SlideShare a Scribd company logo
1 of 5
Download to read offline
www.mathportal.org

Integration Formulas
1. Common Integrals
Indefinite Integral
Method of substitution

∫ f ( g ( x)) g ′( x)dx = ∫ f (u )du
Integration by parts

∫

f ( x) g ′( x)dx = f ( x) g ( x) − ∫ g ( x) f ′( x)dx

Integrals of Rational and Irrational Functions
n
∫ x dx =

x n +1
+C
n +1

1

∫ x dx = ln x + C
∫ c dx = cx + C
∫ xdx =

x2
+C
2

x3
+C
3
1
1
∫ x2 dx = − x + C
2
∫ x dx =

∫

xdx =
1

∫1+ x

∫

2

2x x
+C
3

dx = arctan x + C

1
1 − x2

dx = arcsin x + C

Integrals of Trigonometric Functions

∫ sin x dx = − cos x + C
∫ cos x dx = sin x + C
∫ tan x dx = ln sec x + C
∫ sec x dx = ln tan x + sec x + C
1
( x − sin x cos x ) + C
2
1
2
∫ cos x dx = 2 ( x + sin x cos x ) + C

∫ sin

2

∫ tan
∫ sec

x dx =

2

x dx = tan x − x + C

2

x dx = tan x + C

Integrals of Exponential and Logarithmic Functions

∫ ln x dx = x ln x − x + C
n
∫ x ln x dx =

∫e

x

x n +1
x n +1
ln x −
+C
2
n +1
( n + 1)

dx = e x + C

x
∫ b dx =

bx
+C
ln b

∫ sinh x dx = cosh x + C
∫ cosh x dx = sinh x + C
www.mathportal.org
2. Integrals of Rational Functions
Integrals involving ax + b

( ax + b )n + 1
∫ ( ax + b ) dx = a ( n + 1)
n

1

( for n ≠ −1)

1

∫ ax + b dx = a ln ax + b
∫ x ( ax + b )

n

a ( n + 1) x − b

dx =
a

x

x

2

( n + 1)( n + 2 )

( ax + b )n+1

( for n ≠ −1, n ≠ −2 )

b

∫ ax + b dx = a − a 2 ln ax + b
x

b

1

∫ ( ax + b )2 dx = a 2 ( ax + b ) + a 2 ln ax + b
a (1 − n ) x − b

x

∫ ( ax + b )n dx = a 2 ( n − 1)( n − 2)( ax + b )n−1

( for n ≠ −1, n ≠ −2 )

2

x2
1  ( ax + b )

dx = 3
− 2b ( ax + b ) + b 2 ln ax + b 
∫ ax + b

2
a 



x2

∫ ( ax + b )2
x2

∫ ( ax + b )3
x2

∫ ( ax + b ) n

1 
b2 
dx = 3  ax + b − 2b ln ax + b −

ax + b 
a 


dx =

1 
2b
b2
 ln ax + b +
−
ax + b 2 ( ax + b )2
a3 


dx =

3−n
2− n
1−n
2b ( a + b )
b2 ( ax + b )
1  ( ax + b )
−
+
−
n−3
n−2
n −1
a3 


1

1

∫ x ( ax + b ) dx = − b ln
1

ax + b
x

1

a

∫ x 2 ( ax + b ) dx = − bx + b2 ln
1

∫ x 2 ( ax + b )2

ax + b
x


1
1
2
ax + b
dx = − a  2
+ 2 − 3 ln
 b ( a + xb ) ab x b
x


Integrals involving ax2 + bx + c
1

1

x

∫ x 2 + a 2 dx = a arctg a

a−x
1
 2a ln a + x

∫ x2 − a 2 dx =  1 x − a
 ln
 2a x + a

1






for x < a
for x > a











( for n ≠ 1, 2,3)
www.mathportal.org

2
2ax + b

arctan

2
4ac − b 2
 4ac − b

1
2
2ax + b − b 2 − 4 ac

dx = 
ln
∫ ax 2 + bx + c
 b 2 − 4ac 2 ax + b + b 2 − 4ac

− 2
 2ax + b

x

1

∫ ax 2 + bx + c dx = 2a ln ax

2

+ bx + c −

for 4ac − b 2 > 0
for 4ac − b 2 < 0
for 4ac − b 2 = 0

b
dx
∫ ax 2 + bx + c
2a

m
2an − bm
2ax + b
2
arctan
for 4ac − b 2 > 0
 ln ax + bx + c +
2
2
2a
a 4ac − b
4ac − b

