SlideShare a Scribd company logo
1 of 101
Download to read offline
Principii de ventilatie in ALI/ARDS 
SUUB 
Clinica Anestezie Terapie Intensiva
ALI / ARDS – Definitie: 
American-European Consensus Conference – 1994 
Sindrom caracterizat prin inflamatie acuta si 
persistenta, permeabilitate vasculara si alveolara 
crescuta
ALI / ARDS – Definitie: 
• Debut acut 
• Infiltrate pulmonare bilaterale 
( ˜EP) pe RxCP 
• PaO2/FiO2 = 201-300 mmHg 
PaO2/FiO2 ≤ 200 mmHg 
-Revarsat pleural 
-Volum pulmonar redus 
-Variabilitate 
-CT 
-PEEP? MAwP? 
-D.p. cu frecventa EAB, care EAB este 
ales 
-La FiO2 <0,5 – nu mai reflecta suntul 
-ALI + EP – PAWP > 18 
-E TOR Ĺ sau MAwP Ĺ , PEEP Ĺ 
-Protocol ptr diagnostic clinic de 
LAH 
• PAWP≤ 18 mmHg sau/si fara dovada clinica de LAH
ALI / ARDS – Dg. Diferential: 
• EP cardiogen 
• DAH 
• Pneumonia acuta 
eozinofilica idiopatica 
• Pneumonia lupica 
• Proteinoza alveolara 
• Infiltrat leucemic 
• Sarcoidoza 
• Pneumonia acuta 
interstitiala (Hamman- 
Rich) 
• Clinica 
• Istoric 
• Eco 
• BNP 
• Swan Ganz 
• Bronhoscopie 
• Biopsie 
• CT
DIRECT LUNG INJURY 
• Pneumonia 
• Aspiratia continutului 
gastric 
• Contuzia pulmonara 
• Inhalatie de toxice 
• Inecul 
INDIRECT LUNG INJURY 
• Sepsis 
• Traumatism nou toracic 
sever 
• Bypass CP 
• Pancreatita acuta 
• Arsuri 
• TRALI 
cea mai frecventa 
cauza 
extraspitaliceasca 
cea mai frecventa 
cauza
Patogeneza: 
• activare neutrofile, 
macrofage, plachete 
• citokine: IL1β, TNFα, 
IL6, IL8 
• radicali liberi, 
proteaze 
• activare complement 
• eicosanoizi: PGI2, 
LT, TXA2 
• NO 
• PAF
Consecinte morfopatologice: 
- Injurie la nivelul endoteliului capilar si 
epiteliului alveolar 
- edem interstitial si alveolar 
- fluid proteinaceu, celule distruse 
- pierdere surfactant 
colaps alveolar
Consecinte fiziopatologice: 
• Schimburi gazoase alterate 
 hO2 
 
