SlideShare a Scribd company logo
1 of 22
BAIRSTOW METHOD MULLIER METHOD DANIEL FERNANDO RODRIGUEZ ROOTS OF POLYNOMIALS
Bairstow Method A method for calculating roots of polynomials can calculate peer (conjugated in the case of complex roots). Unlike Newton, calculate complex roots without having to make calculations with complex numbers.  It is based on the synthetic division of the polynomial Pn (x) by the quadratic (x2 - rx - s).
Bairstow Method    The synthetic division can be extended to quadratic factors: and even by multiplying the coefficients is obtained:
Bairstow Method We want to find the values of r and s that make b1 and b0 equal to zero since, in this case, the factor divided exactly quadratic polynomial.  The first method works by taking an initial approximation (r0, s0) and generate approximations (rk, sk) getting better using an iterative procedure until the remainder of division by the quadratic polynomial (x2 - rkx - sk) is zero.  The iterative procedure of calculation is based on the fact that both b1 and b0 are functions of r and s.
In developing b1 (rk, sk) and b0 (rk, sk) in Taylor series around the point (r *, s *), we obtain: It takes (r *, s *) as the point where the residue is zero and Δr = r * - rk, Δs = s * - sk. Then: Bairstow Method
Bairstow Method Bairstow showed that the required partial derivatives can be obtained from the bi by a second synthetic division between factor (x2 - r0x - s0) in the same way that the bi are obtained from the ai. The calculation is:
Thus, the system of equations can be written Bairstow Method
Calculation of approximate error: When tolerance is reached estimated coefficientsrand s is used to calculate the roots: Bairstow Method
Bairstow Method Then: When the resulting polynomial is of third order or more, the Bairstow method should be applied to obtain a resultant function of order 2. When the result is quadratic polynomial, defines two of the roots using the quadratic equation. When the final function is first order root is determined from the clearance of the equation.
MullerMethod   Is based on the layout of a polynomial function specifically a parable with three initial values.   Is to have the coefficients of a parabola passing through three points. These points are substituted into the quadratic formula to get the value where the parabola intersects the x-axis, ie, the approximate root.
The approach is facilitated by writing the parable in a convenient form: the parabola must pass through three points. These are evaluated as follows:
You can find the three unknown coefficients a, b, c and to two terms of the last equation are zero, f (x +1) = c, resulting in two equations with two unknowns
An algebraic manipulation allows you to find the remaining coefficients a, b. how to do this is to define the differences
These are replaced in the above equations and result: Where a and b are cleared and get:
  Already known evaluate the quadratic coefficients:   Evaluated to determine the sign:   If D1 is developed further with the + quadratic, but is solved with the - sign
EXAMPLE: ,[object Object],To determine the root of the equation:
First evaluate the function to baseline: That are used to calculate:
These values are replaced in turn to find the values of a, b, c Then we find the term D major to determine the sign of the quadratic
   As D1> D2 solve the quadratic with a positive sign.   After the error is calculated accordingly to the Xi +1 xi +2 with the new variables:
Now for the new iterationXi-1 = Xi previousXi +1 = Xi previousXi +2 = Xi +1calculated
BIBLIOGRAPHY ,[object Object]

More Related Content

What's hot

Math vocabulary A-Z
Math vocabulary A-ZMath vocabulary A-Z
Math vocabulary A-Zfgeasland
 
Geometry 201 unit 5.5
Geometry 201 unit 5.5Geometry 201 unit 5.5
Geometry 201 unit 5.5Mark Ryder
 
Actividad de retroalimentacion fisica 10
Actividad de retroalimentacion fisica 10Actividad de retroalimentacion fisica 10
Actividad de retroalimentacion fisica 10JohonfriMendoza
 
7.2 Similar Polygons
7.2 Similar Polygons7.2 Similar Polygons
7.2 Similar Polygonssmiller5
 
IUA Unidad 3 - Actividad 4 - Niveyro - Alarcón
IUA  Unidad 3 - Actividad 4 - Niveyro - AlarcónIUA  Unidad 3 - Actividad 4 - Niveyro - Alarcón
IUA Unidad 3 - Actividad 4 - Niveyro - AlarcónGuillermo Niveyro
 
