SlideShare a Scribd company logo
1 of 32
Download to read offline
Using STELLA to Explore Dynamic Single Species Models:
The Magic of Making Humpback Whales Thrive in a Lab
Lisa A. Jensen
Division of Science & Environmental Policy, California State University Monterey Bay, Seaside, CA, USA.
Abstract
The use of formal, mathematical models allows stakeholders, decision makers and scientists to
better visualize interactions and relationships within ecological systems. This study uses
STELLA, a modeling tool, to simulate simple population dynamics for the humpback whale
(Megaptera novaengliae) to better understand the impacts of reproductive and mortality rates as
well as alternative solution algorithms used to drive the model. A wide range of population
dynamics occurred as a result of varying time increments for calculating populations and use of
available solution algorithms. Populations are most likely to achieve equilibrium when
reproduction and mortality result in approximately the same number of individuals.
Introduction
Scientific models provide a mechanism to explore and examine relationships between
organisms and their environment. This process often leads to more questions along with an
improved understanding of the complex nature of the relationships we study. The use of
computers and software enables us to model and test our understanding of the relationships
between and within different communities (Doerr 1996, Lindholm 2008). STELLA, Structural
Thinking Experimental Learning Laboratory with Animation (Doerr 1996, isee 2010), is a
visually oriented model development tool which allows the user to readily build and modify
models (Lindholm 2008). The ease of rapidly changing relationships, inputs and interactions
enables the scientist to explore complex systems and identify gaps in understanding more
readily (Doerr 1996, Resnick 2003, Lindholm 2008).
While computer models are less complex than the systems they represent, they offer the
opportunity to test theories regarding relationships, introduce new information and grow the
investigator’s conceptual understanding of the system under study (Doerr 1996). It is this ability
to shift viewpoints and rapidly test ideas where software modeling is a powerful tool available
to science (Resnick 2003). At the same time the investigator needs to remain clear that modeling
tools do not fully describe the systems being reviewed, models frequently hold constant some
number of influencing factors to examine the systemic response to other factors (Lindholm
2008).
When examining at-risk populations, the use of computer modeling is an easy mechanism to
explore questions of exploitation, recovery, opportunities available for sustainability and
ENVS545, 2012 Jensen
Using STELLA to Explore Dynamic Single Species Models:! 1
improved management practices (Baker et al. 1987). Modeling systems allows decision makers
and stakeholders to deepen their understanding of the system and the variables which provide
impacts (Costanza and Ruth 1998). This exercise focuses on the use of STELLA (isee 2010) to
explore population dynamics of the humpback whale (Megaptera novaeangliae) with a simple
model encompassing reproduction and mortality. Humpback whales are a commercially
valuable resource and have been hunted nearly to the point of extinction (Clapham and Mayo
1987). Utilizing simple models, as are created within this exercise, will allow the investigator the
opportunity to explore the relationships between reproductive and mortality rates.
Methods
The exploratory models used for this study were informed by published information on
reproductive and mortality rates for the humpback whale (Baker et al. 1987, Clapham and Mayo
1987, Straley et al. 1994, Barlow and Clapham 1997, Steiger and Calambokidis 2000, Gabriele et
al. 2001) as well as modeling and the use of STELLA (Doerr 1996, Ruth and Lindholm 2002,
Scott Baker and Clapham 2004, isee 2010).
Data Collection
Data for this study was generated within the STELLA models with an initial population size of
200 humpback whales being studied over a period of forty years . This study examined
population dynamics looking initially at a closed system (no immigration, emigration, or
mortality) and exploring the changes in population size when density dependence was
considered, was not considered and recovery following sudden decreases in reproduction rates
(Table 1, Table 2, Appendix A). The model was modified to incorporate a mortality rate for the
population as a whole (Ruth and Lindholm 2002) (Table 3, Appendix A).
Research Questions
This study asked several questions prior to development and implementation of the models.
These included:
• How does altering the graphical relationship between population size and reproductive rate
impact the population over time?
H0: N(R0a) = N(R0b) = N(R0c) … = N(R0n)
H1: N(R0a) ≠ N(R0b) = N(R0c) … = N(R0n)
Hn+1: N(R0a) = N(R0b) ≠ N(R0c) … = N(R0n)
...
H2: N(R0a) ≠ N(R0b) ≠ N(R0c) … ≠ N(R0n)
where population size (N) is a function of the reproductive rate (R0) for the species. The null
hypothesis states the modifying the graphical relationship between reproductive rate and
ENVS545, 2012 Jensen
Using STELLA to Explore Dynamic Single Species Models:! 2
population has no effect on population size, the alternative hypotheses state population size
between models is affected by reproductive rate.
• What impact does reproductive rate have on population size over time?
H0: N(R0a) = N(R0b) = N(R0c) … = N(R0n)
H1: N(R0a) ≠ N(R0b) = N(R0c) … = N(R0n)
Hn+1: N(R0a) = N(R0b) ≠ N(R0c) … = N(R0n)
...
H2: N(R0a) ≠ N(R0b) ≠ N(R0c) … ≠ N(R0n)
where population size (N) is a function of the reproductive rate (R0) for the species. The null
hypothesis states reproductive rate has no effect on population size, the alternative
hypotheses state population size between models is affected by reproductive rate. As the
reproductive rate increases the population size increases more quickly and as the rate
decreases, population size increases more slowly.
• What are the interactions between reproduction and mortality rates on population size over
time?
H0: N(D0a, R0a) = N(D0b, R0b) = N(D0c, R0c) … = N(Dn, R0n)
H1: N(D0a, R0a) ≠ N(D0b, R0b) = N(D0c, R0c) … = N(Dn, R0n)
H1: N(D0a, R0a) = N(D0b, R0b) ≠ N(D0c, R0c) … = N(Dn, R0n)
...
H2: N(D0a, R0a) ≠ N(D0b, R0b) ≠ N(D0c, R0c) … ≠ N(Dn, R0n)
where population size (N) is a function of both mortality (D0) and reproductive (R0) rates for
the species. The null hypothesis states there is no effect on population size, the alternative
hypotheses state population size between models is affected by mortality and reproductive
rates. When the mortality and reproductive rates are approximately the same the population
maintains a steady state condition, if the mortality rate is greater than the reproductive rate
the population will decline.
• How do altering the time step (DT) and solution algorithm effect appropriate model selection?
Granularity of the time step (DT) will have the effect of driving down the difference
between solution algorithms.
Assumptions
Models are by their nature a simplification of real world systems (Lindholm 2008). The use of a
simple, closed loop model violates several assumptions found within an ecosystem. These
include:
• No immigration or migration.
• All members of the population give birth.
• No age-structure dependence for either reproductive or mortality rates (Gotelli 2008).
• No genetic structure (Gotelli 2008).
• No time lags (Gotelli 2008).
• No Allee effect for small populations (Jackson et al. 2008).
ENVS545, 2012 Jensen
Using STELLA to Explore Dynamic Single Species Models:! 3
• No difference between adult and juvenile mortality rates (Gabriele et al. 2001).
• Constant calving intervals (Baker et al. 1987).
• Fractional increases in population allowed by specific solution algorithms (Lindholm 2008).
• Population growth over a period of forty or sixty-five years was representative of growth over
multiple generations.
Results
A simple model built utilizing reproduction as a function of population size at a given point in
time and reproductive rate (Fig. 1). In utilizing this model I explored modification of the
graphical relationship and alteration of reproduction rate to examine the effect on population
size.
Within the original model I modified the graphical relationship to reflect strict density
dependence (reproductivity goes to zero as the population reaches maximum size, 600 whales),
or not (reproductivity does not go to zero), and examined the role of sudden decreases in the
rate of reproduction (Fig.2, Table 2). Retaining a similar curve and turning on or off density
dependence indicated without density dependence, the population will continue growing in
spite of dramatic drops in the reproductive rate. The models with density dependence (1 and 4)
become asymptotic to population sizes near the maximum defined population. Models without
strict density dependence demonstrated a continued growth in the population. I explored
variations in density dependence due to discussion in the literature stating an insufficient
Figure 1. Simple closed loop model examining the relationship of reproductive rate
on population size.
ENVS545, 2012 Jensen
Using STELLA to Explore Dynamic Single Species Models:! 4
knowledge base exists to fully understand whether grey whales experience density dependence
(Baker et al. 1987).
In the next iteration of model design the rate of reproduction was altered (Fig. 3, Table 3) based
on reproductive rates for humpback whales in other studies (Baker et al. 1987, Clapham and
! Model 1! Model 2
! Model 3! Model 4
Figure 2. Effect of modified graphical relationship between reproductive rate and population.
ENVS545, 2012 Jensen
Using STELLA to Explore Dynamic Single Species Models:! 5
Mayo 1987, Steiger and Calambokidis 2000), maintaining the graphical relationship. These
models used strict density dependence looking only at varied reproductivity rates (0.20, 0.37,
0.43, 0.006, 0.059 respectively). Models 1, 2 and 3 each trend towards a steady state between
population sizes of 600 and 625. Models 4 and 5 do not exhibit a clear steady state condition
within the time frame of forty years.
Figure 3. Effect of altering reproductive rates while the graphical relationship, time step and
years remain constant.
ENVS545, 2012 Jensen
Using STELLA to Explore Dynamic Single Species Models:! 6
The base graphical model was enhanced to incorporate mortality (Fig. 4, Table 4). This created a
slightly more complex, closed loop model and the opportunity to look at the relationship
between population size impacted by both mortality and reproduction. The initial model
Figure 4. Model for humpback whale population dynamics reflecting both reproductive and mortality
rates.
Figure 5. Chart for humpback whale population dynamics reflecting both
reproductive and mortality rates for two models.
ENVS545, 2012 Jensen
Using STELLA to Explore Dynamic Single Species Models:! 7
created (R0 = 0.20, D = 0.03) shows a steady decrease in population size over time while the
second model (R0 = 0.20, D = 0.43) achieves a population steady state with the curve becoming
asymptotic to a population size of 600 whales within 25 years.
The final model iteration examined altering the time step (DT) and changing the solution
algorithm for each model (Fig. 6, Table 5). As the granularity of time step decreases the line of
population growth becomes less smooth. This is most apparent with a time step of 20 where two
straight lines and an angle are evident. Although all models become asymptotic, reaching a
steady state, the final values range between 600 for the most granular time steps to 870 for the
least granular.
Figure 6. Graphs reflecting altered time steps, holding reproductive and mortality rates
constant. All models were run using the Runge-Kutta 4 solution algorithm.
ENVS545, 2012 Jensen
Using STELLA to Explore Dynamic Single Species Models:! 8
Table 1. Simulations for years 0 - 40 generated using Runge-Kutta 4, Runge-Kutta 2, and Euler
solution algorithm over a period of 40 years with varying time steps (DT).
Table 1. Simulations for years 0 - 40 generated using Runge-Kutta 4, Runge-Kutta 2, and Euler
solution algorithm over a period of 40 years with varying time steps (DT).
Table 1. Simulations for years 0 - 40 generated using Runge-Kutta 4, Runge-Kutta 2, and Euler
solution algorithm over a period of 40 years with varying time steps (DT).
Table 1. Simulations for years 0 - 40 generated using Runge-Kutta 4, Runge-Kutta 2, and Euler
solution algorithm over a period of 40 years with varying time steps (DT).
Table 1. Simulations for years 0 - 40 generated using Runge-Kutta 4, Runge-Kutta 2, and Euler
solution algorithm over a period of 40 years with varying time steps (DT).
Table 1. Simulations for years 0 - 40 generated using Runge-Kutta 4, Runge-Kutta 2, and Euler
solution algorithm over a period of 40 years with varying time steps (DT).
Table 1. Simulations for years 0 - 40 generated using Runge-Kutta 4, Runge-Kutta 2, and Euler
solution algorithm over a period of 40 years with varying time steps (DT).
Table 1. Simulations for years 0 - 40 generated using Runge-Kutta 4, Runge-Kutta 2, and Euler
solution algorithm over a period of 40 years with varying time steps (DT).
Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)
Study Year 0.125 (year) 0.25 (year) 0.5 (year) 1 (year) 5 (years) 10 (years) 20 (years)
Final RK4 599.94 599.94 599.94 599.94 599.93 625.1 681.09
Final RK2 599.94 599.93 599.93 599.93 599.59 627.71 681.44
Final Euler 599.94 599.95 599.96 599.98 602.88 681.44 870.58
Discussion
The first set of models (Fig. 2) offer an interesting perspective, in order to reach equilibrium in
this simple model which accounts only for reproduction, density dependence appears to be a
requirement. This is logical as density dependence has an implied assumption of limited
resources for a given population. An interesting point is the relative lack of impact shown by
drastic decreases in the reproductive rate (models 3 and 4). Regardless of whether or not density
dependence was considered, the population recovered and continued the growth trajectory.
Model 4, during which the whale population experienced severe decreases in reproductive rate
and included density dependence, recovered more quickly that the simpler model 1. This
appears to be due to a reproductive rate which is greater in model 4 than model 1 following the
decreased reproduction rates.
In the next set of whale population dynamic models, I examined 5 different reproductive rates
for humpback whales based on existing literature (Baker et al. 1987, Clapham and Mayo 1987,
Steiger and Calambokidis 2000, Ruth and Lindholm 2002). For each study, with the exception of
Ruth and Lindholm (2002), the authors indicated uncertainty in obtaining accurate reproductive
rates due in part to the challenges with sighting a given female following a birth and following
migration with calf. Each study utilized photo identification of flukes for individual animals.
Models 4 and 5 have the lowest suggested reproductive rate (0.006 - 0.059) may be the result of
early weanings or a sampling technique which precluded good sight lines and ready visibility
(Steiger and Calambokidis 2000). Models 1 and 2 (Baker et al. 1987, Ruth and Lindholm 2002)
appear to be steadily increasing, model 3 (Clapham and Mayo 1987) reaches equilibrium and
remains constant with a population size of approximately 600 whales. The relative agreement
between models 1 through 3 would suggest a higher degree of accuracy.
When mortality rates were added to the model it increased the level of complexity but
incorporated a real world approach. Model 1 (R0 = 0.2, D = 0.03) (Ruth and Lindholm 2002)
drives to extinction relatively rapidly which is not an intuitive conclusion when compared with
model 2 (R0 = 0.2, D = 0.43) which achieves equilibrium approximately at year 25. This begs the
ENVS545, 2012 Jensen
Using STELLA to Explore Dynamic Single Species Models:! 9
question, did this investigator use the right numbers for the first model? Intuitively, model 1
should maintain an increase in population over time. The population should reach an
equilibrium state over a period of sixty years when reproduction and mortality are relatively