- V/Q mismatch 
- sunt 
- VD fiziologic Ĺ  HCO2 
• Complianta scazuta -- “baby lung” (Csp ~ N) 
• HTP (25%) - VC hipoxica 
- PPV 
- HCO2 
- subst VC (PAF Ĺ) 
- injurie parenchim  pat vascular Ļ 
- IC dr acuta RAR
Figure: Schema representation of sponge model. In ARDS the “tissue”, likely edema in 
the early phase, is almost doubled in each lung level compared with normal, 
indicating the nongravitational distribution of edema. The increased mass, however, 
causes an increased superimposed pressure (SP), which in turn, leads to a “gas 
squeezing” from the most dependent lung regions. Superimposed pressure in 
expressed as cm H2O. The values indicated in the figures are taken from Pelosi and 
cowerkers.
1. Greutatea inimii in pozitie supina 
2. Cresterea presiunii abdominale
ARDS = Heterogenitate 
• Intre pacienti 
• In timp, la acelasi pacient 
• In acelasi plaman 
Faza precoce 
(0-3 zile) 
Faza tardiva 
(>7 zile) 
Colagen 
structural 
puternic degradat 
Atelectazie ++++ ++ 
Edem ++++ ++ 
Mecanica heterogena mai putin heterogena 
VILI edem si 
hemoragie 
pneumotorax 
pneumatocele 
-Regiuni inflate – mult, putin, mediu 
-Regiuni consolidate (sticky atelect) – 
deja proces de fibrinoformare 
-Regiuni atelecto-colabate(loose atelect)- 
mecanism presional
Factori determinanti ai presiunii de deschidere: 
1. Absenta surfactantului 
2. Ppl, SP mai crescute in partea dependenta 
3. Reducerea compliantei toracice 
4. Fibrinoformare 
5. Marimea alveolei(T=Δ pr/2h)
• 
• EL > N ĺ TPĹĺ VILI / VALI 
• EW > N ĺ TPĻĺ PplĹĺ Alterare hemodinamica
Mecanica heterogena 
• Deschiderea plamanului are loc la p > decat colabarea 
• Deschiderea unor unitati poate presupune hiperinflatia altora
Mecanica respiratorie 
ARDS pulmonar vs. ARDS extrapulmonar 
• Consolidare ↑ 
• EL ↑↑ ↑ 
• Raspunde la manevre de 
reĐrutare↓ 
• Nu raspunde la pozitia prona 
• R ~ 
• ERS ~ 
• Sticky atelectasis 
• Risc de barotrauma 
• IAP normal 
• Ground-glass 
• EW ↑↑, EL ↑ 
• Raspunde la manevre de 
reĐrutare ↑ 
• Raspunde la pozitia prona 
• R ~ 
• ERS ~ 
• IAP ↑↑ ;~ EWͿ 
• Edem interstitial 
• Loose atelectasis 
• Risc de alterare 
hemodinamica
Figure: Changes of static 
elastances of the respiratory 
system (Est,rs), lung (Est,L), and 
chest wall (Est,w) as a function of 
PEEP in pacients with ARDS 
caused by pulmonary disease 
(Group 1, top panel) with in 
ARDS caused by extrapulmonary 
disease (Group 2, bottom panel). 
Comparison within each group: 
*p<0.05 versus PEEP O cm H2O; 
**p<0.01 versus PEEP O cm 
H2O. Comparison between the 
two groups; ^p<0.05 versus 
Group 1; ^^p<0.01 versus Group 1.
VILI / VALI 
Def: 
“Acute lung injury that develops during 
mechanical ventilation is termed VALI if one 
cannot prove beyond any doubt a causative 
relationship. 
VILI – a causative relationship can be proven.”
VILI / VALI Principalele cauze: 
1. Barotrauma 
2. Volutrauma 
3. Atelectrauma 
4. Toxicitatea oxigenului 
5. Biotrauma
BAROTRAUMA 
Odata principala cauza de VILI 
Astazi “doar” un accident mecanic 
Cauzata de: Include: 
• MAwP ↑ 
• PP ↑ 
• PEEP ↑ 
• Emfizem interstitial 
• Pneumomediastin 
• Pneumotorax 
• Embolism gazos
VOLUTRAUMA (supradistensia alveolara) 
• Volumele tidal mari produc ALI 
• 2 studii pe animale demonstreaza ca volumele 
tidal mari, nu presiunile, produc ALI 
• In realitate presiunea TP explica ambele fenomene 
si: 
-- presiunile mari nu produc tot timpul 
barotrauma (Cw Ļ) 
-- volumele mici pot produce ALI (CL Ļ)
Extravascular lung water (Qwl), dry lung weight, and albumin space are indicative of the 
development of lung injury. These abnormalities were induced in rats ventilated with 
high pressure and high tidal volume (HiP-HiV), low pressure and high volume (LoP-HiV), 
but not in those ventilated with high pressure and low volume (HiP-LoV). 
Redrawn from Dreyfuss, D,Soler, P,Bassett, G, Saumon, Am Rev Respir Dis 1988
The effect of limited intrathoracic expansion by means of a body cast on ventilator-induced 
lung injury in rabbits. Rabbits were ventilated with 15, 30, and 45 cmH20 peak inspiratory 
pressure for one hour. Redrawn from Hernandez, LA, Peevy, Kj, Moise, AA, Parker, JC, 
J Appl Physiol 1989.
Atelectazia ciclica 
(atelectrauma; shear stress trauma)
ATELECTRAUMA 
(interdependenta 
alveolara)
Popping open of lung units under high pressure might be the answer
• “cyclic stress “ endotelial 
