and minerals like calcium carbonate. 
Plant cell wall consists of cellulose, hemicellulose, pectins and proteins. 
 
Middle lamella​ is made of calcium pectate which holds neighbouring cells together. 
 
Plasmodesmata​ connect the cytoplasm of neighbouring cells. 
 
Endoplasmic Reticulum (ER) ​Consists of a network of tiny tubular structures. ER divides the 
intracellular space into two distinct compartments − luminal (inside ER) and extra luminal 
(cytoplasm). 
 
(i) Rough Endoplasmic Reticulum (RER) : 
• Ribosomes attached to the outer surface. 
• Involved in protein synthesis and secretion. 
 
(ii) Smooth Endoplasmic Reticulum (SER) : 
• Lack ribosomes. 
• Site for synthesis of lipid. 
 
Golgi apparatus :​ Consists of cisternae stacked parallel to each other. Two faces of the organelle 
are convex cis or forming face and concave trans or maturing face. 
 
Functions :​ Performs packaging of materials, to be delivered either to the intracellular targets or 
secreted outside the cell. Important site of formation of glycoproteins and glycolipids. 
 
Lysosomes :​ Membrane bound vesicular structures formed by the process of packaging in the 
golgi apparatus. Contain hydrolysing enzymes (lipases, proteases, carbohydrases) which are active 
in acidic pH. Also called ‘Suicidal Bag’. 
 
Function :​ Intracellular digestion. Vacuoles : Membrane bound space found in the cytoplasm. 
Contain water, sap, excretory product, etc. 
 
Function :​ In plants tonoplast (single membrane of vacuole) facilitates transport of ions and other 
substances. Contractile vacuole for excretion in Amoeba and food vacuoles formed in protists for 
digestion of food. 
 
Mitochondria : ​Double membrane structure. Outer membrane smooth and inner membrane forms 
a number of infoldings called cristae. 
 
Function :​ Sites of aerobic respiration. Called ‘powerhouses’ of cells that produce cellular energy in 
the form of ATP. Matrix possesses a single circular DNA molecule, a few RNA molecules, ribosomes 
(70S). It divides by fission. 
 
Plastids :​ Found in plant cells and in euglenoides. Chloroplasts, chromoplasts and leucoplasts are 
3 types of plastids depending on pigments contained.Chloroplasts are double membraned structure. 
Space limited by the inner membrane is called stroma. Flattened membranous sacs called 
thylakoids in stroma. Chlorophyll pigments are present in thylakoids. 
 
Function : ​Site of photosynthesis. Ribosomes Composed of RNA and proteins; without membrane. 
Eukaryotic ribosomes are 80S. 
 
Function : ​Site of protein synthesis. Cilia and Flagella Cilia are small structures which work like oar, 
which help in movement. Flagella are longer and responsible for cell movement. They are covered 
with plasma membranes. Core is called an axoneme which has a 9 + 2 arrangement. Centrosome 
and Centrioles Centrosome contain two cylindrical structures called centrioles. Surrounded by 
amorphous pericentriolar material. Has a 9 + 0 arrangement. Centrioles form the basal body of cilia 
or flagella and spindle fibres for cell division in animal cells. 
 
Nucleus :​ With double membrane; nuclear pores; has chromatin, nuclear matrix and nucleoli (site 
for rRNA synthesis). 
 
Chromatin :​ DNA + non histone proteins. Chromosomes (on basis of position of centromere) : 
Metacentric : Middle centromere. 
 
Sub-metacentric :​ Centromere nearer to one end of chromosome. 
 
Acrocentric : ​Centromere situated close to its end. 
 
Telocentric :​ Has terminal centromere. 
 
Satellite : ​Some chromosomes have non-staining secondary constrictions at a constant location, 
which gives the appearance of a small fragment called satellite. 
POINTS TO REMEMBER 
 
Biomolecules : ​All the carbon compounds that we get from living tissues. 
 
Micromolecules : ​Molecules which have molecular weights less than one thou- sand dalton. 
 
Amino acids : ​Organic compounds containing an amino group and one car- boxyl group (acid 
group) and both these groups are attached to the same carbon atom called α α α α α carbon. 
 
 
 
Lipids : 
• Water insoluble, containing C, H, O. 
• Fats on hydrolysis yield fatty acids. 
• Fatty acid has a carboxyl group attached to an R group (contains 1 to 19 carbons). 
• Fatty 
 
Acids : ​Saturated With single bonds in the carbon chain. e.g., Palmitic acid, butyric acid. 
 
Unsaturated :​ With one or more double bonds. e.g., oleic acid, linoleic acid. 
 
Glycerol : ​A simple lipid, is trihydroxy propane. 
 
 
 
• Some lipids have fatty acids esterified with glycerol. 
• They can be monoglycerides, diglycerides and triglycerides. 
 
 
 
• Phospholipids are compound lipids with phosphorus and a phosphory- lated organic compound 
e.g., Lecithin . 
 
 
 
Nucleoside : ​Nitrogenous base + Sugar e.g., Adenosine, guanosine. 
 
Nucleotide : ​Nitrogenous base + Sugar + Phosphate group. e.g., Adenylic acid, thymidylic acid. 
 
Nucleic acid : ​Polymer of nucleotides - DNA and RNA. 
 
Biomacromolecules :​ Biomolecules with molecular weights in the range of ten thousand daltons 
and above; found in acid insoluble fraction. Lipids are not strictly macromolecules as their molecular 
weights do not exceed 800 Da but form a part of the acid insoluble pool. 
 
Proteins : 
• Are polymers of amino acids linked by peptide bonds. 
• Is a heteropolymer. 
• For functions of proteins 
 
(Refer Table 9.5, Page no. 147, NCERT, Text Book of Biology for Class XI. Structure of Proteins) 
 
(a) Primary structure :​ Is found in the form of linear sequence of amino acids. First amino acid is 
called N-terminal amino acid and last amino acid is called C-terminal amino acid. 
 
(b) Secondary structure :​ Polypeptide chain undergoes folding or coiling which is stabilized by 
hydrogen bonding. Right handed helices are observed. e.g., fibrous protein in hair, nails. 
 
(c) Tertiary structure :​ Long protein chain is folded upon itself like a hollow woolen ball. Gives a 
3-dimensional view of protein, e.g., myosin. 
 
(d) Quaternary structure :​ Two or more polypeptides with their foldings and ceilings are arranged 
with respect to each other. e.g., Human haemoglobin molecules have 4 peptide chains - 2a and 2b 
subunits. 
 
Peptide bond :​ Formed between the carboxyl (-COOH) group of one amino acid and the amino 
(-NH ) group of the next amino acid with the elimination of water moiety. 
2 Polysaccharides : ​Are a long chain of sugars. 
 
(a) Starch : ​Storehouse of energy in plant tissues. Forms helical second- ary structures. 
(b) Cellulose : ​Polymer of glucose. 
(c) Glycogen :​ Is a branched homopolymer, found as storage polysaccharide in animals. 
(d) Insulin :​ Is a polymer of fructose. 
(e) Chitin :​ Chemically modified sugar (amino-sugars) N-acetyl galac- tosamine. Form exoskeleton 
of arthropods. 
 
Anabolic pathways :​ Lead to formation of more complex structure from a sim- pler structure with 
the consumption of energy. e.g., Protein from amino acids. 
 
Catabolic pathway : ​Lead to formation of simpler structure from a complex structure. e.g., 
Glucose → Lactic Acid. 
 
Enzymes :​ Are biocatalysts. 
• Almost all enzymes are proteins. 
• Ribosomes - Nucleic acids that behave like enzymes. 
• Has primary, secondary and tertiary structure. 
• Active site of an enzyme is a crevice or pocket into which substrate fits. 
• Enzymes get damaged at high temperatures. 
• Enzymes isolated from thermophilic organisms (live under high temperatures) are thermostable. 
• Enzymes accelerate the reactions many folds. 
• Enzymes lower the activation energy of reactions. 
 
(Fig. 9.6, Page no. 156, NCERT Text Book of Biology for Class XI). 
 
• ES ES EP EP +→→+ where E = Enzyme, S = Substrate, P = Product. 
 
Factors affecting enzyme activity : 
(a) Temperature :​ Show highest activity at optimum temperature. Activity declines above and 
below the optimum value. 
(b) pH :​ Enzymes function in a narrow range of pH. Highest activity at optimum pH. 
 
(Fig. 9.7, Page no. 157, NCERT, Text Book of Biology for Class XI) 
 
(c) Concentration of substrate :​ The velocity of enzymatic reaction rises with increase in 
substrate concentration till it reaches maximum ve- ). Further increase of substrate does not 
increase the rate of reaction as no free enzyme molecules are available to find with additional 
substrate. locity 
 
V max Enzyme inhibition : ​When the binding of a chemical shuts off enzyme activity, the process 
is called inhibition and the chemical is called inhibitor. 
 
Competitive inhibition : ​Inhibitor closely resembles the substrate in its molecular structure and 
inhibits the enzyme activity. E.g., inhibition of succinic dehydrogenase by malonate. 
 
Classification of enzymes : 
 
Oxidoreductase/dehydrogenases :​ Catalyse oxidoreduction between 2 sub- strates. 
 
Transferases :​ Catalyse transfer of a group between a pair of substrates. 
 
Hydrolases :​ Catalyse hydrolysis of ester, ether, peptide, glycosidic, C-C, P-N bonds. 
 
Lyases :​ Catalyse removal of groups from substrates by mechanisms other than hydrolysis. 
 
Isomerases :​ Catalyse inter-conversion of optical, geometric or positional isomers. 
 
Ligases :​ Catalyse linking together of 2 compounds. Cofactors : Non-protein constituents found to 
the enzyme to make it cata- lytically active. Protein portion of enzyme is called apoenzyme. 
 
Cofactors : 
• Prosthetic groups : ​Are organic compounds tightly bound to apoenzyme. E.g., hemin peroxidase 
and catalase. 
• Coenzymes :​ Organic compounds which have transient association with enzymes. E.g., NAD, 
NADP. 
• Metal ions :​ Required for enzyme activity. Form coordination bond with side chains at active site 
and with substrate. 
 
E.g., zinc is a cofactor for enzyme carboxypeptidase. 
 
18. Nucleic acids :​ Deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). DNA structure 
(Watson and Crick Model) : DNA is a right handed, double helix of two polynucleotide chains, having 
a major and minor groove. The two chains are antiparallel, and held together by hydrogen bonds 
(two between A and T and three between C and G). The backbone is formed by a sugar-phosphate 
sugar chain. The nitrogen bases are projected more or less perpendicular to this backbone and face 
inside. 
POINTS TO REMEMBER 
 
" Cell cycle " 
 
The sequence of events by which a cell duplicates its genome, synthesis the other constituents of 
the cell and eventually divides into two daughter cells. 
 
" Phases of cell cycle " 
Interphase : 
•G Phase : ​Cell metabolically active and grows continuously. 
• S Phase : ​DNA synthesis occurs, DNA content increases from 2C to 4C. 
1 but the number of chromosomes remains some (2N). 
 
•G Phase : ​Proteins are synthesised in preparation for mitosis while cell growth continues. 
2 M Phase (Mitosis Phase) :​ Starts with nuclear division, corresponding to separation of 
daughter chromosomes (karyokinesis) and usually ends with division of cytoplasm (cytokinesis). 
 
Quiescent stage (G 0 ) :​ Cells that do not divide and exit G phase to enter an inactive stage called 
G 0 1 . Cells at this stage remain metabolically active but do not proliferate. 
 
MITOSIS Prophase : 
(i) Replicated chromosomes, each consisting of 2 chromatids, condense and become visible. 
(ii) Microtubules are assembled into a mitotic spindle. 
(iii) Nucleolus and nuclear envelope disappear. 
(iv) Centriole moves to opposite poles. 
 
Metaphase : 
(i) Spindle fibres attached to kinetochores (small disc-shaped structures at the surface of 
centromere) of chromosomes. 
(ii) Chromosomes line up at the equator of the spindle to form a metaphase plate. 
 
Anaphase : 
(i) Centromeres split and chromatids separate. 
(ii) Chromatids move to opposite poles. 
 
Telophase : 
(i) Chromosomes cluster at opposite poles. 
(ii) Nuclear envelope assembles around the chromosome cluster. 
(iii) Nucleolus, golgi complex, ER reform. 
 
Cytokinesis :​ Is the division of protoplast of a cell into two daughter cells after Karyokinesis 
(nuclear division). 
 
Animal cytokinesis :​ Appearance of furrow in plasma membrane which deepens and joins in the 
centre dividing cell cytoplasm into two. 
 
Plant cytokinesis : ​Formation of a new cell wall begins with the formation of a simple precursor − 
cell plate which represents the middle lamella between the walls of two adjacent cells. 
 
Significance of Mitosis : 
1. Growth − addition of cells. 
2. Maintenance of surface/volume ratio. 
3. Maintenance of chromosome number. 
4. Regeneration. 
5. Reproduction in unicellular organisms. 
6. Repair and wound healing. 
 
Meiosis : 
• Specialised kind of cell division that reduces the chromosome num- ber by half, resulting in 
formation of 4 haploid daughter cells. 
• Occurs during gametogenesis in plants and animals. 
• Involves two sequential cycles of nuclear and cell division called Meiosis I and Meiosis II. 
• Interphase occurs prior to meiosis which is similar to interphase of mitosis except the S phase is 
prolonged. 
• 4 haploid daughter cells are formed. Meiosis I Prophase I : Subdivided into 5 phases. 
 
Leptotene : 
• Chromosomes make them as single stranded structures. 
• Compaction of chromosomes continues. 
 
Zygotene : 
• Homologous chromosomes start pairing and this process of associa- tion is called synapsis. 
• Chromosome synapsis is accompanied by formation of synaptone- mal complex. 
• Complex formed by a pair of synapsed homologous chromosomes is called bivalent or tetrad. 
 
Pachytene :​ Crossing over occurs between non-sister chromatids of ho- mologous chromosomes. 
 
Diplotene ​: Dissolution of synaptonemal complex occurs and the recom- bined chromosomes 
separate from each other except at the sites of crossing over. These X-shaped structures are called 
chiasmata. 
 
Diakinesis : 
• Terminalisation of chiasmata. 
• Chromosomes are fully condensed and meiotic spindles assembled. 
• Nucleolus disappears and the nuclear envelope breaks down. 
 
Metaphase I : 
• Bivalent chromosomes align on the equatorial plate. 
• Microtubules from opposite poles of the spindle attach to the pair of homologous chromosomes. 
 
Anaphase I :​ Homologous chromosomes separate while chromatids re- main associated at their 
centromeres. 
 
Telophase I : 
• Nuclear membrane and nucleolus reappear. 
• Cytokinesis follows (diad of cells). 
 
Interkinesis :​ Stage between two meiotic divisions. (meiosis I and meiosis II) Meiosis II Prophase 
II 
• Nuclear membrane disappears. 
• Chromosomes become compact. Metaphase II 
• Chromosomes align at the equator. 
• Microtubules from opposite poles of the spindle get attached to kineto- chores of sister 
chromatids. Anaphase II 
• Simultaneous splitting of the centromere of each chromosome, al- lowing them to move towards 
opposite poles of the cell. Telophase II 
• Two groups of chromosomes get enclosed by a nuclear envelope. 
• Cytokinesis follows resulting in the formation of tetrad of cells i.e., 4 haploid cells. Significance of 
Meiosis 
 
1. Formation of gametes : ​In sexually reproducing organisms. 
2. Genetic variability 
3. Maintenance of chromosomal number :​ By reducing the chromosome number in gametes. 
Chromosomal number is restored by fertilisation of gametes. 
POINTS TO REMEMBER 
 
Translocation : ​Transport of substances in plants over longer distances through the vascular 
tissue (Xylem and Phloem) is called translocation. 
 
Means of transport :​ The transport of material into and out of the cells is carried out by a number 
of methods. These are diffusion, facilitated diffusion and active transport. Diffusion : Diffusion 
occurs from regions of higher concentration to regions of lower concentration across the permeable 
membrane. It is a passive and slow process. No energy expenditure takes place. 
 
Facilitated diffusion : ​The diffusion of hydrophilic substances along the concentration gradient 
through fixed membrane transport protein without involving energy expenditure is called facilitated 
diffusion. For this the membrane possess aquaporins and ion channels. No energy is utilized in this 
process. 
 
 
 
Active transport : ​Active transport is carried by the movable carrier proteins (pumps) of 
membrane. Active transport uses energy to pump molecules against a concentration gradient from a 
low concentration to high concentration (uphill-transport). It is faster than passive transport. 
 
Water potential :​ The chemical potential of water is called water potential. It is denoted by Ψ (Psi) 
and measured in pascals (Pa). The water potential of a cell is affected by solute potential (Ψ W s ) 
and pressure potential (Ψ ). Ψ W = Ψ s + Ψ p Water potential of pure water at standard temperature 
which is not under any pressure is taken to be zero (by convention). p 
 
" Osmosis " 
Osmosis is movement of solvent or water molecules from the region of their higher diffusion 
pressure or free energy to the region of their lower diffusion pressure or free energy across a 
semipermeable membrane. Water molecules move from higher water potential to lower water 
potential until equilibrium is reached. Plasmolysis : Process of shrinkage of protoplasm in a cell due 
to exosmosis in hypertonic solution. 
 