similar (Alava and Felix 2006).
Determining the frequency of sampling the population of humpback whales under study has
financial as well as accuracy implications. This is not an easy population to reach given the large
migration range (Baker et al. 1987) and multiple challenges with data collection and verification.
The associated costs of launching a research effort which may span thousands of miles further
inhibit extensive efforts which may drive towards accuracy. The final exercise for this study was
experimenting with different time steps (DT) and solution algorithms to identify an appropriate
combination which would give the investigator a degree of confidence in the model. Based on
provided information (Ruth and Lindholm 2002) the solution algorithm selected for the
previous exercises was Runge-Kutta 4 (RK4), it offers the highest degree of accuracy due to the
use of 4 intermediate steps to calculate F(t , X(t), . ) where X(t) is the population at a given point
in time t, F(t , X(t), . ) are the net flows depending on time.
Decreasing the granularity on DT results in decreased fidelity within the resulting simulated
data and on the graph (Fig. 6). This makes intuitive sense as well, when you increase the time
between data generation some loss is to be expected. At the highest level of granularity (DT =
0.125) the three solution algorithms are in agreement. As the granularity decreases to generation
of data once every 20 years the three algorithms begin to diverge with Euler diverging the
fastest and leading to significantly more whales in the simulated population than seen in RK4.
Runge-Kutta 2 diverges more slowly and remains within a couple of whales of RK4. The trade-
off for the degree of accuracy between the algorithms is computational time (Ruth and
Lindholm 2002), more accuracy demands increased time. As processing speed and RAM
increase this may not be as much of a consideration as it was previously but it should be
considered during selection of the algorithm. For this small data set there were no obvious
performance issues.
Conclusion
Although the models created for these simulations were very simple they offered the
investigator the opportunity to explore use of modeling and the implications for use within real-
world situations such as the development of policy. The International Whaling Commission
(IWC) indicates a strong recovery and a lower historic population than existing research would
indicate (Clapham et al. 1999, Steiger and Calambokidis 2000, Baker and Clapham 2004, Alava and Felix
2006, Jackson et al. 2008) as a result the use of models, especially when different studies drive
towards the same conclusion, may prove beneficial to policy development leading to population
recovery for these magnificent animals.
ENVS545, 2012 Jensen
Using STELLA to Explore Dynamic Single Species Models:! 10
References
Alava JJ, Felix F. Logistic population curves and vital rates of the Southeastern Pacific humpback whale
stock off Ecuador. IWC Workshop on Comprehensive Assessment of Southern Hemisphere
Humpback Whales; 3 - 7 April 2006 2006; Hobart, Tasmania. p. 11.
Baker CS, Clapham PJ. 2004. Modelling the past and future of whales and whaling. Trends in Ecology
& Evolution 19(7):365-371.
Baker CS, Perry A, Herman LM. 1987. Reproductive histories of female humpback whales Megaptera
novaengliae in the North Pacific. Marine Ecology Progress Series 41:103 - 114.
Barlow J, Clapham PJ. 1997. A New Birth-Interval Approach to Estimating Demographic Parameters of
Humpback Whales. Ecology 78(2):535-546.
Clapham PJ, Mayo CA. 1987. Reproduction and recruitment of individually identified humpback whales,
Megaptera novaeangliae, observed in Massachusetts Bay, 1979–1985. Canadian Journal of
Zoology 65(12):2853-2863.
Clapham PJ, Young SB, Brownell RL. 1999. Baleen whales: conservation issues and the status of the most
endangered populations. Mammal Review 29(1):37-62.
Costanza R, Ruth M. 1998. Using Dynamic Modeling to Scope Environmental Problems and Build
Consensus. Environmental Management 22(2):183-195.
Doerr HM. 1996. Stella ten years later: A review of the literature. International Journal of Computers for
Mathematical Learning 1(2):201-224.
Gabriele CM, Straley JM, Mizroch SA, Baker CS, Craig AS, Herman LM, Glockner-Ferrari D, Ferrari MJ,
Cerchio S, Ziegesar Ov, Darling J, McSweeney D, Quinn Ii TJ, Jacobsen JK. 2001. Estimating the
mortality rate of humpback whale calves in the central North Pacific Ocean. Canadian Journal of
Zoology 79(4):589.
Gotelli NJ. 2008. A primer of ecology. Sunderland, MA: Sinauer Associates, Inc.
isee. 2010. STELLA, systems thinking for education and research. 9.X ed.: isee.
Jackson JA, Patenaude NJ, Carroll EL, Baker CS. 2008. How few whales were there after whaling?
Inference from contemporary mtDNA diversity. Molecular Ecology 17(1):236-251.
Lindholm J. 2008. Modeling populations of marine organisms. CSUMB Coastal and Watershed Science
and Policy: CSUMB. p. 2.
Resnick M. 2003. Thinking Like a Tree (and Other Forms of Ecological Thinking). International Journal of
Computers for Mathematical Learning 8(1):43-62.
Ruth M, Lindholm J. 2002. Modeling in STELLA. In: Ruth M, Hannon B, editors. Dynamic Modeling for
Marine Conservation. New York: Springer-Verlag. p. 21 - 42.
Scott Baker C, Clapham PJ. 2004. Modelling the past and future of whales and whaling. Trends in Ecology
& Evolution 19(7):365-371.
Steiger GH, Calambokidis J. 2000. Reproductive rates of humpback whales off California. Marine
Mammal Science 16(1):220-239.
Straley JM, Gabriele CM, Baker CS. 1994. Annual reproduction by individually identified Humpback
whales (Megaptera novaengliae) in Alaskan waters. Marine Mammal Science 10(1):87 - 92.
ENVS545, 2012 Jensen
Using STELLA to Explore Dynamic Single Species Models:! 11
Appendix A – Data
Table 2. Data generated modifying the graphical relationship between whale population size and
reproduction rate. These models look at alterations in density dependence and sudden decreases in
reproduction rates. Study year is point at which each whale population is counted, each of these
models used 0.25 years as time step (DT). Whales is the population size in number of whales at each
time step.
Study Year Whales
Model 1
Whales
Model 2
Whales
Model 3
Whales
Model 4
0 200 200 200 200
0.25 202.09 202.09 202.09 202.09
0.5 204.18 204.18 204.18 204.18
0.75 206.29 206.29 206.29 206.29
1 208.4 208.4 208.4 208.4
1.25 210.52 210.52 210.52 210.52
1.5 212.65 212.65 212.65 212.65
1.75 214.78 214.78 214.78 214.78
2 216.93 216.93 216.93 216.93
2.25 219.08 219.08 219.08 219.08
2.5 221.23 221.23 221.23 221.23
2.75 223.4 223.4 223.4 223.4
3 225.56 225.56 225.56 225.56
3.25 227.74 227.74 227.74 227.74
3.5 229.92 229.92 229.92 229.92
3.75 232.1 232.1 232.1 232.1
4 234.29 234.29 234.29 234.29
4.25 236.49 236.49 236.49 236.49
4.5 238.69 238.69 238.69 238.69
4.75 240.89 240.89 240.89 240.89
5 243.1 243.1 243.08 243.08
5.25 245.32 245.32 245.24 245.24
5.5 247.54 247.54 247.36 247.36
5.75 249.77 249.77 249.44 249.44
6 252.01 252.01 251.49 251.49
6.25 254.25 254.25 253.5 253.5
6.5 256.5 256.5 255.47 255.47
6.75 258.76 258.76 257.41 257.41
7 261.02 261.02 259.31 259.31
7.25 263.29 263.29 261.17 261.17
7.5 265.56 265.56 262.99 262.99
7.75 267.84 267.84 264.78 264.78
8 270.13 270.13 266.52 266.52
8.25 272.42 272.42 268.24 268.24
ENVS545, 2012 Jensen
Using STELLA to Explore Dynamic Single Species Models:! 12
Study Year Whales
Model 1
Whales
Model 2
Whales
Model 3
Whales
Model 4
8.5 274.71 274.71 269.91 269.91
8.75 277.01 277.01 271.55 271.55
9 279.31 279.31 273.15 273.15
9.25 281.62 281.62 274.71 274.71
9.5 283.93 283.93 276.24 276.24
9.75 286.25 286.25 277.74 277.74
10 288.56 288.56 279.2 279.2
10.25 290.88 290.88 280.62 280.62
10.5 293.21 293.21 282.01 282.01
10.75 295.53 295.53 283.37 283.37
11 297.86 297.86 284.69 284.69
11.25 300.19 300.19 285.98 285.98
11.5 302.52 302.52 287.23 287.23
11.75 304.85 304.87 288.46 288.46
12 307.17 307.22 289.65 289.65
12.25 309.49 309.6 290.81 290.81
12.5 311.81 311.98 291.95 291.95
12.75 314.12 314.38 293.05 293.05
13 316.43 316.79 294.12 294.12
13.25 318.73 319.21 295.16 295.16
13.5 321.03 321.64 296.18 296.18
13.75 323.32 324.09 297.17 297.17
14 325.61 326.55 298.13 298.13
14.25 327.89 329.03 299.06 299.06
14.5 330.17 331.51 299.97 299.97
14.75 332.43 334.01 300.85 300.85
15 334.7 336.52 301.73 301.73
15.25 336.95 339.05 302.62 302.62
15.5 339.2 341.58 303.54 303.54
15.75 341.44 344.13 304.48 304.48
16 343.67 346.69 305.45 305.45
16.25 345.89 349.27 306.44 306.44
16.5 348.11 351.85 307.46 307.46
16.75 350.31 354.45 308.5 308.5
17 352.51 357.06 309.58 309.58
17.25 354.7 359.68 310.68 310.68
17.5 356.87 362.32 311.81 311.81
17.75 359.04 364.97 312.97 312.97
18 361.2 367.63 314.16 314.16
18.25 363.35 370.31 315.39 315.39
18.5 365.5 372.99 316.65 316.65
ENVS545, 2012 Jensen
Using STELLA to Explore Dynamic Single Species Models:! 13
Study Year Whales
Model 1
Whales
Model 2
Whales
Model 3
Whales
Model 4
18.75 367.64 375.7 317.95 317.95
19 369.77 378.41 319.28 319.28
19.25 371.9 381.14 320.65 320.65
19.5 374.02 383.88 322.05 322.05
19.75 376.14 386.64 323.5 323.5
20 378.25 389.4 324.99 324.99
20.25 380.35 392.19 326.53 326.53
20.5 382.44 394.98 328.11 328.11
20.75 384.53 397.79 329.73 329.73
21 386.61 400.61 331.41 331.41
21.25 388.68 403.44 333.13 333.13
21.5 390.74 406.29 334.91 334.91
21.75 392.8 409.14 336.74 336.74
22 394.85 412.02 338.63 338.63
22.25 396.89 414.9 340.57 340.57
22.5 398.92 417.8 342.58 342.58
22.75 400.94 420.71 344.65 344.65
23 402.95 423.63 346.79 346.79
23.25 404.96 426.55 349 349
23.5 406.95 429.48 351.28 351.28
23.75 408.94 432.41 353.63 353.63
24 410.92 435.35 356.07 356.07
24.25 412.89 438.29 358.58 358.58
24.5 414.84 441.23 361.19 361.19
24.75 416.79 444.18 363.83 363.83
25 418.73 447.13 366.48 366.48
25.25 420.66 450.09 369.15 369.15
25.5 422.58 453.05 371.84 371.84
25.75 424.48 456.01 374.53 374.53
26 426.38 458.97 377.24 377.24
26.25 428.27 461.94 379.97 379.97
26.5 430.15 464.9 382.7 382.7
26.75 432.03 467.87 385.45 385.45
27 433.89 470.85 388.21 388.21
27.25 435.74 473.82 390.99 390.99
27.5 437.58 476.79 393.78 393.78
27.75 439.41 479.77 396.58 396.58
28 441.23 482.74 399.39 399.39
28.25 443.04 485.71 402.22 402.22
28.5 444.84 488.67 405.06 405.06
28.75 446.63 491.62 407.91 407.91
ENVS545, 2012 Jensen
Using STELLA to Explore Dynamic Single Species Models:! 14
Study Year Whales
Model 1
Whales
Model 2
Whales
Model 3
Whales
Model 4
29 448.41 494.57 410.78 410.78
29.25 450.18 497.51 413.66 413.66
29.5 451.93 500.44 416.55 416.55
29.75 453.68 503.36 419.46 419.46
30 455.42 506.28 422.37 422.37
30.25 457.14 509.18 425.29 425.29
30.5 458.86 512.08 428.22 428.22
30.75 460.56 514.97 431.15 431.15
31 462.25 517.85 434.08 434.08
31.25 463.93 520.72 437.02 437.02
31.5 465.6 523.57 439.97 439.97
31.75 467.26 526.42 442.91 442.91
32 468.91 529.26 445.86 445.86
32.25 470.54 532.09 448.82 448.82
32.5 472.16 534.9 451.77 451.77
32.75 473.78 537.71 454.73 454.73
33 475.38 540.5 457.7 457.7
33.25 476.97 543.29 460.66 460.66
33.5 478.55 546.09 463.63 463.63
33.75 480.11 548.89 466.6 466.6
34 481.67 551.7 469.57 469.57
34.25 483.21 554.51 472.54 472.54
34.5 484.74 557.33 475.51 475.51
34.75 486.26 560.15 478.49 478.49
35 487.76 562.97 481.46 481.46
35.25 489.26 565.8 484.44 484.44
35.5 490.74 568.63 487.4 487.4
35.75 492.2 571.47 490.36 490.36
36 493.66 574.31 493.31 493.31
36.25 495.1 577.16 496.25 496.25
36.5 496.53 580.01 499.18 499.18
36.75 497.95 582.86 502.11 502.11
37 499.35 585.72 505.03 505.03
37.25 500.74 588.58 507.94 507.94
37.5 502.12 591.45 510.84 510.84
37.75 503.49 594.32 513.73 513.73
38 504.85 597.19 516.61 516.61
38.25 506.19 600.06 519.48 519.48
38.5 507.52 602.95 522.35 522.35
38.75 508.84 605.84 525.2 525.2
39 510.14 608.75 528.04 528.04
ENVS545, 2012 Jensen
Using STELLA to Explore Dynamic Single Species Models:! 15
Study Year Whales
Model 1
Whales
Model 2
Whales
Model 3
Whales
Model 4
39.25 511.44 611.68 530.87 530.87
39.5 512.72 614.62 533.69 533.69
39.75 513.99 617.57 536.5 536.5
40 515.25 620.54 539.3 539.3
Table 3. Models created looking at varying reproduction rates over a period of 40 years with constant
DT of 0.25 (3 months). Study year is point at which each whale population is counted. Whales is the
population size in number of whales at each time step. R0 is the reproductive rate used for the model.
Study Year Model 1
(R0 = 0.2)
(Ruth and
Lindholm
2002)
Model 2
(R0 = 0.37)
(Baker et al.
1987)
Model 3
(R0 = 0.43)
(Clapham
and Mayo
1987)
Model 4
(R0 = 0.006)
(Steiger and
Calambokidis 2000)
Whales
Model 5
(R0 = 0.059)
(Steiger and
Calambokidis 2000)
0 200 200 200 200 200
0.25 206.63 212.81 212.81 200.21 202
0.5 213.22 226.24 226.24 200.42 204
0.75 219.75 240.28 240.28 200.63 206.01
1 226.2 254.72 254.72 200.84 208.02
1.25 232.55 269.26 269.26 201.04 210.03
1.5 238.81 283.79 283.79 201.25 212.05
1.75 244.98 298.23 298.23 201.46 214.07
2 251.25 312.54 312.54 201.67 216.1
2.25 257.61 326.7 326.7 201.88 218.12
2.5 264.07 340.66 340.66 202.09 220.15
2.75 270.62 354.33 354.33 202.3 222.18
3 277.27 367.56 367.56 202.51 224.21
3.25 284.01 379.42 379.42 202.72 226.24
3.5 290.84 389.88 389.88 202.93 228.27
3.75 297.75 399.02 399.02 203.14 230.3
4 304.74 406.95 406.95 203.35 232.33
4.25 311.69 413.78 413.78 203.56 234.37
4.5 318.59 419.64 419.64 203.77 236.4
4.75 325.43 424.89 424.89 203.99 238.43
5 332.19 430.01 430.01 204.2 240.46
5.25 338.88 435.03 435.03 204.41 242.49
5.5 345.48 439.94 439.94 204.62 244.52
5.75 351.99 444.75 444.75 204.83 246.56
6 358.39 449.44 449.44 205.04 248.61
6.25 364.7 454.03 454.03 205.25 250.67
6.5 370.92 458.51 458.51 205.46 252.73
ENVS545, 2012 Jensen
Using STELLA to Explore Dynamic Single Species Models:! 16
Study Year Model 1
(R0 = 0.2)
(Ruth and
Lindholm
2002)
Model 2
(R0 = 0.37)
(Baker et al.
1987)
Model 3
(R0 = 0.43)
(Clapham
and Mayo
1987)
Model 4
(R0 = 0.006)
(Steiger and
Calambokidis 2000)
Whales
Model 5
(R0 = 0.059)
(Steiger and
Calambokidis 2000)
6.75 377.05 462.88 462.88 205.68 254.79
7 383.09 467.14 467.14 205.89 256.87
7.25 389.03 471.28 471.28 206.1 258.95
7.5 394.87 475.32 475.32 206.31 261.03
7.75 400.6 479.25 479.25 206.52 263.12
8 406.22 483.08 483.08 206.74 265.21
8.25 411.73 486.84 486.84 206.95 267.31
8.5 417.12 490.53 490.53 207.16 269.41
8.75 422.4 494.15 494.15 207.37 271.52
9 427.57 497.7 497.7 207.59 273.63
9.25 432.64 501.18 501.18 207.8 275.75
9.5 437.6 504.59 504.59 208.01 277.87
9.75 442.46 507.93 507.93 208.23 280
10 447.21 511.19 511.19 208.44 282.12
10.25 451.85 514.39 514.39 208.65 284.25
10.5 456.38 517.52 517.52 208.87 286.39
10.75 460.8 520.59 520.59 209.08 288.53
11 465.11 523.58 523.58 209.29 290.67
11.25 469.31 526.51 526.51 209.51 292.81
11.5 473.41 529.37 529.37 209.72 294.96
11.75 477.39 532.16 532.16 209.93 297.11
12 481.26 534.89 534.89 210.15 299.26
12.25 485.05 537.55 537.55 210.36 301.41
12.5 488.78 540.15 540.15 210.58 303.56
12.75 492.43 542.68 542.67 210.79 305.71
13 496.01 545.13 545.09 211.01 307.86
13.25 499.52 547.5 547.42 211.22 310.01
13.5 502.97 549.8 549.66 211.43 312.15
13.75 506.34 552.03 551.82 211.65 314.29
14 509.64 554.19 553.89 211.86 316.43
14.25 512.87 556.27 555.88 212.08 318.57
14.5 516.04 558.29 557.79 212.29 320.7
14.75 519.13 560.25 559.62 212.51 322.83
15 522.16 562.14 561.38 212.73 324.95
15.25 525.11 563.96 563.06 212.94 327.08
15.5 528.01 565.73 564.68 213.16 329.19
15.75 530.83 567.44 566.23 213.37 331.3
16 533.59 569.09 567.72 213.59 333.41
ENVS545, 2012 Jensen
Using STELLA to Explore Dynamic Single Species Models:! 17
Study Year Model 1
(R0 = 0.2)
(Ruth and
Lindholm
2002)
Model 2
(R0 = 0.37)
(Baker et al.
1987)
Model 3
(R0 = 0.43)
(Clapham
and Mayo
1987)
Model 4
(R0 = 0.006)
(Steiger and
Calambokidis 2000)
Whales
Model 5
(R0 = 0.059)
(Steiger and
Calambokidis 2000)
16.25 536.28 570.68 569.15 213.8 335.52
16.5 538.91 572.22 570.51 214.02 337.61
16.75 541.48 573.7 571.82 214.24 339.71
17 543.97 575.14 573.07 214.45 341.79
17.25 546.38 576.52 574.27 214.67 343.87
17.5 548.71 577.85 575.42 214.89 345.95
17.75 550.97 579.14 576.52 215.1 348.02
18 553.16 580.39 577.57 215.32 350.08
18.25 555.29 581.58 578.58 215.54 352.14
18.5 557.34 582.74 579.54 215.75 354.19
18.75 559.32 583.86 580.46 215.97 356.23
19 561.24 584.93 581.34 216.19 358.26
19.25 563.1 585.97 582.19 216.4 360.29