• Zona 2 intermitenta 
• Forte de sens opus la nivelul lumenului ce uneste cele doua tipuri de vase
Toxicitatea oxigenului 
• Form rad. liberi 
- superoxid 
- hidrogen peroxid 
- ion hidroxil 
• Atelectazie de resorbtie 
• Studii pe animale cu FiO2=1 
DECES IN 48-72 h (ALI/ARDS) 
• Voluntari umani respirand FiO2=1 
• Target: FiO2 ≤ 0,6 
• Target: PaO2 = 55-80 
SpO2 = 88-95% 
Importanta hipoxemiei depaseste pe cea a 
toxicitatii O2 
RASP INFLAMATOR IN 24 h
BIOTRAUMA 
• Rasunet celular al unui pattern ventilator inadecvat 
• Presupune mecanotransductie 
• Producere excesiva si import inadecvat de mediatori 
inflamatori si antiinflamatori 
• Raspunsul inflamator este intra si extracompartimental 
(decompartimentalizare) 
• Predispune la SIRS si MODS 
• Alterarea patternului de crestere bacteriana si 
imunosupresie
MECANOTRANSDUCTIA
BIOTRAUMA
Lung protective ventilation 
Conventional “Lung 
protective” 
Large tidal volume Small tidal volume 
Minimum PEEP “Sufficient PEEP” 
Normalize PaCO2 Permissive 
hypercapnia 
Unrestrained 
airway pressure 
Pressure limitation 
1. Open Lung Ventilation 
“Open up the lung and keep 
the lung open” 
(1992, Lachmann) 
2. ARDS net
Open Lung Ventilation(1) 
• Volume tidal mici (4-8 ml/kgc) (˜ ARDS net) 
• Pplateau ≤ 25-30 cm H2O (˜ ARDS net) 
• Manevre de recrutare 
• PEEP optimizat 
• RR ≤ 35/min (˜ ARDS net) 
• Compromis: 
HCO2, hO2 (˜ ARDS net)
Open Lung Ventilation(2) 
• Nu exista un protocol universal 
• Mare variabilitate 
• Optimizarea PEEP-ului, manevra de recrutare, 
potential de recrutare – puncte de interes 
• Abordare fiziopatologica 
• Permite individualizarea ventilatiei 
• Presupune cunoastere aprofundata a mecanicii 
respiratorii
Model clasic de Open Lung Ventilation (Lachmann) 
Action (1) Data Comments 
Pacient at day 2: volume 
controlled ventilation with tidal 
volumes of 6 ml/kg 
FiO2=70%; PEEP=11cm H2O 
RR=32; I:E=1:2; 
SaO2=92% ; PAWP=26cmH2O ; 
TV=6 ml/kg=480 ml; 
PaO2=72mmHg; PaCO2=48 mmHg 
Switch to pressure controlled 
ventilation 
FiO2 set to 100% 
I:E=1:1; RR:40 
PAW 26 cm H2O 
PEEP 20 
SaO2=100% 
PaO2=140 mmHg 
PaCO2=39 mmHg 
Increase PAWP to 45 cmH2O for 
three breaths (5 seconds), then 
back to 30 
PaO2=265 mmHg 
1 min after stabilization increase 
PAWP to 50 for 5 sec, then back 
to 30 
PaO2=350 mmHg 
1 min after stabilization increase 
PAWP to 55 for 5 sec, then back 
to 30 
PaO2=530 mmHg 
PaCO2=28 mmHg
Model clasic de Open Lung Ventilation (Lachmann) 
Action (2) Data Comments 
1 min after stabilization increase 
PaO2=531 mmHg 
PAWP to 60 for 5 sec, then back 
PaCO2=28 mmHg 
to 30 
PaO2 does no further increase. 
Opening presure=55 cmH2O. 
Decrease PAWP to 28-24 No changes 
Decrease PAWP to 23 PaO2=480 mmHg The lung is collapsing. 
Minimum required upper 
pressure limit = 24 cmH2O 
Recruit the lung (PAWP to 55, 
then 24) 
Reach opening pressure and airway 
pressure set back just above collapse 
pressure 
PAWP 24, decrease PEEP to 18 No changes 
PEEP to 17 PaO2=541 mmHg 
PEEP to 16 PaO2=470 mmHg Minimum required lower 
pressure limit = 17 cm H2O
Model clasic de Open Lung Ventilation (Lachmann) 
Action (3) Data Comments 
Set PEEP to 17 
PaO2=544mmHg 
Increase PAWP to 55 for 5 sec 
PaCO2=34 mmHg 
(recruit) and back to 24 
Optimal CO2 removal requires VCO2 
of 430 ml/min; 
Slight hyperventilation 
Increase RR to 47 
I:E=3:2 
PaCO2=36mmHg 
VCO2=435 ml/min 
TV=395 ml=4,9 
Smaller pressure amplitude due to 
auto-PEEP and increased dead space 
ventilation 
Decrease FiO2 to 30% PaO2=114 mmHg 
PaCO2=36 mmHg 
Optimized patient ventilation at open 
lung
Manevre de recrutare 
• Nu exista “o cea mai buna” 
• Cele mai folosite: 1 si 2 
• 1:Cel mai mare impact 
hemodinamic 
• 3>1 daca presiuni mai mari 
ca cele tolerate la 1 sunt 
necesare 
• 1>3 pentru ca recrutarea 
depinde mult de MANP
Recrutam pas cu pas? 
When collapse is prevalent (top), the overall 
pleural pressure results very low and the local 
transpulmonary pressures increase 
significantly. The risk of overdistension is very 
high at this condition, especially if one 
considers a single step – high pressure 
recruiting maneuver. Contrarily, we propose 
the application of lower pressure at this 
moment (top), increasing it progressively as 
new units get recruited.
Facilitarea recrutarii 
• Pozitie prona 
• Presiune de inspir adecvata (40-45 cmH2O) 
• PEEP adecvat 
• Cel mai mic FiO2 acceptabil (in afara 
