Finding Comparable Temporal Categorical Records: A Similarity Measure with an Interactive Visualization
Upcoming SlideShare
Loading in...5
×
 

Like this? Share it with your network

Share

Finding Comparable Temporal Categorical Records: A Similarity Measure with an Interactive Visualization

on

  • 870 views

Talk given at the IEEE Symposium on Visual Analytics Science & Technology (VAST), 2009.

Talk given at the IEEE Symposium on Visual Analytics Science & Technology (VAST), 2009.

Statistics

Views

Total Views
870
Views on SlideShare
844
Embed Views
26

Actions

Likes
0
Downloads
6
Comments
0

5 Embeds 26

http://kristw-dev.yellowpigz.com 11
http://localhost 6
https://www.linkedin.com 4
http://kristw.yellowpigz.com 3
http://www.linkedin.com 2

Accessibility

Upload Details

Uploaded via as Adobe PDF

Usage Rights

CC Attribution-NonCommercial LicenseCC Attribution-NonCommercial License

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

Finding Comparable Temporal Categorical Records: A Similarity Measure with an Interactive Visualization Presentation Transcript

  • 1. Finding&Comparable&&Temporal&Categorical&Records:&A"Similarity"Measure"with"an"Interac4ve"Visualiza4on"Krist&Wongsuphasawat&Ben&Shneiderman&Dept."of"Computer"Science"&"Human@Computer"Interac4on"Lab"University"of"Maryland"
  • 2. Temporal&categorical&data&!  A"type"of"4me"series"!  Comparison" Numerical Categorical e.g. stock indices e.g. patient histories 10/8/2007 !540.35! 10/8/2007 !Respiratory! 10/9/2007 !555.32! 10/9/2007 !Mental Disorder! ... ...
  • 3. Temporal&categorical&data&(2)&!  Examples" "  Electronic"Health"Records" "  Traffic"incident"logs" "  Student"records"
  • 4. Finding&similar&records&!  E.g."Find"pa4ents"with"similar"symptoms" "to"guide"the"treatment."
  • 5. Finding&similar&records&(2)&!  How?" "  Users"specify"one"target"pa4ent" "  Similarity"Measure" #  Gives"a"score"that"shows"how"much"two"records"are" similar."" #  Score"ranges"from"0"to"1."(Most"similar"="1)""
  • 6. Finding&similar&records&(3)& Patient #1 Patient #2 0.80 (target) Patient #3 0.63 Patient #4 0.96 Patient #5 0.77
  • 7. Finding&similar&records&(4)& Patient #1 Patient #4 0.96 (target) Patient #2 0.80 similar Patient #5 0.77 Patient #3 0.63
  • 8. Challenge&!  What"is"“similar”?" depends"on"users/tasks" Patient#1 (target) A B C Patient#2 missing A B C Patient#3 extra A B C D Patient#4 Time difference A B C time
  • 9. Related&work&!  Similarity"measure" "  Similarity"measure"for"numerical"4me"series" #  [Ding"et"al."2008],"[Saeed"and"Mark"2006],"..." "  Edit"distance" #  [Levenshtein"1966],"[Winkler"1999],"..." "  Biological"sequence"searching" #  [Pearson"and"Lipman"1988],"[Altschul"et"al."1990],"...""!  Visualiza4on" "  Temporal"visualiza4on" #  [Wang"et"al."2008],"[Plaisant"et"al."1998],"..." "  Rank@by@feature"framework" #  [Seo"and"Shneiderman"2005]"
  • 10. Alignment&!  Sen4nel"events" Time June July August Patient #45851737 Admit Emergency ICU Floor Exit Patient #43244997 Admit Emergency ICU Floor Exit
  • 11. Alignment&(2)&!  Time"shicing" Time 0 1M 2M Patient #45851737 Admit Emergency ICU Floor Exit Patient #43244997 Admit Emergency ICU Floor Exit
  • 12. In&this&paper,&we&propose&!  M&M"(Match"&"Mismatch)"measure" "  A"similarity"measure"!  Similan" "  An"interac4ve"visualiza4on"
  • 13. M&M&Measure& time Patient#1 (target) A C B C Patient#2 A B C B Matched Events Missing Event Extra Event Match Score = F(time difference) Mismatch Score = F(Number of Mismatches) } Total Score 0 to 1
  • 14. Similan& Comparison Panel Control Panel!  Layout"Ranking ScoreMain PanelPlot Panel
  • 15. ScaHerplot& + + + Number of Mismatches 0 1 Match Score 0
  • 16. Usability&study&!  8"par4cipants"!  Goals" "  Examine"learnability"of""Similan" "  Assess"the"benefits"of"a"scaeerplot" "  Observe"users’"strategy"!  Tasks" "  Find"5"persons"that"are"most"similar"to"the"target"
  • 17. Results&!  Easy"to"use,"but"some"interface"issues"!  Scaeerplot" "  Different"opinions" "  Give"overview" "  Explain"how"records"are"dissimilar"!  Strategy" "  Select"target" "  Rank"by"total"score" "  See"comparison"
  • 18. Ongoing&work&!  More"customizable"similarity"measure"!  Flexible"query,"Query@by@Example"!  Improve"user"interface"
  • 19. Note: recent work / not in the paperhttp://www.cs.umd.edu/hcil/similan
  • 20. Similan&!  Demo"!  Data"" "  from"Washington"Hospital"Center" "  ICU"(Intensive"Care"Unit)"pa4ent"transfers" "  deiden4fied"
  • 21. Conclusion&!  Problem" "  Finding"similar"temporal"categorical"records" "  What"is"similar?"!  Contribu4ons" "  M&M"measure" "  Similan"!  Ongoing"work" "  More"customizable"similarity"measure" "  Flexible"query,"Query@by@Example"
  • 22. More...&!  Contact" "  kristw@cs.umd.edu" "  hep://www.cs.umd.edu/hcil/similan"!  InfoVis"“Space"and"Time”"session" "  Thursday"2:00@3:40pm" &Temporal&Summaries:&SupporMng&Temporal&Categorical& Searching,&AggregaMon&and&Comparison& "Taowei"David"Wang,"Catherine"Plaisant,"Ben"Shneiderman," Neil"Spring,"David"Roseman,"Greg"Marchand,"Vikramjit" Mukherjee,"Mark"Smith""
  • 23. Thank&you&