19.5 564.89 586.96 582.99 216.62 362.31
19.75 566.63 587.93 583.76 216.84 364.33
20 568.3 588.85 584.5 217.06 366.34
20.25 569.92 589.75 585.2 217.27 368.34
20.5 571.49 590.61 585.87 217.49 370.34
20.75 573 591.44 586.52 217.71 372.34
21 574.46 592.23 587.13 217.93 374.33
21.25 575.86 593 587.72 218.15 376.31
21.5 577.22 593.74 588.28 218.36 378.29
21.75 578.53 594.46 588.81 218.58 380.26
22 579.8 595.14 589.32 218.8 382.22
22.25 581.02 595.8 589.81 219.02 384.18
22.5 582.19 596.44 590.28 219.24 386.13
22.75 583.33 597.05 590.72 219.46 388.07
23 584.42 597.64 591.15 219.68 390.01
23.25 585.48 598.21 591.56 219.89 391.94
23.5 586.49 598.75 591.94 220.11 393.86
23.75 587.47 599.28 592.31 220.33 395.78
24 588.41 599.78 592.67 220.55 397.68
24.25 589.32 600.27 593 220.77 399.58
24.5 590.2 600.76 593.33 220.99 401.47
24.75 591.04 601.24 593.63 221.21 403.36
25 591.86 601.73 593.93 221.43 405.23
25.25 592.64 602.22 594.21 221.65 407.1
25.5 593.39 602.71 594.47 221.87 408.96
ENVS545, 2012 Jensen
Using STELLA to Explore Dynamic Single Species Models:! 18
Study Year Model 1
(R0 = 0.2)
(Ruth and
Lindholm
2002)
Model 2
(R0 = 0.37)
(Baker et al.
1987)
Model 3
(R0 = 0.43)
(Clapham
and Mayo
1987)
Model 4
(R0 = 0.006)
(Steiger and
Calambokidis 2000)
Whales
Model 5
(R0 = 0.059)
(Steiger and
Calambokidis 2000)
25.75 594.12 603.2 594.73 222.09 410.81
26 594.82 603.69 594.97 222.31 412.65
26.25 595.49 604.18 595.2 222.53 414.49
26.5 596.14 604.67 595.43 222.75 416.31
26.75 596.76 605.16 595.64 222.97 418.13
27 597.36 605.65 595.84 223.19 419.94
27.25 597.94 606.14 596.03 223.41 421.73
27.5 598.49 606.63 596.21 223.63 423.51
27.75 599.03 607.13 596.39 223.85 425.28
28 599.54 607.62 596.56 224.07 427.03
28.25 600.04 608.11 596.72 224.29 428.77
28.5 600.52 608.61 596.87 224.51 430.5
28.75 601.01 609.1 597.01 224.74 432.2
29 601.5 609.59 597.15 224.96 433.9
29.25 601.99 610.09 597.28 225.18 435.57
29.5 602.48 610.58 597.41 225.4 437.24
29.75 602.97 611.08 597.53 225.62 438.88
30 603.46 611.58 597.64 225.84 440.52
30.25 603.94 612.07 597.75 226.06 442.13
30.5 604.43 612.57 597.86 226.29 443.73
30.75 604.93 613.07 597.96 226.51 445.32
31 605.42 613.56 598.05 226.73 446.89
31.25 605.91 614.06 598.14 226.95 448.45
31.5 606.4 614.56 598.23 227.18 449.99
31.75 606.89 615.06 598.31 227.4 451.52
32 607.38 615.56 598.39 227.62 453.03
32.25 607.88 616.06 598.46 227.84 454.52
32.5 608.37 616.56 598.54 228.06 456
32.75 608.86 617.06 598.6 228.29 457.47
33 609.36 617.56 598.67 228.51 458.92
33.25 609.85 618.06 598.73 228.73 460.35
33.5 610.35 618.56 598.79 228.96 461.77
33.75 610.84 619.06 598.85 229.18 463.18
34 611.34 619.57 598.9 229.4 464.57
34.25 611.84 620.07 598.95 229.63 465.94
34.5 612.33 620.57 599 229.85 467.3
34.75 612.83 621.08 599.05 230.07 468.65
35 613.33 621.58 599.09 230.3 469.98
ENVS545, 2012 Jensen
Using STELLA to Explore Dynamic Single Species Models:! 19
Study Year Model 1
(R0 = 0.2)
(Ruth and
Lindholm
2002)
Model 2
(R0 = 0.37)
(Baker et al.
1987)
Model 3
(R0 = 0.43)
(Clapham
and Mayo
1987)
Model 4
(R0 = 0.006)
(Steiger and
Calambokidis 2000)
Whales
Model 5
(R0 = 0.059)
(Steiger and
Calambokidis 2000)
35.25 613.82 622.08 599.13 230.52 471.3
35.5 614.32 622.59 599.17 230.74 472.6
35.75 614.82 623.09 599.21 230.97 473.88
36 615.32 623.6 599.25 231.19 475.16
36.25 615.82 624.11 599.28 231.42 476.41
36.5 616.32 624.61 599.32 231.64 477.66
36.75 616.82 625.12 599.35 231.86 478.89
37 617.32 625.63 599.38 232.09 480.1
37.25 617.82 626.13 599.41 232.31 481.3
37.5 618.32 626.64 599.43 232.54 482.5
37.75 618.82 627.15 599.46 232.76 483.68
38 619.33 627.66 599.49 232.99 484.85
38.25 619.83 628.17 599.51 233.21 486.01
38.5 620.33 628.68 599.53 233.44 487.16
38.75 620.84 629.19 599.55 233.66 488.3
39 621.34 629.7 599.57 233.89 489.42
39.25 621.84 630.21 599.59 234.11 490.54
39.5 622.35 630.72 599.61 234.34 491.65
39.75 622.85 631.23 599.63 234.56 492.75
40 623.36 631.75 599.65 234.79 493.84
Table 4. Model data incorporating both reproductive and mortality rates, the second model reflects a
steady state equilibrium. Study year is point at which each whale population is counted, these studies
used a constant DT of 0.25 year. Whales is the population size in number of whales at each time step.
R0 is the reproductive rate in births of whales/year for the model and D is the mortality rate in deaths/
year.
Study Year Whales
Model 1
(R0 = 0.2, D = 0.03)
Whales
Model 2
(R0 = 0.2, D = 0.43)
0 200 200
0.25 199.54 208.5
0.5 199.07 217.22
0.75 198.62 226.17
1 198.16 235.34
1.25 197.71 244.72
1.5 197.26 254.33
1.75 196.82 264.17
ENVS545, 2012 Jensen
Using STELLA to Explore Dynamic Single Species Models:! 20
Study Year Whales
Model 1
(R0 = 0.2, D = 0.03)
Whales
Model 2
(R0 = 0.2, D = 0.43)
2 196.38 274.24
2.25 195.94 284.54
2.5 195.5 295.04
2.75 195.07 305.74
3 194.64 316.4
3.25 194.21 326.95
3.5 193.79 337.37
3.75 193.37 347.63
4 192.95 357.7
4.25 192.54 367.6
4.5 192.13 377.44
4.75 191.72 387.22
5 191.32 396.9
5.25 190.91 406.49
5.5 190.51 415.96
5.75 190.12 425.32
6 189.72 434.68
6.25 189.33 444.03
6.5 188.94 453.37
6.75 188.55 462.68
7 188.17 471.95
7.25 187.79 481.17
7.5 187.41 489.9
7.75 187.04 497.86
8 186.66 505.08
8.25 186.29 511.62
8.5 185.92 517.52
8.75 185.56 522.83
9 185.19 527.6
9.25 184.83 531.87
9.5 184.47 535.69
9.75 184.12 539.1
10 183.76 542.18
10.25 183.41 545.12
10.5 183.06 547.92
10.75 182.71 550.58
11 182.37 553.13
11.25 182.03 555.55
11.5 181.69 557.86
11.75 181.35 560.06
ENVS545, 2012 Jensen
Using STELLA to Explore Dynamic Single Species Models:! 21
Study Year Whales
Model 1
(R0 = 0.2, D = 0.03)
Whales
Model 2
(R0 = 0.2, D = 0.43)
12 181.01 562.15
12.25 180.67 564.13
12.5 180.34 566.02
12.75 180 567.82
13 179.66 569.53
13.25 179.33 571.15
13.5 178.99 572.68
13.75 178.66 574.14
14 178.34 575.53
14.25 178.01 576.84
14.5 177.68 578.09
14.75 177.36 579.27
15 177.04 580.39
15.25 176.72 581.45
15.5 176.41 582.46
15.75 176.09 583.41
16 175.78 584.31
16.25 175.47 585.17
16.5 175.16 585.98
16.75 174.86 586.74
17 174.55 587.47
17.25 174.25 588.15
17.5 173.95 588.8
17.75 173.65 589.42
18 173.35 590
18.25 173.06 590.55
18.5 172.76 591.07
18.75 172.47 591.56
19 172.18 592.02
19.25 171.89 592.46
19.5 171.61 592.88
19.75 171.32 593.27
20 171.04 593.64
20.25 170.76 594
20.5 170.48 594.33
20.75 170.2 594.64
21 169.92 594.94
21.25 169.65 595.22
21.5 169.38 595.48
21.75 169.1 595.73
ENVS545, 2012 Jensen
Using STELLA to Explore Dynamic Single Species Models:! 22
Study Year Whales
Model 1
(R0 = 0.2, D = 0.03)
Whales
Model 2
(R0 = 0.2, D = 0.43)
22 168.83 595.97
22.25 168.57 596.19
22.5 168.3 596.41
22.75 168.03 596.61
23 167.77 596.79
23.25 167.51 596.97
23.5 167.25 597.14
23.75 166.99 597.3
24 166.73 597.45
24.25 166.47 597.59
24.5 166.22 597.73
24.75 165.97 597.85
25 165.71 597.97
25.25 165.46 598.08
25.5 165.21 598.19
25.75 164.97 598.29
26 164.72 598.39
26.25 164.48 598.48
26.5 164.23 598.56
26.75 163.99 598.64
27 163.75 598.72
27.25 163.51 598.79
27.5 163.27 598.86
27.75 163.03 598.92
28 162.8 598.98
28.25 162.57 599.04
28.5 162.33 599.09
28.75 162.1 599.14
29 161.87 599.19
29.25 161.64 599.23
29.5 161.41 599.28
29.75 161.19 599.32
30 160.96 599.36
30.25 160.74 599.39
30.5 160.52 599.43
30.75 160.29 599.46
31 160.07 599.49
31.25 159.85 599.52
31.5 159.64 599.54
31.75 159.42 599.57
ENVS545, 2012 Jensen
Using STELLA to Explore Dynamic Single Species Models:! 23
Study Year Whales
Model 1
(R0 = 0.2, D = 0.03)
Whales
Model 2
(R0 = 0.2, D = 0.43)
32 159.2 599.59
32.25 158.99 599.62
32.5 158.78 599.64
32.75 158.56 599.66
33 158.35 599.68
33.25 158.14 599.69
33.5 157.93 599.71
33.75 157.73 599.73
34 157.52 599.74
34.25 157.31 599.76
34.5 157.11 599.77
34.75 156.91 599.78
35 156.7 599.8
35.25 156.5 599.81
35.5 156.3 599.82
35.75 156.1 599.83
36 155.9 599.84
36.25 155.71 599.85
36.5 155.51 599.86
36.75 155.32 599.86
37 155.12 599.87
37.25 154.93 599.88
37.5 154.74 599.89
37.75 154.55 599.89
38 154.36 599.9
38.25 154.17 599.9
38.5 153.98 599.91
38.75 153.79 599.91
39 153.6 599.92
39.25 153.42 599.92
39.5 153.24 599.93
39.75 153.05 599.93
40 152.87 599.94
ENVS545, 2012 Jensen
Using STELLA to Explore Dynamic Single Species Models:! 24
Table 5. Data for years 0 - 39.75 generated using Runge-Kutta 4 solution algorithm over a period of 40
years with varying time steps (DT). Final data for Runge-Kutta 4, Runge-Kutta 2, and Euler provided.
Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)
Study Year 0.125 (year) 0.25 (year) 0.5 (year) 1 (year) 5 (years) 10 (years) 20 (years)
0 200 200 200 200 200 200 200
0.125 204.22
0.25 208.5 208.5
0.375 212.83
0.5 217.22 217.22 217.22
0.625 221.67
0.75 226.17 226.17
0.875 230.73
1 235.34 235.34 235.34 235.34
1.125 240.01
1.25 244.72 244.72
1.375 249.5
1.5 254.33 254.33 254.33
1.625 259.22
1.75 264.17 264.17
1.875 269.18
2 274.24 274.24 274.24 274.25
2.125 279.36
2.25 284.53 284.54
2.375 289.76
2.5 295.04 295.04 295.04
2.625 300.38
2.75 305.73 305.74
2.875 311.07
3 316.39 316.4 316.38 316.41
3.125 321.68
3.25 326.95 326.95
3.375 332.17
3.5 337.37 337.37 337.36
3.625 342.52
3.75 347.62 347.63
3.875 352.68
4 357.7 357.7 357.69 357.71
4.125 362.66
4.25 367.6 367.6
4.375 372.52
4.5 377.44 377.44 377.44
4.625 382.33
4.75 387.21 387.22
ENVS545, 2012 Jensen
Using STELLA to Explore Dynamic Single Species Models:! 25
Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)
Study Year 0.125 (year) 0.25 (year) 0.5 (year) 1 (year) 5 (years) 10 (years) 20 (years)
4.875 392.06
5 396.89 396.9 396.9 396.94 400.05
5.125 401.7
5.25 406.48 406.49
5.375 411.23
5.5 415.95 415.96 415.95
5.625 420.64
5.75 425.32 425.32
5.875 430
6 434.68 434.68 434.69 434.69
6.125 439.35
6.25 444.03 444.03
6.375 448.7
6.5 453.36 453.37 453.37
6.625 458.02
6.75 462.67 462.68
6.875 467.31
7 471.95 471.95 471.96 471.96
7.125 476.57
7.25 481.17 481.17
7.375 485.64
7.5 489.9 489.9 489.99
7.625 493.98
7.75 497.86 497.86
7.875 501.56
8 505.08 505.08 505.15 504.99
8.125 508.43
8.25 511.62 511.62
8.375 514.65
8.5 517.52 517.52 517.57
8.625 520.24
8.75 522.83 522.83
8.875 525.28
9 527.6 527.6 527.64 527.53
9.125 529.79
9.25 531.87 531.87
9.375 533.83
9.5 535.69 535.69 535.72
9.625 537.44
9.75 539.1 539.1
9.875 540.67
ENVS545, 2012 Jensen
Using STELLA to Explore Dynamic Single Species Models:! 26
Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)
Study Year 0.125 (year) 0.25 (year) 0.5 (year) 1 (year) 5 (years) 10 (years) 20 (years)
10 542.18 542.18 542.21 542.2 548.13 521.39
10.125 543.67
10.25 545.12 545.12
10.375 546.53
10.5 547.92 547.92 547.94
10.625 549.27
10.75 550.59 550.58
10.875 551.87
11 553.13 553.13 553.15 553.14
11.125 554.36
11.25 555.55 555.55
11.375 556.72
11.5 557.86 557.86 557.88
11.625 558.97
11.75 560.06 560.06
11.875 561.12
12 562.15 562.15 562.17 562.16
12.125 563.15
12.25 564.14 564.13
12.375 565.09
12.5 566.02 566.02 566.04
12.625 566.93
12.75 567.82 567.82
12.875 568.68
13 569.53 569.53 569.54 569.53
13.125 570.35
13.25 571.15 571.15
13.375 571.93
13.5 572.68 572.68 572.7
13.625 573.42
13.75 574.14 574.14
13.875 574.85
14 575.53 575.53 575.54 575.53
14.125 576.19
14.25 576.84 576.84
14.375 577.47
14.5 578.09 578.09 578.1
14.625 578.69
14.75 579.27 579.27
14.875 579.84
15 580.39 580.39 580.4 580.39 582
ENVS545, 2012 Jensen
Using STELLA to Explore Dynamic Single Species Models:! 27
Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)
Study Year 0.125 (year) 0.25 (year) 0.5 (year) 1 (year) 5 (years) 10 (years) 20 (years)
15.125 580.93
15.25 581.45 581.45
15.375 581.96
15.5 582.46 582.46 582.47
15.625 582.94
15.75 583.41 583.41
15.875 583.87
16 584.31 584.31 584.32 584.31
16.125 584.74
16.25 585.17 585.17
16.375 585.58
16.5 585.98 585.98 585.98
16.625 586.36
16.75 586.74 586.74
16.875 587.11
17 587.47 587.47 587.47 587.47
17.125 587.81
17.25 588.15 588.15
17.375 588.48
17.5 588.8 588.8 588.81
17.625 589.11
17.75 589.42 589.42
17.875 589.71
18 590 590 590 590
18.125 590.28
18.25 590.55 590.55
18.375 590.81
18.5 591.07 591.07 591.07
18.625 591.32
18.75 591.56 591.56
18.875 591.79
19 592.02 592.02 592.03 592.03
19.125 592.25
19.25 592.46 592.46
19.375 592.67
19.5 592.88 592.88 592.88
19.625 593.08
19.75 593.27 593.27
19.875 593.46
20 593.64 593.64 593.65 593.65 593.95 625.1 681.09
20.125 593.82
ENVS545, 2012 Jensen
Using STELLA to Explore Dynamic Single Species Models:! 28
Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)
Study Year 0.125 (year) 0.25 (year) 0.5 (year) 1 (year) 5 (years) 10 (years) 20 (years)
20.25 594 594
20.375 594.16
20.5 594.33 594.33 594.33
20.625 594.49
20.75 594.64 594.64
20.875 594.79
21 594.94 594.94 594.94 594.94
21.125 595.08
21.25 595.22 595.22
21.375 595.35
21.5 595.48 595.48 595.49
21.625 595.61
21.75 595.73 595.73
21.875 595.85
22 595.97 595.97 595.97 595.97
22.125 596.08
22.25 596.19 596.19
22.375 596.3
22.5 596.41 596.41 596.41
22.625 596.51
22.75 596.61 596.61
22.875 596.7
23 596.79 596.79 596.8 596.79
23.125 596.88
23.25 596.97 596.97
23.375 597.06
23.5 597.14 597.14 597.14
23.625 597.22
23.75 597.3 597.3
23.875 597.38
24 597.45 597.45 597.45 597.45
24.125 597.52
24.25 597.59 597.59
24.375 597.66
24.5 597.73 597.73 597.73
24.625 597.79
24.75 597.85 597.85
24.875 597.91
25 597.97 597.97 597.97 597.97 597.99
25.125 598.03
25.25 598.08 598.08
ENVS545, 2012 Jensen
Using STELLA to Explore Dynamic Single Species Models:! 29
Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)
Study Year 0.125 (year) 0.25 (year) 0.5 (year) 1 (year) 5 (years) 10 (years) 20 (years)
25.375 598.14
25.5 598.19 598.19 598.19
25.625 598.24
25.75 598.29 598.29
25.875 598.34
26 598.39 598.39 598.39 598.39
26.125 598.43
26.25 598.48 598.48
26.375 598.52
26.5 598.56 598.56 598.56
26.625 598.6
26.75 598.64 598.64
26.875 598.68
27 598.72 598.72 598.72 598.72
27.125 598.75
27.25 598.79 598.79
27.375 598.82
27.5 598.86 598.86 598.86
27.625 598.89
27.75 598.92 598.92
27.875 598.95
28 598.98 598.98 598.98 598.98
28.125 599.01
28.25 599.04 599.04
28.375 599.06
28.5 599.09 599.09 599.09
28.625 599.12
28.75 599.14 599.14
28.875 599.17
29 599.19 599.19 599.19 599.19
29.125 599.21
29.25 599.23 599.23
29.375 599.26
29.5 599.28 599.28 599.28
29.625 599.3
29.75 599.32 599.32
29.875 599.34
30 599.36 599.36 599.36 599.36 599.33 625.1
30.125 599.37
30.25 599.39 599.39
30.375 599.41
ENVS545, 2012 Jensen
Using STELLA to Explore Dynamic Single Species Models:! 30
Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)
Study Year 0.125 (year) 0.25 (year) 0.5 (year) 1 (year) 5 (years) 10 (years) 20 (years)
30.5 599.43 599.43 599.43
30.625 599.44
30.75 599.46 599.46
30.875 599.47
31 599.49 599.49 599.49 599.49
31.125 599.5
31.25 599.52 599.52
31.375 599.53
31.5 599.54 599.54 599.54
31.625 599.56
31.75 599.57 599.57
31.875 599.58
32 599.59 599.59 599.59 599.59
32.125 599.6
32.25 599.62 599.62
32.375 599.63
32.5 599.64 599.64 599.64
32.625 599.65
32.75 599.66 599.66
32.875 599.67
33 599.68 599.68 599.68 599.68
33.125 599.69
33.25 599.69 599.69
33.375 599.7
33.5 599.71 599.71 599.71
33.625 599.72
33.75 599.73 599.73
33.875 599.74
34 599.74 599.74 599.74 599.74
34.125 599.75
34.25 599.76 599.76
34.375 599.76
34.5 599.77 599.77 599.77
34.625 599.78
34.75 599.78 599.78
34.875 599.79
35 599.8 599.8 599.8 599.8 599.78
35.125 599.8
35.25 599.81 599.81
35.375 599.81
35.5 599.82 599.82 599.82
ENVS545, 2012 Jensen
Using STELLA to Explore Dynamic Single Species Models:! 31
Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)
Study Year 0.125 (year) 0.25 (year) 0.5 (year) 1 (year) 5 (years) 10 (years) 20 (years)
35.625 599.82
35.75 599.83 599.83
35.875 599.83
36 599.84 599.84 599.84 599.84
36.125 599.84
36.25 599.85 599.85
36.375 599.85
36.5 599.86 599.86 599.86
36.625 599.86
36.75 599.86 599.86
36.875 599.87
37 599.87 599.87 599.87 599.87
37.125 599.87
37.25 599.88 599.88
37.375 599.88
37.5 599.89 599.89 599.89
37.625 599.89
37.75 599.89 599.89
37.875 599.89
38 599.9 599.9 599.9 599.9
38.125 599.9
38.25 599.9 599.9
38.375 599.91
38.5 599.91 599.91 599.91
38.625 599.91
38.75 599.91 599.91
38.875 599.92
39 599.92 599.92 599.92 599.92
39.125 599.92
39.25 599.92 599.92
39.375 599.93
39.5 599.93 599.93 599.93
39.625 599.93
39.75 599.93 599.93
39.875 599.93
Final RK4 599.94 599.94 599.94 599.94 599.93 625.1 681.09
Final RK2 599.94 599.93 599.93 599.93 599.59 627.71 681.44
Final Euler 599.94 599.95 599.96 599.98 602.88 681.44 870.58
ENVS545, 2012 Jensen
Using STELLA to Explore Dynamic Single Species Models:! 32