Geometry 201 unit 5.3
Geometry 201 unit 5.3Geometry 201 unit 5.3
Geometry 201 unit 5.3Mark Ryder
 
Geometry 201 unit 5.4
Geometry 201 unit 5.4Geometry 201 unit 5.4
Geometry 201 unit 5.4Mark Ryder
 
trigonomery of right triangles
trigonomery of right trianglestrigonomery of right triangles
trigonomery of right triangleskatleho phatoli
 
Chapter 5 unit f 001
Chapter 5 unit f 001Chapter 5 unit f 001
Chapter 5 unit f 001jbianco9910
 
Geometry 201 unit 3.2
Geometry 201 unit 3.2Geometry 201 unit 3.2
Geometry 201 unit 3.2Mark Ryder
 
Core 3 Simpsons Rule
Core 3 Simpsons RuleCore 3 Simpsons Rule
Core 3 Simpsons Ruledavidmiles100
 

What's hot (19)

Mathematics assignment
Mathematics assignmentMathematics assignment
Mathematics assignment
 
1557 logarithm
1557 logarithm1557 logarithm
1557 logarithm
 
Math vocabulary A-Z
Math vocabulary A-ZMath vocabulary A-Z
Math vocabulary A-Z
 
Real numbers
Real numbers Real numbers
Real numbers
 
Geometry 201 unit 5.5
Geometry 201 unit 5.5Geometry 201 unit 5.5
Geometry 201 unit 5.5
 
Actividad de retroalimentacion fisica 10
Actividad de retroalimentacion fisica 10Actividad de retroalimentacion fisica 10
Actividad de retroalimentacion fisica 10
 
Planos numericos
Planos numericosPlanos numericos
Planos numericos
 
7.2 Similar Polygons
7.2 Similar Polygons7.2 Similar Polygons
7.2 Similar Polygons
 
IUA Unidad 3 - Actividad 4 - Niveyro - Alarcón
IUA  Unidad 3 - Actividad 4 - Niveyro - AlarcónIUA  Unidad 3 - Actividad 4 - Niveyro - Alarcón
IUA Unidad 3 - Actividad 4 - Niveyro - Alarcón
 
Media,265106,en
Media,265106,enMedia,265106,en
Media,265106,en
 
Cal 3
Cal 3Cal 3
Cal 3
 
Geometry 201 unit 5.3
Geometry 201 unit 5.3Geometry 201 unit 5.3
Geometry 201 unit 5.3
 
Geometry 201 unit 5.4
Geometry 201 unit 5.4Geometry 201 unit 5.4
Geometry 201 unit 5.4
 
Calculus
CalculusCalculus
Calculus
 
trigonomery of right triangles
trigonomery of right trianglestrigonomery of right triangles
trigonomery of right triangles
 
Chapter 5 unit f 001
Chapter 5 unit f 001Chapter 5 unit f 001
Chapter 5 unit f 001
 
Geometry 201 unit 3.2
Geometry 201 unit 3.2Geometry 201 unit 3.2
Geometry 201 unit 3.2
 
Proff presentation
Proff presentationProff presentation
Proff presentation
 
Core 3 Simpsons Rule
Core 3 Simpsons RuleCore 3 Simpsons Rule
Core 3 Simpsons Rule
 

Viewers also liked

linear equation system with 2 and 3 variables
linear equation system with 2 and 3 variableslinear equation system with 2 and 3 variables
linear equation system with 2 and 3 variablesWanda Sari
 
NUMERICAL METHODS -Iterative methods(indirect method)
NUMERICAL METHODS -Iterative methods(indirect method)NUMERICAL METHODS -Iterative methods(indirect method)
NUMERICAL METHODS -Iterative methods(indirect method)krishnapriya R
 