" Casparian strip " 
 
It is the tangential as well as radial walls of endodermal cells having the deposition of water 
impermeable suberin. Imbibition : Imbibition is the phenomenon of adsorption of water or any other 
liquid by the solid particles of a substance without forming a solution. 
 
Some examples of Imbibition : 
(i) If a dry piece of wood is placed in water, it swells and increases in its volume. 
(ii) If dry gum or pieces of agar-agar are placed in water, they swell and their volume increases. 
(iii) When seeds are placed in water they swell up. 
 
Mass flow :​ Mass flow is the movement of substances (water, minerals and food) in bulk from one 
point to another as a result of pressure differences between two points. 
 
Transport of water in plants : ​Water is absorbed by root hairs, then water moves up to xylem by 
two pathways − apoplast and symplast pathway. The transport of water to the tops of trees occurs 
through xylem vessels. The forces of adhesion and cohesion maintain a thin and unbroken column 
of water in the capillaries of xylem vessels through which it travels upward. Water is mainly pulled by 
transpiration from leaves. 
 
(Cohesion-tension-transpiration pull Model) Root pressure : ​A hydrostatic pressure 
existing in roots which pushes the water up in xylem vessels. Guttation : The water loss in its liquid 
phase at night and early morning through special openings of vein near the tip of leaves. 
 
Transpiration :​ The loss of water through stomata of leaves and other aerial parts of plants in 
form of water vapour. 
 
Osmosis : ​Osmosis is movement of solvent or water molecules from the region of their higher 
diffusion pressure or free energy to the region of their lower diffusion pressure or free energy across 
a semipermeable membrane. Water molecules move from higher water potential to lower water 
potential until equilibrium is reached. 
 
Plasmolysis :​ Process of shrinkage of protoplasm in a cell due to exosmosis in hypertonic 
solution. 
 
Casparian strip :​ It is the tangential as well as radial walls of endodermal cells having the 
deposition of water impermeable suberin. Imbibition : Imbibition is the phenomenon of adsorption of 
water or any other liquid by the solid particles of a substance without forming a solution. 
 
Some examples of Imbibition : 
(i) If a dry piece of wood is placed in water, it swells and increases in its volume. 
(ii) If dry gum or pieces of agar-agar are placed in water, they swell and their volume increases. 
(iii) When seeds are placed in water they swell up. 
 
Mass flow :​ Mass flow is the movement of substances (water, minerals and food) in bulk from one 
point to another as a result of pressure differences between two points. 
 
Transport of water in plants : ​Water is absorbed by root hairs, then water moves up to xylem by 
two pathways − apoplast and symplast pathway. The transport of water to the tops of trees occurs 
through xylem vessels. The forces of adhesion and cohesion maintain a thin and unbroken column 
of water in the capillaries of xylem vessels through which it travels upward. Water is mainly pulled by 
transpiration from leaves. 
 
(Cohesion-tension-transpiration pull Model) Root pressure :​ A hydrostatic pressure 
existing in roots which pushes the water up in xylem vessels. 
 
Guttation : ​The water loss in its liquid phase at night and early morning through special openings 
of vein near the tip of leaves. 
 
Transpiration : ​The loss of water through stomata of leaves and other aerial parts of plants in 
form of water vapour. 
POINTS TO REMEMBER 
 
Autotroph :​ An organism that synthesizes its required nutrients from simple and inorganic 
substances. 
 
Heterotroph :​ An organism that cannot synthesise its own nutrients and depend on others. 
 
Necrosis :​ Death of cells and tissues. 
 
Biological nitrogen fixation :​ Conversion of atmospheric into organic com- pounds by living 
organisms. Nitrification : Conversion of ammonia (NH ) into nitrite and then to nitrate. 3 
 
Denitrification :​ A process of conversion of nitrate into nitrous oxide and nitrogen gas (N ). 
 
Leg-hemoglobin :​ Pinkish pigment found in the root nodules of legumes. 2 It acts as oxygen 
scavenger and protects the nitrogenase. 
 
Flux :​ The movement of ions is called flux. Necrosis : Death of tissues particularly leaf tissue due to 
deficiency of Ca, Mg, Cu, K. Mineral 
 
Nutrition :​ Plants require mineral elements for their growth and development. The utilization of 
various absorbed ions by a plant for growth and development is called mineral nutrition of the plant. 
 
Hydroponics :​ Soilless culture of plants, where roots are immersed in nutrient solution without soil 
is called hydroponics. The result obtained from hydroponics may be used to determine deficiency 
symptoms of essential ele- ments. 
 
Essential Elements 
Macronutrients  Micro-nutrients 
Macronutrients are present in  Micro-nutrients are needed in very low 
plant tissues in concentrations of 1 to 10 
mg per gram of dry matter 
amounts : 0.1 mg per gram of dry 
matter. 
C, H, O, N, P, K, S, Ca, Mg  Fe, Mn, Cu, Mo, Zn, B, Cl, Si. 
POINTS TO REMEMBER 
 
Photosynthesis :​ Photosynthesis is an enzyme regulated anabolic process of manufacture of 
organic compounds inside the chlorophyll containing cells from carbon dioxide and water with the 
help of sunlight as a source of energy. 
 
 
 
Historical Perspective Joseph Priestley (1770) : ​Showed that plants have the ability to take 
up CO 2 from atmosphere and release O . 
 
Jan Ingenhousz (1779) :​ Release of O 2 by plants was possible only in sunlight and only by the 
green parts of plants. 
 
Theodore de Saussure (1804) :​ Water is an essential requirement for photosynthesis to occur. 
 
Julius Von Sachs (1854) :​ Green parts in plants produce glucose which is stored as starch. 
 
T. W. Engelmann (1888) :​ The effect of different wavelengths of light on photosynthesis and 
plotted the first action spectrum of photosynthesis. C. B. 
 
Van Niel (1931) :​ Photosynthesis is essentially a light dependent reaction in which hydrogen from 
an oxidisable compound reduces CO to form sugar. He gave a simplified chemical equation of 
photosynthesis. 
 
Hill (1937) : ​Evolution of oxygen occurs in light reaction. 
 
Calvin (1954-55) :​ Traced the pathway of carbon fixation. 
 
Hatch and Slack (1965) : ​Discovered C 4 pathway of CO fixation. 
 
Site for photosynthesis :​ Photosynthesis takes place only in green parts of 2 the plant, mostly in 
leaves. Within a leaf, photosynthesis occurs in mesophyll cells which contain the chloroplasts. 
Chloroplasts are the actual sites for photosynthesis. The thylakoids in chloroplast contain most of 
the pigments required for capturing solar energy to initiate photosynthesis. The membrane system 
(grana) 2 is responsible for trapping the light energy and for the synthesis of ATP and NADPH. 
Biosynthetic phase (dark reaction) is carried in stroma. 
 
" Pigments involved in photosynthesis " 
Chlorophyll a :​ (Bright or blue green in chromatography). Major pigments act as reaction centres, 
involved in trapping and converting light into chemical energy. 
 
Chlorophyll b :​ (Yellow green) 
 
Xanthophyll :​ (Yellow) 
 
Carotenoids : ​(Yellow to yellow-orange) In the blue and red regions of the spectrum shows higher 
rates of photosynthesis. 
 
Light Harvesting Complexes (LHC) : ​The light harvesting complexes are made up of hundreds 
of pigment molecules bound to protein within the photosystem I (PSI) and photosystem II (PSII). 
Each photosystem has all the pigments except one molecule of chlorophyll ‘a’ forming a light 
harvesting system (antennae). The reaction centre (chlorophyll a) is different in both the 
photosystems. 
 
Photosystem I (PSI) : ​Chlorophyll ‘a’ has an absorption peak at 700 nm (P700). Photosystem II 
(PSII) : Chlorophyll ‘a’ has an absorption peak at 680 nm (P680). 
 
Process of photosynthesis :​ It includes two phases - Photochemical phase and biosynthetic 
phase. 
(i) Photochemical phase (Light reaction) :​ This phase includes - light absorption, splitting of 
water, oxygen release and formation of ATP and NADPH. 
(ii) Biosynthetic phase (Dark reaction) : ​It is a light independent phase, synthesis of food 
material (sugars). 
 
Photophosphorylation : ​The process of formation of high-energy chemicals (ATP and NADPH). 
 
Cyclic photophosphorylation : ​Two photosystems work in series − First PSII and then PSI. 
These two photosystems are connected through an electron transport chain (Z. Scheme). Both ATP 
and NADPH + H are synthesised by this process. PSI and PSII are found in lamellae of grana, hence 
this process is carried here. 
 
Non-cyclic photophosphorylation : ​Only PSI works, the electron circulates within the 
photosystem. It happens in the stroma lamellae (possible location) because in this region PSII and 
NADP reductase enzyme are absent. Hence only ATP molecules are synthesised. 
 
The electron transport (Z-Scheme) : ​In PS II, reaction centre (chlo. a) absorbs 680 nm 
wavelengths of red light which make the electrons to become excited. These electrons are taken up 
by the electron acceptor that passes them to an electron transport system (ETS) consisting of 
cytochromes. The movement of electrons is down hill. Then, the electron passes to PSI and moves 
down hill further. 
 
The splitting of water : ​It is linked to PS II. Water splits into H , O and electrons. 
 
 
 
Chemiosmotic Hypothesis :​ Chemiosmotic hypothesis explain the mechanism of ATP synthesis 
in chloroplast. In photosynthesis, ATP synthesis is linked to development of a proton gradient across 
a membrane. The electrons are accumulated inside the membrane of thylakoids (in lumen). ATPase 
has a channel that allows diffusion of protons back across the membrane. This releases energy to 
activate ATPase enzyme that catalyses the formation of ATP. 
 
Plants : ​ATP and NADH, the products of light reaction are used in synthesis of Biosynthetic phase 
in C food. The first CO 2 3 fixation product in C plant is 3-phosphoglyceric acid or PGA. The CO 2 3 
acceptor molecule is RuBP (ribulose bisphosphate). The cyclic path of sugar formation is called 
Calvin cycle on the name of Melvin Calvin, the discoverer of this pathway. 
 
Calvin cycle proceeds in three stages : 
(1) Carboxylation :​ CO combines with ribulose 1, 5 bisphosphate to form 3 PGA in the presence of 
RuBisCo enzyme. 2 
(2) Reduction :​ Carbohydrate is formed at the expense of ATP and NADPH. 
(3) Regeneration : ​The CO acceptor ribulose 1, 5-bisphosphate is formed again . 2 6 turns of 
Calvin cycles and 18 ATP molecules are required to synthesize one molecule of glucose. 
 
The C 4 pathway :​ C plants have a special type of leaf anatomy, they tolerate higher temperatures. 
In this pathway, oxaloacetic acid (OAA) is the first stable product formed. It is a 4 carbon atoms 
compound, hence called C 4 pathway (Hatch and Slack Cycle). 
 
The leaf has two types of cells :​ mesophyll cells and Bundle sheath cells (Kranz anatomy). 
Initially CO 2 4 is taken up by phosphoenol pyruvate (PEP) in mesophyll cells and changed to 
oxaloacetic acid (OAA) in the presence of PEP carboxylase. Oxaloacetate is reduced to 
malate/aspartate that reach into bundle sheath cells. and formation of pyruvate (3C). In high CO The 
oxidation of malate/aspartate occurs with the release of O concentration RuBisCo functions as 
carboxylase and not as oxygenase, the photosynthetic losses are prevented. RuBP operates now 
under the Calvin cycle and pyruvate transported back to mesophyll cells and changed into 
phosphoenol pyruvate to keep the cycle continuing. 
 
2 Photorespiration :​ The light induced respiration in green plants is called photorespiration. In C 3 
plants some O 2 binds with RuBisCo and hence CO fixation is decreased. In this process RuBP 
instead of being converted to 2 molecules of PGA binds with O to form one molecule of PGA and 
phosphoglycolate. 
 
2 Law of Limiting Factors : ​If a chemical process is affected by more than one factor, then its 
rate will be determined by the factor which is nearest to its minimal value. It is the factor which 
directly affects the process if its quantity is changed. 
 
Factors affecting photosynthesis : 
1. Light 
2. Carbon Dioxide 
3. Temperature 
4. Water 
POINTS TO REMEMBER 
 
Aerobic respiration : ​Complete oxidation of organic food in presence of oxygen thereby 
producing CO , water and energy. 
 
Anaerobic respiration :​ Incomplete breakdown of organic food to liberate 2 energy in the 
absence of oxygen. 
 
ATPSynthetase :​ An enzyme complex that catalyses synthesis of ATP during oxidative 
phospho-relation. 
 
Biological oxidation :​ Oxidation in a series of reactions inside a cell. 
 
Cytochromes :​ A group of iron containing compounds of electron transport systems present in the 
inner wall of mitochondria. 
 
Dehydrogenase : ​Enzyme that catalyses removal of H atom from the substrate. 
 
Electron acceptor :​ Organic compound which receives electrons produced during 
oxidation-reduction reactions. 
Electron transport :​ Movement of electrons from substrate to oxygen through respiratory chain 
during respiration. 
 
Fermentation :​ Breakdown of organic substance that takes place in certain ethanol. microbe like 
yeast under anaerobic condition with the production of CO. 
 
Glycolysis :​ Enzymatic breakdown of glucose into pyruvic acid that occurs in the cytoplasm. 
 
Oxidative phosphorylation : ​Process of formation of ATP from ADP and Pi using the energy from 
proton gradient. 
 
Respiration :​ Biochemical oxidation food to release energy. 
 
Respiratory Quotient :​ The ratio of the volume of CO produced to the volume of oxygen 
consumed. 
 
Proton gradient :​ Difference in proton concentration across the tissue membrane. 
 
Mitochondrial matrix :​ The ground material of mitochondria in which pyruvic acid undergoes 
aerobic oxidation through Krebs cycle. Abbreviations 
 
ATP​ − Adenosine triphosphate 
ADP​ − Adenosine diphosphate 
NAD​ − Nicotinamide Adenine dinucleotide 
NADP​ − Nicotinamide Adenine dinucleotide Phosphate 
NADH​ − Reduced Nicotinamide Adenine dinucleotide 
PGA​ − Phosphoglyceric acid 
PGAL​ − Phosphoglyceraldehyde 
FAD​ − Flavin adenine dinucleotide 
ETS​ − Electron transport system 
ETC​ − Electron transport chain 
TCA​ − Tricarboxylic acid 
OAA​ − Oxalo acetic acid 
FMN​ − Flavin mononucleotide 
PPP​ − Pentose phosphate pathway 
 
AEROBIC RESPIRATION 
 
The overall mechanism of aerobic respiration can be studied under the following steps 
: 
(A) Glycolysis (EMP pathway) 
(B) Oxidative Decarboxylation 
(C) Kreb’s cycle (TCA-cycle) 
(D) Oxidative phosphorylation 
 
Glycolysis :​ The term has originated from the Greek word 
glycos = glucose 
lysis = splitting or breakdown means breakdown of glucose molecule. 
 
• It is also called the Embden-Meyerhof-Parnas pathway. (EMP pathway) 
• It is common in both aerobic and anaerobic respiration. 
• It takes place outside the mitochondria, in the cytoplasm. 
• One molecule of glucose (Hexose sugar) ultimately produces two mol- ecules of pyruvic acid 
through glycolysis. 
• During this process 4 molecules of ATP are produced while 2 molecules of ATP are utilised. 
 
Thus net gain of ATP is of 2 molecules. Oxidative decarboxylation : Pyruvic acid is converted into 
Acetyl CoA in presence of pyruvate dehydrogenase complex. 
 
 
 
TriCarboxylic Acid Cycle (Kreb’s cycle) or Citric acid Cycle : ​This cycle starts with 
condensation of acetyl groups with oxaloacetic acid and water to yield citric acid which undergoes a 
series of reactions. 
• It is aerobic and takes place in the mitochondrial matrix. 
• Each pyruvic acid molecule produces 4 NADH + H + , one FADH , one ATP. 
• One glucose molecule has been broken down to release CO and eight molecules of NADH + H + , 
two molecules of FADH and 2 molecules of ATP. 
 
2 Electron transport system and oxidative phosphorylation :​ The metabolic pathway 
through which the electron passes from one carrier to another is called the Electron transport 
system and it is present in the inner mitochondrial membrane. 
 
ETS comprises of the following : 
(i) NAD and NADH + H 
(ii) FAD and FADH 
(iii) UQ 
(iv) Cyt b, Cyt c 1 2 + , Cyt c, Cyt a and Cyt a . 
 
Oxygen acts as the final hydrogen acceptor. Oxidative phosphorylation takes 3 places in elementary 
particles present on the inner membrane of the cristae of mitochondria. Synthesis of ATP from ADP 
and Pi using energy from proton gradient is called oxidative phosphorylation. In this process O 
acceptor and it get reduced to water. 2 2 2 is the ultimate electron 
 
 
Total ATP Production 
Process  Total ATP produced 
1. Glycolysis  2ATP + 2NADH 
(6ATP) = 8ATP 
2. Oxidative decarboxylation  2NADH (6ATP) = 6ATP 
3. Kreb’s Cycle  2GTP (2ATP) + 6NADH22 (18ATP) + 
2FADH (4ATP) = 24ATP22 
 
POINTS TO REMEMBER 
 
Abscission :​ Shedding of plant organs like leaves, flowers and fruits etc. from the mature plant. 
 