More Related Content

Viewers also liked

Modelling and simulation using stella
Modelling and simulation using stellaModelling and simulation using stella
Modelling and simulation using stellafarhana25
 
Ph.D. Defense: Expressive Sound Synthesis for Animation
Ph.D. Defense: Expressive Sound Synthesis for AnimationPh.D. Defense: Expressive Sound Synthesis for Animation
Ph.D. Defense: Expressive Sound Synthesis for AnimationCecile P-L
 
Dynamic modeling tools
Dynamic modeling toolsDynamic modeling tools
Dynamic modeling toolscassellts
 
Stella present
Stella presentStella present
Stella presentieyra04
 
Modelling and simulation
Modelling and simulationModelling and simulation
Modelling and simulationCik Syikin
 
System modelling with STELLA: An introduction
System modelling with STELLA: An introductionSystem modelling with STELLA: An introduction
System modelling with STELLA: An introductionKyle Monahan
 
Modelos de simulacion y Software Stella. Por Carmen Quintero
 Modelos de simulacion y Software Stella. Por Carmen Quintero Modelos de simulacion y Software Stella. Por Carmen Quintero
Modelos de simulacion y Software Stella. Por Carmen QuinteroAngelaRivas120
 
Modelos de Simulacion
Modelos de SimulacionModelos de Simulacion
Modelos de SimulacionJammil Ramos
 

Viewers also liked (8)

Modelling and simulation using stella
Modelling and simulation using stellaModelling and simulation using stella
Modelling and simulation using stella
 
Ph.D. Defense: Expressive Sound Synthesis for Animation
Ph.D. Defense: Expressive Sound Synthesis for AnimationPh.D. Defense: Expressive Sound Synthesis for Animation
Ph.D. Defense: Expressive Sound Synthesis for Animation
 
Dynamic modeling tools
Dynamic modeling toolsDynamic modeling tools
Dynamic modeling tools
 
Stella present
Stella presentStella present
Stella present
 
Modelling and simulation
Modelling and simulationModelling and simulation
Modelling and simulation
 
System modelling with STELLA: An introduction
System modelling with STELLA: An introductionSystem modelling with STELLA: An introduction
System modelling with STELLA: An introduction
 
Modelos de simulacion y Software Stella. Por Carmen Quintero
 Modelos de simulacion y Software Stella. Por Carmen Quintero Modelos de simulacion y Software Stella. Por Carmen Quintero
Modelos de simulacion y Software Stella. Por Carmen Quintero
 
Modelos de Simulacion
Modelos de SimulacionModelos de Simulacion
Modelos de Simulacion
 

Similar to Using STELLA to Explore Dynamic Single Species Models: The Magic of Making Humpback Whales Thrive in a Lab

Theoretical ecology
Theoretical ecologyTheoretical ecology
Theoretical ecologyMai Ngoc Duc
 
Single-System Studies Mark A. Mattaini ocial work pr.docx
Single-System Studies Mark A. Mattaini ocial work pr.docxSingle-System Studies Mark A. Mattaini ocial work pr.docx
Single-System Studies Mark A. Mattaini ocial work pr.docxjennifer822
 
Freckleton & witkinson 2002
Freckleton & witkinson 2002Freckleton & witkinson 2002
Freckleton & witkinson 2002Klaudia Llano
 
Investigations of certain estimators for modeling panel data under violations...
Investigations of certain estimators for modeling panel data under violations...Investigations of certain estimators for modeling panel data under violations...
Investigations of certain estimators for modeling panel data under violations...Alexander Decker
 
(The Ima Volumes in Mathematics and Its Applications) Terry Speed (editor), M...
(The Ima Volumes in Mathematics and Its Applications) Terry Speed (editor), M...(The Ima Volumes in Mathematics and Its Applications) Terry Speed (editor), M...
(The Ima Volumes in Mathematics and Its Applications) Terry Speed (editor), M...EdizonJambormias2
 
The Relationship Between Body Image And The Media
The Relationship Between Body Image And The MediaThe Relationship Between Body Image And The Media
The Relationship Between Body Image And The MediaJessica Myers
 
Emergent global patterns_of_ecosystem_structure_and_function_form_a_mechanist...
Emergent global patterns_of_ecosystem_structure_and_function_form_a_mechanist...Emergent global patterns_of_ecosystem_structure_and_function_form_a_mechanist...
Emergent global patterns_of_ecosystem_structure_and_function_form_a_mechanist...Dr Lendy Spires
 
Modeling evolution in the classroom: The case of Fukushima’s mutant butterflies
Modeling evolution in the classroom: The case of Fukushima’s mutant butterfliesModeling evolution in the classroom: The case of Fukushima’s mutant butterflies
Modeling evolution in the classroom: The case of Fukushima’s mutant butterfliesAmyLark
 
Kyngdon and Richards (2007)
Kyngdon and Richards (2007)Kyngdon and Richards (2007)
Kyngdon and Richards (2007)Andrew Kyngdon
 
Punctuated equilibrium theory, shifting balance theory, allopatric speciation...
Punctuated equilibrium theory, shifting balance theory, allopatric speciation...Punctuated equilibrium theory, shifting balance theory, allopatric speciation...
Punctuated equilibrium theory, shifting balance theory, allopatric speciation...MdAbdulAhad26
 
On a Sequential Probit Model of Infant Mortality in Nigeria, by K.T. Amzat an...
On a Sequential Probit Model of Infant Mortality in Nigeria, by K.T. Amzat an...On a Sequential Probit Model of Infant Mortality in Nigeria, by K.T. Amzat an...
On a Sequential Probit Model of Infant Mortality in Nigeria, by K.T. Amzat an...Crescent University Abeokuta
 
A Principle Governing The Success Of Populations.
A Principle Governing The Success Of Populations.A Principle Governing The Success Of Populations.
A Principle Governing The Success Of Populations.Daphne Smith
 
Adaptationism And Molecular Biology An Example Based On ADHD
Adaptationism And Molecular Biology  An Example Based On ADHDAdaptationism And Molecular Biology  An Example Based On ADHD
Adaptationism And Molecular Biology An Example Based On ADHDFaith Brown
 

Similar to Using STELLA to Explore Dynamic Single Species Models: The Magic of Making Humpback Whales Thrive in a Lab (20)

Theoretical ecology
Theoretical ecologyTheoretical ecology
Theoretical ecology
 
Omri's PhD Thesis
Omri's PhD ThesisOmri's PhD Thesis
Omri's PhD Thesis
 
FROM THE CLASSROOM TO AN OPINION NOTE: COMPLEMENTARY ANALYSIS OF THE GENETIC ...
FROM THE CLASSROOM TO AN OPINION NOTE: COMPLEMENTARY ANALYSIS OF THE GENETIC ...FROM THE CLASSROOM TO AN OPINION NOTE: COMPLEMENTARY ANALYSIS OF THE GENETIC ...
FROM THE CLASSROOM TO AN OPINION NOTE: COMPLEMENTARY ANALYSIS OF THE GENETIC ...
 
El Cerebro Social por Pablo Billeke
El Cerebro Social por Pablo BillekeEl Cerebro Social por Pablo Billeke
El Cerebro Social por Pablo Billeke
 
Single-System Studies Mark A. Mattaini ocial work pr.docx
Single-System Studies Mark A. Mattaini ocial work pr.docxSingle-System Studies Mark A. Mattaini ocial work pr.docx
Single-System Studies Mark A. Mattaini ocial work pr.docx
 
Freckleton & witkinson 2002
Freckleton & witkinson 2002Freckleton & witkinson 2002
Freckleton & witkinson 2002
 
Investigations of certain estimators for modeling panel data under violations...
Investigations of certain estimators for modeling panel data under violations...Investigations of certain estimators for modeling panel data under violations...
Investigations of certain estimators for modeling panel data under violations...
 