Sytems of linear equation
Sytems of linear equationSytems of linear equation
Sytems of linear equationFranz Uy
 
System of Linear Equation
System of Linear EquationSystem of Linear Equation
System of Linear EquationEyakub Sorkar
 
Brain Computer Interface (BCI)
Brain Computer Interface (BCI)Brain Computer Interface (BCI)
Brain Computer Interface (BCI)Eyakub Sorkar
 
Matrices and determinants
Matrices and determinantsMatrices and determinants
Matrices and determinantsKum Visal
 
Solving systems of equations
Solving systems of equationsSolving systems of equations
Solving systems of equationsHind Al Awadi
 
System of equations
System of equationsSystem of equations
System of equationsmariacadena
 
Cramer’s Rule OF Matrix
Cramer’s Rule OF MatrixCramer’s Rule OF Matrix
Cramer’s Rule OF MatrixAbi Malik
 
SET THEORY
SET THEORYSET THEORY
SET THEORYLena
 

Viewers also liked (12)

linear equation system with 2 and 3 variables
linear equation system with 2 and 3 variableslinear equation system with 2 and 3 variables
linear equation system with 2 and 3 variables
 
NUMERICAL METHODS -Iterative methods(indirect method)
NUMERICAL METHODS -Iterative methods(indirect method)NUMERICAL METHODS -Iterative methods(indirect method)
NUMERICAL METHODS -Iterative methods(indirect method)
 
Report in determinants
Report in determinantsReport in determinants
Report in determinants
 
Sytems of linear equation
Sytems of linear equationSytems of linear equation
Sytems of linear equation
 
System of Linear Equation
System of Linear EquationSystem of Linear Equation
System of Linear Equation
 
Brain Computer Interface (BCI)
Brain Computer Interface (BCI)Brain Computer Interface (BCI)
Brain Computer Interface (BCI)
 
Matrices and determinants
Matrices and determinantsMatrices and determinants
Matrices and determinants
 
Solving systems of equations
Solving systems of equationsSolving systems of equations
Solving systems of equations
 
System of equations
System of equationsSystem of equations
System of equations
 
Cramer’s Rule OF Matrix
Cramer’s Rule OF MatrixCramer’s Rule OF Matrix
Cramer’s Rule OF Matrix
 
Maths sets ppt
Maths sets pptMaths sets ppt
Maths sets ppt
 
SET THEORY
SET THEORYSET THEORY
SET THEORY
 

Similar to Roots of polynomials

Class 14 3D HermiteInterpolation.pptx
Class 14 3D HermiteInterpolation.pptxClass 14 3D HermiteInterpolation.pptx
Class 14 3D HermiteInterpolation.pptxMdSiddique20
 
Differential Equations Homework Help
Differential Equations Homework HelpDifferential Equations Homework Help
Differential Equations Homework HelpMath Homework Solver
 
Differential Equations Assignment Help
Differential Equations Assignment HelpDifferential Equations Assignment Help
Differential Equations Assignment HelpMaths Assignment Help
 
April 15, 2015
April 15, 2015April 15, 2015
April 15, 2015khyps13
 
5007 Expert Voices Jered Bright
5007 Expert Voices Jered Bright5007 Expert Voices Jered Bright
5007 Expert Voices Jered Brightbrigh042
 
Quadratic equations
Quadratic equationsQuadratic equations
Quadratic equationsLhizet Ibajo
 
Chapter 4: Linear Algebraic Equations
Chapter 4: Linear Algebraic EquationsChapter 4: Linear Algebraic Equations
Chapter 4: Linear Algebraic EquationsMaria Fernanda
 
4 pages from matlab an introduction with app.-2
4 pages from matlab an introduction with app.-24 pages from matlab an introduction with app.-2
4 pages from matlab an introduction with app.-2Malika khalil
 