momentului recrutarii – Lachmann) 
• Respiratie spontana posibila 
(BIPAP, Autoflow, APRV) 
• Minimizeaza edemul interstitial 
(repletie volemica adecvata, 
monitorizare EVLW-PICCO,Vigileo, 
TA invaziv - ΔdoǁŶ+Δup)
Factori determinanti ai eficientei recrutarii (1) 
• Tipul de ARDS EP>Pulm 
• Stadiul ARDS 
• Punctul de pornire 
• PEEP postrecrutare 
• Tipul de manevra 
• PaO2/FiO2 < 150 (at PEEP 5 cm H2O) 
• RxCP – voalat 
• LIP – pe curba PV, bratul inspirator
Factori determinanti ai eficientei recrutarii (2) 
• Recrutezi doar ce este recrutabil 
• ↑PEEP are seŶs peŶtru plaŵaŶul reĐrutaďil 
• Cat de recrutabil este recrutabil? 
ENGSTRÖM 
> 9 % CT
Cel mai des derecrutezi prin: 
• FiO2 ↑ (>0,6) pentru Δt ↑ 
• Aspiratie / Bronhoscopie
Care este PEEP-ul optim? 
Maximum de recrutare cu minimum de distensie 
Electric impedance tomography (EIT) 
images are presented on the right, 
whereas the corresponding CT images 
(obtained at the same PEEP level) are 
represented in the left side of the 
figure. The EIT images represent the 
ventilation map during tidal breaths. 
Brighter areas indicate pixels with 
larger impedance variations (larger 
alveolar ventilation) during tidal 
breaths. Excessive, as well as 
insufficient PEEP levels, caused uneven 
ventilation. Excessive PEEP caused 
preferential ventilation in the 
dependent lung zones (because of the 
relative overdistention of non – 
dependent lung zones). Insufficient 
PEEP caused dependent collapse with 
preferential ventilation towards the 
patent airspaces at the non- dependent 
“baby lung”.
Care este PEEP-ul optim? 
1. Curba P-V brat inspirator (Engstrom 
dynostatic curve – dynostatic algorithm, 
constant low flow P-V loop pe Drager (VCV)) 
2. DO2 
DO2>600 mlO2/min chiar cu 
PEEP ↓ → ateleĐtrauŵa ↑ 
3. Evaluare PaO2,PaCO2 
4. Monitorizarea compliantei tidal (CRS) 
5. Indexul de stress 
6. CRF, volum recrutat - Engstrom
Clasic: 
-Faza 1 – recrutare 
-Faza 2 – inflatie normala 
-Faza 3 -- supradistensie 
CURBA P-V 
In realitate…
Evaluare PaCO2, PaO2 
A. Model Lachmann (PaO2) 
B. PaCO2 -- necesita VCV (MV=const) 
--la ↓ PEEP ;de la ϭ5 - 20): 
1. PaCO2 ~ (overdist=recr) 
Ϯ. PaCOϮ ↓ ;reĐr>oǀerdistͿ 
ϯ. PaCOϮ ↑ ;dereĐrutareͿ 
PEEP optim = cea mai mica PCO2 
Dezavantaje  redistributia sangelui intre teritorii cu V/Q 
diferit
CRS 
• Cea mai la indemana 
• CRS d.p. cu recrutare/supradistensie 
• Dezavantaje: 
- CRS are Sb ↓ la Đei Đu Cǁ ↓ 
- ΔCRS suŶt ↓↓
Stress index 
• Analiza in dinamica a curbei P-T (Paw) 
• Ventilatie cu flux constant (VCV) 
• Permite (teoretic) optimizarea ventilatiei 
- setare PEEP optim 
-setare VT optim 
• Vede raportul recrutare/supradistensie 
• Nu vede recrutarea sau distensia 
• Pp. culegerea de semnale cu frecventa ↑ 
• Foarte controversata 
• Odata efectuata optimizarea autoflow
Stress index
Date statistice (1) 
ARMA TRIAL (ARDS Network) 
• Studiu prospectiv, randomizat, multicentric 
• 861 pacienti cu ARDS 
• 12 ml/kg (A) vs 6 ml/kg (B) volum tidal 
• Grupul B: rata mortalitatii ↓ (31% vs 40%) 
• Grupul B: zile fara ventilatie mecanica (12 vs 10)
Date statistice (2) 
ALVEOLI TRIAL (ARDS NETWORK) 
• Studiu prospectiv, randomizat, multicentric 
• 768 pacienti cu ARDS ventilati conform ARMA 
cu exceptia FiO2 / PEEP 
• PEEP ↑ ǀs PEEP ↓ 
• PEEP mediu 13 vs 8 
• Rata mortalitatii: scadere nesemnificativa statistic 
• NB: Nu s-au efectuat MR 
• NB: Grupul PEEP ↑ -pacienti cu varste mai ↑ 
- PaO2/FiO2 mai ↓
Date statistice (3) 
(A) Open Lung Ventilation 
MR  PEEP optim/ ↑ 
(B) Conventional LPV 
ARDS net 
• Fara impact pe mortalitate 
• A – incidenta mai mica a hO2 
– recuperare mai rapida 
• Majoritatea studiilor au limite 
-- potentialul de recrutare este omis 
-- + MR - ĹPEEP 
-- + Ĺ PEEP - MR 
-- heterogenitate dpdv al bolii de baza 
-- randomizare defectuoasa (pacienti 
mai varstnici cu PaO2/FiO2 mai Ļ in grupul A) 
Recrutezi doar ce e recrutabil! 
Castigi doar unde poti castiga!
PRO si CONTRA respiratie spontana in 
managementul ventilator ALI/ARDS 
PRO 
• V/Q ↑in teritoriile 
supradiafragmatice 
• Efort inspirator 
Ppl ↓ 
↑TP 
↑ raspuŶsul la MR 
• CO↑ DO2 ↑ 
CONTRA 
• VO2 Ĺ 
• VCO2 Ĺ 
• ITBV Ĺ EVLW Ĺ 
EDEM Ĺ 
SP,Ppl Ĺ 
ĻTP 
Atelectazie 
Efort exp ↑ Ppl↑
PRO respiratie spontana
PRO respiratie spontana
PRO respiratie spontana
Hipercapnia permisiva - Efecte 
Hemodinamice si CV: 
• Simpaticotonie 
 
