Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.

Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.

Like this presentation? Why not share!

1,571 views

1,492 views

1,492 views

Published on

a talk on entrepreneurship by Google's Country Manager in Greece

No Downloads

Total views

1,571

On SlideShare

0

From Embeds

0

Number of Embeds

0

Shares

0

Downloads

16

Comments

0

Likes

1

No embeds

No notes for slide

- 1. Sanders: Graphs 1 Graphs and Graph Representation INFORMATIK ¾ 1736 L. Euler asks about a “touristic” question: ¾ Street or Computer networks ¾ Railway connections (space and time) ¾ Citation or Coauthorship social networks ¾ Job precedences scheduling problems ¾ Values and arithmetic operations compiler construction ¾
- 2. Sanders: Graphs 1 Mathematical View: Just Sets and Pairs INFORMATIK Often terminology is already reason enough for a graph model 1.1 Directed Graphs ´Î µ describes a directed graph with vertex set Î and edge set ¢ . Î Î Convention: and Ñ Ò Î 1.1.1 Special Cases (usually disallowed) Multigraphs: parallel edges allowed, i.e, is a multiset. self loops: edges ´Ú Úµ
- 3. Sanders: Graphs 3 1.1.2 Degrees INFORMATIK ¾ ´Ú out-degree´Úµ: Ùµ ¾ ´Ù in-degree´Úµ: Úµ
- 4. Sanders: Graphs ¾ ¾ ´Ù ´Ú INFORMATIK Bidirected graph: Úµ Ùµ 1.2 Undirected Graphs streamlined description of a bidirected graph where edges are two element vertex sets. ° ´Ù ´Ú ÙÚ Úµ Ùµ degree´Úµ in-degree´Úµ out-degree´Úµ What about self loops?
- 5. Sanders: Graphs 5 1.3 Subgraphs INFORMATIK ¼ ´Î ¼ ¼ µ is subgraph of µ if Î ¼ ¼¾ ´Î and Î ¼ is vertex induced by Î ¼ if ¼ ¼ ¼ ¾ ¾ ¾ ´Ù Úµ Ù Î Ú Î
- 6. Sanders: Graphs 1.4 Associated Information INFORMATIK Ê edge weights Û Example: Length or trafﬁc capacity of a street, we will see more things like node potentials, node/vertex colors,
- 7. Sanders: Graphs 7 1.5 Paths INFORMATIK A path Ô Ú¼ Ú of length connects nodes Ú¼ and Ú if subsequent nodes in Ô are connected by edges in , i.e, ¾ ¾ ¾ ½ ´Ú¼ Ú½ µ ´Ú½ Ú¾ µ ´Ú µ ,¾ , , . ½ Ú edge representation: . ½ Ô simple path: Ú¼ , ,Ú different. Nonsimple paths are usually called walks. È µ. In weighted graphs, length is ½ Û´ bottleneck weight: Ñ Ò µ. ½ Û´ Applications: What is the shortest route from Saarbrucken to Paris? ¨ How much trafﬁc can it carry?
- 8. Sanders: Graphs 1.6 Cycles INFORMATIK Cycles are paths that share the ﬁrst and the last node A cycle is simple if all other nodes are different. Hamiltonian cycle: simple cycle that visits all nodes. Euler cycle: cycle (cyclic walk) that visits all edges once back to the bridge problem. But we need one more term.
- 9. Sanders: Graphs 9 1.7 Connectedness INFORMATIK ¸ ¾ is strongly connected path Ô connects Ù and Ú ÙÚ Î Ô drop the “strongly” for undirected graphs A connected component is a maximal connected vertex induced subgraph
- 10. Sanders: Graphs 1.8 Euler Tours INFORMATIK Theorem 1. is Eulerian (has an Euler tour) if and only if is connected and every node has even degree. Proof: Necessity: connectedness is clear. ½. Consider a node Ú with degree ¾ The tour is stuck when it visits Ú the -th time. Sufﬁciency: Step 1, Construct Euler Paritioning of into a set of cycles: Greedily build any walk. Remove visited edges. When you get stuck, you have closed a cycle. Step 2, Glue the cycles together. Possible since any cycle intersects some other cycle.