Apical dominance : ​Suppression of the growth of lateral buds in presence of apical bud. 
 
Dormancy :​ A period of suspended activity and growth usually associated with low metabolic rate. 
 
Photoperiodism :​ Response of plant to the relative length of day and night period to induce 
flowering. 
 
Phytochrome :​ A pigment, which controls the light dependent developmental process. 
 
Phytohormone :​ Chemicals secreted by plants in minute quantities which influence the 
physiological activities. 
 
Senescence :​ The last phase of growth when metabolic activities decrease. 
 
Vernalisation :​ A method of promoting flowering by exposing the young plant to low temperature. 
 
Growth : ​An irreversible permanent increase in size of an organ or its parts or even of an individual. 
Abbreviations IAA Indole acetic acid NAA Naphthalene acetic acid ABA Abscisic acid IBA Indole-3 
butyric acid 2.4D 2.4 dichlorophenoxy acetic acid PGR Plant growth regulator 
 
Measurement of growth :​ Plant growth can be measured by a variety of parameters like increase 
in fresh weight, dry weight, length, area, volume and cell number. 
 
Phases of growth : ​The period of growth is generally divided into three phases, namely, 
meristematic, elongation and maturation. 
(i) Meristematic zone :​ New cell produced by mitotic division at root-tip and shoot tip thereby 
show increase in size. Cells are rich in protoplasm and nuclei. 
(ii) Elongation zone :​ Zone of elongation lies just behind the meristematic zone and concerned 
with enlargement of cells. 
(iii) Maturation zone :​ The portion lies proximal to the phase of elongation. The cells of this zone 
attain their maximum size in terms of wall thickening and protoplasmic modification. 
 
Growth rate :​ The increased growth per unit time is termed as growth rate. The growth rate shows 
an increase that may be arithmetic or geometric. 
 
 
 
Differentiation :​ A biochemical or morphological change in a meristematic cell (at root apex and 
shoot apex) to differentiate into a permanent cell is called differentiation. 
 
Dedifferentiation :​ The phenomenon of regeneration of permanent tissue to become 
meristematic is called dedifferentiation. 
 
Redifferentiation :​ Meristems/tissue are able to produce new cells that once again lose the 
capacity to divide but mature to perform specific functions. 
 
PHYTO HORMONE OR PLANT GROWTH-REGULATOR 
 
Growth promoting hormones :​ These are involved in growth promoting activities such as cell 
division, cell enlargement, flowering, fruiting and seed formation. e.g., Auxin, gibberellins, cytokinins. 
Growth inhibitor : Involved in growth inhibiting activities such as dormancy and abscission. e.g., 
Abscisic acid and Ethylene. 
chapter 1 bio (20 files merged) (3 files merged).pdf
chapter 1 bio (20 files merged) (3 files merged).pdf
chapter 1 bio (20 files merged) (3 files merged).pdf
chapter 1 bio (20 files merged) (3 files merged).pdf
chapter 1 bio (20 files merged) (3 files merged).pdf
chapter 1 bio (20 files merged) (3 files merged).pdf
chapter 1 bio (20 files merged) (3 files merged).pdf
chapter 1 bio (20 files merged) (3 files merged).pdf
chapter 1 bio (20 files merged) (3 files merged).pdf
chapter 1 bio (20 files merged) (3 files merged).pdf
chapter 1 bio (20 files merged) (3 files merged).pdf
chapter 1 bio (20 files merged) (3 files merged).pdf
chapter 1 bio (20 files merged) (3 files merged).pdf
chapter 1 bio (20 files merged) (3 files merged).pdf
chapter 1 bio (20 files merged) (3 files merged).pdf
chapter 1 bio (20 files merged) (3 files merged).pdf
chapter 1 bio (20 files merged) (3 files merged).pdf
chapter 1 bio (20 files merged) (3 files merged).pdf
chapter 1 bio (20 files merged) (3 files merged).pdf
chapter 1 bio (20 files merged) (3 files merged).pdf
chapter 1 bio (20 files merged) (3 files merged).pdf

More Related Content

Similar to chapter 1 bio (20 files merged) (3 files merged).pdf

Diversity in the living world. mohanBio
Diversity in the living world. mohanBioDiversity in the living world. mohanBio
Diversity in the living world. mohanBiomohan bio
 
Biodiversity of living things
Biodiversity of living thingsBiodiversity of living things
Biodiversity of living thingsGboyega Adebami
 
CLASSIFICATION SYSTEM IN BIOLOGY.pdf
CLASSIFICATION SYSTEM IN BIOLOGY.pdfCLASSIFICATION SYSTEM IN BIOLOGY.pdf
CLASSIFICATION SYSTEM IN BIOLOGY.pdfAnsul7
 
diversity in Living world
diversity in Living worlddiversity in Living world
diversity in Living worldRajveerPawar
 
Diversity in living organism
Diversity in living organismDiversity in living organism
Diversity in living organismTara Saini
 
LET Review in Natural Science (Mentoring Session)
LET Review in Natural Science (Mentoring Session)LET Review in Natural Science (Mentoring Session)
LET Review in Natural Science (Mentoring Session)Raiza Joy Orcena
 
Botany Ultra HD Maps_NEET_CLASS11THAND12TH..removed.pdf
Botany Ultra HD Maps_NEET_CLASS11THAND12TH..removed.pdfBotany Ultra HD Maps_NEET_CLASS11THAND12TH..removed.pdf
Botany Ultra HD Maps_NEET_CLASS11THAND12TH..removed.pdfinsaneprarendra2323
 
The living world Class XI
The living world Class XIThe living world Class XI
The living world Class XIAnitaMishra34
 
Class 11 Chapter 1 The Living World
Class 11 Chapter 1 The Living WorldClass 11 Chapter 1 The Living World
Class 11 Chapter 1 The Living WorldDrHeenaDevnani
 
Diversity in living world
Diversity in living worldDiversity in living world
Diversity in living worldjaganmahi
 
1. Classification Notes.ppt
1. Classification Notes.ppt1. Classification Notes.ppt
1. Classification Notes.pptDoMiKaInStituTe
 
Class XI Chapter - 1 The Living World
Class XI Chapter - 1 The Living WorldClass XI Chapter - 1 The Living World
Class XI Chapter - 1 The Living WorldAjay Kumar Gautam
 
Chapter 01 Themes in the Study of Life
Chapter 01 Themes in the Study of LifeChapter 01 Themes in the Study of Life
Chapter 01 Themes in the Study of LifeTodd C
 
Biology Form 4: Chapter 8.4 Biodiversity
Biology Form 4: Chapter 8.4 BiodiversityBiology Form 4: Chapter 8.4 Biodiversity
Biology Form 4: Chapter 8.4 BiodiversityQhaiyum Shah
 
Levels of classification
Levels of classificationLevels of classification
Levels of classificationvjcummins
 

Similar to chapter 1 bio (20 files merged) (3 files merged).pdf (20)

Diversity in the living world. mohanBio
Diversity in the living world. mohanBioDiversity in the living world. mohanBio
Diversity in the living world. mohanBio
 
Biodiversity of living things
Biodiversity of living thingsBiodiversity of living things
Biodiversity of living things
 
CLASSIFICATION SYSTEM IN BIOLOGY.pdf
CLASSIFICATION SYSTEM IN BIOLOGY.pdfCLASSIFICATION SYSTEM IN BIOLOGY.pdf
CLASSIFICATION SYSTEM IN BIOLOGY.pdf
 
diversity in Living world
diversity in Living worlddiversity in Living world
diversity in Living world
 
The living world
The living worldThe living world
The living world
 
Diversity in living organism
Diversity in living organismDiversity in living organism
Diversity in living organism
 
LET Review in Natural Science (Mentoring Session)
LET Review in Natural Science (Mentoring Session)LET Review in Natural Science (Mentoring Session)
LET Review in Natural Science (Mentoring Session)
 
Five kingdom system
Five kingdom systemFive kingdom system
Five kingdom system
 
Botany Ultra HD Maps_NEET_CLASS11THAND12TH..removed.pdf
Botany Ultra HD Maps_NEET_CLASS11THAND12TH..removed.pdfBotany Ultra HD Maps_NEET_CLASS11THAND12TH..removed.pdf
Botany Ultra HD Maps_NEET_CLASS11THAND12TH..removed.pdf
 
Systematics
SystematicsSystematics
Systematics
 
The living world Class XI
The living world Class XIThe living world Class XI
The living world Class XI
 
Class 11 Chapter 1 The Living World
Class 11 Chapter 1 The Living WorldClass 11 Chapter 1 The Living World
Class 11 Chapter 1 The Living World
 
Diversity in living world
Diversity in living worldDiversity in living world
Diversity in living world
 
1. Classification Notes.ppt
1. Classification Notes.ppt1. Classification Notes.ppt
1. Classification Notes.ppt
 
Class XI Chapter - 1 The Living World
Class XI Chapter - 1 The Living WorldClass XI Chapter - 1 The Living World
Class XI Chapter - 1 The Living World
 
Chapter 01 Themes in the Study of Life
Chapter 01 Themes in the Study of LifeChapter 01 Themes in the Study of Life
Chapter 01 Themes in the Study of Life
 
Biology Form 4: Chapter 8.4 Biodiversity
Biology Form 4: Chapter 8.4 BiodiversityBiology Form 4: Chapter 8.4 Biodiversity
Biology Form 4: Chapter 8.4 Biodiversity
 
The living world
The living worldThe living world
The living world
 
Levels of classification
Levels of classificationLevels of classification
Levels of classification
 
Diversityinlivingorganisms ppt
Diversityinlivingorganisms pptDiversityinlivingorganisms ppt
Diversityinlivingorganisms ppt
 

Recently uploaded

Zoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfZoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfSumit Kumar yadav
 
fundamental of entomology all in one topics of entomology
fundamental of entomology all in one topics of entomologyfundamental of entomology all in one topics of entomology
fundamental of entomology all in one topics of entomologyDrAnita Sharma
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSarthak Sekhar Mondal
 
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...anilsa9823
 
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticsPulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticssakshisoni2385
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsAArockiyaNisha
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksSérgio Sacani
 
Chromatin Structure | EUCHROMATIN | HETEROCHROMATIN
Chromatin Structure | EUCHROMATIN | HETEROCHROMATINChromatin Structure | EUCHROMATIN | HETEROCHROMATIN
Chromatin Structure | EUCHROMATIN | HETEROCHROMATINsankalpkumarsahoo174
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Sérgio Sacani
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfmuntazimhurra
 
DIFFERENCE IN BACK CROSS AND TEST CROSS
DIFFERENCE IN  BACK CROSS AND TEST CROSSDIFFERENCE IN  BACK CROSS AND TEST CROSS
DIFFERENCE IN BACK CROSS AND TEST CROSSLeenakshiTyagi
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTSérgio Sacani
 
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxPhysiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxAArockiyaNisha
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptxanandsmhk
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...Sérgio Sacani
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPirithiRaju
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Lokesh Kothari
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bSérgio Sacani
 
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisRaman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisDiwakar Mishra
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxUmerFayaz5
 

Recently uploaded (20)

Zoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfZoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdf
 
fundamental of entomology all in one topics of entomology
fundamental of entomology all in one topics of entomologyfundamental of entomology all in one topics of entomology
fundamental of entomology all in one topics of entomology
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
 
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
 
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticsPulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based Nanomaterials
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
 
Chromatin Structure | EUCHROMATIN | HETEROCHROMATIN
Chromatin Structure | EUCHROMATIN | HETEROCHROMATINChromatin Structure | EUCHROMATIN | HETEROCHROMATIN
Chromatin Structure | EUCHROMATIN | HETEROCHROMATIN
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdf
 
DIFFERENCE IN BACK CROSS AND TEST CROSS
DIFFERENCE IN  BACK CROSS AND TEST CROSSDIFFERENCE IN  BACK CROSS AND TEST CROSS
DIFFERENCE IN BACK CROSS AND TEST CROSS
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOST
 
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxPhysiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
 
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisRaman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptx
 