• ↑HR, ↑ SV, VC  MS + Catecolamine Ĺ 
• Ļ inotropism (pHi Ļ, direct) 
• VD (direct, pHi Ļ ) 
• VD coronariana in teritoriile normale furt 
• ĹVC pulm prin Ĺ reflex von Euler Lyljestrand 
• Curba disociere O2 la dreapta SaO2 Ļ dar Ĺ elib. Tis. O2 
• Creste QT 
• Scade injuria mitocondriala in modele de ischemie/ 
reperfuzie
Hipercapnia permisiva - Efecte 
SNC: 
• VD cerebrala in teritoriile normale furt 
• CBF Ĺ 
• ICP Ĺ CPP Ļ 
• Convulsii (la peste 100 mmHg) 
Diverse: 
• Ļ  renal 
• HK+
Hipercapnia permisiva 
Are the effects of high PaCO2 deleterious or Protective? 
CO2 
Activation of 
signal 
transduction 
pathways 
Decreased 
alveolar 
fluid Cl 
Decreased 
inflamatory 
response 
Decreased 
VILI/VALI
Hipercapnia permisiva – Contraindicatii 
(absolute si relative) 
• ICP ↑ ;trauŵa, tuŵora, HTA seǀeraͿ 
• Acidoza metabolica severa 
• B. coronariana, IC, aritmii 
• Tratament cu beta blocante 
• HTP, IC dreapta 
• Hipovolemie 
• Sangerari GI 
• Siclemie 
• ATC – supradozaj 
• SarĐiŶa risĐ de FBF ↓ priŶ sdr. de furt datorat VD
Hipercapnia permisiva – Principii 
1. Monitorizare atenta pana la stabilizarea PaCO2 
2. ĹPaCO2 gradata (≤10 mmHg/h) pt Ļ efecte 
adverse ( Δt suficient pt autoreglarea pHi) 
3. Limita PaCO2 – 80 mmHg (exceptional 100mmHg) 
4. pH target  7,15 – 7,20 sau 7,30 – 7,45 (ARDS 
net) 
5. Nu exista consens in privinta corectarii 
acidemiei datorata PaCO2 Ĺ 
Cand? 
Cu ce? 
Cum?
Hipercapnia permisiva 
• PRO pH≥7,15 
• PRO pH=7,3-7,45 
• CONCLUZIE: 
1. Nu corectezi acidemia (pH-ul) ci acidoza 
2. Acidoza este un raspuns individual la acidemie 
(ex – instab. hemod) 
Corectarea se va face individual (vezi CI) 
iar pH-ulĻ este UN semnal de alarma si 
NU indicator al corectarii 
Cand 
? 
-Relativ bine tolerata cand PaCO2a Ĺ treptat 
- Ļ VALI independent de VT Ļ 
- pH  fiziologic
Hipercapnia permisiva 
Cu ce? 
Cum? 
1. Setarea parametrilor ventilatori (RR, VT) a.i. sa ramai in intervalul de LPV 
2. Adm subst alcalinizante 
-- NaHCO3 – folosit in protocolul ARDS net 
-- THAM (trishidroximetilaminometan – R – NH2) 
-- Carbicarb- amestec echimolar CO3/HCO3 
NaHCO3+H+ H2CO3 CO2Ĺ ĹPaCO2 
ĹCO2icel ↓pH icel 
Obs: ĹPaCO2 este temporara 
 