- 11. Sanders: Graphs 11 1.9 Trees INFORMATIK An undirected graph is a tree if there is exactly one path between any pair of nodes. Exercise: Prove that the following properties are equivalent 1. is a tree. ½ edges. 2. is connected and has exactly Ò 3. is connected and contains no cycles. Forest: undirected acyclic graph Directed acyclic graph (DAG): no cycles. Exercise: How many edges are possible?
- 12. Sanders: Graphs 1.10 Directed Trees? INFORMATIK we need a special root node Ö. ¾ exactly one Ö path or Ú Î Ú ¾ exactly one Ú path Ú Î Ö CS trees have the root at the top. a parent is immediately above its children or successors which are siblings. (ancestors, ) Nodes without children are leaves. Nonroot nonleaf nodes are interior. ordered trees: order of children matters. Example: search trees.
- 13. Sanders: Graphs 13 2 Graph Representation INFORMATIK we mostly represent undirected graphs as bidirected graphs focus on directed graphs Overview: ¾ Operations are what matters ¾ A trivial representation ¾ Arrays ¾ Linked Lists ¾ Matrices ¾ Implicit Representation ¾ Discussion
- 14. Sanders: Graphs 2.1 Operations INFORMATIK Ç´½µ time for all elementary operations Goal: Access associated information. Use arrays. Perhaps hash tables. ½ One reason for Î Ò. Navigation: Given Ú ﬁnd outgoing edges. (We may also want incoming edges.) ¾ Edge queries: ´Ù ? Adjanceny matrices, hash tables. Úµ Reverse access: Given ´Ù ﬁnd ´Ú Úµ Ùµ Construction conversion and output (Ç´Ñ · Òµ time) Update: Insert/delete nodes/edges. This is the hard part.
- 15. Sanders: Graphs 15 Example: Recognizing DAGs INFORMATIK ¾ ¼ do delete Ú while out-degree´Úµ Ú Î if Î then output “ is a DAG” else output “ contains a cycle” // to ﬁnd a cycle, pick any node and follow edges works because we never destroy or introduce cycles Ç´Ñ · Exercise: implement it in time Òµ
- 16. Sanders: Graphs 2.2 Edge Sequence Representation INFORMATIK Sequence of node pairs (or triples with edge weight) · Compact · Good for I/O Almost no useful operations except scanning all edges Not so bad with some additional node arrays. Examples: Find isolated nodes, several MST algorithms, conversion.
- 17. Sanders: Graphs 17 2.3 Adjacency Arrays INFORMATIK ½ ¼ Î Ò Edge array E stores targets grouping edges leaving a node Node array V stores index of ﬁrst outgoing edge stores Ñ · ½ dummy entry Î Ò 1 0 n−1 4=n V0 2 466 0 3 E1 2 2 3 1 3 m−1 6=m 0 2 Î ÎÚ·½ Example: out-degree´Úµ Ú
- 18. Sanders: Graphs 2.4 Edge List Adjacency Array INFORMATIK A Reminder: Sorting Small Integers // make a sorted permutation of Procedure KSortArray´a,b : Array ½ of 0..K-1µ Ò ½ of Æ ¼ ¼ : Array ¼ c // counters for each bucket Ã for := ½ to Ò do ·· // Count bucket sizes C := 0 È ½ do ´ := ¼ to Ã µ := ´ · µ// Store for in for := ½ to Ò do // Distribute := ·· Idea: Sort by starting node
- 19. Sanders: Graphs 19 Integrated Solution INFORMATIK Ä ×Ø µ Function adjacencyArray´ of Æ ¼ ¼ : Array ¼ V Ò ¾ EdgeList do foreach ´Ù ·· // count Úµ ÎÙ ½ for Ú := ½ to Ò do +=Î // preﬁx sums ÎÚ Ú ¾ EdgeList do foreach ´Ù // place Úµ ÎÙ Ú return ´Î µ Example on Blackboard