chapter 1 bio (20 files merged) (3 files merged).pdf

  • 1. Points to Revise  1. Diversity : ​Large variety of anything.  2. Biodiversity :​ Large variety of organisms.  3. Nomenclature: ​Scientific naming of organisms.  4. Identification : ​Correct description of organism prior to nomenclature.  5. Classification :​ Grouping of organisms into categories on the basis of similarities & differences.    6. Taxon :​ Concrete biological object or category of classification.    1. Taxonomy :​ Process of classification of organisms.  2. Systematics :​ branch of biology dealing with taxonomy along with evolutionary relationship  between organisms.  3.​ ​Species : ​Group of Individual organisms with fundamental  similarities (with capacity if sexually reproducing).  LEARNING TIPS  1. Concentrate on minute points of the chapter keeping very short answer and short answer  type questions in mind.  2. Emphasise on concepts.  Biology Class 11 Notes Chapter 1 LET US LEARN THE LESSON  What is Living?  -Objects having characteristics of cellular organisation,growth,reproduction,ability to sense  environment & give response, metabolism etc.  All organisms grow:  1. -Increase in mass or number of cells characterise growth.  2. -plants grow throughout life.  3. -Animals grow to a certain age .  4. -Non living objects also grow externally by accumulation of material on the surface.  5. -Living objects grow from inside.  6. -Growth cannot be considered as the defining property of living beings.  NB :​ There are certain examples in which mass is decreased during growth eg. Germinating potato  tuber.  Reproduction:  ● -Characteristics of living beings to produce progenies possessing features of their own type.  ● -Reproduction is of sexual& asexual type.  ● -Fungi produce spores for asexual reproduction. 
  • 2. ● -Organism viz. Planaria reproduce by regeneration in which a fragment of the body forms the  whole organism.  ● -Fungi,filamentous algae,protonema of moss reproduce by fragmentation also.  ● -In unicellular organisms growth & reproduction are synonymous.  1. Certain organisms do not reproduce viz. mule ,worker bees, infertile human couple.  -Hence reproduction ​cannot be considered as defining property ​of living beings.  Metabolism:  ● -Several chemical reactions occur in living organisms.-Some of these reactions are anabolic  others are catabolic.  ● -All the reactions together are called metabolic reactions & the process is called metabolism.  ● -It has no exception.  -​It is the defining property of living beings.  Cellular organisation:  -living organisms consist of cells & their products.  -​It is the defining property of living beings.  Consciousness: Ability to sense environment & respond to environmental factors  -Living beings sense & respond to environmental factors viz. Light,water,temperature,other  organisms, pollutants etc.  -It is the defining property of organisms.  Living organisms can be considered as self replicating, evolving & self-regulating  interactive systems capable of responding to external stimuli.  Diversity in the living world:  ● -Described number of species range 1.7-1.8 million.  ● -Local names of organisms may not be applied at global level.  ● -Scientific names are given to organisms after identification, acceptable at global level.  ● -Nomenclature is done as per criteria given in ICBN (International code for botanical  nomenclature)& ICZN (International code for zoological nomenclature)  ● -Binomial nomenclature was given by CAROLUS LINNAEUS.  ● First word is Generic name & second word is Specific epithet in scientific name of organism.  ● -Names are in Latin or Latinised words.  ● -Names, if hand written are separately underlined & if printed, are italicised.  ● -First word starts with capital letter & second word with small letter. Example: Mangifera  indica (Mango)  ● -Name of author in last as abbreviation.  ● -For ease of study organisms are classified into groups or categories known as taxa.  ● 1.eg. Taxons may be Dogs, Mammals, wheat, Rice etc.  ● -Process of classification into different taxa is called taxonomy.  ● -Identification, classification, nomenclature are basic to taxonomy. 
  • 3. ● -Systematics studies evolutionary relationships between organisms.  Taxonomic categories :  ● -Each rank or category of classification is termed as taxonomic category.  ● -Arrangement of categories in sequence is termed as Taxonomic Hierarchy.  Chapter 1 biology class 11 ncert notes Taxonomical Hierarchy  Species: Group of organisms with fundamental similarities. eg. ​Mangifera Indica  In this species is ​indica.  Genus​: Group of related species with common characters.  eg. Panthera is a genus which includes lion(Pantheraleo),leopard(Pantherapardus) & Tiger  (Pantheratigris).  Family​: Group of related genera .  eg. Genus Solanum,Petunia Datura belong to one family Solanaceae.  Order ​: Group of related families.  eg. Family Convolvulaceae,Solanaceae belong to one order- Polemoniales.  Class ​: Group of related orders.  eg. Order Primata Carnivora belongs to one class, Mammalia.  Phylum​: Group of related classes.  eg. Class Mammalia, Pisces,Amphibia,Reptilia belong to one phylum -Chordata.  Kingdom​: Group of all related Phyla.  eg. Kingdom Animalia-includes all animals.  NCERT BIOLOGY notes class 11 Organisms with their Taxonomic Categories  Common  Name  Biological  Name  Genus  Family  Man  Homo  sapiens  Homo  Hominidae  Housefly  Musca  domestica  Musca  domestica  Muscidae  Mango  Mangifera  indica  Mangifera  Anacardiaceae  Wheat  Triticuma  estivum  Triticum  Poaceae  Order  Class  Phylum/Division 
  • 4. Taxonomical Aids  ● -Articles helpful in correct identification & classification of organisms are called taxonomical  aids.  1-Herbarium​:  ● Store house of collected plant specimens that are dried, pressed & preserved on sheets.  ● -Sheets are arranged according to a universally accepted classification system.  ● -used as a ready reference in scientific studies.  2. Botanical Gardens :  ● Collection of various living plant species in form of garden for identification purpose  ● -Used for identification of plants.  ● -Example: Royal Botanical Garden at Kew, England, Indian Botanical Garden Howrah, National  Botanical Research Institute Lucknow etc.  3-Museum :  ● -Collection of preserved plant &animal specimens.  ● -Specimens may be preserved in preservative solutions viz.Formalin (40%).  ● -Specimens may also be preserved as dry specimen eg. Insects and stuffed large animals.  ● -Skeleton of animals may also be museum specimens.  ● -Used as actual material for study and identification.  CBSE Class 11 Notes Biology Chapter 1 Zoological Parks:  Place where wild animals are kept in a protected environment under human care . eg. Alipur zoo,  Kolkata, West Bengal  National Zoological Park of New Delhi  1. Used as aid to learn about food habits and behaviour, Life cycle.  Key :  Taxonomical aid based on contrasting characters called as couplet  ● 1. Couplet has two opposite statements, each called lead.  ● 2. Separate keys for separate taxonomic categories needed.  ● 3. Used to classify organisms.  Primata  Mammalia  Chordata  Diptera  Insecta  Arthropoda  Sapinda  les  Dicotyledonae  Angiospermae  Poales  Monocotyledonae  Angiospermae 
  • 5. Flora :  Actual account of habitat & distribution of plant species in an area.  Manual :  ● •Have a description of species in an area.  ● • Used for getting information for identification of names.  Monograph :  1. Has information on any one taxon.  2. Used for classification purposes. 
  • 6. Points to Revise    LET US LEARN THE LESSON  Introduction :  1.  Thallus    :  Plant body without true stem, root & Leaf.  2.  Plankton   :  Organism living in salty areas.  3.  Halophiles    :  Plants floating passively in water current.  4.  Chemosynthetic  :  Using chemical reactions as energy source  5.  Heterotrophic  :  Unable to synthesise own food and dependent on  others for food.  6.  Pathogenic  :  Main body of slime mould.  7.  Plasmodium  :  Organism feeding on dead & decaying organic matter.  8.  Saprophyte    :  Organism which depend on living host for food  9.  Parasite  :  Two organisms living together  10.  Symbionts   :  benefiting each other.  11.  Plasmogamy  :  Fusion of cytoplasm.              1.  Karyogamy   :  Fusion of nuclei.  2.  Dikaryon    :  A cell with two nuclei.  3.  Dikaryophase  :  Stage of fungus with dikaryotic cells.  4.  Isogamous    :  : Morphologically identical gametes  5.  Anisogamous    :  Morphologically non identical Gametes.  6.  Oogamous    :  Female gamete oosphere and Male gamete motile.             
  • 7. ● 1.Aristotle classified organisms for the first time.  ● 2. Two kingdom system includes – Plantae Animalia.  Demerits of Two Kingdom 1.system  ● 1. No difference in Eukaryotes and Prokaryotes.  ● 2.Heterotrophic Fungi kept in Plantae.  ● 3. Five kingdom system is given by R.H Whittaker (1969) viz. Monera, Protista, Fungi,  Plantae and Animalia.  Kingdom Monera –  ● 1. Prokaryotic unicellular organisms.  ● 2. Most abundant.  ● 3. Also live in extreme habitats viz. Hotsprings, Snow etc. as endoparasite etc.  ● 4. eg. ​Bacteria​.  ● - Some bacteria are autotrophic others are heterotrophic.  Archaebacteria ​–  ● - Cell Wall different from other bacteria.  ● - Live in most harsh habitats eg. Halophile.  ● - Methanogens are found in the gut of ruminants and produce methane (CH​4​) gas.  Eubacteria –  ● - True bacteria.  ● - Rigid cell wall with or without flagellum.  ● - Cyanobacteria( Blue green algae) are also included in this group.  ● - Cyanobacteria are Photosynthetic autotrophs, unicellular, colonial or filamentous, with  gelatinous sheath.  ● - Have Heterocyst for N2 Fixation eg. ​Nostoc, Anabaena, Oscillatoria, Rivularia, Gloeotrichia  etc.  ● - Mostly bacteria are Heterotrophs and are useful and harmful both to humans.  ● -Reproduction occurs by fission. Also by primitive type of sexual reproduction, by  transferring DNA piece from one bacterial cell(+ strain) to other (- strain) (called cell  Transduction).    Mycoplasma –  ● - Smallest unicellular anaerobic organisms having no cell wall.  ● - Pathogenic in plants and animals.  Kingdom Protista –  ● - Unicellular eukaryotes.  ● - Primarily aquatic.  ● - Some have cilia and flagella.  ● - Reproduction sexual and asexual both. 
  • 8. Chrysophytes​ ​–  ● - Freshwater or marine microscopic Planktons.  ● - Mostly photosynthetic and chief producer in ocean eg. Diatoms And Golden algae  (Desmids).  ● - Diatoms with cell walls in two halves having Silica (indestructible).  ● - Diatomaceous earth is formed by cell wall deposits of Diatoms and used in polishing,  filtration of oils and syrups, fire bricks and explosives.  Dinoflagellates –  ● - Marine.  ● - Photosynthetic yellow , green, blue, brown or red in colour.  ● - One longitudinal and other transverse two flagella.  ● - ​Gonyaulax ​causes Red tides.  Euglenoids –  ● - Fresh water forms.  ● - No cell wall, outermost layer pellicle.  ● - Two unequal flagella.  ● - Photosynthetic but also heterotrophic in absence of light ( Mixotroph).  Slime moulds –  ● - Saprophytes.  ● - Body is an aggregation called „Plasmodium‟ ( multinucleate, without cell wall, irregular in  shape and can spread over several feet ).  ● - Plasmodium produces a fruiting body having spores with walls which are highly resistant  and spread through wind.  Protozoans –  ● - Freshwater or marine unicellular heterotrophs.  ● - Primitive relative of animals.strong  (a) Amoeboid Protozoans –  ● - Free living or parasites.  ● - Pseudopodia (false feet) formed eg. ​Amoeba ,Entamoeba​.  Flagellated Protozoans –  - Free living or Parasitic with flagella in.Trypanosoma( causes sleeping sickness).  1. Ciliated Protozoans ​–  - With cilia eg. ​Paramecium​(sleeper animalcule).  (d) Sporozoans –  - Spore like stage in life eg​. Plasmodium vivax​.  Kingdom Fungi –  ● - Fungi are a group of achlorophyllous, heterotrophic organisms with cell wall without  cellulose.  ● - Saprophyte or Parasite or Symbiotic. 
  • 9. ● - Useful and Harmful both.  ● - Prefer to grow in warm and humid places.  ● - Unicellular (eg. Yeast) to a multicellular filamentous body called ​mycelium​.    ● - One unit of ​mycelium ​and ​hyphae .  ● - ​Mycelia ​may be coenocytic (no septum) or septate.  - ​Lichens :– ​Symbiotic association of fungus and algae.  - ​Mycorrhiza ;– ​Symbiotic association of fungi with root of higher plants eg. ​Pinus.  - ​ Reproduction :–​Vegetative : by fragmentation and by spores.Sexual: by gametes.  - Three steps in sexual reproduction  1. Plasmogamy :–​ fusion of protoplasm.  2 .Karyogamy :-​ fusion of nuclei.  3. Meiosis of zygote.  Phycomycetes –  ● - Grow in aquatic places or decaying wood or damp places or obligate parasites.  ● - Mycelium aseptate, coenocytic.- ​Reproduction ​- asexual by zoospores or aplanospores.  Sexual by zygospores.  Ascomycetes (sac fungi)-  ● -Unicellular (eg. Yeast) or multicellular  ● -Saprophytic or parasitic.  ● -Maybe coprophilus (growing on dung) eg. peziza.  ● -Mycelium septate and branched.  ● -Reproduction – asexual by exogenously produced conidia.  ● -sexual by Ascospores produced in asci present in the fruiting body called Ascocarp.  ● -eg​Aspergillus, Claviceps, Neurospora, Saccharomyces ​(yeast) etc.  Basidiomycetes (club fungi) –  ● - Grow on soil , logs or parasites ( rusts and smuts).  ● - Mycelium septate and branched and of two types  ● - Uninucleate 2) Dikaryophase.  ● - Reproduction – vegetative by fragmentation sexualby two somatic cells giving rise to  Dikaryophase.  ● - Dikaryophase makes the fruiting body Basidiocarp having Basidia.  ● - Inside basidia (singular basidium)  ● - Karyogamy and meiosis occurs.  ● - Meiosis results in formation of four basidiospores.  Deuteromycetes (Fungi- imperfecti) –  - It is formed class – Group of Fungi whose complete life cycle is not known.-Saprophyte/parasite ,  mostly decomposers.- eg. ​Alternaria, colletotrichum, Trichoderma​.  Kingdom Plantae –  ● - Eukaryotic, chlorophyll bearing autotrophic organisms. 
  • 10. ● - Only few members partial heterotrophs eg. Insectivorous plants (Bladderwort and Venus  flytrap).  ● - Few parasites eg. ​Cuscuta  - ​Reproduction – ​vegetative,asexual and sexual.  ● - Life cycle shows alternation of generation.  ● - eg. Algae, Bryophytes,Pteridophyte, Gymnosperms and Angiosperms.  Kingdom Animalia –  ● - Eukaryotic, Heterotrophic organisms.  ● - No chloroplast and no cell wall.  ● -Holozoic mode of nutrition  ● - Definite shape and size and capable of locomotion.  Reproduction  ● - sexual in general  ● - eg. frog, cockroach, cow, man etc.  -​ Viruses, Viroids and Lichens  - Viruses ​Connecting link between living and non living.  ● - Non cellular structure consisting of protein coat and Nucleic acid  ● - Can reproduce within a host cell.  ● - Host cell may be killed.  ● - Viruses which infect bacteria are called Bacteriophage.  - ​Tobacco Mosaic Virus (TMV)​-  ● - Protein coat: - capsid consists of capsomers.  ● - Viruses can cause diseases viz. Mumps, Smallpox, Herpes, Influenza, AIDS etc.  ​Viroids  - Free RNA without protein coat.  Lichens  ● - Composite organisms.  ● -Symbiotic association between Algae (Phycobiont),Fungi (Mycobiont).   
  • 11.       Economically useful as-    a) Large photo synthesiser, release 02 .  b)Food for aquatic animals, humans.  c)Produce Algin (Brown algae), carrageen (red algae), agar (​gelidium, gracilaria​)    - ​Chlorella, Spirullina​- in space travel as protein rich food.  1-  Phylogeny  -     Evolutionary history of organisms .  2-  Zoospores  -     Motile spores with flagella .  3-  Gametophyte  -     Haploid stage of plant, producing gametes.  4-  Sporophyte  -     Diploid stage of plants producing spores.  5-  Archegonium  -     Female reproductive structure.  6-  Antheridium  -     Male reproductive structure.  7-  Megasporangium  -     The structure which bears megaspores.  8-  Sporophyll  -     Leaf bearing sporangia producing spores.     -  Numerical  taxonomy  -     based on several features compared collectively by  computer.     -  Cytotaxonomy  -     based on cytological features.     -  Chemotaxonomy  -     based on chemical constituents.  Algae  –                    -  Group of chlorophyllous, simple, thalloid plants.     -  Largely aquatic, grow on soil, stone, wood etc or symbiotic.     -  Unicellular to large filamentous. 
  • 12.   Bryophytes ( Amphibians of plant Kingdom) –   ​Group of autotrophic plants with thallus having true roots, stem and leaves with multi cellular sex  organs.  ​Occurs on damp, humid and shaded soil.  ​Root like rhizoids present.  -​Main plant body gametophyte bears Antheridia and Archegonia.​ ​Biflagellate antherozoids produced  from Antheridium and reach through water to egg in Archegonium.  -​Zygote forms sporophyte which produces haploid spores to give rise to new plants.    Types of Bryophytes    Chlorophyceae  Phaeophyceae  Rhodophyceae  - Green algae chlorophyll  a&b dominant.  Unicellular to  filamentous.  - Chloroplast of different  shape( cup, spiral,  ribbon) with pyrenoids .  - Stored food starch.  - Reproduction  –  vegetative-fragmentation  Asexual  - by zoospores  - Sexual  - by gametes(iso, aniso  and oogamous).  - eg​Volvox, Ulothrix,  Spirogyra, Chara ​etc.  -Brown algae.  - Xanthophyll, Fucoxanthin  dominant, others are chl. a, c  carotenoid.  - Simple branched filamentous  to a profusely branched large  body.  - Gelatinous coating on cell wall.  - Stored food Mannitoland  Laminarin.Reproduction  - Vegetative by fragmentation  Asexual By biflagellate (lateral)  zoospores.  Sexual by gametes(Iso, Aniso  and Oogamy).  - eg. ​Laminaria,Sargassum.  - phycoerythrin  (dominant) and others  chlorophyll a and d.  - Marine on surface or in  great depths, multi  cellular.  - Stored food  – Floridean starch.  -Red algae  - Reproduction  Vegetative by  fragmentation Asexual  by non motile spores  Sexual by oogamy.  - eg. ​Gracilaria, Gelidium  Liverworts  Mosses 