m
mx + n
2an − bm
2ax + b

2
2
∫ ax 2 + bx + c dx =  2a ln ax + bx + c + a b2 − 4ac arctanh b2 − 4ac for 4ac − b < 0

m
2an − bm
 ln ax 2 + bx + c −
for 4ac − b 2 = 0
a ( 2 ax + b )
 2a


∫

1

( ax

∫x

2

+ bx + c

)

n

1

( ax

2

+ bx + c

)

dx =

2ax + b

( n − 1) ( 4ac − b2 )( ax 2 + bx + c )

dx =

n−1

+

( 2 n − 3 ) 2a
1
dx
2 ∫
( n − 1) ( 4ac − b ) ( ax 2 + bx + c )n−1

1
x2
b
1
ln 2
− ∫ 2
dx
2c ax + bx + c 2c ax + bx + c

3. Integrals of Exponential Functions
cx
∫ xe dx =

ecx
c2

( cx − 1)

 x2 2x 2 
x 2 ecx dx = ecx 
∫
 c − c 2 + c3 




∫x

n cx

e dx =

1 n cx n n −1 cx
x e − ∫ x e dx
c
c
i

∞ cx
( )
ecx
dx = ln x + ∑
∫ x
i =1 i ⋅ i !

∫e

cx

ln xdx =

1 cx
e ln x + Ei ( cx )
c

cx
∫ e sin bxdx =
cx
∫ e cos bxdx =
cx
n
∫ e sin xdx =

ecx
c 2 + b2

( c sin bx − b cos bx )

ecx
c 2 + b2

( c cos bx + b sin bx )

ecx sin n −1 x
2

c +n

2

( c sin x − n cos bx ) +

n ( n − 1)
2

c +n

2

∫e

cx

sin n −2 dx
www.mathportal.org
4. Integrals of Logarithmic Functions

∫ ln cxdx = x ln cx − x
b

∫ ln(ax + b)dx = x ln(ax + b) − x + a ln(ax + b)
2

2

∫ ( ln x ) dx = x ( ln x ) − 2 x ln x + 2 x
n
n
n −1
∫ ( ln cx ) dx = x ( ln cx ) − n∫ ( ln cx ) dx
i

∞ ln x
( )
dx
= ln ln x + ln x + ∑
∫ ln x
n =2 i ⋅ i !

dx

∫ ( ln x )n

=−

x

( n − 1)( ln x )

n −1

+

1
dx
n − 1 ∫ ( ln x )n −1

 ln x
1
x m ln xdx = x m +1 
−
∫
 m + 1 ( m + 1) 2


∫ x ( ln x )
m

∫

( ln x )n
x

n

dx =

dx =

x m+1 ( ln x )

n

m +1

−

( ln x )n+1

)

( for m ≠ 1)

n
n −1
m
∫ x ( ln x ) dx
m +1

2

ln x n
ln x n
( for n ≠ 0 )
∫ x dx = 2n
ln x
ln x
1
∫ xm dx = − ( m − 1) xm−1 − ( m − 1)2 xm−1

∫

( ln x )n
xm

( for m ≠ 1)

( ln x )n
( ln x )n−1
n
dx = −
+
dx
( m − 1) x m−1 m − 1 ∫ x m

dx

∫ x ln x = ln ln x
∞

dx

∫ xn ln x = ln ln x + ∑ ( −1)
i =1
dx

∫ x ( ln x )n
∫ ln ( x

2

=−

i

( n − 1)i ( ln x )i
i ⋅ i!