- 20. Sanders: Graphs Operations for Adjacency Arrays INFORMATIK Navigation: easy. we will see several applications Edge weights: becomes array of records Incoming Edges: another (reverse) edge array Delete Edges: explicit end indices Batched Updates: rebuild
- 21. Sanders: Graphs 21 2.5 Adjacency Lists INFORMATIK store (doubly linked) list of adjacent edges for each node (a bit more restricted with singly linked lists) · easy edge insertion · easy edge deletion (order preserving) more space (factor up to 3) than adj. arrays more cache faults than adj. arrays
- 22. Sanders: Graphs Enhancing Adjacency Lists INFORMATIK For reverse edge access or edge weight updates in undirected graphs: explicit edge objects ¾ stores weights ¾ pred/succ-pointers for all adjacency lists containing this edge ¾ reverse pointer for directed graphs ¾ cute trick: store only xor of incident nodes
- 23. Sanders: Graphs 23 Node insertion/deletion INFORMATIK mark as deleted swap in node Ò list of nodes µ node handles are pointers. 1 0 3 Problem: graphs with common node set E list out list in list rev from to 2 (0,1) 0 0 0 V list first first deg deg out in out in (0,2) 0 0 0 0 0 2 0 (1,2) 1 0 2 2 (1,3) 2 0 00 2 2 (2,1) 3 0 0 0 0 0 2 (2,3) 0 0 0 0 ¢ more space than vanilla adjacency arrays
- 24. Sanders: Graphs 2.6 Customization INFORMATIK Customize data structure for application for maximum speed/compactness. Sofware Engineering nightmare Seperating algorithm from their representation may be a way out
- 25. Sanders: Graphs 25 Example: Recognizing dags INFORMATIK ¾ ¼ do delete Ú while out-degree´Úµ Ú Î ¾ Use adjacency array storing incoming edges ¾ Store out-degrees ¾ Maintain a stack of out-degree zero nodes ¾ delete ´Ù by decrementing out-degree´Ùµ Úµ ¾ no explicit node deletion ¾ At the end test whether all nodes have out-degree´¼µ
- 26. Sanders: Graphs 2.7 Adjacency Matrix INFORMATIK Ò¢Ò with ¾ ¾ ¼½ ´ µ ´ µ · space efﬁcient for very dense matrices space inefﬁcient otherwise. Exercise: what should “very dense” mean? · Easy edge queries Slow navigation (except for dense graphs) ·· joins linear algebra and graph theory # -edge paths from to Example: . Exercise: count -edge paths Important accelerators: Ç´ÐÓ µ mat-mults for mat-power matrix multiplication in subcubic time, e.g., Strassen’s algorithm
- 27. Sanders: Graphs 27 Example where graph theory helps LA INFORMATIK Ü ´½ ´ µ ¼µ Problem: solve Consider Ò µ Assume has two connected components we swap rows and cols such that ¼ ½¼ ½ ¼ ½ ¼ Ü½ ½ ½ ¼ Ü¾ ¾ ¾ Exercise: What if is a DAG?
- 28. Sanders: Graphs 2.8 Implicit Representation INFORMATIK Compact representations of possibly very dense graphs Implement algorithms directly using this representation
- 29. Sanders: Graphs 29 Example: Connectedness of Interval Graphs INFORMATIK ÒÒ ½ ½ Î and overlap Idea: sweep intervals from left to right. The number of overlapping intervals may never drop to zero. Function isConnected(Ä : SortedListOfIntervalEndPoints) : ¼ ½ remove ﬁrst element of Ä overlap := 1 ¾ foreach Ô do Ä ¼ return 0 if overlap if Ô is a start point then overlap·· else overlap // end point ¾¡ Ç´Ò ÐÓ Ç algorithm for up to edges! Exercise: ﬁnd all connected Òµ Ò components

No public clipboards found for this slide

Be the first to comment