  • 13.   1.Thallus dorsiventrally flattened (Liver shaped), leafy  members with leaf like appendages.  2. Asexual reproduction by fragmentation , gemmae  formation.  3.Sexual reproduction - antheridia and archegonia  produced.  4. Antherozoids fuse with eggs to form zygotes which  give rise to Sporophyte.  5. Sporophyte - with foot, seta & capsule.  6. Spores give rise to new plants (gametophyte).  eg. ​Riccia, Marchantia ​etc.  Marchantia  - Thallus : ​Two stages  (gametophyte) –  (a) Thread like Protonema (b)erect  Leafy stage.  1. Reproduction :  Vegetative by Fragmentation of  protonema  & Sexual by antherozoids & egg.  2. Zygote forms Sporophyte with foot,  seta  capsule.  -Sporophyte forms spores which  germinate to form protonema.  eg. ​Funaria, Polytrichum ​etc.    Funaria     Pteridophyte:              -  Group of first terrestrial plants having vascular tissue viz.  Xylem & Phloem.        -  True stem, root & leaf.        -  ​Found in damp, shady places.​ ​Sporophyte makes the  main plant body.        -  Sporophylls of Sporophyte bear sporangia (sori) on the  ventral side producing haploid spores.        -  spores give rise to Prothallus which is leafy & autotrophic.        -  Prothallus bears sex organs – male – Antheridium and  female- Archegonium.        -  Fertilisation leads into zygote formation which produces  diploid Sporophyte.     Heterospory and  Seed habit:              -  Two types of spores Microspore and Megaspore are  produced in some members viz. ​Selaginella, Salvinia.        -  called Heterospory. 
  • 14.     -Androecium is male part and one unit is stamen.  -Gynoecium is the female part and one unit is carpel and has ovules.  -Ovule bears embryo sac.  -Embryo sac is seven celled and has Egg      01 – haploid. Synergids   02 – haploid. Antipodals     03 - haploid. Secondary nucleus    04 – diploid.    -Reproduction by vegetative and sexual methods.        -  Heterospory is considered as the beginning of seed habit  in terrestrial plants.           eg. ​Pteris, Dryopteris ​etc.     GYMNOSPERMS              -  Medium sized trees and shrubs.        -  Main plant body Sporophyte        -  In some members roots may have a fungal association  called Mycorrhiza.     -bilus.              -  Microspore i.e. pollens reaches to ovules.Pollen tubes  help to transfer male gametes up to egg of archegonia  present in female gametophyte of ovule.           Zygote develops in an embryo inside seed        -  e.g. ​Cycas, Pinus ,Cedrus​etc.     ANGIOSPERMS                 Large no. of plants in varied habitats, small microscopic  plants (​Wolfia​) to large trees        -  ​Group of plants having covered seeds in fruits.        -  Produce ​flowers ​having reproductive organs.        -  Most evolved plants. 
  • 15. -In sexual reproduction pollens shed off and reach the stigma of Gynoecium by pollination.  -Pollen germinates to form pollen tubes with two male gametes and one tube nucleus.  -One gamete fuses with egg (Syngamy) and other with secondary nucleus to form PEN  (primary endosperm nucleus). The whole process is called Double fertilization.  -Zygote forms embryo and PEN forms Endosperm in ovule which changes into seed inside fruit.  -Ovary wall changes into Pericarp (fruit wall).  -Alternation of generation occurs.    Plant life cycle and alternation of Generation –    -​Alternate stages of haploid (n) and Diploid (2n) phases in life cycle of plants.    - Three Patterns -    Haplontic  Diplontic  Haplodiplontic  - Dominating phase  haploid (n).  -only zygote diploid (2n).  -Haploid spores form  the main plant body  eg. ​Algae  viz.  Ulothrix,Spirogyra ​etc.  -Dominating phase diploid  (2n).  -Haploid phase only in a single  cell or few celled gametophytes.  -Zygote forms embryo which  forms Sporophyte (main plant  body).  eg.     Gymnosperms Or Angiosperms  -Intermediate i.e.haploid &  diploid stages equal.  -Gametophyte & Sporophyte  stages both may be free living.  eg. Bryophytes & Pteridophyte.  1-  Phylogeny  -     Evolutionary history of organisms .  2-  Zoospores  -     Motile spores with flagella .  3-  Gametophyte  -     Haploid stage of plant, producing gametes.  4-  Sporophyte  -     Diploid stage of plants producing spores.  5-  Archegonium  -     Female reproductive structure.  6-  Antheridium  -     Male reproductive structure.  7-  Megasporangium  -     The structure which bears megaspores.  8-  Sporophyll  -     Leaf bearing sporangia producing spores. 
  • 16.       Economically useful as-    a) Large photo synthesiser, release 02 .  b)Food for aquatic animals, humans.  c)Produce Algin (Brown algae), carrageen (red algae), agar (​gelidium, gracilaria​)    - ​Chlorella, Spirullina​- in space travel as protein rich food.     -  Numerical  taxonomy  -     based on several features compared collectively by  computer.     -  Cytotaxonomy  -     based on cytological features.     -  Chemotaxonomy  -     based on chemical constituents.  Algae  –                    -  Group of chlorophyllous, simple, thalloid plants.     -  Largely aquatic, grow on soil, stone, wood etc or symbiotic.     -  Unicellular to large filamentous.  Chlorophyceae  Phaeophyceae  Rhodophyceae 
  • 17.   Bryophytes ( Amphibians of plant Kingdom) –   ​Group of autotrophic plants with thallus having true roots, stem and leaves with multi cellular sex  organs.  ​Occurs on damp, humid and shaded soil.  ​Root like rhizoids present.  -​Main plant body gametophyte bears Antheridia and Archegonia.​ ​Biflagellate antherozoids produced  from Antheridium and reach through water to egg in Archegonium.  -​Zygote forms sporophyte which produces haploid spores to give rise to new plants.    Types of Bryophytes    - Green algae chlorophyll  a&b dominant.  Unicellular to  filamentous.  - Chloroplast of different  shape( cup, spiral,  ribbon) with pyrenoids .  - Stored food starch.  - Reproduction  –  vegetative-fragmentation  Asexual  - by zoospores  - Sexual  - by gametes(iso, aniso  and oogamous).  - eg​Volvox, Ulothrix,  Spirogyra, Chara ​etc.  -Brown algae.  - Xanthophyll, Fucoxanthin  dominant, others are chl. a, c  carotenoid.  - Simple branched filamentous  to a profusely branched large  body.  - Gelatinous coating on cell wall.  - Stored food Mannitoland  Laminarin.Reproduction  - Vegetative by fragmentation  Asexual By biflagellate (lateral)  zoospores.  Sexual by gametes(Iso, Aniso  and Oogamy).  - eg. ​Laminaria,Sargassum.  - phycoerythrin  (dominant) and others  chlorophyll a and d.  - Marine on surface or in  great depths, multi  cellular.  - Stored food  – Floridean starch.  -Red algae  - Reproduction  Vegetative by  fragmentation Asexual  by non motile spores  Sexual by oogamy.  - eg. ​Gracilaria, Gelidium  Liverworts  Mosses 
  • 18.   1.Thallus dorsiventrally flattened (Liver shaped), leafy  members with leaf like appendages.  2. Asexual reproduction by fragmentation , gemmae  formation.  3.Sexual reproduction - antheridia and archegonia  produced.  4. Antherozoids fuse with eggs to form zygote which  gives rise to Sporophyte.  5. Sporophyte - with foot, seta & capsule.  6. Spores give rise to new plants (gametophyte).  eg. ​Riccia, Marchantia ​etc.  Marchantia  - Thallus : ​Two stages  (gametophyte) –  (a) Thread like Protonema (b)erect  Leafy stage.  1. Reproduction :  Vegetative by Fragmentation of  protonema  & Sexual by antherozoids & egg.  2. Zygote forms Sporophyte with foot,  seta  capsule.  -Sporophyte forms spores which  germinate to form protonema.  eg. ​Funaria, Polytrichum ​etc.    Funaria     Pteridophyte:              -  Group of first terrestrial plants having vascular tissue viz.  Xylem & Phloem.        -  True stem, root & leaf.        -  ​Found in damp, shady places.​ ​Sporophyte makes the  main plant body.        -  Sporophylls of Sporophyte bear sporangia (sori) on the  ventral side producing haploid spores.        -  spores give rise to Prothallus which is leafy & autotrophic.        -  Prothallus bears sex organs – male – Antheridium and  female- Archegonium.        -  Fertilisation leads into zygote formation which produces  diploid Sporophyte.     Heterospory and  Seed habit:              -  Two types of spores Microspore and Megaspore are  produced in some members viz. ​Selaginella, Salvinia.        -  called Heterospory. 
  • 19.     -Androecium is male part and one unit is stamen.  -Gynoecium is the female part and one unit is carpel and has ovules.  -Ovule bears embryo sac.  -Embryo sac is seven celled and has Egg      01 – haploid. Synergids   02 – haploid. Antipodals     03 - haploid. Secondary nucleus    04 – diploid.    -Reproduction by vegetative and sexual methods.        -  Heterospory is considered as the beginning of seed habit  in terrestrial plants.           eg. ​Pteris, Dryopteris ​etc.     GYMNOSPERMS              -  Medium sized trees and shrubs.        -  Main plant body Sporophyte        -  In some members roots may have fungal association  called Mycorrhiza.     -bilus.              -  Microspore i.e. pollens reaches to ovules.Pollen tubes  help to transfer male gametes up to egg of archegonia  present in female gametophyte of ovule.           Zygote develops in an embryo inside seed        -  e.g. ​Cycas, Pinus ,Cedrus​etc.     ANGIOSPERMS                 Large no. of plants in varied habitats, small microscopic  plants (​Wolfia​) to large trees        -  ​Group of plants having covered seeds in fruits.        -  Produce ​flowers ​having reproductive organs.        -  Most evolved plants. 
  • 20. -In sexual reproduction pollens shed off and reach the stigma of Gynoecium by pollination.  -Pollen germinates to form pollen tubes with two male gametes and one tube nucleus.  -One gamete fuses with egg (Syngamy) and other with secondary nucleus to form PEN  (primary endosperm nucleus). The whole process is called Double fertilization.  -Zygote forms embryo and PEN forms Endosperm in ovule which changes into seed inside fruit.  -Ovary wall changes into Pericarp (fruit wall).  -Alternation of generation occurs.    Plant life cycle and alternation of Generation –    -​Alternate stages of haploid (n) and Diploid (2n) phase in the life cycle of plants.    - Three Patterns -    Haplontic  Diplontic  Haplodiplontic  - Dominating phase  haploid (n).  -only zygote diploid (2n).  -Haploid spores form  the main plant body  eg. ​Algae  viz.  Ulothrix,Spirogyra ​etc.  -Dominating phase diploid  (2n).  -Haploid phase only in single cell  or few celled gametophytes.  -Zygote forms embryo which  forms Sporophyte (main plant  body).  eg.     Gymnosperms Or Angiosperms  -Intermediate i.e.haploid &  diploid stages equal.  -Gametophyte & Sporophyte  stages both may be free living.  eg. Bryophytes & Pteridophyte. 
  • 21.       1              Symmetry  :     Distribution of body parts around a        2              hypothetical  axis.  :     Ostia : Minute pores on the body of the  sponge.        3              Osculum  :     Large outlet in body of sponge.        4              Hermaphrodite  :     Bisexual.        5              Polyp  :     Sessile cylindrical form of coelenterate  (Asexual).        6              Medusa  :     Umbrella shaped free swimming sexual  stage of coelenterate.        7              Acoelomate  :     No coelom.        8              Pseudocoelom  :     With false coelom (cavity not underlined  by mesoderm).        9              Dioecious  :     Unisexual.        1 0              Operculum  :     Cover over gills in fish        1 1              Notochord  :     Dorsal rod like bone        1 2              Homoiotherms  :     Warm blooded.        1 3              Bioluminescence  :     Emit light.  -Levels of organisation                 i)  Cellular level- loose cell aggregates, small division of labour eg. Sponges        ii)  Tissues grouped into organs eg.  Coelenterate.        iii)  Organ level-Tissues grouped into organs eg. Higher animals. 
  • 22. Circulatory system        a)  Open type- No blood vessels, blood flows in sinuses.        b)  Close type- Blood flows in closed vessels.  Symmetry                -  Asymmetrical – No symmetry eg. Sponges.        -             -  Radial Symmetry – Any plane passing through the central axis divides the body in two  equal halves.        -  Bilateral Symmetry – Body can be divided into two equal halves through one plane  only.    Diploblastic and Triploblastic organisation –              -  Two embryonic layers – Ectoderm and Endoderm – Diploblastic.        -  Three embryonic layers- Ectoderm, Mesoderm and endoderm- Triploblastic.  Coelom –                 -  Body cavity lined by mesoderm- True Coelom.        -  Body cavity not lined by mesoderm Pseudo Coelom. 
  • 23.             -    No body cavity – Acoelomate.  Segmentation –                 -  True segments- Metameres (Body divided internally and externally).  Notochord –                 -  With notochord – Chordates.        -  Without notochord – Non-Chordates.     Classification of Animals –           Phylum Porifera –                    -  Marine.           -  Multicellular, cellular grade body.             -  Asymmetrical.           -  Water canal system for food, respiration and excretion.           -  Body wall with many pores – Ostia.           -  Diploblastic.           -  Water enters through Ostia and goes out through Osculum.           -  Skeleton of spicules or spongin fibres.           -  Hermaphrodite.           -  Reproduction asexual by fragmentation and sexual by gametes.           -  Fertilisation is internal, development indirect.    
  • 24.       -  eg. ​Sycon, Spongilla, Euspongia​etc.          Phylum Coelenterata (Cnidaria) –                          -  Aquatic (marine), Sessile or free living.           -  Presence of Cnidoblasts or Cnidocytes – Stinging cells.           -  Cnidoblasts are for defence, anchorage or predation.           -  Tissue level body organisation.           -  Diploblastic.           -  Central gastrovascular cavity, single opening mouth.           -  Two body forms – Polyp (Asexual), Medusa (Sexual) stage.           -    eg Hydra​, Physalia, Obelia, Aurelia ​etc.          Phylum Ctenophora (sea walnuts or comb jellies) – 
  • 25.                      -  Marine, radial symmetry, Diploblastic, tissue grade.           -  Eight external rows of Comb Plates.           -  Bioluminescence.           -  eg. ​Ctenoplana, Pleurobrachia ​etc.           -  Reproduction sexual.                Phylum Platyhelminthes (Flatworms) –                          -  Body dorsoventrally flattened.           -  Endoparasite.           -  Triploblastic, bilateral symmetry.           -  Acoelomate           -    -Flame cells- for excretion & osmoregulation.    
  • 26.       -    -Flame cells- for excretion & osmoregulation.           -  Hermaphrodite           -  Reproduction – Sexual - Fertilisation internal.           -  Organ level organisation.           -  eg. ​Taenia Solium​(Tapeworm), ​Fasciola hepatica ​(liver fluke).           Phylum Aschelminthes (Roundworm) –                          -  Free living or parasitic, aquatic and terrestrial. Bilateral symmetry and  Triploblastic.           -  Pseudocoelomate. Muscular pharynx.           -  Male smaller and thinner than female. Fertilisation internal, development direct  or indirect.           -    eg. ​Ascaris Lumbricoides, Wucher Aria Bancroftii Etc​.           Phylum Annelida –                          -  Aquatic or terrestrial.           -  Free living or parasitic.           -  Organ system level body bilateral symmetry and Triploblastic coelomate.           -  Nephridia for excretion.           -  Ventral double Nerve cord.           -  Monoecious or Dioecious.           -    Reproduction – Sexual. eg.    
  • 27.       -  Earthworm(​Pheretima​),​Nereis ​etc.           -  Metameric segmentation.           Phylum Arthropoda( Jointed Legs) –                          -  Largest phylum.           -  Bilateral symmetry, Triploblastic, segmented coelomate.           -  Body - Head, Thorax and Abdomen(three parts).           -  Blood without haemoglobin and circulatory system open.           -  Respiration by gills, book lungs and trachea.           -  Excretion by malpighian tubules.           Phylum Mollusca –                          -  Soft body animals. Second largest phylum.           -    Aquatic, bilateral symmetry, triploblastic, coelomate. Body unsegmented  divided into head, muscular foot and visceral hump.           -  Soft mantle over visceral hump. Respiration and excretion through gills.           -    Unisexual.           -  Sensory tentacles on head and Radula in mouth.           -  Oviparous.           -  -eg.​Pila, ​Octopus etc          
  • 28. PHYLUM ECHINODERMATA                          -  Body surface spiny, (due to calcareous ossicles)           -  Marine , organ system level, adult radially symmetrical, triploblastic coelomate.              Mouth ventral           1  Water vascular system present for locomotion, capture and transport of food  and respiration.           2  Sexes separate fertilization external, development indirect           -  e.g. ​Asterias ​(Starfish), ​Sea urchin ​(Echinus), etc.           PHYLUM HEMICHORDATA                          1  Marine           2  Bilateral symmetry, triploblastic, coelomate           3  Body           i  Proboscis           ii  Collar           iii  Trunk             4  Circulatory system open           5  Gills for respiration           6  Proboscis gland for ​excretion              Sexes separate fertilization external, development indirect, e.g. ​Balanoglossus​.     PHYLUM- CHORDATA    
  • 29. Distinguishing features           1  Presence of Notochord           2  Dorsal hollow nerve cord           3  Paired pharyngeal gills slits           4  Post anal tail present           5  Heart is ventral        SUB PHYLA –             1  Urochordata ​or ​Tunicata​, Notochord only in larval tail e.g. ​Ascidia           2  Cephalochordata ​notochord head to tail in all stage e.g. ​Branchiostoma           3  Vertebrata​: Notochord replaced by a vertebral column.        SUBPHYLUM- VERTEBRATA    AGNATHA-without jaw           CLASS- Cyclostomata-           Ectoparasite on fish           -  C ircular mouth           -  No scales and paired fins           -  Marine but go in fresh water for spawning and die. Larva returns to ocean.           -  Eg. ​Petromyzon, Myxine​.     Gnathostomata – with jaws           Class ​- Chondrichthyes           -  Aquatic and terrestrial both.           -  Two pairs of limbs.    
  • 30.       -  No neck.           -  Body has head and trunk only.           -  No external ear, tympanum on surface.           -  Heart three chambered.           -  Cloaca present.           -  Respiration by gills, skin and lungs.           -  Sexes separate.           -  Fertilisation external, development direct           -  eg​. Ranatigrina, Bufo, Hyla ​etc.     Class Reptilia –           -  Creeping or crawling mode of locomotion.           -  Skin with scales/scutes.           -  Tympanum on surface.           -  Heart three chambered (Four chambered in crocodile).           -  Fertilisation internal, development direct.           -  eg. ​Chelone, Testudo, Naja, Hemidactylus etc​.     Class Aves –        -  presence of feather, beak and forelimb in form of wing.           -  Hind limb adapted to clasping, walking and swimming.           -  No glands on skin (only oil gland at tail base).           -  Hollow bones (pneumatic).           -  Air sacs connected to lungs to supplement respiration.           -  Crop and gizzard are additional chambers in digestive system.           -  Warm blooded.           -  Heart four chambered.    