1

( for n ≠ 1)

( n − 1)( ln x )n−1

)

(

)

+ a 2 dx = x ln x 2 + a 2 − 2 x + 2a tan −1
x

∫ sin ( ln x ) dx = 2 ( sin ( ln x ) − cos ( ln x ) )
x

( for m ≠ 1)

( for n ≠ 1)

n +1

(






( for n ≠ 1)

∫ cos ( ln x ) dx = 2 ( sin ( ln x ) + cos ( ln x ) )

x
a

( for m ≠ 1)
www.mathportal.org
5. Integrals of Trig. Functions

∫ sin xdx = − cos x
∫ cos xdx = − sin x

cos x

x 1
− sin 2 x
2 4
x 1
2
∫ cos xdx = 2 + 4 sin 2 x
1
3
3
∫ sin xdx = 3 cos x − cos x
1 3
3
∫ cos xdx = sin x − 3 sin x

∫ sin

2

xdx =

dx

cos 2 x
x
∫ sin x dx = ln tan 2 + cos x

∫ cot

2

xdx = − cot x − x

dx

∫ sin x cos x = ln tan x
dx

x

1

π

∫ sin 2 x cos x = − sin x + ln tan  2 + 4 


dx

1

x

x

∫ sin x cos2 x = cos x + ln tan 2

x

∫ sin 2 x cos2 x = tan x − cot x

∫ sin x xdx = ln tan 2
dx

1

∫ sin 2 x dx = − sin x

dx

π

∫ cos x xdx = ln tan  2 + 4 


dx
∫ sin 2 x xdx = − cot x
dx
∫ cos2 x xdx = tan x

sin( m + n) x sin( m − n) x
+
2( m − n)

∫sin mxsin nxdx = − 2( m+ n)

cos ( m + n) x cos ( m − n) x
−
2( m − n)

∫sin mxcos nxdx = − 2( m + n)

sin ( m + n) x sin ( m − n) x
+
2( m − n)

dx
cos x
1
x
∫ sin 3 x = − 2sin 2 x + 2 ln tan 2

∫ cos mxcos nxdx = 2( m + n)

dx
sin x
1
x π
∫ cos3 x = 2 cos2 x + 2 ln tan  2 + 4 



n
∫ sin x cos xdx = −

1
∫ sin x cos xdx = − 4 cos 2 x
1 3
2
∫ sin x cos xdx = 3 sin x
1
2
3
∫ sin x cos xdx = − 3 cos x
x 1
2
2
∫ sin x cos xdx = 8 − 32 sin 4 x

n
∫ sin x cos xdx =

∫ tan xdx = − ln cos x
sin x
1
dx =
2
cos x
x

∫ cos

sin 2 x
x π 
∫ cos x dx = ln tan  2 + 4  − sin x



∫ tan xdx = tan x − x
∫ cot xdx = ln sin x
2

cos n +1 x
n +1

sin n +1 x
n +1

∫ arcsin xdx = x arcsin x +

1 − x2

∫ arccos xdx = x arccos x −

1 − x2
1

∫ arctan xdx = x arctan x − 2 ln ( x
1

2

∫ arc cot xdx = x arc cot x + 2 ln ( x

2

)

+1

)

+1

m2 ≠ n2
m2 ≠ n2
m2 ≠ n2

More Related Content

What's hot

PPt on Functions
PPt on FunctionsPPt on Functions
PPt on Functionscoolhanddav
 
Quadratic equations
Quadratic equationsQuadratic equations
Quadratic equationsA M
 
Matrices and System of Linear Equations ppt
Matrices and System of Linear Equations pptMatrices and System of Linear Equations ppt
Matrices and System of Linear Equations pptDrazzer_Dhruv
 
Linear Algebra and Matrix
Linear Algebra and MatrixLinear Algebra and Matrix
Linear Algebra and Matrixitutor
 
Ordinary differential equations
Ordinary differential equationsOrdinary differential equations
Ordinary differential equationsAhmed Haider
 
Engineering Mathematics - Total derivatives, chain rule and derivative of imp...
Engineering Mathematics - Total derivatives, chain rule and derivative of imp...Engineering Mathematics - Total derivatives, chain rule and derivative of imp...
Engineering Mathematics - Total derivatives, chain rule and derivative of imp...Jayanshu Gundaniya
 