(The Ima Volumes in Mathematics and Its Applications) Terry Speed (editor), M...
(The Ima Volumes in Mathematics and Its Applications) Terry Speed (editor), M...(The Ima Volumes in Mathematics and Its Applications) Terry Speed (editor), M...
(The Ima Volumes in Mathematics and Its Applications) Terry Speed (editor), M...
 
The Relationship Between Body Image And The Media
The Relationship Between Body Image And The MediaThe Relationship Between Body Image And The Media
The Relationship Between Body Image And The Media
 
Emergent global patterns_of_ecosystem_structure_and_function_form_a_mechanist...
Emergent global patterns_of_ecosystem_structure_and_function_form_a_mechanist...Emergent global patterns_of_ecosystem_structure_and_function_form_a_mechanist...
Emergent global patterns_of_ecosystem_structure_and_function_form_a_mechanist...
 
Modeling evolution in the classroom: The case of Fukushima’s mutant butterflies
Modeling evolution in the classroom: The case of Fukushima’s mutant butterfliesModeling evolution in the classroom: The case of Fukushima’s mutant butterflies
Modeling evolution in the classroom: The case of Fukushima’s mutant butterflies
 
Dermatoglyphics 120529214457_Sinh trắc học Dấu Vân tay
Dermatoglyphics 120529214457_Sinh trắc học Dấu Vân tayDermatoglyphics 120529214457_Sinh trắc học Dấu Vân tay
Dermatoglyphics 120529214457_Sinh trắc học Dấu Vân tay
 
Kyngdon and Richards (2007)
Kyngdon and Richards (2007)Kyngdon and Richards (2007)
Kyngdon and Richards (2007)
 
Gf o2014talk
Gf o2014talkGf o2014talk
Gf o2014talk
 
Punctuated equilibrium theory, shifting balance theory, allopatric speciation...
Punctuated equilibrium theory, shifting balance theory, allopatric speciation...Punctuated equilibrium theory, shifting balance theory, allopatric speciation...
Punctuated equilibrium theory, shifting balance theory, allopatric speciation...
 
J023089094
J023089094J023089094
J023089094
 
On a Sequential Probit Model of Infant Mortality in Nigeria, by K.T. Amzat an...
On a Sequential Probit Model of Infant Mortality in Nigeria, by K.T. Amzat an...On a Sequential Probit Model of Infant Mortality in Nigeria, by K.T. Amzat an...
On a Sequential Probit Model of Infant Mortality in Nigeria, by K.T. Amzat an...
 
A Principle Governing The Success Of Populations.
A Principle Governing The Success Of Populations.A Principle Governing The Success Of Populations.
A Principle Governing The Success Of Populations.
 
Glued Ecology
Glued EcologyGlued Ecology
Glued Ecology
 
Adaptationism And Molecular Biology An Example Based On ADHD
Adaptationism And Molecular Biology  An Example Based On ADHDAdaptationism And Molecular Biology  An Example Based On ADHD
Adaptationism And Molecular Biology An Example Based On ADHD
 

Recently uploaded

Chemistry 5th semester paper 1st Notes.pdf
Chemistry 5th semester paper 1st Notes.pdfChemistry 5th semester paper 1st Notes.pdf
Chemistry 5th semester paper 1st Notes.pdfSumit Kumar yadav
 
Factory Acceptance Test( FAT).pptx .
Factory Acceptance Test( FAT).pptx       .Factory Acceptance Test( FAT).pptx       .
Factory Acceptance Test( FAT).pptx .Poonam Aher Patil
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bSérgio Sacani
 
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...Scintica Instrumentation
 
Introduction of DNA analysis in Forensic's .pptx
Introduction of DNA analysis in Forensic's .pptxIntroduction of DNA analysis in Forensic's .pptx
Introduction of DNA analysis in Forensic's .pptxrohankumarsinghrore1
 
Conjugation, transduction and transformation
Conjugation, transduction and transformationConjugation, transduction and transformation
Conjugation, transduction and transformationAreesha Ahmad
 
Zoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdfZoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdfSumit Kumar yadav
 
Stages in the normal growth curve
Stages in the normal growth curveStages in the normal growth curve
Stages in the normal growth curveAreesha Ahmad
 
GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)Areesha Ahmad
 
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIACURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIADr. TATHAGAT KHOBRAGADE
 
Grade 7 - Lesson 1 - Microscope and Its Functions
Grade 7 - Lesson 1 - Microscope and Its FunctionsGrade 7 - Lesson 1 - Microscope and Its Functions
Grade 7 - Lesson 1 - Microscope and Its FunctionsOrtegaSyrineMay
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)Areesha Ahmad
 
Human genetics..........................pptx
Human genetics..........................pptxHuman genetics..........................pptx
Human genetics..........................pptxSilpa
 
An introduction on sequence tagged site mapping
An introduction on sequence tagged site mappingAn introduction on sequence tagged site mapping
An introduction on sequence tagged site mappingadibshanto115
 
Dr. E. Muralinath_ Blood indices_clinical aspects
Dr. E. Muralinath_ Blood indices_clinical  aspectsDr. E. Muralinath_ Blood indices_clinical  aspects
Dr. E. Muralinath_ Blood indices_clinical aspectsmuralinath2
 
GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)Areesha Ahmad
 
300003-World Science Day For Peace And Development.pptx
300003-World Science Day For Peace And Development.pptx300003-World Science Day For Peace And Development.pptx
300003-World Science Day For Peace And Development.pptxryanrooker
 
Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.Silpa
 
pumpkin fruit fly, water melon fruit fly, cucumber fruit fly
pumpkin fruit fly, water melon fruit fly, cucumber fruit flypumpkin fruit fly, water melon fruit fly, cucumber fruit fly
pumpkin fruit fly, water melon fruit fly, cucumber fruit flyPRADYUMMAURYA1
 

Recently uploaded (20)

Chemistry 5th semester paper 1st Notes.pdf
Chemistry 5th semester paper 1st Notes.pdfChemistry 5th semester paper 1st Notes.pdf
Chemistry 5th semester paper 1st Notes.pdf
 
Factory Acceptance Test( FAT).pptx .
Factory Acceptance Test( FAT).pptx       .Factory Acceptance Test( FAT).pptx       .
Factory Acceptance Test( FAT).pptx .
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
 
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
 
Introduction of DNA analysis in Forensic's .pptx
Introduction of DNA analysis in Forensic's .pptxIntroduction of DNA analysis in Forensic's .pptx
Introduction of DNA analysis in Forensic's .pptx
 
Conjugation, transduction and transformation
Conjugation, transduction and transformationConjugation, transduction and transformation
Conjugation, transduction and transformation
 
Zoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdfZoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdf
 
Stages in the normal growth curve
Stages in the normal growth curveStages in the normal growth curve
Stages in the normal growth curve
 
GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)
 
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIACURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
 
Grade 7 - Lesson 1 - Microscope and Its Functions
Grade 7 - Lesson 1 - Microscope and Its FunctionsGrade 7 - Lesson 1 - Microscope and Its Functions
Grade 7 - Lesson 1 - Microscope and Its Functions
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)
 
Human genetics..........................pptx
Human genetics..........................pptxHuman genetics..........................pptx
Human genetics..........................pptx
 
An introduction on sequence tagged site mapping
An introduction on sequence tagged site mappingAn introduction on sequence tagged site mapping
An introduction on sequence tagged site mapping
 
Dr. E. Muralinath_ Blood indices_clinical aspects
Dr. E. Muralinath_ Blood indices_clinical  aspectsDr. E. Muralinath_ Blood indices_clinical  aspects
Dr. E. Muralinath_ Blood indices_clinical aspects
 
GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)
 
300003-World Science Day For Peace And Development.pptx
300003-World Science Day For Peace And Development.pptx300003-World Science Day For Peace And Development.pptx
300003-World Science Day For Peace And Development.pptx
 
Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.
 
pumpkin fruit fly, water melon fruit fly, cucumber fruit fly
pumpkin fruit fly, water melon fruit fly, cucumber fruit flypumpkin fruit fly, water melon fruit fly, cucumber fruit fly
pumpkin fruit fly, water melon fruit fly, cucumber fruit fly
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 

Using STELLA to Explore Dynamic Single Species Models: The Magic of Making Humpback Whales Thrive in a Lab