  • 31.       -  Sexes separate.           -  Fertilisation internal and development direct.eg.           -  ​Columba, Psittacula ​etc.     Class Mammalia –           -  Aquatic, terrestrial and aerial.           -  Mammary glands present for milk production.           -  Two pairs of limbs.           -  Skin with hair.           -  Ear with pinna.           -  Homoiothermic.           -  Heart four chambered.           -  Excretion by kidneys.           -  .Sexes separate.              Internal fertilisation, vivipary (exception ​Platypus​).           -  eg. Whale, Rat , Man, Tiger etc.           -  Respiration by lungs      
  • 32. Morphology The study of various external features of the organism is known as morphology. The angiosperms  are characterized by the presence of roots, stems, leaves, flowers and fruits.              The Root:​The root is the underground part of the plant and develops from elongation of the  radicle of the embryo.  Various types of root  1.  Tap root: ​Originates from radicle. Dicotyledonous plants eg.​, ​mustard,gram, mango.  2.  Fibrous root: ​Originates from base of the stem. Monocotyledonous plants ​e.g., ​wheat,  paddy.  3.  Adventitious root: ​Originates from parts of the plant other than radicle. Banyan tree  (Prop roots)Maize (Stilt roots)  Root Cap:​The root is covered at the apex by the thimble-like structure which protects the  tender apical part o  the root.  Regions of the root:  1.  Region of  meristematic activity  :     Cells of this region have the capability to divide.  2.  Region of elongation        Cells of this region are elongated and enlarged,  responsible for root growth.  3.  Region of Maturation        Maturation:This region has differentiated and matured  cells. Some of the epidermal cells o  thi read-like root hairs for absorption of water and  minerals.              Roots are modified for support, storage of food, respiration. 
  • 33.   Modifications of Root          Modifications of Stem  •  For support  :     Prop roots in Banyan tree, stilt roots in maize and sugarcane.  •  For respiration  :     Pneumatophores in Rhizophora (Mangrove).  •  For storage of  food  :     Fusiform (radish), Napiform (turnip), Conical (carrot).                 The Stem  :     Stem is the aerial part of the plant and develops from plumule of the  embryo.It bears ​nodes and  internodes  Modifications of  Stem        In some plants the stems are modified to perform the function of  storage of food, support, protection  and vegetative propagation  •  For food storage  :     Rhizome​ (ginger), ​Tuber ​(potato), ​Bulb​ (onion), and  Corm(colocasia).  •  For support  :     Stem ​tendrils ​of watermelon, pumpkin, cucumber.  •  For protection  :     Axillary buds of the stem of Citrus Bougainvillea get modified  into pointed ​thorns​.  •  For vegetative  propagation  :     Underground stems of grass, strawberry, lateral branches of  mint and  jasmine.  •  For assimilation of  food  :     Flattened stem of Opuntia contains chlorophyll and performs  photosynthesis  Venation  :     The arrangement of veins and veinlets in the lamina of leaf. 
  • 34.            The Leaf  :     Develops from shoot apical meristem, flattened, green  structure, manufacture the  food by photosynthesis. It has buds in the axle. A typical leaf  has​ leaf base, petiole ​and ​lamina.  Types of Venation:  1.  Reticulate  :     Veinlets form a network as in leaves of dicotyledonous plants(China  rose, Peepal).  Parallel  2.  Parallel  :     Veins run parallel to each other as in leaves of monocotyledonous plants  (grass, maize).  Modifications of Leaves  •  Tendrils  :     (Climbing) −Sweet wild pea  •  Spines  :     (Protection) −Aloe, Opuntia, Argemone     Fleshy  :     (Storage) −Onion  •  Pitcher  :     (Nitrogen Nutrition) −Nepenthes  The Inflorescence        The arrangement of flowers on the floral axis.  Main types of Inflorescence  1.  Racemose  :     Main axis is unlimited in growth-Radish, Mustard, Amaranthus.  2.  Cymose  :     Main axis is limited in growth-Cotton, Jasmine, Calotropis.  3.  Special type        Ficus, Salvia, Euphorbia.  Symmetry of flower  On the basis of no.  of  floral appendages  On the basis of position of  calyx,corolla,  androecium with respect to ovary 
  • 35.     Actinomorphic  (radial  symmetry)  Trimerous  Hypogynous (superior ovary)  Zygomorphic  (bilateral  symmetry)  Tetramerous  Perigynous (half inferior ovary)  Asymmetric  (irregular)  Pentamerous  Epigynous (inferior ovary)  1.  Calyx  :     Sepals, green in colour, leaf like.Gamosepalous− (Sepals united)  Polysepalous− (Sepals free)  2.  Corolla  :     Petals, usually brightly coloured to attract insects  forpollinationGamopetalous− (Petals  united)Polypetalous − (Petals free)              Aestivation  :     The mode of arrangement of sepals or petals in floral bud with  respect to other members of the  same whore.     Types of aestivation  1.  Valvate  :     Sepals or petals do not overlap the sepal or petal at  margins as in​Calotropis.  2.  Twisted  :     Sepals or petals overlap the next sepal or petal as in  China rose.  3.  Imbricate  :     margins of sepals or petals overlap one another but not  in any definite direction as in Gulmohar.  4.  Vexillary  :     largest petal overlaps the two lateral petals which in  turn overlap two smallest anterior petals as in Pea​.  (Papilionaceous) 
  • 36.    Vexillary  :     If calyx and corolla are not distinguishable (sepals),  they are called perianth     Perianth           3.  Androecium  :     If calyx and corolla are not distinguishable (sepals),  they are called perianth  4.  Gynoecium  :     Made up of one or more carpels, ​the female  reproductive part consists​ of ​stigma​, ​style ​and  ovary​, ovary bears one or more ​ovules​. Carpels may  be ​apocarpous​(free) or ​syncarpous ​(united). After  fertilisation, ovules develop into seeds and ovary into  fruit. 
  • 37.   Placentation : ​The arrangement of ovules within the ovary.  Types of Placentation :     Marginal : ​Placenta forms a ridge along the ventral  suture of ovary as in pea.     Parietal : ​Ovules develop on inner wall of ovary as in  mustard.        ree central : ​Ovules borne on central axis, lacking  septa as in ​Dianthus​.  :     Basal : ​Placenta develops at the base of ovary as in  sunflower. 
  • 38. The fruit : ​After fertilization, the mature ovary develops into fruit. The ​parthenocarpic  fruits are formed from ovary without fertilization.                  
  • 39. Structure of a Dicotyledonous Seed:        Structure of a Monocotyledonous Seed:        Description of Some Important Families:   
  • 40. 1.​Fabaceae (Pulse Family)        2.Solanaceae (Potato Family)  Floral formula: % K​(5)​ C1 + ​2​ + ​(2)​ A​(9)​ + ​1​ G​1   
  • 42.
  • 43. POINTS TO REMEMBER    Anatomy : ​Anatomy is the study of internal structure of organisms. Plant anatomy includes  organisation and structure of tissues.    Tissue : ​A group of similar cells along with intercellular substances which perform a specific  function.    Meristematic tissues :​ The meristematic tissue is made up of the cells which have the capability  to divide. Meristems in plants are restricted to a specialised region and responsible to the growth of  plants.    Axillary bud : ​The buds which are present in the axils of leaves and are responsible for forming  branches or flowers.    Permanent tissues : ​The permanent tissues are derived from meristematic tissue and are  composed of cells, which have lost the ability to divide.    Collenchyma : ​It is formed of living, closely packed isodiametric cells. It’s cells are thickened at  the corners due to deposition of cellulose and pectin. It provides mechanical support to the growing  parts of the plant.    Sclerenchyma : ​It is formed of dead cells with thick and lignified walls. They have two types of  cells : fibres and sclereids.    Xylem : ​Xylem consists of tracheids, vessels, xylem fibres and xylem parenchyma. It conducts  water and minerals from roots to other parts of the plant. Protoxylem : The first formed primary  xylem elements. Metaxylem : The later formed primary xylem.    Endarch :​ Protoxylem lies towards the centre and metaxylem towards the periphery of the organ.    Phloem :​ Phloem consists of sieve tube elements, companion cells, phloem fibres and phloem  parenchyma. Phloem transports the food material from leaves to various parts of the plant.  Protophloem : First formed phloem with narrow sieve tubes. Metaxylem : Later formed phloem with  bigger sieve tubes.    The Tissue System   
  • 44. 1. Epidermal tissue system :​ It includes cuticle, epidermis, epidermal hairs, root hairs, trichomes  and stomata.    2. The ground tissue system :​ It is made up of parenchyma, collenchyma, sclerenchyma. In  dicot stems and roots the ground tissue is divided into hypodermis cortex, endodermis, pericycle,  medullary rays and pith.    3. The vascular tissue system :​ It includes vascular bundles which are made up of xylem and  phloem.    Secondary growth in dicot stem :    An increase in the girth (diameter) in plants. Vascular cambium and cork cambium (lateral  meristems) are involved in secondary growth.    1. Formation of cambial ring : Intrafascicular cambium + interfascicular cambium.  2. Formation of secondary xylem and secondary phloem from cambial ring.  3. Formation of spring wood and autumn wood.  4. Development of cork cambium (phellogen)      (Phellogen + Phellem + Phelloderm) = Periderm    Secondary growth in dicot roots :​ Secondary growth in dicot root occurs with the activity of  secondary meristems (vascular cambium). This cambium is produced in the stele and cortex, and  results in increasing the girth of dicot roots. 
  • 45. POINTS TO REMEMBER    Tissue : ​A group of similar cells along with intercellular substances which perform a specific  function.    Simple epithelium :​ is composed of a single layer of cells resting on a basement membrane.    Compound epithelium : ​consists of two or more cell layers and has protective function.    Areolar tissue :​ is a type of loose connective tissue present beneath the skin.    Adipose tissue :​ is a type of loose connective tissue which has cells specialised to store fats.    Neuroglia :​ A delicate connective tissue which supports and binds together the nerve tissue in the  Central Nervous Tissue.    Malpighian tubules :​ Yellow coloured thin, filamentous tubules present at the junction of midgut  and hindgut in cockroach; helps in excretion.    Uricotelic :​ Animals which excrete nitrogenous waste in the form of uric acid.    Tight junctions :​ Plasma membranes of adjacent cells are fused at intervals. They help to stop  substances from leaking across a tissue.    Adherens junctions :​ Perform cementing function to keep neighbouring cells together.    Gap junction :​ Facilitate the cells to communicate with each other by connecting the cytoplasm of  adjoining cells for rapid transfer of ions, small molecules and sometimes big molecules.    Compound    •Made of more than one layer of cells.  • Provide protection against chemical and mechanical stresses.  • Cover dry surface of skin, moist cavity, pharynx, inner lining of ducts of salivary glands and  pancreatic ducts.   
  • 46. CONNECTIVE TISSUE    Loose Connective Tissue (has cells and fibres loosely arranged in semi-fluid ground substance)    (i) Areolar Tissue :  • present beneath the skin.  • contains fibroblasts, macrophages and mast cells.  • serves as a support framework for epithelium.    (ii) Adipose Tissue :  • located beneath the skin.  • cells are specialised to store fats. Dense Connective Tissue Fibres and fibroblasts are compactly  packed.    (i) Dense Regular :  • Collagen fibres present in rows.  • Tendons attach skeletal muscle to bone.  • Ligaments attach bone to bone.    (ii) Dense Irregular :  • Has collagen fibres and fibroblasts oriented differently.  • This tissue is present in the skin. Specialised Connective Tissue    (i) Cartilage made up of chondrocytes and collagen fibres.  (ii) Bones Ground substance is rich in calcium salts and collagen fibres Osteocytes are present in  lacunae  (iii) Blood Fluid connective tissue, consists of plasma and blood cells Muscle Tissue Consists of  long, highly contractile cells called fibres; bring about move- ment and locomotion.    (i) Skeletal Muscle :  • Consists of long cylindrical, multinucleated fibres.  • Closely attached to skeletal bones.  • Striated.    (ii) Smooth Muscles :  • Consists of spindle like, uninucleate fibres.  • Do not show striations.  • Wall of internal organs such as blood vessels, stomach and intestine.    (iii) Cardiac Muscles :  • Short, cylindrical, uninucleate fibres.  • Occur in the heart wall.  • Intercalated discs for communication. Neural Tissue 
  • 47. • Neurons are the functional unit and are excitable cells.  • Neuroglial cells make up more than half the volume of neural tissue.    They protect and support neurons. Cockroach − Periplaneta americana is a terrestrial, nocturnal,  omnivorous, unisexual, oviparous insect. Body covered by a chitinous, hard exoskeleton of hard  plates called sclerites.    Head : ​Triangular, formed by fusion of 6 segments. Bears a pair of anten- nae, compound eyes.  Mouth parts consist of labrum (upper lip), a pair of mandibles, a pair of maxillae, labium (lower lip),  hypopharynx (acts as tongue).    Thorax : ​3 segments; prothorax, mesothorax and metathorax.    Bears 2 pairs of wings :​ Forewings : tegmina (mesothoracic). Hindwings : transparent,  membranous (metathoracic) and 3 pairs of legs in thoracic segments.    Abdomen : ​10 segments. Bears a pair of long, segmented anal cerci in both sexes and a pair of  short, unjoined anal styles in males only. Also has anus and genital aperture at the hind end. Genital  aperture is surrounded by external genitalia called gonapophysis or phallomere.    Anatomy : ​Study of the morphology of internal organs. Alimentary canal : Divided into foregut,  midgut and hindgut.  Mouth → Pharynx → Oesophagus → Crop (stores food) → Gizzard (grind- ing of food) → Hepatic  caeca (at junction of fore and midgut; secretes digestive juice) → Hindgut (ileum, colon, rectum) →  Anus.    Blood vascular system : ​Open type, visceral organs bathed in haemolymph (colourless plasma  and haemocytes). Heart consists of an elongated muscular tube and differentiated into funnel  shaped chambers with ostia on either side. Blood from sinuses enters heart through ostia and is  pumped anteriorly to sinuses again. Blood colourless (hemolymph).    Respiratory system :​ Network of trachea which open through 10 spiracles. Spiracles regulated by  sphincters. Oxygen delivered directly to cells. Excretion and osmoregulation by Malpighian tubules;  uricotelic (Uric acid as excretory product).    Nervous system : ​Consists of series of fused segmentally arranged ganglia joined by paired  longitudinally connectives on the ventral side. three ganglia in thorax, six in abdomen. Brain  represented by supra-oesophageal ganglion.    Reproductive system :​ Male − Pair of testes (4th-6th segments) → vas deferens → ejaculatory  duct → male gonopore. Glands − Seminal vesicle (stores sperms), mushroom shaped gland (6th- 7th  segment).   
  • 48. Female reproductive system :​ A pair of ovaries (with 8 ovarian tubules) → Oviduct → Genital  chamberSperms transferred through spermatophores. Fertilised eggs encased in caps- sules called  ootheca; development of P. americana paurometabolous (incomplete metamorphosis).    Nymph grows by moulting 13 times to reach adult form. Interaction with man  • Pests destroy food and contaminate it.  • Can transmit a variety of bacterial diseases (Vector). 
  • 49. POINTS TO REMEMBER    Gram positive bacteria :​ Bacteria that take up gram stain.    Gram negative bacteria :​ Bacteria that do not take up gram stain.    Prokaryotic cells : ​Cells which lack a well defined nucleus and membrane bound cell organelles.  e.g., bacteria, cyanobacteria, mycoplasma.    Eukaryotic cells : ​Cells which have a well defined nucleus and membrane bound cell organelles.  e.g., all protists, plants, animals and fungi cells.    Passive transport : ​Transport of molecules across a membrane along the con- centration  gradient, i.e., from higher to lower concentration without the consumption of energy.    Active transport : ​Transport of molecules against concentration gradient, i.e., from lower to higher  concentration with the consumption of energy (ATP).    Polyribosome/polysome :​ A chain-like structure formed when several ribosomes are attached to  a single mRNA. PPLO : Pleuropneumonia Like    Organisms. Cell : Cell is the structural and functional unit of life. Cell Theory was formu- lated by  Scheleiden and Schwann and was modified by  Rudolf virchow states :  (a) All living organisms are composed of cells and products of cells.  (b) All cells arise from pre-existing cells. Prokaryotic cells Genetic material is not enveloped by a  nuclear envelope.    Many bacteria contain extra chromosomal DNA − plasmids. Cell Envelope Prokaryotic cells have a  chemically complex cell envelope which consists of a tightly bound 3 layered structure i.e.,  outermost ​glycocalyx​ followed by ​cell wall ​and then p​lasma membrane.    A specialised structure − ​mesosome​ is formed by the ​extension of plasma ​membrane into the  cell. Mesosomes help in cell wall formation, DNA replication and distribution to daughter cells,  respiration, secretion process, to increase surface area of plasma-membrane and enzymatic  content.    Bacterial cells may be motile or non-motile. Motile bacterias have ​flagella​ composed of three parts  − filament, hook and basal body. Pili and fimbriae are surface structures which do not play any role  in motility. These structures help the bacteria to attach with rocks and the host tissues.   