21 monotone sequences x
21 monotone sequences x21 monotone sequences x
21 monotone sequences xmath266
 
Continuity and differentiability
Continuity and differentiability Continuity and differentiability
Continuity and differentiability Seyid Kadher
 
Solving systems of Linear Equations
Solving systems of Linear EquationsSolving systems of Linear Equations
Solving systems of Linear Equationsswartzje
 
Lesson 16: Implicit Differentiation
Lesson 16: Implicit DifferentiationLesson 16: Implicit Differentiation
Lesson 16: Implicit DifferentiationMatthew Leingang
 
Graphing Quadratics
Graphing QuadraticsGraphing Quadratics
Graphing Quadraticsswartzje
 
Eigen values and eigen vectors engineering
Eigen values and eigen vectors engineeringEigen values and eigen vectors engineering
Eigen values and eigen vectors engineeringshubham211
 
Solving linear homogeneous recurrence relations
Solving linear homogeneous recurrence relationsSolving linear homogeneous recurrence relations
Solving linear homogeneous recurrence relationsDr. Maamoun Ahmed
 
Lesson 22: Quadratic Forms
Lesson 22: Quadratic FormsLesson 22: Quadratic Forms
Lesson 22: Quadratic FormsMatthew Leingang
 

What's hot (20)

PPt on Functions
PPt on FunctionsPPt on Functions
PPt on Functions
 
Quadratic equations
Quadratic equationsQuadratic equations
Quadratic equations
 
Group Theory
Group TheoryGroup Theory
Group Theory
 
Matrices and System of Linear Equations ppt
Matrices and System of Linear Equations pptMatrices and System of Linear Equations ppt
Matrices and System of Linear Equations ppt
 
Linear Algebra and Matrix
Linear Algebra and MatrixLinear Algebra and Matrix
Linear Algebra and Matrix
 
Ordinary differential equations
Ordinary differential equationsOrdinary differential equations
Ordinary differential equations
 
5.9 complex numbers
5.9 complex numbers5.9 complex numbers
5.9 complex numbers
 
Engineering Mathematics - Total derivatives, chain rule and derivative of imp...
Engineering Mathematics - Total derivatives, chain rule and derivative of imp...Engineering Mathematics - Total derivatives, chain rule and derivative of imp...
Engineering Mathematics - Total derivatives, chain rule and derivative of imp...
 
Limits and continuity
Limits and continuityLimits and continuity
Limits and continuity
 
Power series
Power seriesPower series
Power series
 
21 monotone sequences x
21 monotone sequences x21 monotone sequences x
21 monotone sequences x
 
Continuity and differentiability
Continuity and differentiability Continuity and differentiability
Continuity and differentiability
 
Solving systems of Linear Equations
Solving systems of Linear EquationsSolving systems of Linear Equations
Solving systems of Linear Equations
 
Solving linear equation
Solving linear equationSolving linear equation
Solving linear equation
 
Lesson 16: Implicit Differentiation
Lesson 16: Implicit DifferentiationLesson 16: Implicit Differentiation
Lesson 16: Implicit Differentiation
 
Graphing Quadratics
Graphing QuadraticsGraphing Quadratics
Graphing Quadratics
 
Eigen values and eigen vectors engineering
Eigen values and eigen vectors engineeringEigen values and eigen vectors engineering
Eigen values and eigen vectors engineering
 
Solving linear homogeneous recurrence relations
Solving linear homogeneous recurrence relationsSolving linear homogeneous recurrence relations
Solving linear homogeneous recurrence relations
 
Sequence and series
Sequence and seriesSequence and series
Sequence and series
 
Lesson 22: Quadratic Forms
Lesson 22: Quadratic FormsLesson 22: Quadratic Forms
Lesson 22: Quadratic Forms
 

Viewers also liked

Integral table for electomagnetic
Integral table for electomagneticIntegral table for electomagnetic
Integral table for electomagneticFathur Rozaq
 