A NEW STUDY TO FIND OUT THE BEST COMPUTATIONAL METHOD FOR SOLVING THE NONLINE...
A NEW STUDY TO FIND OUT THE BEST COMPUTATIONAL METHOD FOR SOLVING THE NONLINE...A NEW STUDY TO FIND OUT THE BEST COMPUTATIONAL METHOD FOR SOLVING THE NONLINE...
A NEW STUDY TO FIND OUT THE BEST COMPUTATIONAL METHOD FOR SOLVING THE NONLINE...mathsjournal
 
Class 10 mathematics compendium
Class 10 mathematics compendiumClass 10 mathematics compendium
Class 10 mathematics compendiumAPEX INSTITUTE
 

Similar to Roots of polynomials (20)

NUMERICAL METHODS
NUMERICAL METHODSNUMERICAL METHODS
NUMERICAL METHODS
 
Es272 ch3b
Es272 ch3bEs272 ch3b
Es272 ch3b
 
Chapter 3
Chapter 3Chapter 3
Chapter 3
 
Class 14 3D HermiteInterpolation.pptx
Class 14 3D HermiteInterpolation.pptxClass 14 3D HermiteInterpolation.pptx
Class 14 3D HermiteInterpolation.pptx
 
Differential Equations Homework Help
Differential Equations Homework HelpDifferential Equations Homework Help
Differential Equations Homework Help
 
Differential Equations Assignment Help
Differential Equations Assignment HelpDifferential Equations Assignment Help
Differential Equations Assignment Help
 
April 15, 2015
April 15, 2015April 15, 2015
April 15, 2015
 
Calculus Homework Help
Calculus Homework HelpCalculus Homework Help
Calculus Homework Help
 
Calculus Assignment Help
Calculus Assignment HelpCalculus Assignment Help
Calculus Assignment Help
 
Quadratic equation
Quadratic equationQuadratic equation
Quadratic equation
 
real numbers
real numbersreal numbers
real numbers
 
5007 Expert Voices Jered Bright
5007 Expert Voices Jered Bright5007 Expert Voices Jered Bright
5007 Expert Voices Jered Bright
 
Quadratic equations
Quadratic equationsQuadratic equations
Quadratic equations
 
Chapter 4: Linear Algebraic Equations
Chapter 4: Linear Algebraic EquationsChapter 4: Linear Algebraic Equations
Chapter 4: Linear Algebraic Equations
 
4 pages from matlab an introduction with app.-2
4 pages from matlab an introduction with app.-24 pages from matlab an introduction with app.-2
4 pages from matlab an introduction with app.-2
 
Maths project for class 10 th
Maths project for class 10 thMaths project for class 10 th
Maths project for class 10 th
 
Ca 1.6
Ca 1.6Ca 1.6
Ca 1.6
 
A NEW STUDY TO FIND OUT THE BEST COMPUTATIONAL METHOD FOR SOLVING THE NONLINE...
A NEW STUDY TO FIND OUT THE BEST COMPUTATIONAL METHOD FOR SOLVING THE NONLINE...A NEW STUDY TO FIND OUT THE BEST COMPUTATIONAL METHOD FOR SOLVING THE NONLINE...
A NEW STUDY TO FIND OUT THE BEST COMPUTATIONAL METHOD FOR SOLVING THE NONLINE...
 
Class 10 mathematics compendium
Class 10 mathematics compendiumClass 10 mathematics compendium
Class 10 mathematics compendium
 
MATHS PRESENTATION
MATHS PRESENTATIONMATHS PRESENTATION
MATHS PRESENTATION
 

More from daferro

Tratatimiento numerico de ecuaciones diferenciales (2)
Tratatimiento numerico de ecuaciones diferenciales (2)Tratatimiento numerico de ecuaciones diferenciales (2)
Tratatimiento numerico de ecuaciones diferenciales (2)daferro
 
ECUACIONES DIFERENCIALES ORDINARIAS
ECUACIONES DIFERENCIALES ORDINARIASECUACIONES DIFERENCIALES ORDINARIAS
ECUACIONES DIFERENCIALES ORDINARIASdaferro
 