Ļ pH icel este temporara VA=const – PaCO2 dp FACO2= 
Adm NaHCO3 treptata are impact minim pe PaCO2, pHicel
Interventii de salvare in managementul ventilator 
1. Ventilatia in pozitie prona 
2. TGI (tracheal gas insufflation) 
3. ECMO (extracorporeal membrane oxygenation) 
4. EC CO2R (extracorporeal CO2 removal) 
5. LPPPV – EC CO2 R (low frequency positive pressure vent + EC 
CO2 R) 
6. HFV (high frequency ventilation) 
7. LV (liquid ventilation) 
8. ILV (independent lung ventilation) 
9. PC – IRV (pressure controlled inverted ratio ventilation) clasic, 
APRV (airway pressure release ventilation) modern 
10. Surfactant inhalator 
11. Redistribuirea din teritorii de sunt inspre teritorii ventilate: NO 
inhalator, Almitrina iv, prostanoizi inhalator (epoprostenol, 
iloprost)
Ventilatia in pozitie prona – 
Robin Hood 
SUPINA PRONA 
VENTRAL (x): Va, Qa, CRFa 
NON-DEPEND 
DORSAL (y): Vb, Qb, CRFb 
DEPEND 
QbQa; Va>Vb 
CRFa>CRFb 
CRFa+CRFb = CRFz 
Va/Qa Ĺ (>N); Vb/Qb Ļ (<N) 
Va+Vb=Vz 
VENTRAL (y): Vd, Qb((Qa+Qb)/2),CRFd 
NON-DEPEND 
DORSAL (x): Vc, Qa((Qa+Qb/2)), CRFc 
DEPEND 
Vd>Vb(Ppl Ļ)(Vd/Qb)>(Vb/Qb) 
deci Vd/Qb  N 
Vc<Va (Ppl Ĺ ) (Vc/Qa)<(Va/Qa) 
deci Vc/Qa  N 
Vd+Vc= Vz 
CRFd>CRFb (Ppl Ļ) 
CRFc<CRFa (Ppl Ĺ) 
CRFd+CRFc = CRFz
Ventilatia in pozitia prona 
SUPIN: Cwstern – Cwcol ĹĹĹ  ventilatie ventrala 
(PTPventr – PTPdorsal ĹĹĹ) 
PRONA: Cwstern – Cwcol Ĺ  ventilatie ventrala + dorsala 
(PTPventr – PTPdorsal Ĺ) 
• Distributie diferita a VT (mai omogena) 
• PTP omogenizata (Ppl omogenizata) 
• Cw Ļ dar Cw e mai omogenizata 
• Perfuzie putin modificata 
 Ĺ rasp la MR
Ventilatia in pozitia prona 
Contraindicatii: 
• Trauma col. vertebrala (CI majora) 
• Instabilitate hemodinamica (CI relativa puternica) 
• Chirurgie toracica+abd (CI relativa) 
Riscuri: 
- Instab hemod 1,1 % / ciclu 
- Extubatie 0,4 % /ciclu 
- SaO2 scazuta 0,3 % / ciclu 
- Dislocare CVC 0,1 % / ciclu 
- Dislocare cat femural 0,1 % / ciclu 
- Obstructie sonda IOT 0,1 % / ciclu 
- TPSV 0,1 % / ciclu
Ventilatia prona 
SUMMARY AND RECOMMENDATIONS 
• Prone positioning appears to improve the oxygenation of most 
patients with ALI or ARDS; however, a mortality benefit has not been 
established. 
• Post-hoc analyses of multiple studies suggest that the greatest benefit of 
prone positioning occurs in the sickest patients if used early after the 
diagnosis of ALI or ARDS. 
• Duration: The optimal duration of prone positioning is unknown. While 
many studies have used repeated sessions lasting approximately six to 
eight hours per day, impressive and persistent improvements in 
oxygenation have been noted with prone positioning of longer duration 
• Routine prone positioning of all patients with ALI or ARDS is not 
recommended because there is substantial inconvenience associated with 
its use and there is insufficient data demonstrating improvement of patient-important 
outcomes. 
• In our clinical practice, however, we implement prone positioning early in 
selected patients with ALI or ARDS. Specifically, we initiate prone 
positioning if our goals of lung-protective ventilation are not being met, or 
if there is persistent respiratory acidosis or tissue hypoxia despite standard 
ventilation in the supine position. This reflects our belief that the risks of 
prone positioning are minimal when properly performed and that the 
physiologic rationale for its use is sound. 
www.UpToDate.org
Insuflatia traheala (TGI) 
• Concept vechi (1969) 
•  Mapleson D. 
• Flux secundar de O2/aer la niv 
carinei 
• Necesar doar spre sfarsitul 
expirului 
• Cateterul TGI spre carina sau 
spre circuitul ventilator (Ĺ 
PEEP) 
• TGI flow 4-15 l / min 
• Eficienta Ĺpentru Vda/Vdf ĺ1 
• Pentru siguranta trebuie sa 
“comunice” cu ventilatorul 
TGE (Tracheal Gas Exsufflation) 
Sistem coaxial (5mm+8mm)
HFV (High Frequency Ventilation) 
• VT<Vsma si RR>60/min 
• 4 tipuri: 1. HFJV(RR=100-150) 
2. HFOV(RR≤900) 
3. HFPV (HFOV+PCV) 
4. HFPPV
HFV - Indicatii 
• There are no universally accepted indications for HFV. Its use has also been 
described in a variety of clinical situations. HFV should be avoided in patients with 