Integration
IntegrationIntegration
Integrationlecturer
 
Lesson 30: Integration by Parts
Lesson 30: Integration by PartsLesson 30: Integration by Parts
Lesson 30: Integration by PartsMatthew Leingang
 
Integration by parts
Integration by partsIntegration by parts
Integration by partsjaflint718
 
Integration By Parts Tutorial & Example- Calculus 2
Integration By Parts Tutorial & Example- Calculus 2Integration By Parts Tutorial & Example- Calculus 2
Integration By Parts Tutorial & Example- Calculus 2empoweringminds
 
Numerical integration
Numerical integrationNumerical integration
Numerical integrationMohammed_AQ
 
Integration
IntegrationIntegration
Integrationsuefee
 

Viewers also liked (12)

11365.integral 2
11365.integral 211365.integral 2
11365.integral 2
 
Integration formulas
Integration formulasIntegration formulas
Integration formulas
 
Integral table for electomagnetic
Integral table for electomagneticIntegral table for electomagnetic
Integral table for electomagnetic
 
Integration
IntegrationIntegration
Integration
 
Power Rule
Power RulePower Rule
Power Rule
 
Lesson 30: Integration by Parts
Lesson 30: Integration by PartsLesson 30: Integration by Parts
Lesson 30: Integration by Parts
 
Integration by parts
Integration by partsIntegration by parts
Integration by parts
 
Integration By Parts Tutorial & Example- Calculus 2
Integration By Parts Tutorial & Example- Calculus 2Integration By Parts Tutorial & Example- Calculus 2
Integration By Parts Tutorial & Example- Calculus 2
 
Numerical integration
Numerical integrationNumerical integration
Numerical integration
 
Integration
IntegrationIntegration
Integration
 
Integral calculus
Integral calculusIntegral calculus
Integral calculus
 
Integration
IntegrationIntegration
Integration
 

More from Krishna Gali

Chemistry polycet study material
Chemistry polycet study materialChemistry polycet study material
Chemistry polycet study materialKrishna Gali
 
12.applications of trigonometry
12.applications of trigonometry12.applications of trigonometry
12.applications of trigonometryKrishna Gali
 
9.tangents and secants to a circle
9.tangents and secants to a circle9.tangents and secants to a circle
9.tangents and secants to a circleKrishna Gali
 
8.similar triangles
8.similar triangles8.similar triangles
8.similar trianglesKrishna Gali
 
7.co ordinate geometry
7.co ordinate geometry7.co ordinate geometry
7.co ordinate geometryKrishna Gali
 
5.quadratic equations
5.quadratic equations5.quadratic equations
5.quadratic equationsKrishna Gali
 
4.pair of linear equations in two variables
4.pair of linear equations in two variables4.pair of linear equations in two variables
4.pair of linear equations in two variablesKrishna Gali
 
Chapter 12 physics
Chapter 12 physicsChapter 12 physics
Chapter 12 physicsKrishna Gali
 
Chapter 11 physics
Chapter 11 physicsChapter 11 physics
Chapter 11 physicsKrishna Gali
 
refraction of light at curved surfaces
refraction of light at curved surfacesrefraction of light at curved surfaces
refraction of light at curved surfacesKrishna Gali
 

More from Krishna Gali (20)

Chemistry polycet study material
Chemistry polycet study materialChemistry polycet study material
Chemistry polycet study material
 
14. Statistics
14. Statistics14. Statistics
14. Statistics
 
13. Probability
13. Probability13. Probability
13. Probability
 
12.applications of trigonometry
12.applications of trigonometry12.applications of trigonometry
12.applications of trigonometry
 
11.trigonometry
11.trigonometry11.trigonometry
11.trigonometry
 
10.mensuration
10.mensuration10.mensuration
10.mensuration
 
9.tangents and secants to a circle
9.tangents and secants to a circle9.tangents and secants to a circle
9.tangents and secants to a circle
 
8.similar triangles
8.similar triangles8.similar triangles
8.similar triangles
 
7.co ordinate geometry
7.co ordinate geometry7.co ordinate geometry
7.co ordinate geometry
 
