This document summarizes Martin Pinzger's research on predicting buggy methods using software repository mining. The key points are:
1. Pinzger and colleagues conducted experiments on 21 Java projects to predict buggy methods using source code and change metrics. Change metrics like authors and method histories performed best with up to 96% accuracy.
2. Predicting buggy methods at a finer granularity than files can save manual inspection and testing effort. Accuracy decreases as fewer methods are predicted but change metrics maintain higher precision.
3. Case studies on two classes show that method-level prediction achieves over 82% precision compared to only 17-42% at the file level. This demonstrates the benefit of finer-