  • 50. 70S ribosomes are associated with plasma membranes and are made of two subunits − 50S and  30S. Ribosomes are a site of protein synthesis.  Eukaryotic cells    Possess an organized nucleus with nuclear envelope and have a variety of complex locomotory and  cytoskeletal structures.    Cell Membrane    Singer and Nicolson (1972) gave ‘Fluid mosaic model’. According to this the quasi-fluid nature of  lipid enables lateral movement of proteins within the overall bilayer    Functions : ​Selectively permeable.    Cell Wall ​is a non-living rigid structure which gives shape to the cell and protects the cell from  mechanical damage and infection, helps in cell-to-cell interaction and provides a barrier to  undesirable macromolecules.    Cell wall of algae is made of cellulose, galactans, mannans and minerals like calcium carbonate.  Plant cell wall consists of cellulose, hemicellulose, pectins and proteins.    Middle lamella​ is made of calcium pectate which holds neighbouring cells together.    Plasmodesmata​ connect the cytoplasm of neighbouring cells.    Endoplasmic Reticulum (ER) ​Consists of a network of tiny tubular structures. ER divides the  intracellular space into two distinct compartments − luminal (inside ER) and extra luminal  (cytoplasm).    (i) Rough Endoplasmic Reticulum (RER) :  • Ribosomes attached to the outer surface.  • Involved in protein synthesis and secretion.    (ii) Smooth Endoplasmic Reticulum (SER) :  • Lack ribosomes.  • Site for synthesis of lipid.   
  • 51. Golgi apparatus :​ Consists of cisternae stacked parallel to each other. Two faces of the organelle  are convex cis or forming face and concave trans or maturing face.    Functions :​ Performs packaging of materials, to be delivered either to the intracellular targets or  secreted outside the cell. Important site of formation of glycoproteins and glycolipids.    Lysosomes :​ Membrane bound vesicular structures formed by the process of packaging in the  golgi apparatus. Contain hydrolysing enzymes (lipases, proteases, carbohydrases) which are active  in acidic pH. Also called ‘Suicidal Bag’.    Function :​ Intracellular digestion. Vacuoles : Membrane bound space found in the cytoplasm.  Contain water, sap, excretory product, etc.    Function :​ In plants tonoplast (single membrane of vacuole) facilitates transport of ions and other  substances. Contractile vacuole for excretion in Amoeba and food vacuoles formed in protists for  digestion of food.    Mitochondria : ​Double membrane structure. Outer membrane smooth and inner membrane forms  a number of infoldings called cristae.    Function :​ Sites of aerobic respiration. Called ‘powerhouses’ of cells that produce cellular energy in  the form of ATP. Matrix possesses a single circular DNA molecule, a few RNA molecules, ribosomes  (70S). It divides by fission.    Plastids :​ Found in plant cells and in euglenoides. Chloroplasts, chromoplasts and leucoplasts are  3 types of plastids depending on pigments contained.Chloroplasts are double membraned structure.  Space limited by the inner membrane is called stroma. Flattened membranous sacs called  thylakoids in stroma. Chlorophyll pigments are present in thylakoids.    Function : ​Site of photosynthesis. Ribosomes Composed of RNA and proteins; without membrane.  Eukaryotic ribosomes are 80S.    Function : ​Site of protein synthesis. Cilia and Flagella Cilia are small structures which work like oar,  which help in movement. Flagella are longer and responsible for cell movement. They are covered  with plasma membranes. Core is called an axoneme which has a 9 + 2 arrangement. Centrosome  and Centrioles Centrosome contain two cylindrical structures called centrioles. Surrounded by  amorphous pericentriolar material. Has a 9 + 0 arrangement. Centrioles form the basal body of cilia  or flagella and spindle fibres for cell division in animal cells.    Nucleus :​ With double membrane; nuclear pores; has chromatin, nuclear matrix and nucleoli (site  for rRNA synthesis).   
  • 52. Chromatin :​ DNA + non histone proteins. Chromosomes (on basis of position of centromere) :  Metacentric : Middle centromere.    Sub-metacentric :​ Centromere nearer to one end of chromosome.    Acrocentric : ​Centromere situated close to its end.    Telocentric :​ Has terminal centromere.    Satellite : ​Some chromosomes have non-staining secondary constrictions at a constant location,  which gives the appearance of a small fragment called satellite. 
  • 53. POINTS TO REMEMBER    Biomolecules : ​All the carbon compounds that we get from living tissues.    Micromolecules : ​Molecules which have molecular weights less than one thou- sand dalton.    Amino acids : ​Organic compounds containing an amino group and one car- boxyl group (acid  group) and both these groups are attached to the same carbon atom called α α α α α carbon.        Lipids :  • Water insoluble, containing C, H, O.  • Fats on hydrolysis yield fatty acids.  • Fatty acid has a carboxyl group attached to an R group (contains 1 to 19 carbons).  • Fatty    Acids : ​Saturated With single bonds in the carbon chain. e.g., Palmitic acid, butyric acid.    Unsaturated :​ With one or more double bonds. e.g., oleic acid, linoleic acid.    Glycerol : ​A simple lipid, is trihydroxy propane.        • Some lipids have fatty acids esterified with glycerol.  • They can be monoglycerides, diglycerides and triglycerides.        • Phospholipids are compound lipids with phosphorus and a phosphory- lated organic compound  e.g., Lecithin .        Nucleoside : ​Nitrogenous base + Sugar e.g., Adenosine, guanosine.    Nucleotide : ​Nitrogenous base + Sugar + Phosphate group. e.g., Adenylic acid, thymidylic acid.    Nucleic acid : ​Polymer of nucleotides - DNA and RNA.   
  • 54. Biomacromolecules :​ Biomolecules with molecular weights in the range of ten thousand daltons  and above; found in acid insoluble fraction. Lipids are not strictly macromolecules as their molecular  weights do not exceed 800 Da but form a part of the acid insoluble pool.    Proteins :  • Are polymers of amino acids linked by peptide bonds.  • Is a heteropolymer.  • For functions of proteins    (Refer Table 9.5, Page no. 147, NCERT, Text Book of Biology for Class XI. Structure of Proteins)    (a) Primary structure :​ Is found in the form of linear sequence of amino acids. First amino acid is  called N-terminal amino acid and last amino acid is called C-terminal amino acid.    (b) Secondary structure :​ Polypeptide chain undergoes folding or coiling which is stabilized by  hydrogen bonding. Right handed helices are observed. e.g., fibrous protein in hair, nails.    (c) Tertiary structure :​ Long protein chain is folded upon itself like a hollow woolen ball. Gives a  3-dimensional view of protein, e.g., myosin.    (d) Quaternary structure :​ Two or more polypeptides with their foldings and ceilings are arranged  with respect to each other. e.g., Human haemoglobin molecules have 4 peptide chains - 2a and 2b  subunits.    Peptide bond :​ Formed between the carboxyl (-COOH) group of one amino acid and the amino  (-NH ) group of the next amino acid with the elimination of water moiety.  2 Polysaccharides : ​Are a long chain of sugars.    (a) Starch : ​Storehouse of energy in plant tissues. Forms helical second- ary structures.  (b) Cellulose : ​Polymer of glucose.  (c) Glycogen :​ Is a branched homopolymer, found as storage polysaccharide in animals.  (d) Insulin :​ Is a polymer of fructose.  (e) Chitin :​ Chemically modified sugar (amino-sugars) N-acetyl galac- tosamine. Form exoskeleton  of arthropods.    Anabolic pathways :​ Lead to formation of more complex structure from a sim- pler structure with  the consumption of energy. e.g., Protein from amino acids.    Catabolic pathway : ​Lead to formation of simpler structure from a complex structure. e.g.,  Glucose → Lactic Acid.   
  • 55. Enzymes :​ Are biocatalysts.  • Almost all enzymes are proteins.  • Ribosomes - Nucleic acids that behave like enzymes.  • Has primary, secondary and tertiary structure.  • Active site of an enzyme is a crevice or pocket into which substrate fits.  • Enzymes get damaged at high temperatures.  • Enzymes isolated from thermophilic organisms (live under high temperatures) are thermostable.  • Enzymes accelerate the reactions many folds.  • Enzymes lower the activation energy of reactions.    (Fig. 9.6, Page no. 156, NCERT Text Book of Biology for Class XI).    • ES ES EP EP +→→+ where E = Enzyme, S = Substrate, P = Product.    Factors affecting enzyme activity :  (a) Temperature :​ Show highest activity at optimum temperature. Activity declines above and  below the optimum value.  (b) pH :​ Enzymes function in a narrow range of pH. Highest activity at optimum pH.    (Fig. 9.7, Page no. 157, NCERT, Text Book of Biology for Class XI)    (c) Concentration of substrate :​ The velocity of enzymatic reaction rises with increase in  substrate concentration till it reaches maximum ve- ). Further increase of substrate does not  increase the rate of reaction as no free enzyme molecules are available to find with additional  substrate. locity    V max Enzyme inhibition : ​When the binding of a chemical shuts off enzyme activity, the process  is called inhibition and the chemical is called inhibitor.    Competitive inhibition : ​Inhibitor closely resembles the substrate in its molecular structure and  inhibits the enzyme activity. E.g., inhibition of succinic dehydrogenase by malonate.    Classification of enzymes :    Oxidoreductase/dehydrogenases :​ Catalyse oxidoreduction between 2 sub- strates.    Transferases :​ Catalyse transfer of a group between a pair of substrates. 
  • 56.   Hydrolases :​ Catalyse hydrolysis of ester, ether, peptide, glycosidic, C-C, P-N bonds.    Lyases :​ Catalyse removal of groups from substrates by mechanisms other than hydrolysis.    Isomerases :​ Catalyse inter-conversion of optical, geometric or positional isomers.    Ligases :​ Catalyse linking together of 2 compounds. Cofactors : Non-protein constituents found to  the enzyme to make it cata- lytically active. Protein portion of enzyme is called apoenzyme.    Cofactors :  • Prosthetic groups : ​Are organic compounds tightly bound to apoenzyme. E.g., hemin peroxidase  and catalase.  • Coenzymes :​ Organic compounds which have transient association with enzymes. E.g., NAD,  NADP.  • Metal ions :​ Required for enzyme activity. Form coordination bond with side chains at active site  and with substrate.    E.g., zinc is a cofactor for enzyme carboxypeptidase.    18. Nucleic acids :​ Deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). DNA structure  (Watson and Crick Model) : DNA is a right handed, double helix of two polynucleotide chains, having  a major and minor groove. The two chains are antiparallel, and held together by hydrogen bonds  (two between A and T and three between C and G). The backbone is formed by a sugar-phosphate  sugar chain. The nitrogen bases are projected more or less perpendicular to this backbone and face  inside. 
  • 57. POINTS TO REMEMBER    " Cell cycle "    The sequence of events by which a cell duplicates its genome, synthesis the other constituents of  the cell and eventually divides into two daughter cells.    " Phases of cell cycle "  Interphase :  •G Phase : ​Cell metabolically active and grows continuously.  • S Phase : ​DNA synthesis occurs, DNA content increases from 2C to 4C.  1 but the number of chromosomes remains some (2N).    •G Phase : ​Proteins are synthesised in preparation for mitosis while cell growth continues.  2 M Phase (Mitosis Phase) :​ Starts with nuclear division, corresponding to separation of  daughter chromosomes (karyokinesis) and usually ends with division of cytoplasm (cytokinesis).    Quiescent stage (G 0 ) :​ Cells that do not divide and exit G phase to enter an inactive stage called  G 0 1 . Cells at this stage remain metabolically active but do not proliferate.    MITOSIS Prophase :  (i) Replicated chromosomes, each consisting of 2 chromatids, condense and become visible.  (ii) Microtubules are assembled into a mitotic spindle.  (iii) Nucleolus and nuclear envelope disappear.  (iv) Centriole moves to opposite poles.    Metaphase :  (i) Spindle fibres attached to kinetochores (small disc-shaped structures at the surface of  centromere) of chromosomes.  (ii) Chromosomes line up at the equator of the spindle to form a metaphase plate.    Anaphase :  (i) Centromeres split and chromatids separate.  (ii) Chromatids move to opposite poles. 
  • 58.   Telophase :  (i) Chromosomes cluster at opposite poles.  (ii) Nuclear envelope assembles around the chromosome cluster.  (iii) Nucleolus, golgi complex, ER reform.    Cytokinesis :​ Is the division of protoplast of a cell into two daughter cells after Karyokinesis  (nuclear division).    Animal cytokinesis :​ Appearance of furrow in plasma membrane which deepens and joins in the  centre dividing cell cytoplasm into two.    Plant cytokinesis : ​Formation of a new cell wall begins with the formation of a simple precursor −  cell plate which represents the middle lamella between the walls of two adjacent cells.    Significance of Mitosis :  1. Growth − addition of cells.  2. Maintenance of surface/volume ratio.  3. Maintenance of chromosome number.  4. Regeneration.  5. Reproduction in unicellular organisms.  6. Repair and wound healing.    Meiosis :  • Specialised kind of cell division that reduces the chromosome num- ber by half, resulting in  formation of 4 haploid daughter cells.  • Occurs during gametogenesis in plants and animals.  • Involves two sequential cycles of nuclear and cell division called Meiosis I and Meiosis II.  • Interphase occurs prior to meiosis which is similar to interphase of mitosis except the S phase is  prolonged.  • 4 haploid daughter cells are formed. Meiosis I Prophase I : Subdivided into 5 phases.    Leptotene :  • Chromosomes make them as single stranded structures.  • Compaction of chromosomes continues.    Zygotene :  • Homologous chromosomes start pairing and this process of associa- tion is called synapsis.  • Chromosome synapsis is accompanied by formation of synaptone- mal complex.  • Complex formed by a pair of synapsed homologous chromosomes is called bivalent or tetrad.    Pachytene :​ Crossing over occurs between non-sister chromatids of ho- mologous chromosomes.   
  • 59. Diplotene ​: Dissolution of synaptonemal complex occurs and the recom- bined chromosomes  separate from each other except at the sites of crossing over. These X-shaped structures are called  chiasmata.    Diakinesis :  • Terminalisation of chiasmata.  • Chromosomes are fully condensed and meiotic spindles assembled.  • Nucleolus disappears and the nuclear envelope breaks down.    Metaphase I :  • Bivalent chromosomes align on the equatorial plate.  • Microtubules from opposite poles of the spindle attach to the pair of homologous chromosomes.    Anaphase I :​ Homologous chromosomes separate while chromatids re- main associated at their  centromeres.    Telophase I :  • Nuclear membrane and nucleolus reappear.  • Cytokinesis follows (diad of cells).    Interkinesis :​ Stage between two meiotic divisions. (meiosis I and meiosis II) Meiosis II Prophase  II  • Nuclear membrane disappears.  • Chromosomes become compact. Metaphase II  • Chromosomes align at the equator.  • Microtubules from opposite poles of the spindle get attached to kineto- chores of sister  chromatids. Anaphase II  • Simultaneous splitting of the centromere of each chromosome, al- lowing them to move towards  opposite poles of the cell. Telophase II  • Two groups of chromosomes get enclosed by a nuclear envelope.  • Cytokinesis follows resulting in the formation of tetrad of cells i.e., 4 haploid cells. Significance of  Meiosis    1. Formation of gametes : ​In sexually reproducing organisms.  2. Genetic variability  3. Maintenance of chromosomal number :​ By reducing the chromosome number in gametes.  Chromosomal number is restored by fertilisation of gametes. 
  • 60. POINTS TO REMEMBER    Translocation : ​Transport of substances in plants over longer distances through the vascular  tissue (Xylem and Phloem) is called translocation.    Means of transport :​ The transport of material into and out of the cells is carried out by a number  of methods. These are diffusion, facilitated diffusion and active transport. Diffusion : Diffusion  occurs from regions of higher concentration to regions of lower concentration across the permeable  membrane. It is a passive and slow process. No energy expenditure takes place.    Facilitated diffusion : ​The diffusion of hydrophilic substances along the concentration gradient  through fixed membrane transport protein without involving energy expenditure is called facilitated  diffusion. For this the membrane possess aquaporins and ion channels. No energy is utilized in this  process.        Active transport : ​Active transport is carried by the movable carrier proteins (pumps) of  membrane. Active transport uses energy to pump molecules against a concentration gradient from a  low concentration to high concentration (uphill-transport). It is faster than passive transport.    Water potential :​ The chemical potential of water is called water potential. It is denoted by Ψ (Psi)  and measured in pascals (Pa). The water potential of a cell is affected by solute potential (Ψ W s )  and pressure potential (Ψ ). Ψ W = Ψ s + Ψ p Water potential of pure water at standard temperature  which is not under any pressure is taken to be zero (by convention). p    " Osmosis "  Osmosis is movement of solvent or water molecules from the region of their higher diffusion  pressure or free energy to the region of their lower diffusion pressure or free energy across a  semipermeable membrane. Water molecules move from higher water potential to lower water  potential until equilibrium is reached. Plasmolysis : Process of shrinkage of protoplasm in a cell due  to exosmosis in hypertonic solution.    " Casparian strip " 