6.progressions
6.progressions6.progressions
6.progressions
 
5.quadratic equations
5.quadratic equations5.quadratic equations
5.quadratic equations
 
4.pair of linear equations in two variables
4.pair of linear equations in two variables4.pair of linear equations in two variables
4.pair of linear equations in two variables
 
3.polynomials
3.polynomials3.polynomials
3.polynomials
 
2.sets
2.sets2.sets
2.sets
 
1.real numbers
1.real numbers1.real numbers
1.real numbers
 
Chapter 12 physics
Chapter 12 physicsChapter 12 physics
Chapter 12 physics
 
Chapter 11 physics
Chapter 11 physicsChapter 11 physics
Chapter 11 physics
 
Chapter 7 physics
Chapter 7 physicsChapter 7 physics
Chapter 7 physics
 
refraction of light at curved surfaces
refraction of light at curved surfacesrefraction of light at curved surfaces
refraction of light at curved surfaces
 
Chapter 5 physics
Chapter 5 physicsChapter 5 physics
Chapter 5 physics
 

Integration formulas

  • 1. www.mathportal.org Integration Formulas 1. Common Integrals Indefinite Integral Method of substitution ∫ f ( g ( x)) g ′( x)dx = ∫ f (u )du Integration by parts ∫ f ( x) g ′( x)dx = f ( x) g ( x) − ∫ g ( x) f ′( x)dx Integrals of Rational and Irrational Functions n ∫ x dx = x n +1 +C n +1 1 ∫ x dx = ln x + C ∫ c dx = cx + C ∫ xdx = x2 +C 2 x3 +C 3 1 1 ∫ x2 dx = − x + C 2 ∫ x dx = ∫ xdx = 1 ∫1+ x ∫ 2 2x x +C 3 dx = arctan x + C 1 1 − x2 dx = arcsin x + C Integrals of Trigonometric Functions ∫ sin x dx = − cos x + C ∫ cos x dx = sin x + C ∫ tan x dx = ln sec x + C ∫ sec x dx = ln tan x + sec x + C 1 ( x − sin x cos x ) + C 2 1 2 ∫ cos x dx = 2 ( x + sin x cos x ) + C ∫ sin 2 ∫ tan ∫ sec x dx = 2 x dx = tan x − x + C 2 x dx = tan x + C Integrals of Exponential and Logarithmic Functions ∫ ln x dx = x ln x − x + C n ∫ x ln x dx = ∫e x x n +1 x n +1 ln x − +C 2 n +1 ( n + 1) dx = e x + C x ∫ b dx = bx +C ln b ∫ sinh x dx = cosh x + C ∫ cosh x dx = sinh x + C
  • 2. www.mathportal.org 2. Integrals of Rational Functions Integrals involving ax + b ( ax + b )n + 1 ∫ ( ax + b ) dx = a ( n + 1) n 1 ( for n ≠ −1) 1 ∫ ax + b dx = a ln ax + b ∫ x ( ax + b ) n a ( n + 1) x − b dx = a x x 2 ( n + 1)( n + 2 ) ( ax + b )n+1 ( for n ≠ −1, n ≠ −2 ) b ∫ ax + b dx = a − a 2 ln ax + b x b 1 ∫ ( ax + b )2 dx = a 2 ( ax + b ) + a 2 ln ax + b a (1 − n ) x − b x ∫ ( ax + b )n dx = a 2 ( n − 1)( n − 2)( ax + b )n−1 ( for n ≠ −1, n ≠ −2 ) 2  x2 1  ( ax + b )  dx = 3 − 2b ( ax + b ) + b 2 ln ax + b  ∫ ax + b  2 a    x2 ∫ ( ax + b )2 x2 ∫ ( ax + b )3 x2 ∫ ( ax + b ) n 1  b2  dx = 3  ax + b − 2b ln ax + b −  ax + b  a    dx = 1  2b b2  ln ax + b + − ax + b 2 ( ax + b )2 a3   dx = 3−n 2− n 1−n 2b ( a + b ) b2 ( ax + b ) 1  ( ax + b ) − + − n−3 n−2 n −1 a3   1 1 ∫ x ( ax + b ) dx = − b ln 1 ax + b x 1 a ∫ x 2 ( ax + b ) dx = − bx + b2 ln 1 ∫ x 2 ( ax + b )2 ax + b x  1 1 2 ax + b dx = − a  2 + 2 − 3 ln  b ( a + xb ) ab x b x  Integrals involving ax2 + bx + c 1 1 x ∫ x 2 + a 2 dx = a arctg a a−x 1  2a ln a + x  ∫ x2 − a 2 dx =  1 x − a  ln  2a x + a  1     for x < a for x > a         ( for n ≠ 1, 2,3)
  • 3. www.mathportal.org 2 2ax + b  arctan  2 4ac − b 2  4ac − b  1 2 2ax + b − b 2 − 4 ac  dx =  ln ∫ ax 2 + bx + c  b 2 − 4ac 2 ax + b + b 2 − 4ac  − 2  2ax + b  x 1 ∫ ax 2 + bx + c dx = 2a ln ax 2 + bx + c − for 4ac − b 2 > 0 for 4ac − b 2 < 0 for 4ac − b 2 = 0 b dx ∫ ax 2 + bx + c 2a m 2an − bm 2ax + b 2 arctan for 4ac − b 2 > 0  ln ax + bx + c + 2 2 2a a 4ac − b 4ac − b  m mx + n 2an − bm 2ax + b  2 2 ∫ ax 2 + bx + c dx =  2a ln ax + bx + c + a b2 − 4ac arctanh b2 − 4ac for 4ac − b < 0  m 2an − bm  ln ax 2 + bx + c − for 4ac − b 2 = 0 a ( 2 ax + b )  2a  ∫ 1 ( ax ∫x 2 + bx + c ) n 1 ( ax 2 + bx + c ) dx = 2ax + b ( n − 1) ( 4ac − b2 )( ax 2 + bx + c ) dx = n−1 + ( 2 n − 3 ) 2a 1 dx 2 ∫ ( n − 1) ( 4ac − b ) ( ax 2 + bx + c )n−1 1 x2 b 1 ln 2 − ∫ 2 dx 2c ax + bx + c 2c ax + bx + c 3. Integrals of Exponential Functions cx ∫ xe dx = ecx c2 ( cx − 1)  x2 2x 2  x 2 ecx dx = ecx  ∫  c − c 2 + c3     ∫x n cx e dx = 1 n cx n n −1 cx x e − ∫ x e dx c c i ∞ cx ( ) ecx dx = ln x + ∑ ∫ x i =1 i ⋅ i ! ∫e cx ln xdx = 1 cx e ln x + Ei ( cx ) c cx ∫ e sin bxdx = cx ∫ e cos bxdx = cx n ∫ e sin xdx = ecx c 2 + b2 ( c sin bx − b cos bx ) ecx c 2 + b2 ( c cos bx + b sin bx ) ecx sin n −1 x 2 c +n 2 ( c sin x − n cos bx ) + n ( n − 1) 2 c +n 2 ∫e cx sin n −2 dx