  • 1. Using STELLA to Explore Dynamic Single Species Models: The Magic of Making Humpback Whales Thrive in a Lab Lisa A. Jensen Division of Science & Environmental Policy, California State University Monterey Bay, Seaside, CA, USA. Abstract The use of formal, mathematical models allows stakeholders, decision makers and scientists to better visualize interactions and relationships within ecological systems. This study uses STELLA, a modeling tool, to simulate simple population dynamics for the humpback whale (Megaptera novaengliae) to better understand the impacts of reproductive and mortality rates as well as alternative solution algorithms used to drive the model. A wide range of population dynamics occurred as a result of varying time increments for calculating populations and use of available solution algorithms. Populations are most likely to achieve equilibrium when reproduction and mortality result in approximately the same number of individuals. Introduction Scientific models provide a mechanism to explore and examine relationships between organisms and their environment. This process often leads to more questions along with an improved understanding of the complex nature of the relationships we study. The use of computers and software enables us to model and test our understanding of the relationships between and within different communities (Doerr 1996, Lindholm 2008). STELLA, Structural Thinking Experimental Learning Laboratory with Animation (Doerr 1996, isee 2010), is a visually oriented model development tool which allows the user to readily build and modify models (Lindholm 2008). The ease of rapidly changing relationships, inputs and interactions enables the scientist to explore complex systems and identify gaps in understanding more readily (Doerr 1996, Resnick 2003, Lindholm 2008). While computer models are less complex than the systems they represent, they offer the opportunity to test theories regarding relationships, introduce new information and grow the investigator’s conceptual understanding of the system under study (Doerr 1996). It is this ability to shift viewpoints and rapidly test ideas where software modeling is a powerful tool available to science (Resnick 2003). At the same time the investigator needs to remain clear that modeling tools do not fully describe the systems being reviewed, models frequently hold constant some number of influencing factors to examine the systemic response to other factors (Lindholm 2008). When examining at-risk populations, the use of computer modeling is an easy mechanism to explore questions of exploitation, recovery, opportunities available for sustainability and ENVS545, 2012 Jensen Using STELLA to Explore Dynamic Single Species Models:! 1
  • 2. improved management practices (Baker et al. 1987). Modeling systems allows decision makers and stakeholders to deepen their understanding of the system and the variables which provide impacts (Costanza and Ruth 1998). This exercise focuses on the use of STELLA (isee 2010) to explore population dynamics of the humpback whale (Megaptera novaeangliae) with a simple model encompassing reproduction and mortality. Humpback whales are a commercially valuable resource and have been hunted nearly to the point of extinction (Clapham and Mayo 1987). Utilizing simple models, as are created within this exercise, will allow the investigator the opportunity to explore the relationships between reproductive and mortality rates. Methods The exploratory models used for this study were informed by published information on reproductive and mortality rates for the humpback whale (Baker et al. 1987, Clapham and Mayo 1987, Straley et al. 1994, Barlow and Clapham 1997, Steiger and Calambokidis 2000, Gabriele et al. 2001) as well as modeling and the use of STELLA (Doerr 1996, Ruth and Lindholm 2002, Scott Baker and Clapham 2004, isee 2010). Data Collection Data for this study was generated within the STELLA models with an initial population size of 200 humpback whales being studied over a period of forty years . This study examined population dynamics looking initially at a closed system (no immigration, emigration, or mortality) and exploring the changes in population size when density dependence was considered, was not considered and recovery following sudden decreases in reproduction rates (Table 1, Table 2, Appendix A). The model was modified to incorporate a mortality rate for the population as a whole (Ruth and Lindholm 2002) (Table 3, Appendix A). Research Questions This study asked several questions prior to development and implementation of the models. These included: • How does altering the graphical relationship between population size and reproductive rate impact the population over time? H0: N(R0a) = N(R0b) = N(R0c) … = N(R0n) H1: N(R0a) ≠ N(R0b) = N(R0c) … = N(R0n) Hn+1: N(R0a) = N(R0b) ≠ N(R0c) … = N(R0n) ... H2: N(R0a) ≠ N(R0b) ≠ N(R0c) … ≠ N(R0n) where population size (N) is a function of the reproductive rate (R0) for the species. The null hypothesis states the modifying the graphical relationship between reproductive rate and ENVS545, 2012 Jensen Using STELLA to Explore Dynamic Single Species Models:! 2
  • 3. population has no effect on population size, the alternative hypotheses state population size between models is affected by reproductive rate. • What impact does reproductive rate have on population size over time? H0: N(R0a) = N(R0b) = N(R0c) … = N(R0n) H1: N(R0a) ≠ N(R0b) = N(R0c) … = N(R0n) Hn+1: N(R0a) = N(R0b) ≠ N(R0c) … = N(R0n) ... H2: N(R0a) ≠ N(R0b) ≠ N(R0c) … ≠ N(R0n) where population size (N) is a function of the reproductive rate (R0) for the species. The null hypothesis states reproductive rate has no effect on population size, the alternative hypotheses state population size between models is affected by reproductive rate. As the reproductive rate increases the population size increases more quickly and as the rate decreases, population size increases more slowly. • What are the interactions between reproduction and mortality rates on population size over time? H0: N(D0a, R0a) = N(D0b, R0b) = N(D0c, R0c) … = N(Dn, R0n) H1: N(D0a, R0a) ≠ N(D0b, R0b) = N(D0c, R0c) … = N(Dn, R0n) H1: N(D0a, R0a) = N(D0b, R0b) ≠ N(D0c, R0c) … = N(Dn, R0n) ... H2: N(D0a, R0a) ≠ N(D0b, R0b) ≠ N(D0c, R0c) … ≠ N(Dn, R0n) where population size (N) is a function of both mortality (D0) and reproductive (R0) rates for the species. The null hypothesis states there is no effect on population size, the alternative hypotheses state population size between models is affected by mortality and reproductive rates. When the mortality and reproductive rates are approximately the same the population maintains a steady state condition, if the mortality rate is greater than the reproductive rate the population will decline. • How do altering the time step (DT) and solution algorithm effect appropriate model selection? Granularity of the time step (DT) will have the effect of driving down the difference between solution algorithms. Assumptions Models are by their nature a simplification of real world systems (Lindholm 2008). The use of a simple, closed loop model violates several assumptions found within an ecosystem. These include: • No immigration or migration. • All members of the population give birth. • No age-structure dependence for either reproductive or mortality rates (Gotelli 2008). • No genetic structure (Gotelli 2008). • No time lags (Gotelli 2008). • No Allee effect for small populations (Jackson et al. 2008). ENVS545, 2012 Jensen Using STELLA to Explore Dynamic Single Species Models:! 3
  • 4. • No difference between adult and juvenile mortality rates (Gabriele et al. 2001). • Constant calving intervals (Baker et al. 1987). • Fractional increases in population allowed by specific solution algorithms (Lindholm 2008). • Population growth over a period of forty or sixty-five years was representative of growth over multiple generations. Results A simple model built utilizing reproduction as a function of population size at a given point in time and reproductive rate (Fig. 1). In utilizing this model I explored modification of the graphical relationship and alteration of reproduction rate to examine the effect on population size. Within the original model I modified the graphical relationship to reflect strict density dependence (reproductivity goes to zero as the population reaches maximum size, 600 whales), or not (reproductivity does not go to zero), and examined the role of sudden decreases in the rate of reproduction (Fig.2, Table 2). Retaining a similar curve and turning on or off density dependence indicated without density dependence, the population will continue growing in spite of dramatic drops in the reproductive rate. The models with density dependence (1 and 4) become asymptotic to population sizes near the maximum defined population. Models without strict density dependence demonstrated a continued growth in the population. I explored variations in density dependence due to discussion in the literature stating an insufficient Figure 1. Simple closed loop model examining the relationship of reproductive rate on population size. ENVS545, 2012 Jensen Using STELLA to Explore Dynamic Single Species Models:! 4
  • 5. knowledge base exists to fully understand whether grey whales experience density dependence (Baker et al. 1987). In the next iteration of model design the rate of reproduction was altered (Fig. 3, Table 3) based on reproductive rates for humpback whales in other studies (Baker et al. 1987, Clapham and ! Model 1! Model 2 ! Model 3! Model 4 Figure 2. Effect of modified graphical relationship between reproductive rate and population. ENVS545, 2012 Jensen Using STELLA to Explore Dynamic Single Species Models:! 5
  • 6. Mayo 1987, Steiger and Calambokidis 2000), maintaining the graphical relationship. These models used strict density dependence looking only at varied reproductivity rates (0.20, 0.37, 0.43, 0.006, 0.059 respectively). Models 1, 2 and 3 each trend towards a steady state between population sizes of 600 and 625. Models 4 and 5 do not exhibit a clear steady state condition within the time frame of forty years. Figure 3. Effect of altering reproductive rates while the graphical relationship, time step and years remain constant. ENVS545, 2012 Jensen Using STELLA to Explore Dynamic Single Species Models:! 6
  • 7. The base graphical model was enhanced to incorporate mortality (Fig. 4, Table 4). This created a slightly more complex, closed loop model and the opportunity to look at the relationship between population size impacted by both mortality and reproduction. The initial model Figure 4. Model for humpback whale population dynamics reflecting both reproductive and mortality rates. Figure 5. Chart for humpback whale population dynamics reflecting both reproductive and mortality rates for two models. ENVS545, 2012 Jensen Using STELLA to Explore Dynamic Single Species Models:! 7
  • 8. created (R0 = 0.20, D = 0.03) shows a steady decrease in population size over time while the second model (R0 = 0.20, D = 0.43) achieves a population steady state with the curve becoming asymptotic to a population size of 600 whales within 25 years. The final model iteration examined altering the time step (DT) and changing the solution algorithm for each model (Fig. 6, Table 5). As the granularity of time step decreases the line of population growth becomes less smooth. This is most apparent with a time step of 20 where two straight lines and an angle are evident. Although all models become asymptotic, reaching a steady state, the final values range between 600 for the most granular time steps to 870 for the least granular. Figure 6. Graphs reflecting altered time steps, holding reproductive and mortality rates constant. All models were run using the Runge-Kutta 4 solution algorithm. ENVS545, 2012 Jensen Using STELLA to Explore Dynamic Single Species Models:! 8
  • 9. Table 1. Simulations for years 0 - 40 generated using Runge-Kutta 4, Runge-Kutta 2, and Euler solution algorithm over a period of 40 years with varying time steps (DT). Table 1. Simulations for years 0 - 40 generated using Runge-Kutta 4, Runge-Kutta 2, and Euler solution algorithm over a period of 40 years with varying time steps (DT). Table 1. Simulations for years 0 - 40 generated using Runge-Kutta 4, Runge-Kutta 2, and Euler solution algorithm over a period of 40 years with varying time steps (DT). Table 1. Simulations for years 0 - 40 generated using Runge-Kutta 4, Runge-Kutta 2, and Euler solution algorithm over a period of 40 years with varying time steps (DT). Table 1. Simulations for years 0 - 40 generated using Runge-Kutta 4, Runge-Kutta 2, and Euler solution algorithm over a period of 40 years with varying time steps (DT). Table 1. Simulations for years 0 - 40 generated using Runge-Kutta 4, Runge-Kutta 2, and Euler solution algorithm over a period of 40 years with varying time steps (DT). Table 1. Simulations for years 0 - 40 generated using Runge-Kutta 4, Runge-Kutta 2, and Euler solution algorithm over a period of 40 years with varying time steps (DT). Table 1. Simulations for years 0 - 40 generated using Runge-Kutta 4, Runge-Kutta 2, and Euler solution algorithm over a period of 40 years with varying time steps (DT). Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT) Study Year 0.125 (year) 0.25 (year) 0.5 (year) 1 (year) 5 (years) 10 (years) 20 (years) Final RK4 599.94 599.94 599.94 599.94 599.93 625.1 681.09 Final RK2 599.94 599.93 599.93 599.93 599.59 627.71 681.44 Final Euler 599.94 599.95 599.96 599.98 602.88 681.44 870.58 Discussion The first set of models (Fig. 2) offer an interesting perspective, in order to reach equilibrium in this simple model which accounts only for reproduction, density dependence appears to be a requirement. This is logical as density dependence has an implied assumption of limited resources for a given population. An interesting point is the relative lack of impact shown by drastic decreases in the reproductive rate (models 3 and 4). Regardless of whether or not density dependence was considered, the population recovered and continued the growth trajectory. Model 4, during which the whale population experienced severe decreases in reproductive rate and included density dependence, recovered more quickly that the simpler model 1. This appears to be due to a reproductive rate which is greater in model 4 than model 1 following the decreased reproduction rates. In the next set of whale population dynamic models, I examined 5 different reproductive rates for humpback whales based on existing literature (Baker et al. 1987, Clapham and Mayo 1987, Steiger and Calambokidis 2000, Ruth and Lindholm 2002). For each study, with the exception of Ruth and Lindholm (2002), the authors indicated uncertainty in obtaining accurate reproductive rates due in part to the challenges with sighting a given female following a birth and following migration with calf. Each study utilized photo identification of flukes for individual animals. Models 4 and 5 have the lowest suggested reproductive rate (0.006 - 0.059) may be the result of early weanings or a sampling technique which precluded good sight lines and ready visibility (Steiger and Calambokidis 2000). Models 1 and 2 (Baker et al. 1987, Ruth and Lindholm 2002) appear to be steadily increasing, model 3 (Clapham and Mayo 1987) reaches equilibrium and remains constant with a population size of approximately 600 whales. The relative agreement between models 1 through 3 would suggest a higher degree of accuracy. When mortality rates were added to the model it increased the level of complexity but incorporated a real world approach. Model 1 (R0 = 0.2, D = 0.03) (Ruth and Lindholm 2002) drives to extinction relatively rapidly which is not an intuitive conclusion when compared with model 2 (R0 = 0.2, D = 0.43) which achieves equilibrium approximately at year 25. This begs the ENVS545, 2012 Jensen Using STELLA to Explore Dynamic Single Species Models:! 9