  • 61.   It is the tangential as well as radial walls of endodermal cells having the deposition of water  impermeable suberin. Imbibition : Imbibition is the phenomenon of adsorption of water or any other  liquid by the solid particles of a substance without forming a solution.    Some examples of Imbibition :  (i) If a dry piece of wood is placed in water, it swells and increases in its volume.  (ii) If dry gum or pieces of agar-agar are placed in water, they swell and their volume increases.  (iii) When seeds are placed in water they swell up.    Mass flow :​ Mass flow is the movement of substances (water, minerals and food) in bulk from one  point to another as a result of pressure differences between two points.    Transport of water in plants : ​Water is absorbed by root hairs, then water moves up to xylem by  two pathways − apoplast and symplast pathway. The transport of water to the tops of trees occurs  through xylem vessels. The forces of adhesion and cohesion maintain a thin and unbroken column  of water in the capillaries of xylem vessels through which it travels upward. Water is mainly pulled by  transpiration from leaves.    (Cohesion-tension-transpiration pull Model) Root pressure : ​A hydrostatic pressure  existing in roots which pushes the water up in xylem vessels. Guttation : The water loss in its liquid  phase at night and early morning through special openings of vein near the tip of leaves.    Transpiration :​ The loss of water through stomata of leaves and other aerial parts of plants in  form of water vapour.    Osmosis : ​Osmosis is movement of solvent or water molecules from the region of their higher  diffusion pressure or free energy to the region of their lower diffusion pressure or free energy across  a semipermeable membrane. Water molecules move from higher water potential to lower water  potential until equilibrium is reached.    Plasmolysis :​ Process of shrinkage of protoplasm in a cell due to exosmosis in hypertonic  solution.    Casparian strip :​ It is the tangential as well as radial walls of endodermal cells having the  deposition of water impermeable suberin. Imbibition : Imbibition is the phenomenon of adsorption of  water or any other liquid by the solid particles of a substance without forming a solution.    Some examples of Imbibition :  (i) If a dry piece of wood is placed in water, it swells and increases in its volume.  (ii) If dry gum or pieces of agar-agar are placed in water, they swell and their volume increases.  (iii) When seeds are placed in water they swell up.   
  • 62. Mass flow :​ Mass flow is the movement of substances (water, minerals and food) in bulk from one  point to another as a result of pressure differences between two points.    Transport of water in plants : ​Water is absorbed by root hairs, then water moves up to xylem by  two pathways − apoplast and symplast pathway. The transport of water to the tops of trees occurs  through xylem vessels. The forces of adhesion and cohesion maintain a thin and unbroken column  of water in the capillaries of xylem vessels through which it travels upward. Water is mainly pulled by  transpiration from leaves.    (Cohesion-tension-transpiration pull Model) Root pressure :​ A hydrostatic pressure  existing in roots which pushes the water up in xylem vessels.    Guttation : ​The water loss in its liquid phase at night and early morning through special openings  of vein near the tip of leaves.    Transpiration : ​The loss of water through stomata of leaves and other aerial parts of plants in  form of water vapour. 
  • 63. POINTS TO REMEMBER    Autotroph :​ An organism that synthesizes its required nutrients from simple and inorganic  substances.    Heterotroph :​ An organism that cannot synthesise its own nutrients and depend on others.    Necrosis :​ Death of cells and tissues.    Biological nitrogen fixation :​ Conversion of atmospheric into organic com- pounds by living  organisms. Nitrification : Conversion of ammonia (NH ) into nitrite and then to nitrate. 3    Denitrification :​ A process of conversion of nitrate into nitrous oxide and nitrogen gas (N ).    Leg-hemoglobin :​ Pinkish pigment found in the root nodules of legumes. 2 It acts as oxygen  scavenger and protects the nitrogenase.    Flux :​ The movement of ions is called flux. Necrosis : Death of tissues particularly leaf tissue due to  deficiency of Ca, Mg, Cu, K. Mineral    Nutrition :​ Plants require mineral elements for their growth and development. The utilization of  various absorbed ions by a plant for growth and development is called mineral nutrition of the plant.    Hydroponics :​ Soilless culture of plants, where roots are immersed in nutrient solution without soil  is called hydroponics. The result obtained from hydroponics may be used to determine deficiency  symptoms of essential ele- ments.    Essential Elements  Macronutrients  Micro-nutrients  Macronutrients are present in  Micro-nutrients are needed in very low  plant tissues in concentrations of 1 to 10  mg per gram of dry matter  amounts : 0.1 mg per gram of dry  matter.  C, H, O, N, P, K, S, Ca, Mg  Fe, Mn, Cu, Mo, Zn, B, Cl, Si. 
  • 64. POINTS TO REMEMBER    Photosynthesis :​ Photosynthesis is an enzyme regulated anabolic process of manufacture of  organic compounds inside the chlorophyll containing cells from carbon dioxide and water with the  help of sunlight as a source of energy.        Historical Perspective Joseph Priestley (1770) : ​Showed that plants have the ability to take  up CO 2 from atmosphere and release O .    Jan Ingenhousz (1779) :​ Release of O 2 by plants was possible only in sunlight and only by the  green parts of plants.    Theodore de Saussure (1804) :​ Water is an essential requirement for photosynthesis to occur.    Julius Von Sachs (1854) :​ Green parts in plants produce glucose which is stored as starch.    T. W. Engelmann (1888) :​ The effect of different wavelengths of light on photosynthesis and  plotted the first action spectrum of photosynthesis. C. B.    Van Niel (1931) :​ Photosynthesis is essentially a light dependent reaction in which hydrogen from  an oxidisable compound reduces CO to form sugar. He gave a simplified chemical equation of  photosynthesis.    Hill (1937) : ​Evolution of oxygen occurs in light reaction.    Calvin (1954-55) :​ Traced the pathway of carbon fixation.    Hatch and Slack (1965) : ​Discovered C 4 pathway of CO fixation.    Site for photosynthesis :​ Photosynthesis takes place only in green parts of 2 the plant, mostly in  leaves. Within a leaf, photosynthesis occurs in mesophyll cells which contain the chloroplasts.  Chloroplasts are the actual sites for photosynthesis. The thylakoids in chloroplast contain most of  the pigments required for capturing solar energy to initiate photosynthesis. The membrane system  (grana) 2 is responsible for trapping the light energy and for the synthesis of ATP and NADPH.  Biosynthetic phase (dark reaction) is carried in stroma.    " Pigments involved in photosynthesis " 
  • 65. Chlorophyll a :​ (Bright or blue green in chromatography). Major pigments act as reaction centres,  involved in trapping and converting light into chemical energy.    Chlorophyll b :​ (Yellow green)    Xanthophyll :​ (Yellow)    Carotenoids : ​(Yellow to yellow-orange) In the blue and red regions of the spectrum shows higher  rates of photosynthesis.    Light Harvesting Complexes (LHC) : ​The light harvesting complexes are made up of hundreds  of pigment molecules bound to protein within the photosystem I (PSI) and photosystem II (PSII).  Each photosystem has all the pigments except one molecule of chlorophyll ‘a’ forming a light  harvesting system (antennae). The reaction centre (chlorophyll a) is different in both the  photosystems.    Photosystem I (PSI) : ​Chlorophyll ‘a’ has an absorption peak at 700 nm (P700). Photosystem II  (PSII) : Chlorophyll ‘a’ has an absorption peak at 680 nm (P680).    Process of photosynthesis :​ It includes two phases - Photochemical phase and biosynthetic  phase.  (i) Photochemical phase (Light reaction) :​ This phase includes - light absorption, splitting of  water, oxygen release and formation of ATP and NADPH.  (ii) Biosynthetic phase (Dark reaction) : ​It is a light independent phase, synthesis of food  material (sugars).    Photophosphorylation : ​The process of formation of high-energy chemicals (ATP and NADPH).    Cyclic photophosphorylation : ​Two photosystems work in series − First PSII and then PSI.  These two photosystems are connected through an electron transport chain (Z. Scheme). Both ATP  and NADPH + H are synthesised by this process. PSI and PSII are found in lamellae of grana, hence  this process is carried here.    Non-cyclic photophosphorylation : ​Only PSI works, the electron circulates within the  photosystem. It happens in the stroma lamellae (possible location) because in this region PSII and  NADP reductase enzyme are absent. Hence only ATP molecules are synthesised.    The electron transport (Z-Scheme) : ​In PS II, reaction centre (chlo. a) absorbs 680 nm  wavelengths of red light which make the electrons to become excited. These electrons are taken up  by the electron acceptor that passes them to an electron transport system (ETS) consisting of  cytochromes. The movement of electrons is down hill. Then, the electron passes to PSI and moves  down hill further. 
  • 66.   The splitting of water : ​It is linked to PS II. Water splits into H , O and electrons.        Chemiosmotic Hypothesis :​ Chemiosmotic hypothesis explain the mechanism of ATP synthesis  in chloroplast. In photosynthesis, ATP synthesis is linked to development of a proton gradient across  a membrane. The electrons are accumulated inside the membrane of thylakoids (in lumen). ATPase  has a channel that allows diffusion of protons back across the membrane. This releases energy to  activate ATPase enzyme that catalyses the formation of ATP.    Plants : ​ATP and NADH, the products of light reaction are used in synthesis of Biosynthetic phase  in C food. The first CO 2 3 fixation product in C plant is 3-phosphoglyceric acid or PGA. The CO 2 3  acceptor molecule is RuBP (ribulose bisphosphate). The cyclic path of sugar formation is called  Calvin cycle on the name of Melvin Calvin, the discoverer of this pathway.    Calvin cycle proceeds in three stages :  (1) Carboxylation :​ CO combines with ribulose 1, 5 bisphosphate to form 3 PGA in the presence of  RuBisCo enzyme. 2  (2) Reduction :​ Carbohydrate is formed at the expense of ATP and NADPH.  (3) Regeneration : ​The CO acceptor ribulose 1, 5-bisphosphate is formed again . 2 6 turns of  Calvin cycles and 18 ATP molecules are required to synthesize one molecule of glucose.    The C 4 pathway :​ C plants have a special type of leaf anatomy, they tolerate higher temperatures.  In this pathway, oxaloacetic acid (OAA) is the first stable product formed. It is a 4 carbon atoms  compound, hence called C 4 pathway (Hatch and Slack Cycle).    The leaf has two types of cells :​ mesophyll cells and Bundle sheath cells (Kranz anatomy).  Initially CO 2 4 is taken up by phosphoenol pyruvate (PEP) in mesophyll cells and changed to  oxaloacetic acid (OAA) in the presence of PEP carboxylase. Oxaloacetate is reduced to  malate/aspartate that reach into bundle sheath cells. and formation of pyruvate (3C). In high CO The  oxidation of malate/aspartate occurs with the release of O concentration RuBisCo functions as  carboxylase and not as oxygenase, the photosynthetic losses are prevented. RuBP operates now  under the Calvin cycle and pyruvate transported back to mesophyll cells and changed into  phosphoenol pyruvate to keep the cycle continuing.    2 Photorespiration :​ The light induced respiration in green plants is called photorespiration. In C 3  plants some O 2 binds with RuBisCo and hence CO fixation is decreased. In this process RuBP  instead of being converted to 2 molecules of PGA binds with O to form one molecule of PGA and  phosphoglycolate.   
  • 67. 2 Law of Limiting Factors : ​If a chemical process is affected by more than one factor, then its  rate will be determined by the factor which is nearest to its minimal value. It is the factor which  directly affects the process if its quantity is changed.    Factors affecting photosynthesis :  1. Light  2. Carbon Dioxide  3. Temperature  4. Water 
  • 68. POINTS TO REMEMBER    Aerobic respiration : ​Complete oxidation of organic food in presence of oxygen thereby  producing CO , water and energy.    Anaerobic respiration :​ Incomplete breakdown of organic food to liberate 2 energy in the  absence of oxygen.    ATPSynthetase :​ An enzyme complex that catalyses synthesis of ATP during oxidative  phospho-relation.    Biological oxidation :​ Oxidation in a series of reactions inside a cell.    Cytochromes :​ A group of iron containing compounds of electron transport systems present in the  inner wall of mitochondria.    Dehydrogenase : ​Enzyme that catalyses removal of H atom from the substrate.    Electron acceptor :​ Organic compound which receives electrons produced during  oxidation-reduction reactions.  Electron transport :​ Movement of electrons from substrate to oxygen through respiratory chain  during respiration.    Fermentation :​ Breakdown of organic substance that takes place in certain ethanol. microbe like  yeast under anaerobic condition with the production of CO.    Glycolysis :​ Enzymatic breakdown of glucose into pyruvic acid that occurs in the cytoplasm.    Oxidative phosphorylation : ​Process of formation of ATP from ADP and Pi using the energy from  proton gradient.    Respiration :​ Biochemical oxidation food to release energy.    Respiratory Quotient :​ The ratio of the volume of CO produced to the volume of oxygen  consumed.    Proton gradient :​ Difference in proton concentration across the tissue membrane.   
  • 69. Mitochondrial matrix :​ The ground material of mitochondria in which pyruvic acid undergoes  aerobic oxidation through Krebs cycle. Abbreviations    ATP​ − Adenosine triphosphate  ADP​ − Adenosine diphosphate  NAD​ − Nicotinamide Adenine dinucleotide  NADP​ − Nicotinamide Adenine dinucleotide Phosphate  NADH​ − Reduced Nicotinamide Adenine dinucleotide  PGA​ − Phosphoglyceric acid  PGAL​ − Phosphoglyceraldehyde  FAD​ − Flavin adenine dinucleotide  ETS​ − Electron transport system  ETC​ − Electron transport chain  TCA​ − Tricarboxylic acid  OAA​ − Oxalo acetic acid  FMN​ − Flavin mononucleotide  PPP​ − Pentose phosphate pathway    AEROBIC RESPIRATION    The overall mechanism of aerobic respiration can be studied under the following steps  :  (A) Glycolysis (EMP pathway)  (B) Oxidative Decarboxylation  (C) Kreb’s cycle (TCA-cycle)  (D) Oxidative phosphorylation    Glycolysis :​ The term has originated from the Greek word  glycos = glucose  lysis = splitting or breakdown means breakdown of glucose molecule.    • It is also called the Embden-Meyerhof-Parnas pathway. (EMP pathway)  • It is common in both aerobic and anaerobic respiration.  • It takes place outside the mitochondria, in the cytoplasm.  • One molecule of glucose (Hexose sugar) ultimately produces two mol- ecules of pyruvic acid  through glycolysis.  • During this process 4 molecules of ATP are produced while 2 molecules of ATP are utilised.   
  • 70. Thus net gain of ATP is of 2 molecules. Oxidative decarboxylation : Pyruvic acid is converted into  Acetyl CoA in presence of pyruvate dehydrogenase complex.        TriCarboxylic Acid Cycle (Kreb’s cycle) or Citric acid Cycle : ​This cycle starts with  condensation of acetyl groups with oxaloacetic acid and water to yield citric acid which undergoes a  series of reactions.  • It is aerobic and takes place in the mitochondrial matrix.  • Each pyruvic acid molecule produces 4 NADH + H + , one FADH , one ATP.  • One glucose molecule has been broken down to release CO and eight molecules of NADH + H + ,  two molecules of FADH and 2 molecules of ATP.    2 Electron transport system and oxidative phosphorylation :​ The metabolic pathway  through which the electron passes from one carrier to another is called the Electron transport  system and it is present in the inner mitochondrial membrane.    ETS comprises of the following :  (i) NAD and NADH + H  (ii) FAD and FADH  (iii) UQ  (iv) Cyt b, Cyt c 1 2 + , Cyt c, Cyt a and Cyt a .    Oxygen acts as the final hydrogen acceptor. Oxidative phosphorylation takes 3 places in elementary  particles present on the inner membrane of the cristae of mitochondria. Synthesis of ATP from ADP  and Pi using energy from proton gradient is called oxidative phosphorylation. In this process O  acceptor and it get reduced to water. 2 2 2 is the ultimate electron      Total ATP Production  Process  Total ATP produced  1. Glycolysis  2ATP + 2NADH  (6ATP) = 8ATP  2. Oxidative decarboxylation  2NADH (6ATP) = 6ATP  3. Kreb’s Cycle  2GTP (2ATP) + 6NADH22 (18ATP) +  2FADH (4ATP) = 24ATP22   
  • 71. POINTS TO REMEMBER    Abscission :​ Shedding of plant organs like leaves, flowers and fruits etc. from the mature plant.    Apical dominance : ​Suppression of the growth of lateral buds in presence of apical bud.    Dormancy :​ A period of suspended activity and growth usually associated with low metabolic rate.    Photoperiodism :​ Response of plant to the relative length of day and night period to induce  flowering.    Phytochrome :​ A pigment, which controls the light dependent developmental process.    Phytohormone :​ Chemicals secreted by plants in minute quantities which influence the  physiological activities.    Senescence :​ The last phase of growth when metabolic activities decrease.    Vernalisation :​ A method of promoting flowering by exposing the young plant to low temperature.    Growth : ​An irreversible permanent increase in size of an organ or its parts or even of an individual.  Abbreviations IAA Indole acetic acid NAA Naphthalene acetic acid ABA Abscisic acid IBA Indole-3  butyric acid 2.4D 2.4 dichlorophenoxy acetic acid PGR Plant growth regulator    Measurement of growth :​ Plant growth can be measured by a variety of parameters like increase  in fresh weight, dry weight, length, area, volume and cell number.    Phases of growth : ​The period of growth is generally divided into three phases, namely,  meristematic, elongation and maturation.  (i) Meristematic zone :​ New cell produced by mitotic division at root-tip and shoot tip thereby  show increase in size. Cells are rich in protoplasm and nuclei.  (ii) Elongation zone :​ Zone of elongation lies just behind the meristematic zone and concerned  with enlargement of cells.  (iii) Maturation zone :​ The portion lies proximal to the phase of elongation. The cells of this zone  attain their maximum size in terms of wall thickening and protoplasmic modification.    Growth rate :​ The increased growth per unit time is termed as growth rate. The growth rate shows  an increase that may be arithmetic or geometric.     
  • 72.   Differentiation :​ A biochemical or morphological change in a meristematic cell (at root apex and  shoot apex) to differentiate into a permanent cell is called differentiation.    Dedifferentiation :​ The phenomenon of regeneration of permanent tissue to become  meristematic is called dedifferentiation.    Redifferentiation :​ Meristems/tissue are able to produce new cells that once again lose the  capacity to divide but mature to perform specific functions.    PHYTO HORMONE OR PLANT GROWTH-REGULATOR    Growth promoting hormones :​ These are involved in growth promoting activities such as cell  division, cell enlargement, flowering, fruiting and seed formation. e.g., Auxin, gibberellins, cytokinins.  Growth inhibitor : Involved in growth inhibiting activities such as dormancy and abscission. e.g.,  Abscisic acid and Ethylene.