obstructive lung disease. . 
• There is evidence that HFOV and HFPV improve oxygenation, although neither has 
been shown to improve clinical outcomes (eg, mortality, duration of mechanical 
ventilation, or length of ICU stay). 
• HFV is not risk free. Potential harms include intrinsic positive end-expiratory 
pressure (auto-PEEP), dynamic hyperinflation, and related sequelae (eg, pulmonary 
barotrauma, hemodynamic instability). In addition, there are specific risks associated 
with each type of HFV. 
• Bronchopleural fistula — HFJV is approved by the United States Food 
and Drug Administration for ventilating patients in whom a large and persistent 
bronchopleural fistula exists. However, the likelihood that HFJV will allow the 
bronchopleural fistula to close is unpredictable. While HFJV may promote fistula 
closure by limiting alveolar distension, this may be outweighed in some patients by 
increased plateau airway pressure (alveolar pressure), decreased oxygenation, or 
worse hypercapnia. 
• ALI/ARDS — The theoretical benefit of using HFV in patients with ALI/ARDS 
relates to the small tidal volumes. A strategy of low tidal volume ventilation has been 
proven in randomized trials to improve mortality, possibly due to decreased alveolar 
distension and ventilator-associated lung injury. Although the trials did not use HFV, 
many clinicians suspect that HFV confers a similar benefit. Until this is proven, HFV 
should not be considered routine care for patients with ALI/ARDS. HFV is 
used by some clinicians when there is persistent hypoxemia during the first three 
days of mechanical ventilation despite maximal conventional therapy, although the 
data to support this are limited 
www.UpToDate.org
APRV / BIPAP
PC-IRV / VC - IRV
LV (TLV+PLV) 
• Ventilatie cu perfluorocarbon (Ex perflubron – C,H, fluor, brom-radioopac) 
• Carrier inert de oxigen si CO2(O2=15 x plasma) 
• Nontoxic, abs sistemica minima, stabil chimic 
• Incolor, inodor, limpede 
• PFG abs e metabolizat de macrofage 
• Eliminare I prin volatilizare 
Avantaje: 
1. Ļ TS 
2. Rezervor de oxigen 
3. Deschide si mentine deschise alveolele prin presiune hidraulica (Ļ riscul 
de barotrauma) 
4. Δ Q minima 
5. V/Q mismatch Ļ (PFG sunt grele si “merg” in zonele dependente) 
6. Favorizeaza lavajul 
7. Efect antiinflamator 
In theory, LV may be of benefit for numerous neonatal and adult 
diseases. Clinical trials, however, have shown little improvement in 
important clinical outcomes. As a result, LV cannot be recommended in 
routine clinical care. (www.UpToDate.org)
Masurarea Vds / VT pe aparatul 
Drager
Indicator of the Severity of Lung 
Injury and a Predictor of Mortality 
•For every 0.05 increase in 
dead space fraction, the 
odds of death increased by 
45%. 
•Other observational studies 
suggest that a value of 0.60 
or higher may be 
associated with more 
severe lung injury.
Indicator of the Severity of Lung 
Injury and a Predictor of Mortality
Indicator of Lung Overdistension 
During PEEP Titration 
• Optimum End Expiratory Airway Pressure in 
Patients with Acute Pulmonary Failure 
• Suter PM, Fairley HB, Isenberg MD. NEJM 1975 
• Best PEEP corresponds 
to the lowest dead space 
fraction and the highest 
compliance
Anatomic Vd 
Alveolar Vd 
Components of 
Physiologic Dead Space = Anatomic + Alveolar 
20 – 40 % 
15 – 25 % 
5 – 15 %
Douglas Bag Exhaled Gas Collection 
PēCO2 VDphys = PaCO2 - PēCO2 
VT PaCO2
Dead Space Fraction Measurements 
on the Dräger Ventilator 
Uses Fowler Method to Calculate 
Anatomic Dead Space Fraction 
and Volume 
Vds / Vt 
Vds (mL) 
Integrated Mainstream 
CO2 Sensor
Dead Space Fraction Measurements 
on the Dräger Ventilator 
VCO2 
Minute Ventilation 
VCO2 = FēCO2 
MV 
FēCO2 x (760 – 47) = PēCO2 
VDphys = PaCO2 - PēCO2 
VT PaCO2
Dead Space Fraction Measurements 
on the Dräger Ventilator 
• Requires manually averaging 
VCO2 and MV over a 5 – 10 
minutes especially with large 
variations. 
• Validation study is not 
complete. 
• Requires commitment by 
Dräger to implement software 
revision.
ARDS - principles of mechanical ventilation