  • 10. question, did this investigator use the right numbers for the first model? Intuitively, model 1 should maintain an increase in population over time. The population should reach an equilibrium state over a period of sixty years when reproduction and mortality are relatively similar (Alava and Felix 2006). Determining the frequency of sampling the population of humpback whales under study has financial as well as accuracy implications. This is not an easy population to reach given the large migration range (Baker et al. 1987) and multiple challenges with data collection and verification. The associated costs of launching a research effort which may span thousands of miles further inhibit extensive efforts which may drive towards accuracy. The final exercise for this study was experimenting with different time steps (DT) and solution algorithms to identify an appropriate combination which would give the investigator a degree of confidence in the model. Based on provided information (Ruth and Lindholm 2002) the solution algorithm selected for the previous exercises was Runge-Kutta 4 (RK4), it offers the highest degree of accuracy due to the use of 4 intermediate steps to calculate F(t , X(t), . ) where X(t) is the population at a given point in time t, F(t , X(t), . ) are the net flows depending on time. Decreasing the granularity on DT results in decreased fidelity within the resulting simulated data and on the graph (Fig. 6). This makes intuitive sense as well, when you increase the time between data generation some loss is to be expected. At the highest level of granularity (DT = 0.125) the three solution algorithms are in agreement. As the granularity decreases to generation of data once every 20 years the three algorithms begin to diverge with Euler diverging the fastest and leading to significantly more whales in the simulated population than seen in RK4. Runge-Kutta 2 diverges more slowly and remains within a couple of whales of RK4. The trade- off for the degree of accuracy between the algorithms is computational time (Ruth and Lindholm 2002), more accuracy demands increased time. As processing speed and RAM increase this may not be as much of a consideration as it was previously but it should be considered during selection of the algorithm. For this small data set there were no obvious performance issues. Conclusion Although the models created for these simulations were very simple they offered the investigator the opportunity to explore use of modeling and the implications for use within real- world situations such as the development of policy. The International Whaling Commission (IWC) indicates a strong recovery and a lower historic population than existing research would indicate (Clapham et al. 1999, Steiger and Calambokidis 2000, Baker and Clapham 2004, Alava and Felix 2006, Jackson et al. 2008) as a result the use of models, especially when different studies drive towards the same conclusion, may prove beneficial to policy development leading to population recovery for these magnificent animals. ENVS545, 2012 Jensen Using STELLA to Explore Dynamic Single Species Models:! 10
  • 11. References Alava JJ, Felix F. Logistic population curves and vital rates of the Southeastern Pacific humpback whale stock off Ecuador. IWC Workshop on Comprehensive Assessment of Southern Hemisphere Humpback Whales; 3 - 7 April 2006 2006; Hobart, Tasmania. p. 11. Baker CS, Clapham PJ. 2004. Modelling the past and future of whales and whaling. Trends in Ecology & Evolution 19(7):365-371. Baker CS, Perry A, Herman LM. 1987. Reproductive histories of female humpback whales Megaptera novaengliae in the North Pacific. Marine Ecology Progress Series 41:103 - 114. Barlow J, Clapham PJ. 1997. A New Birth-Interval Approach to Estimating Demographic Parameters of Humpback Whales. Ecology 78(2):535-546. Clapham PJ, Mayo CA. 1987. Reproduction and recruitment of individually identified humpback whales, Megaptera novaeangliae, observed in Massachusetts Bay, 1979–1985. Canadian Journal of Zoology 65(12):2853-2863. Clapham PJ, Young SB, Brownell RL. 1999. Baleen whales: conservation issues and the status of the most endangered populations. Mammal Review 29(1):37-62. Costanza R, Ruth M. 1998. Using Dynamic Modeling to Scope Environmental Problems and Build Consensus. Environmental Management 22(2):183-195. Doerr HM. 1996. Stella ten years later: A review of the literature. International Journal of Computers for Mathematical Learning 1(2):201-224. Gabriele CM, Straley JM, Mizroch SA, Baker CS, Craig AS, Herman LM, Glockner-Ferrari D, Ferrari MJ, Cerchio S, Ziegesar Ov, Darling J, McSweeney D, Quinn Ii TJ, Jacobsen JK. 2001. Estimating the mortality rate of humpback whale calves in the central North Pacific Ocean. Canadian Journal of Zoology 79(4):589. Gotelli NJ. 2008. A primer of ecology. Sunderland, MA: Sinauer Associates, Inc. isee. 2010. STELLA, systems thinking for education and research. 9.X ed.: isee. Jackson JA, Patenaude NJ, Carroll EL, Baker CS. 2008. How few whales were there after whaling? Inference from contemporary mtDNA diversity. Molecular Ecology 17(1):236-251. Lindholm J. 2008. Modeling populations of marine organisms. CSUMB Coastal and Watershed Science and Policy: CSUMB. p. 2. Resnick M. 2003. Thinking Like a Tree (and Other Forms of Ecological Thinking). International Journal of Computers for Mathematical Learning 8(1):43-62. Ruth M, Lindholm J. 2002. Modeling in STELLA. In: Ruth M, Hannon B, editors. Dynamic Modeling for Marine Conservation. New York: Springer-Verlag. p. 21 - 42. Scott Baker C, Clapham PJ. 2004. Modelling the past and future of whales and whaling. Trends in Ecology & Evolution 19(7):365-371. Steiger GH, Calambokidis J. 2000. Reproductive rates of humpback whales off California. Marine Mammal Science 16(1):220-239. Straley JM, Gabriele CM, Baker CS. 1994. Annual reproduction by individually identified Humpback whales (Megaptera novaengliae) in Alaskan waters. Marine Mammal Science 10(1):87 - 92. ENVS545, 2012 Jensen Using STELLA to Explore Dynamic Single Species Models:! 11
  • 12. Appendix A – Data Table 2. Data generated modifying the graphical relationship between whale population size and reproduction rate. These models look at alterations in density dependence and sudden decreases in reproduction rates. Study year is point at which each whale population is counted, each of these models used 0.25 years as time step (DT). Whales is the population size in number of whales at each time step. Study Year Whales Model 1 Whales Model 2 Whales Model 3 Whales Model 4 0 200 200 200 200 0.25 202.09 202.09 202.09 202.09 0.5 204.18 204.18 204.18 204.18 0.75 206.29 206.29 206.29 206.29 1 208.4 208.4 208.4 208.4 1.25 210.52 210.52 210.52 210.52 1.5 212.65 212.65 212.65 212.65 1.75 214.78 214.78 214.78 214.78 2 216.93 216.93 216.93 216.93 2.25 219.08 219.08 219.08 219.08 2.5 221.23 221.23 221.23 221.23 2.75 223.4 223.4 223.4 223.4 3 225.56 225.56 225.56 225.56 3.25 227.74 227.74 227.74 227.74 3.5 229.92 229.92 229.92 229.92 3.75 232.1 232.1 232.1 232.1 4 234.29 234.29 234.29 234.29 4.25 236.49 236.49 236.49 236.49 4.5 238.69 238.69 238.69 238.69 4.75 240.89 240.89 240.89 240.89 5 243.1 243.1 243.08 243.08 5.25 245.32 245.32 245.24 245.24 5.5 247.54 247.54 247.36 247.36 5.75 249.77 249.77 249.44 249.44 6 252.01 252.01 251.49 251.49 6.25 254.25 254.25 253.5 253.5 6.5 256.5 256.5 255.47 255.47 6.75 258.76 258.76 257.41 257.41 7 261.02 261.02 259.31 259.31 7.25 263.29 263.29 261.17 261.17 7.5 265.56 265.56 262.99 262.99 7.75 267.84 267.84 264.78 264.78 8 270.13 270.13 266.52 266.52 8.25 272.42 272.42 268.24 268.24 ENVS545, 2012 Jensen Using STELLA to Explore Dynamic Single Species Models:! 12
  • 13. Study Year Whales Model 1 Whales Model 2 Whales Model 3 Whales Model 4 8.5 274.71 274.71 269.91 269.91 8.75 277.01 277.01 271.55 271.55 9 279.31 279.31 273.15 273.15 9.25 281.62 281.62 274.71 274.71 9.5 283.93 283.93 276.24 276.24 9.75 286.25 286.25 277.74 277.74 10 288.56 288.56 279.2 279.2 10.25 290.88 290.88 280.62 280.62 10.5 293.21 293.21 282.01 282.01 10.75 295.53 295.53 283.37 283.37 11 297.86 297.86 284.69 284.69 11.25 300.19 300.19 285.98 285.98 11.5 302.52 302.52 287.23 287.23 11.75 304.85 304.87 288.46 288.46 12 307.17 307.22 289.65 289.65 12.25 309.49 309.6 290.81 290.81 12.5 311.81 311.98 291.95 291.95 12.75 314.12 314.38 293.05 293.05 13 316.43 316.79 294.12 294.12 13.25 318.73 319.21 295.16 295.16 13.5 321.03 321.64 296.18 296.18 13.75 323.32 324.09 297.17 297.17 14 325.61 326.55 298.13 298.13 14.25 327.89 329.03 299.06 299.06 14.5 330.17 331.51 299.97 299.97 14.75 332.43 334.01 300.85 300.85 15 334.7 336.52 301.73 301.73 15.25 336.95 339.05 302.62 302.62 15.5 339.2 341.58 303.54 303.54 15.75 341.44 344.13 304.48 304.48 16 343.67 346.69 305.45 305.45 16.25 345.89 349.27 306.44 306.44 16.5 348.11 351.85 307.46 307.46 16.75 350.31 354.45 308.5 308.5 17 352.51 357.06 309.58 309.58 17.25 354.7 359.68 310.68 310.68 17.5 356.87 362.32 311.81 311.81 17.75 359.04 364.97 312.97 312.97 18 361.2 367.63 314.16 314.16 18.25 363.35 370.31 315.39 315.39 18.5 365.5 372.99 316.65 316.65 ENVS545, 2012 Jensen Using STELLA to Explore Dynamic Single Species Models:! 13
  • 14. Study Year Whales Model 1 Whales Model 2 Whales Model 3 Whales Model 4 18.75 367.64 375.7 317.95 317.95 19 369.77 378.41 319.28 319.28 19.25 371.9 381.14 320.65 320.65 19.5 374.02 383.88 322.05 322.05 19.75 376.14 386.64 323.5 323.5 20 378.25 389.4 324.99 324.99 20.25 380.35 392.19 326.53 326.53 20.5 382.44 394.98 328.11 328.11 20.75 384.53 397.79 329.73 329.73 21 386.61 400.61 331.41 331.41 21.25 388.68 403.44 333.13 333.13 21.5 390.74 406.29 334.91 334.91 21.75 392.8 409.14 336.74 336.74 22 394.85 412.02 338.63 338.63 22.25 396.89 414.9 340.57 340.57 22.5 398.92 417.8 342.58 342.58 22.75 400.94 420.71 344.65 344.65 23 402.95 423.63 346.79 346.79 23.25 404.96 426.55 349 349 23.5 406.95 429.48 351.28 351.28 23.75 408.94 432.41 353.63 353.63 24 410.92 435.35 356.07 356.07 24.25 412.89 438.29 358.58 358.58 24.5 414.84 441.23 361.19 361.19 24.75 416.79 444.18 363.83 363.83 25 418.73 447.13 366.48 366.48 25.25 420.66 450.09 369.15 369.15 25.5 422.58 453.05 371.84 371.84 25.75 424.48 456.01 374.53 374.53 26 426.38 458.97 377.24 377.24 26.25 428.27 461.94 379.97 379.97 26.5 430.15 464.9 382.7 382.7 26.75 432.03 467.87 385.45 385.45 27 433.89 470.85 388.21 388.21 27.25 435.74 473.82 390.99 390.99 27.5 437.58 476.79 393.78 393.78 27.75 439.41 479.77 396.58 396.58 28 441.23 482.74 399.39 399.39 28.25 443.04 485.71 402.22 402.22 28.5 444.84 488.67 405.06 405.06 28.75 446.63 491.62 407.91 407.91 ENVS545, 2012 Jensen Using STELLA to Explore Dynamic Single Species Models:! 14
  • 15. Study Year Whales Model 1 Whales Model 2 Whales Model 3 Whales Model 4 29 448.41 494.57 410.78 410.78 29.25 450.18 497.51 413.66 413.66 29.5 451.93 500.44 416.55 416.55 29.75 453.68 503.36 419.46 419.46 30 455.42 506.28 422.37 422.37 30.25 457.14 509.18 425.29 425.29 30.5 458.86 512.08 428.22 428.22 30.75 460.56 514.97 431.15 431.15 31 462.25 517.85 434.08 434.08 31.25 463.93 520.72 437.02 437.02 31.5 465.6 523.57 439.97 439.97 31.75 467.26 526.42 442.91 442.91 32 468.91 529.26 445.86 445.86 32.25 470.54 532.09 448.82 448.82 32.5 472.16 534.9 451.77 451.77 32.75 473.78 537.71 454.73 454.73 33 475.38 540.5 457.7 457.7 33.25 476.97 543.29 460.66 460.66 33.5 478.55 546.09 463.63 463.63 33.75 480.11 548.89 466.6 466.6 34 481.67 551.7 469.57 469.57 34.25 483.21 554.51 472.54 472.54 34.5 484.74 557.33 475.51 475.51 34.75 486.26 560.15 478.49 478.49 35 487.76 562.97 481.46 481.46 35.25 489.26 565.8 484.44 484.44 35.5 490.74 568.63 487.4 487.4 35.75 492.2 571.47 490.36 490.36 36 493.66 574.31 493.31 493.31 36.25 495.1 577.16 496.25 496.25 36.5 496.53 580.01 499.18 499.18 36.75 497.95 582.86 502.11 502.11 37 499.35 585.72 505.03 505.03 37.25 500.74 588.58 507.94 507.94 37.5 502.12 591.45 510.84 510.84 37.75 503.49 594.32 513.73 513.73 38 504.85 597.19 516.61 516.61 38.25 506.19 600.06 519.48 519.48 38.5 507.52 602.95 522.35 522.35 38.75 508.84 605.84 525.2 525.2 39 510.14 608.75 528.04 528.04 ENVS545, 2012 Jensen Using STELLA to Explore Dynamic Single Species Models:! 15
  • 16. Study Year Whales Model 1 Whales Model 2 Whales Model 3 Whales Model 4 39.25 511.44 611.68 530.87 530.87 39.5 512.72 614.62 533.69 533.69 39.75 513.99 617.57 536.5 536.5 40 515.25 620.54 539.3 539.3 Table 3. Models created looking at varying reproduction rates over a period of 40 years with constant DT of 0.25 (3 months). Study year is point at which each whale population is counted. Whales is the population size in number of whales at each time step. R0 is the reproductive rate used for the model. Study Year Model 1 (R0 = 0.2) (Ruth and Lindholm 2002) Model 2 (R0 = 0.37) (Baker et al. 1987) Model 3 (R0 = 0.43) (Clapham and Mayo 1987) Model 4 (R0 = 0.006) (Steiger and Calambokidis 2000) Whales Model 5 (R0 = 0.059) (Steiger and Calambokidis 2000) 0 200 200 200 200 200 0.25 206.63 212.81 212.81 200.21 202 0.5 213.22 226.24 226.24 200.42 204 0.75 219.75 240.28 240.28 200.63 206.01 1 226.2 254.72 254.72 200.84 208.02 1.25 232.55 269.26 269.26 201.04 210.03 1.5 238.81 283.79 283.79 201.25 212.05 1.75 244.98 298.23 298.23 201.46 214.07 2 251.25 312.54 312.54 201.67 216.1 2.25 257.61 326.7 326.7 201.88 218.12 2.5 264.07 340.66 340.66 202.09 220.15 2.75 270.62 354.33 354.33 202.3 222.18 3 277.27 367.56 367.56 202.51 224.21 3.25 284.01 379.42 379.42 202.72 226.24 3.5 290.84 389.88 389.88 202.93 228.27 3.75 297.75 399.02 399.02 203.14 230.3 4 304.74 406.95 406.95 203.35 232.33 4.25 311.69 413.78 413.78 203.56 234.37 4.5 318.59 419.64 419.64 203.77 236.4 4.75 325.43 424.89 424.89 203.99 238.43 5 332.19 430.01 430.01 204.2 240.46 5.25 338.88 435.03 435.03 204.41 242.49 5.5 345.48 439.94 439.94 204.62 244.52 5.75 351.99 444.75 444.75 204.83 246.56 6 358.39 449.44 449.44 205.04 248.61 6.25 364.7 454.03 454.03 205.25 250.67 6.5 370.92 458.51 458.51 205.46 252.73 ENVS545, 2012 Jensen Using STELLA to Explore Dynamic Single Species Models:! 16
  • 17. Study Year Model 1 (R0 = 0.2) (Ruth and Lindholm 2002) Model 2 (R0 = 0.37) (Baker et al. 1987) Model 3 (R0 = 0.43) (Clapham and Mayo 1987) Model 4 (R0 = 0.006) (Steiger and Calambokidis 2000) Whales Model 5 (R0 = 0.059) (Steiger and Calambokidis 2000) 6.75 377.05 462.88 462.88 205.68 254.79 7 383.09 467.14 467.14 205.89 256.87 7.25 389.03 471.28 471.28 206.1 258.95 7.5 394.87 475.32 475.32 206.31 261.03 7.75 400.6 479.25 479.25 206.52 263.12 8 406.22 483.08 483.08 206.74 265.21 8.25 411.73 486.84 486.84 206.95 267.31 8.5 417.12 490.53 490.53 207.16 269.41 8.75 422.4 494.15 494.15 207.37 271.52 9 427.57 497.7 497.7 207.59 273.63 9.25 432.64 501.18 501.18 207.8 275.75 9.5 437.6 504.59 504.59 208.01 277.87 9.75 442.46 507.93 507.93 208.23 280 10 447.21 511.19 511.19 208.44 282.12 10.25 451.85 514.39 514.39 208.65 284.25 10.5 456.38 517.52 517.52 208.87 286.39 10.75 460.8 520.59 520.59 209.08 288.53 11 465.11 523.58 523.58 209.29 290.67 11.25 469.31 526.51 526.51 209.51 292.81 11.5 473.41 529.37 529.37 209.72 294.96 11.75 477.39 532.16 532.16 209.93 297.11 12 481.26 534.89 534.89 210.15 299.26 12.25 485.05 537.55 537.55 210.36 301.41 12.5 488.78 540.15 540.15 210.58 303.56 12.75 492.43 542.68 542.67 210.79 305.71 13 496.01 545.13 545.09 211.01 307.86 13.25 499.52 547.5 547.42 211.22 310.01 13.5 502.97 549.8 549.66 211.43 312.15 13.75 506.34 552.03 551.82 211.65 314.29 14 509.64 554.19 553.89 211.86 316.43 14.25 512.87 556.27 555.88 212.08 318.57 14.5 516.04 558.29 557.79 212.29 320.7 14.75 519.13 560.25 559.62 212.51 322.83 15 522.16 562.14 561.38 212.73 324.95 15.25 525.11 563.96 563.06 212.94 327.08 15.5 528.01 565.73 564.68 213.16 329.19 15.75 530.83 567.44 566.23 213.37 331.3 16 533.59 569.09 567.72 213.59 333.41 ENVS545, 2012 Jensen Using STELLA to Explore Dynamic Single Species Models:! 17