Exposicion ecuaciones diferenciales ordinarias (edo) final
Exposicion ecuaciones diferenciales ordinarias (edo) finalExposicion ecuaciones diferenciales ordinarias (edo) final
Exposicion ecuaciones diferenciales ordinarias (edo) finaldaferro
 
Example of iterative method
Example of iterative methodExample of iterative method
Example of iterative methoddaferro
 
Example of iterative method
Example of iterative methodExample of iterative method
Example of iterative methoddaferro
 
Factorizacion lu[1]
Factorizacion lu[1]Factorizacion lu[1]
Factorizacion lu[1]daferro
 
Factorizacion lu[1]
Factorizacion lu[1]Factorizacion lu[1]
Factorizacion lu[1]daferro
 
Factorizacion lu[1]
Factorizacion lu[1]Factorizacion lu[1]
Factorizacion lu[1]daferro
 
Roots of equations example
Roots of equations exampleRoots of equations example
Roots of equations exampledaferro
 
Roots of polynomials.example
Roots of polynomials.exampleRoots of polynomials.example
Roots of polynomials.exampledaferro
 
Raices de ecuaciones
Raices de ecuacionesRaices de ecuaciones
Raices de ecuacionesdaferro
 
Raices de ecuaciones
Raices de ecuacionesRaices de ecuaciones
Raices de ecuacionesdaferro
 
Met.biseccion
Met.biseccionMet.biseccion
Met.bisecciondaferro
 
Raices de ecuaciones
Raices de ecuacionesRaices de ecuaciones
Raices de ecuacionesdaferro
 
Raices de ecuaciones
Raices de ecuacionesRaices de ecuaciones
Raices de ecuacionesdaferro
 
Factorizacion lu[1]
Factorizacion lu[1]Factorizacion lu[1]
Factorizacion lu[1]daferro
 
Matrices and determinats
Matrices and determinatsMatrices and determinats
Matrices and determinatsdaferro
 
MATRICES
MATRICESMATRICES
MATRICESdaferro
 
Matrices
MatricesMatrices
Matricesdaferro
 

More from daferro (20)

Tratatimiento numerico de ecuaciones diferenciales (2)
Tratatimiento numerico de ecuaciones diferenciales (2)Tratatimiento numerico de ecuaciones diferenciales (2)
Tratatimiento numerico de ecuaciones diferenciales (2)
 
ECUACIONES DIFERENCIALES ORDINARIAS
ECUACIONES DIFERENCIALES ORDINARIASECUACIONES DIFERENCIALES ORDINARIAS
ECUACIONES DIFERENCIALES ORDINARIAS
 
Exposicion ecuaciones diferenciales ordinarias (edo) final
Exposicion ecuaciones diferenciales ordinarias (edo) finalExposicion ecuaciones diferenciales ordinarias (edo) final
Exposicion ecuaciones diferenciales ordinarias (edo) final
 
Example of iterative method
Example of iterative methodExample of iterative method
Example of iterative method
 
Example of iterative method
Example of iterative methodExample of iterative method
Example of iterative method
 
Factorizacion lu[1]
Factorizacion lu[1]Factorizacion lu[1]
Factorizacion lu[1]
 
Factorizacion lu[1]
Factorizacion lu[1]Factorizacion lu[1]
Factorizacion lu[1]
 
Factorizacion lu[1]
Factorizacion lu[1]Factorizacion lu[1]
Factorizacion lu[1]
 
Roots of equations example
Roots of equations exampleRoots of equations example
Roots of equations example
 
Roots of polynomials.example
Roots of polynomials.exampleRoots of polynomials.example
Roots of polynomials.example
 
Raices de ecuaciones
Raices de ecuacionesRaices de ecuaciones
Raices de ecuaciones
 
Raices de ecuaciones
Raices de ecuacionesRaices de ecuaciones
Raices de ecuaciones
 
Met.biseccion
Met.biseccionMet.biseccion
Met.biseccion
 
Raices de ecuaciones
Raices de ecuacionesRaices de ecuaciones
Raices de ecuaciones
 