  • 4. www.mathportal.org 4. Integrals of Logarithmic Functions ∫ ln cxdx = x ln cx − x b ∫ ln(ax + b)dx = x ln(ax + b) − x + a ln(ax + b) 2 2 ∫ ( ln x ) dx = x ( ln x ) − 2 x ln x + 2 x n n n −1 ∫ ( ln cx ) dx = x ( ln cx ) − n∫ ( ln cx ) dx i ∞ ln x ( ) dx = ln ln x + ln x + ∑ ∫ ln x n =2 i ⋅ i ! dx ∫ ( ln x )n =− x ( n − 1)( ln x ) n −1 + 1 dx n − 1 ∫ ( ln x )n −1  ln x 1 x m ln xdx = x m +1  − ∫  m + 1 ( m + 1) 2  ∫ x ( ln x ) m ∫ ( ln x )n x n dx = dx = x m+1 ( ln x ) n m +1 − ( ln x )n+1 ) ( for m ≠ 1) n n −1 m ∫ x ( ln x ) dx m +1 2 ln x n ln x n ( for n ≠ 0 ) ∫ x dx = 2n ln x ln x 1 ∫ xm dx = − ( m − 1) xm−1 − ( m − 1)2 xm−1 ∫ ( ln x )n xm ( for m ≠ 1) ( ln x )n ( ln x )n−1 n dx = − + dx ( m − 1) x m−1 m − 1 ∫ x m dx ∫ x ln x = ln ln x ∞ dx ∫ xn ln x = ln ln x + ∑ ( −1) i =1 dx ∫ x ( ln x )n ∫ ln ( x 2 =− i ( n − 1)i ( ln x )i i ⋅ i! 1 ( for n ≠ 1) ( n − 1)( ln x )n−1 ) ( ) + a 2 dx = x ln x 2 + a 2 − 2 x + 2a tan −1 x ∫ sin ( ln x ) dx = 2 ( sin ( ln x ) − cos ( ln x ) ) x ( for m ≠ 1) ( for n ≠ 1) n +1 (     ( for n ≠ 1) ∫ cos ( ln x ) dx = 2 ( sin ( ln x ) + cos ( ln x ) ) x a ( for m ≠ 1)
  • 5. www.mathportal.org 5. Integrals of Trig. Functions ∫ sin xdx = − cos x ∫ cos xdx = − sin x cos x x 1 − sin 2 x 2 4 x 1 2 ∫ cos xdx = 2 + 4 sin 2 x 1 3 3 ∫ sin xdx = 3 cos x − cos x 1 3 3 ∫ cos xdx = sin x − 3 sin x ∫ sin 2 xdx = dx cos 2 x x ∫ sin x dx = ln tan 2 + cos x ∫ cot 2 xdx = − cot x − x dx ∫ sin x cos x = ln tan x dx x 1 π ∫ sin 2 x cos x = − sin x + ln tan  2 + 4    dx 1 x x ∫ sin x cos2 x = cos x + ln tan 2 x ∫ sin 2 x cos2 x = tan x − cot x ∫ sin x xdx = ln tan 2 dx 1 ∫ sin 2 x dx = − sin x dx π ∫ cos x xdx = ln tan  2 + 4    dx ∫ sin 2 x xdx = − cot x dx ∫ cos2 x xdx = tan x sin( m + n) x sin( m − n) x + 2( m − n) ∫sin mxsin nxdx = − 2( m+ n) cos ( m + n) x cos ( m − n) x − 2( m − n) ∫sin mxcos nxdx = − 2( m + n) sin ( m + n) x sin ( m − n) x + 2( m − n) dx cos x 1 x ∫ sin 3 x = − 2sin 2 x + 2 ln tan 2 ∫ cos mxcos nxdx = 2( m + n) dx sin x 1 x π ∫ cos3 x = 2 cos2 x + 2 ln tan  2 + 4    n ∫ sin x cos xdx = − 1 ∫ sin x cos xdx = − 4 cos 2 x 1 3 2 ∫ sin x cos xdx = 3 sin x 1 2 3 ∫ sin x cos xdx = − 3 cos x x 1 2 2 ∫ sin x cos xdx = 8 − 32 sin 4 x n ∫ sin x cos xdx = ∫ tan xdx = − ln cos x sin x 1 dx = 2 cos x x ∫ cos sin 2 x x π  ∫ cos x dx = ln tan  2 + 4  − sin x   ∫ tan xdx = tan x − x ∫ cot xdx = ln sin x 2 cos n +1 x n +1 sin n +1 x n +1 ∫ arcsin xdx = x arcsin x + 1 − x2 ∫ arccos xdx = x arccos x − 1 − x2 1 ∫ arctan xdx = x arctan x − 2 ln ( x 1 2 ∫ arc cot xdx = x arc cot x + 2 ln ( x 2 ) +1 ) +1 m2 ≠ n2 m2 ≠ n2 m2 ≠ n2