  • 18. Study Year Model 1 (R0 = 0.2) (Ruth and Lindholm 2002) Model 2 (R0 = 0.37) (Baker et al. 1987) Model 3 (R0 = 0.43) (Clapham and Mayo 1987) Model 4 (R0 = 0.006) (Steiger and Calambokidis 2000) Whales Model 5 (R0 = 0.059) (Steiger and Calambokidis 2000) 16.25 536.28 570.68 569.15 213.8 335.52 16.5 538.91 572.22 570.51 214.02 337.61 16.75 541.48 573.7 571.82 214.24 339.71 17 543.97 575.14 573.07 214.45 341.79 17.25 546.38 576.52 574.27 214.67 343.87 17.5 548.71 577.85 575.42 214.89 345.95 17.75 550.97 579.14 576.52 215.1 348.02 18 553.16 580.39 577.57 215.32 350.08 18.25 555.29 581.58 578.58 215.54 352.14 18.5 557.34 582.74 579.54 215.75 354.19 18.75 559.32 583.86 580.46 215.97 356.23 19 561.24 584.93 581.34 216.19 358.26 19.25 563.1 585.97 582.19 216.4 360.29 19.5 564.89 586.96 582.99 216.62 362.31 19.75 566.63 587.93 583.76 216.84 364.33 20 568.3 588.85 584.5 217.06 366.34 20.25 569.92 589.75 585.2 217.27 368.34 20.5 571.49 590.61 585.87 217.49 370.34 20.75 573 591.44 586.52 217.71 372.34 21 574.46 592.23 587.13 217.93 374.33 21.25 575.86 593 587.72 218.15 376.31 21.5 577.22 593.74 588.28 218.36 378.29 21.75 578.53 594.46 588.81 218.58 380.26 22 579.8 595.14 589.32 218.8 382.22 22.25 581.02 595.8 589.81 219.02 384.18 22.5 582.19 596.44 590.28 219.24 386.13 22.75 583.33 597.05 590.72 219.46 388.07 23 584.42 597.64 591.15 219.68 390.01 23.25 585.48 598.21 591.56 219.89 391.94 23.5 586.49 598.75 591.94 220.11 393.86 23.75 587.47 599.28 592.31 220.33 395.78 24 588.41 599.78 592.67 220.55 397.68 24.25 589.32 600.27 593 220.77 399.58 24.5 590.2 600.76 593.33 220.99 401.47 24.75 591.04 601.24 593.63 221.21 403.36 25 591.86 601.73 593.93 221.43 405.23 25.25 592.64 602.22 594.21 221.65 407.1 25.5 593.39 602.71 594.47 221.87 408.96 ENVS545, 2012 Jensen Using STELLA to Explore Dynamic Single Species Models:! 18
  • 19. Study Year Model 1 (R0 = 0.2) (Ruth and Lindholm 2002) Model 2 (R0 = 0.37) (Baker et al. 1987) Model 3 (R0 = 0.43) (Clapham and Mayo 1987) Model 4 (R0 = 0.006) (Steiger and Calambokidis 2000) Whales Model 5 (R0 = 0.059) (Steiger and Calambokidis 2000) 25.75 594.12 603.2 594.73 222.09 410.81 26 594.82 603.69 594.97 222.31 412.65 26.25 595.49 604.18 595.2 222.53 414.49 26.5 596.14 604.67 595.43 222.75 416.31 26.75 596.76 605.16 595.64 222.97 418.13 27 597.36 605.65 595.84 223.19 419.94 27.25 597.94 606.14 596.03 223.41 421.73 27.5 598.49 606.63 596.21 223.63 423.51 27.75 599.03 607.13 596.39 223.85 425.28 28 599.54 607.62 596.56 224.07 427.03 28.25 600.04 608.11 596.72 224.29 428.77 28.5 600.52 608.61 596.87 224.51 430.5 28.75 601.01 609.1 597.01 224.74 432.2 29 601.5 609.59 597.15 224.96 433.9 29.25 601.99 610.09 597.28 225.18 435.57 29.5 602.48 610.58 597.41 225.4 437.24 29.75 602.97 611.08 597.53 225.62 438.88 30 603.46 611.58 597.64 225.84 440.52 30.25 603.94 612.07 597.75 226.06 442.13 30.5 604.43 612.57 597.86 226.29 443.73 30.75 604.93 613.07 597.96 226.51 445.32 31 605.42 613.56 598.05 226.73 446.89 31.25 605.91 614.06 598.14 226.95 448.45 31.5 606.4 614.56 598.23 227.18 449.99 31.75 606.89 615.06 598.31 227.4 451.52 32 607.38 615.56 598.39 227.62 453.03 32.25 607.88 616.06 598.46 227.84 454.52 32.5 608.37 616.56 598.54 228.06 456 32.75 608.86 617.06 598.6 228.29 457.47 33 609.36 617.56 598.67 228.51 458.92 33.25 609.85 618.06 598.73 228.73 460.35 33.5 610.35 618.56 598.79 228.96 461.77 33.75 610.84 619.06 598.85 229.18 463.18 34 611.34 619.57 598.9 229.4 464.57 34.25 611.84 620.07 598.95 229.63 465.94 34.5 612.33 620.57 599 229.85 467.3 34.75 612.83 621.08 599.05 230.07 468.65 35 613.33 621.58 599.09 230.3 469.98 ENVS545, 2012 Jensen Using STELLA to Explore Dynamic Single Species Models:! 19
  • 20. Study Year Model 1 (R0 = 0.2) (Ruth and Lindholm 2002) Model 2 (R0 = 0.37) (Baker et al. 1987) Model 3 (R0 = 0.43) (Clapham and Mayo 1987) Model 4 (R0 = 0.006) (Steiger and Calambokidis 2000) Whales Model 5 (R0 = 0.059) (Steiger and Calambokidis 2000) 35.25 613.82 622.08 599.13 230.52 471.3 35.5 614.32 622.59 599.17 230.74 472.6 35.75 614.82 623.09 599.21 230.97 473.88 36 615.32 623.6 599.25 231.19 475.16 36.25 615.82 624.11 599.28 231.42 476.41 36.5 616.32 624.61 599.32 231.64 477.66 36.75 616.82 625.12 599.35 231.86 478.89 37 617.32 625.63 599.38 232.09 480.1 37.25 617.82 626.13 599.41 232.31 481.3 37.5 618.32 626.64 599.43 232.54 482.5 37.75 618.82 627.15 599.46 232.76 483.68 38 619.33 627.66 599.49 232.99 484.85 38.25 619.83 628.17 599.51 233.21 486.01 38.5 620.33 628.68 599.53 233.44 487.16 38.75 620.84 629.19 599.55 233.66 488.3 39 621.34 629.7 599.57 233.89 489.42 39.25 621.84 630.21 599.59 234.11 490.54 39.5 622.35 630.72 599.61 234.34 491.65 39.75 622.85 631.23 599.63 234.56 492.75 40 623.36 631.75 599.65 234.79 493.84 Table 4. Model data incorporating both reproductive and mortality rates, the second model reflects a steady state equilibrium. Study year is point at which each whale population is counted, these studies used a constant DT of 0.25 year. Whales is the population size in number of whales at each time step. R0 is the reproductive rate in births of whales/year for the model and D is the mortality rate in deaths/ year. Study Year Whales Model 1 (R0 = 0.2, D = 0.03) Whales Model 2 (R0 = 0.2, D = 0.43) 0 200 200 0.25 199.54 208.5 0.5 199.07 217.22 0.75 198.62 226.17 1 198.16 235.34 1.25 197.71 244.72 1.5 197.26 254.33 1.75 196.82 264.17 ENVS545, 2012 Jensen Using STELLA to Explore Dynamic Single Species Models:! 20
  • 21. Study Year Whales Model 1 (R0 = 0.2, D = 0.03) Whales Model 2 (R0 = 0.2, D = 0.43) 2 196.38 274.24 2.25 195.94 284.54 2.5 195.5 295.04 2.75 195.07 305.74 3 194.64 316.4 3.25 194.21 326.95 3.5 193.79 337.37 3.75 193.37 347.63 4 192.95 357.7 4.25 192.54 367.6 4.5 192.13 377.44 4.75 191.72 387.22 5 191.32 396.9 5.25 190.91 406.49 5.5 190.51 415.96 5.75 190.12 425.32 6 189.72 434.68 6.25 189.33 444.03 6.5 188.94 453.37 6.75 188.55 462.68 7 188.17 471.95 7.25 187.79 481.17 7.5 187.41 489.9 7.75 187.04 497.86 8 186.66 505.08 8.25 186.29 511.62 8.5 185.92 517.52 8.75 185.56 522.83 9 185.19 527.6 9.25 184.83 531.87 9.5 184.47 535.69 9.75 184.12 539.1 10 183.76 542.18 10.25 183.41 545.12 10.5 183.06 547.92 10.75 182.71 550.58 11 182.37 553.13 11.25 182.03 555.55 11.5 181.69 557.86 11.75 181.35 560.06 ENVS545, 2012 Jensen Using STELLA to Explore Dynamic Single Species Models:! 21
  • 22. Study Year Whales Model 1 (R0 = 0.2, D = 0.03) Whales Model 2 (R0 = 0.2, D = 0.43) 12 181.01 562.15 12.25 180.67 564.13 12.5 180.34 566.02 12.75 180 567.82 13 179.66 569.53 13.25 179.33 571.15 13.5 178.99 572.68 13.75 178.66 574.14 14 178.34 575.53 14.25 178.01 576.84 14.5 177.68 578.09 14.75 177.36 579.27 15 177.04 580.39 15.25 176.72 581.45 15.5 176.41 582.46 15.75 176.09 583.41 16 175.78 584.31 16.25 175.47 585.17 16.5 175.16 585.98 16.75 174.86 586.74 17 174.55 587.47 17.25 174.25 588.15 17.5 173.95 588.8 17.75 173.65 589.42 18 173.35 590 18.25 173.06 590.55 18.5 172.76 591.07 18.75 172.47 591.56 19 172.18 592.02 19.25 171.89 592.46 19.5 171.61 592.88 19.75 171.32 593.27 20 171.04 593.64 20.25 170.76 594 20.5 170.48 594.33 20.75 170.2 594.64 21 169.92 594.94 21.25 169.65 595.22 21.5 169.38 595.48 21.75 169.1 595.73 ENVS545, 2012 Jensen Using STELLA to Explore Dynamic Single Species Models:! 22
  • 23. Study Year Whales Model 1 (R0 = 0.2, D = 0.03) Whales Model 2 (R0 = 0.2, D = 0.43) 22 168.83 595.97 22.25 168.57 596.19 22.5 168.3 596.41 22.75 168.03 596.61 23 167.77 596.79 23.25 167.51 596.97 23.5 167.25 597.14 23.75 166.99 597.3 24 166.73 597.45 24.25 166.47 597.59 24.5 166.22 597.73 24.75 165.97 597.85 25 165.71 597.97 25.25 165.46 598.08 25.5 165.21 598.19 25.75 164.97 598.29 26 164.72 598.39 26.25 164.48 598.48 26.5 164.23 598.56 26.75 163.99 598.64 27 163.75 598.72 27.25 163.51 598.79 27.5 163.27 598.86 27.75 163.03 598.92 28 162.8 598.98 28.25 162.57 599.04 28.5 162.33 599.09 28.75 162.1 599.14 29 161.87 599.19 29.25 161.64 599.23 29.5 161.41 599.28 29.75 161.19 599.32 30 160.96 599.36 30.25 160.74 599.39 30.5 160.52 599.43 30.75 160.29 599.46 31 160.07 599.49 31.25 159.85 599.52 31.5 159.64 599.54 31.75 159.42 599.57 ENVS545, 2012 Jensen Using STELLA to Explore Dynamic Single Species Models:! 23
  • 24. Study Year Whales Model 1 (R0 = 0.2, D = 0.03) Whales Model 2 (R0 = 0.2, D = 0.43) 32 159.2 599.59 32.25 158.99 599.62 32.5 158.78 599.64 32.75 158.56 599.66 33 158.35 599.68 33.25 158.14 599.69 33.5 157.93 599.71 33.75 157.73 599.73 34 157.52 599.74 34.25 157.31 599.76 34.5 157.11 599.77 34.75 156.91 599.78 35 156.7 599.8 35.25 156.5 599.81 35.5 156.3 599.82 35.75 156.1 599.83 36 155.9 599.84 36.25 155.71 599.85 36.5 155.51 599.86 36.75 155.32 599.86 37 155.12 599.87 37.25 154.93 599.88 37.5 154.74 599.89 37.75 154.55 599.89 38 154.36 599.9 38.25 154.17 599.9 38.5 153.98 599.91 38.75 153.79 599.91 39 153.6 599.92 39.25 153.42 599.92 39.5 153.24 599.93 39.75 153.05 599.93 40 152.87 599.94 ENVS545, 2012 Jensen Using STELLA to Explore Dynamic Single Species Models:! 24
  • 25. Table 5. Data for years 0 - 39.75 generated using Runge-Kutta 4 solution algorithm over a period of 40 years with varying time steps (DT). Final data for Runge-Kutta 4, Runge-Kutta 2, and Euler provided. Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT) Study Year 0.125 (year) 0.25 (year) 0.5 (year) 1 (year) 5 (years) 10 (years) 20 (years) 0 200 200 200 200 200 200 200 0.125 204.22 0.25 208.5 208.5 0.375 212.83 0.5 217.22 217.22 217.22 0.625 221.67 0.75 226.17 226.17 0.875 230.73 1 235.34 235.34 235.34 235.34 1.125 240.01 1.25 244.72 244.72 1.375 249.5 1.5 254.33 254.33 254.33 1.625 259.22 1.75 264.17 264.17 1.875 269.18 2 274.24 274.24 274.24 274.25 2.125 279.36 2.25 284.53 284.54 2.375 289.76 2.5 295.04 295.04 295.04 2.625 300.38 2.75 305.73 305.74 2.875 311.07 3 316.39 316.4 316.38 316.41 3.125 321.68 3.25 326.95 326.95 3.375 332.17 3.5 337.37 337.37 337.36 3.625 342.52 3.75 347.62 347.63 3.875 352.68 4 357.7 357.7 357.69 357.71 4.125 362.66 4.25 367.6 367.6 4.375 372.52 4.5 377.44 377.44 377.44 4.625 382.33 4.75 387.21 387.22 ENVS545, 2012 Jensen Using STELLA to Explore Dynamic Single Species Models:! 25
  • 26. Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT) Study Year 0.125 (year) 0.25 (year) 0.5 (year) 1 (year) 5 (years) 10 (years) 20 (years) 4.875 392.06 5 396.89 396.9 396.9 396.94 400.05 5.125 401.7 5.25 406.48 406.49 5.375 411.23 5.5 415.95 415.96 415.95 5.625 420.64 5.75 425.32 425.32 5.875 430 6 434.68 434.68 434.69 434.69 6.125 439.35 6.25 444.03 444.03 6.375 448.7 6.5 453.36 453.37 453.37 6.625 458.02 6.75 462.67 462.68 6.875 467.31 7 471.95 471.95 471.96 471.96 7.125 476.57 7.25 481.17 481.17 7.375 485.64 7.5 489.9 489.9 489.99 7.625 493.98 7.75 497.86 497.86 7.875 501.56 8 505.08 505.08 505.15 504.99 8.125 508.43 8.25 511.62 511.62 8.375 514.65 8.5 517.52 517.52 517.57 8.625 520.24 8.75 522.83 522.83 8.875 525.28 9 527.6 527.6 527.64 527.53 9.125 529.79 9.25 531.87 531.87 9.375 533.83 9.5 535.69 535.69 535.72 9.625 537.44 9.75 539.1 539.1 9.875 540.67 ENVS545, 2012 Jensen Using STELLA to Explore Dynamic Single Species Models:! 26
  • 27. Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT) Study Year 0.125 (year) 0.25 (year) 0.5 (year) 1 (year) 5 (years) 10 (years) 20 (years) 10 542.18 542.18 542.21 542.2 548.13 521.39 10.125 543.67 10.25 545.12 545.12 10.375 546.53 10.5 547.92 547.92 547.94 10.625 549.27 10.75 550.59 550.58 10.875 551.87 11 553.13 553.13 553.15 553.14 11.125 554.36 11.25 555.55 555.55 11.375 556.72 11.5 557.86 557.86 557.88 11.625 558.97 11.75 560.06 560.06 11.875 561.12 12 562.15 562.15 562.17 562.16 12.125 563.15 12.25 564.14 564.13 12.375 565.09 12.5 566.02 566.02 566.04 12.625 566.93 12.75 567.82 567.82 12.875 568.68 13 569.53 569.53 569.54 569.53 13.125 570.35 13.25 571.15 571.15 13.375 571.93 13.5 572.68 572.68 572.7 13.625 573.42 13.75 574.14 574.14 13.875 574.85 14 575.53 575.53 575.54 575.53 14.125 576.19 14.25 576.84 576.84 14.375 577.47 14.5 578.09 578.09 578.1 14.625 578.69 14.75 579.27 579.27 14.875 579.84 15 580.39 580.39 580.4 580.39 582 ENVS545, 2012 Jensen Using STELLA to Explore Dynamic Single Species Models:! 27
  • 28. Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT) Study Year 0.125 (year) 0.25 (year) 0.5 (year) 1 (year) 5 (years) 10 (years) 20 (years) 15.125 580.93 15.25 581.45 581.45 15.375 581.96 15.5 582.46 582.46 582.47 15.625 582.94 15.75 583.41 583.41 15.875 583.87 16 584.31 584.31 584.32 584.31 16.125 584.74 16.25 585.17 585.17 16.375 585.58 16.5 585.98 585.98 585.98 16.625 586.36 16.75 586.74 586.74 16.875 587.11 17 587.47 587.47 587.47 587.47 17.125 587.81 17.25 588.15 588.15 17.375 588.48 17.5 588.8 588.8 588.81 17.625 589.11 17.75 589.42 589.42 17.875 589.71 18 590 590 590 590 18.125 590.28 18.25 590.55 590.55 18.375 590.81 18.5 591.07 591.07 591.07 18.625 591.32 18.75 591.56 591.56 18.875 591.79 19 592.02 592.02 592.03 592.03 19.125 592.25 19.25 592.46 592.46 19.375 592.67 19.5 592.88 592.88 592.88 19.625 593.08 19.75 593.27 593.27 19.875 593.46 20 593.64 593.64 593.65 593.65 593.95 625.1 681.09 20.125 593.82 ENVS545, 2012 Jensen Using STELLA to Explore Dynamic Single Species Models:! 28
  • 29. Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT) Study Year 0.125 (year) 0.25 (year) 0.5 (year) 1 (year) 5 (years) 10 (years) 20 (years) 20.25 594 594 20.375 594.16 20.5 594.33 594.33 594.33 20.625 594.49 20.75 594.64 594.64 20.875 594.79 21 594.94 594.94 594.94 594.94 21.125 595.08 21.25 595.22 595.22 21.375 595.35 21.5 595.48 595.48 595.49 21.625 595.61 21.75 595.73 595.73 21.875 595.85 22 595.97 595.97 595.97 595.97 22.125 596.08 22.25 596.19 596.19 22.375 596.3 22.5 596.41 596.41 596.41 22.625 596.51 22.75 596.61 596.61 22.875 596.7 23 596.79 596.79 596.8 596.79 23.125 596.88 23.25 596.97 596.97 23.375 597.06 23.5 597.14 597.14 597.14 23.625 597.22 23.75 597.3 597.3 23.875 597.38 24 597.45 597.45 597.45 597.45 24.125 597.52 24.25 597.59 597.59 24.375 597.66 24.5 597.73 597.73 597.73 24.625 597.79 24.75 597.85 597.85 24.875 597.91 25 597.97 597.97 597.97 597.97 597.99 25.125 598.03 25.25 598.08 598.08 ENVS545, 2012 Jensen Using STELLA to Explore Dynamic Single Species Models:! 29
  • 30. Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT) Study Year 0.125 (year) 0.25 (year) 0.5 (year) 1 (year) 5 (years) 10 (years) 20 (years) 25.375 598.14 25.5 598.19 598.19 598.19 25.625 598.24 25.75 598.29 598.29 25.875 598.34 26 598.39 598.39 598.39 598.39 26.125 598.43 26.25 598.48 598.48 26.375 598.52 26.5 598.56 598.56 598.56 26.625 598.6 26.75 598.64 598.64 26.875 598.68 27 598.72 598.72 598.72 598.72 27.125 598.75 27.25 598.79 598.79 27.375 598.82 27.5 598.86 598.86 598.86 27.625 598.89 27.75 598.92 598.92 27.875 598.95 28 598.98 598.98 598.98 598.98 28.125 599.01 28.25 599.04 599.04 28.375 599.06 28.5 599.09 599.09 599.09 28.625 599.12 28.75 599.14 599.14 28.875 599.17 29 599.19 599.19 599.19 599.19 29.125 599.21 29.25 599.23 599.23 29.375 599.26 29.5 599.28 599.28 599.28 29.625 599.3 29.75 599.32 599.32 29.875 599.34 30 599.36 599.36 599.36 599.36 599.33 625.1 30.125 599.37 30.25 599.39 599.39 30.375 599.41 ENVS545, 2012 Jensen Using STELLA to Explore Dynamic Single Species Models:! 30
  • 31. Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT) Study Year 0.125 (year) 0.25 (year) 0.5 (year) 1 (year) 5 (years) 10 (years) 20 (years) 30.5 599.43 599.43 599.43 30.625 599.44 30.75 599.46 599.46 30.875 599.47 31 599.49 599.49 599.49 599.49 31.125 599.5 31.25 599.52 599.52 31.375 599.53 31.5 599.54 599.54 599.54 31.625 599.56 31.75 599.57 599.57 31.875 599.58 32 599.59 599.59 599.59 599.59 32.125 599.6 32.25 599.62 599.62 32.375 599.63 32.5 599.64 599.64 599.64 32.625 599.65 32.75 599.66 599.66 32.875 599.67 33 599.68 599.68 599.68 599.68 33.125 599.69 33.25 599.69 599.69 33.375 599.7 33.5 599.71 599.71 599.71 33.625 599.72 33.75 599.73 599.73 33.875 599.74 34 599.74 599.74 599.74 599.74 34.125 599.75 34.25 599.76 599.76 34.375 599.76 34.5 599.77 599.77 599.77 34.625 599.78 34.75 599.78 599.78 34.875 599.79 35 599.8 599.8 599.8 599.8 599.78 35.125 599.8 35.25 599.81 599.81 35.375 599.81 35.5 599.82 599.82 599.82 ENVS545, 2012 Jensen Using STELLA to Explore Dynamic Single Species Models:! 31
  • 32. Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT)Incremental Time Step (DT) Study Year 0.125 (year) 0.25 (year) 0.5 (year) 1 (year) 5 (years) 10 (years) 20 (years) 35.625 599.82 35.75 599.83 599.83 35.875 599.83 36 599.84 599.84 599.84 599.84 36.125 599.84 36.25 599.85 599.85 36.375 599.85 36.5 599.86 599.86 599.86 36.625 599.86 36.75 599.86 599.86 36.875 599.87 37 599.87 599.87 599.87 599.87 37.125 599.87 37.25 599.88 599.88 37.375 599.88 37.5 599.89 599.89 599.89 37.625 599.89 37.75 599.89 599.89 37.875 599.89 38 599.9 599.9 599.9 599.9 38.125 599.9 38.25 599.9 599.9 38.375 599.91 38.5 599.91 599.91 599.91 38.625 599.91 38.75 599.91 599.91 38.875 599.92 39 599.92 599.92 599.92 599.92 39.125 599.92 39.25 599.92 599.92 39.375 599.93 39.5 599.93 599.93 599.93 39.625 599.93 39.75 599.93 599.93 39.875 599.93 Final RK4 599.94 599.94 599.94 599.94 599.93 625.1 681.09 Final RK2 599.94 599.93 599.93 599.93 599.59 627.71 681.44 Final Euler 599.94 599.95 599.96 599.98 602.88 681.44 870.58 ENVS545, 2012 Jensen Using STELLA to Explore Dynamic Single Species Models:! 32