Raices de ecuaciones
Raices de ecuacionesRaices de ecuaciones
Raices de ecuaciones
 
Gauss
GaussGauss
Gauss
 
Factorizacion lu[1]
Factorizacion lu[1]Factorizacion lu[1]
Factorizacion lu[1]
 
Matrices and determinats
Matrices and determinatsMatrices and determinats
Matrices and determinats
 
MATRICES
MATRICESMATRICES
MATRICES
 
Matrices
MatricesMatrices
Matrices
 

Roots of polynomials

  • 1. BAIRSTOW METHOD MULLIER METHOD DANIEL FERNANDO RODRIGUEZ ROOTS OF POLYNOMIALS
  • 2. Bairstow Method A method for calculating roots of polynomials can calculate peer (conjugated in the case of complex roots). Unlike Newton, calculate complex roots without having to make calculations with complex numbers.  It is based on the synthetic division of the polynomial Pn (x) by the quadratic (x2 - rx - s).
  • 3. Bairstow Method The synthetic division can be extended to quadratic factors: and even by multiplying the coefficients is obtained:
  • 4. Bairstow Method We want to find the values of r and s that make b1 and b0 equal to zero since, in this case, the factor divided exactly quadratic polynomial.  The first method works by taking an initial approximation (r0, s0) and generate approximations (rk, sk) getting better using an iterative procedure until the remainder of division by the quadratic polynomial (x2 - rkx - sk) is zero.  The iterative procedure of calculation is based on the fact that both b1 and b0 are functions of r and s.
  • 5. In developing b1 (rk, sk) and b0 (rk, sk) in Taylor series around the point (r *, s *), we obtain: It takes (r *, s *) as the point where the residue is zero and Δr = r * - rk, Δs = s * - sk. Then: Bairstow Method
  • 6. Bairstow Method Bairstow showed that the required partial derivatives can be obtained from the bi by a second synthetic division between factor (x2 - r0x - s0) in the same way that the bi are obtained from the ai. The calculation is:
  • 7. Thus, the system of equations can be written Bairstow Method
  • 8. Calculation of approximate error: When tolerance is reached estimated coefficientsrand s is used to calculate the roots: Bairstow Method
  • 9. Bairstow Method Then: When the resulting polynomial is of third order or more, the Bairstow method should be applied to obtain a resultant function of order 2. When the result is quadratic polynomial, defines two of the roots using the quadratic equation. When the final function is first order root is determined from the clearance of the equation.
  • 10. MullerMethod Is based on the layout of a polynomial function specifically a parable with three initial values. Is to have the coefficients of a parabola passing through three points. These points are substituted into the quadratic formula to get the value where the parabola intersects the x-axis, ie, the approximate root.
  • 11.
  • 12. The approach is facilitated by writing the parable in a convenient form: the parabola must pass through three points. These are evaluated as follows:
  • 13. You can find the three unknown coefficients a, b, c and to two terms of the last equation are zero, f (x +1) = c, resulting in two equations with two unknowns
  • 14. An algebraic manipulation allows you to find the remaining coefficients a, b. how to do this is to define the differences
  • 15. These are replaced in the above equations and result: Where a and b are cleared and get:
  • 16. Already known evaluate the quadratic coefficients: Evaluated to determine the sign: If D1 is developed further with the + quadratic, but is solved with the - sign
  • 17.
  • 18. First evaluate the function to baseline: That are used to calculate:
  • 19. These values are replaced in turn to find the values of a, b, c Then we find the term D major to determine the sign of the quadratic
  • 20. As D1> D2 solve the quadratic with a positive sign. After the error is calculated accordingly to the Xi +1 xi +2 with the new variables:
  • 21. Now for the new iterationXi-1 = Xi previousXi +1 = Xi previousXi +2 = Xi +1calculated
  • 22.
  • 24. BURDEN, Richard L. y Faires J.: Análisis Numérico. Séptima Edición.