More Related Content

What's hot

Acute Lung Injury & Ards
Acute Lung Injury & ArdsAcute Lung Injury & Ards
Acute Lung Injury & Ards
Andrew Ferguson
 
ARDS: The Old and the New (-ish)
ARDS: The Old and the New (-ish)ARDS: The Old and the New (-ish)
ARDS: The Old and the New (-ish)
jrhoffmann
 
Mechanical Ventilation in ARDS vs COPD
Mechanical Ventilation in ARDS vs COPDMechanical Ventilation in ARDS vs COPD
Mechanical Ventilation in ARDS vs COPD
cairo1957
 
Pediatric and adult ecmo talk
Pediatric and adult ecmo talkPediatric and adult ecmo talk
Pediatric and adult ecmo talk
apollobgslibrary
 
Advanced Mechanical Ventilation
Advanced Mechanical VentilationAdvanced Mechanical Ventilation
Advanced Mechanical Ventilation
Andrew Ferguson
 
Lung protective strategies in anaesthesia
Lung protective strategies in anaesthesiaLung protective strategies in anaesthesia
Lung protective strategies in anaesthesia
drsoliman
 

What's hot (20)

Acute Lung Injury & Ards
Acute Lung Injury & ArdsAcute Lung Injury & Ards
Acute Lung Injury & Ards
 
Stress & Strain during Lung Protective Ventilation Egypt Pulmonary Critical...
Stress & Strain during  Lung Protective Ventilation  Egypt Pulmonary Critical...Stress & Strain during  Lung Protective Ventilation  Egypt Pulmonary Critical...
Stress & Strain during Lung Protective Ventilation Egypt Pulmonary Critical...
 
Prone Ventilation In ARDS
Prone Ventilation In ARDSProne Ventilation In ARDS
Prone Ventilation In ARDS
 
Bilateral diaphragm plication prior to transplantation
Bilateral diaphragm plication prior to transplantationBilateral diaphragm plication prior to transplantation
Bilateral diaphragm plication prior to transplantation
 
Z ben ma ecmo pgy 3 talk
Z ben ma   ecmo pgy 3 talkZ ben ma   ecmo pgy 3 talk
Z ben ma ecmo pgy 3 talk
 
ARDS: The Old and the New (-ish)
ARDS: The Old and the New (-ish)ARDS: The Old and the New (-ish)
ARDS: The Old and the New (-ish)
 
Prone Positioning in ARDS By Dr Muhammad Akram Khan Qaim KHani
Prone Positioning in ARDS By Dr Muhammad Akram Khan Qaim KHaniProne Positioning in ARDS By Dr Muhammad Akram Khan Qaim KHani
Prone Positioning in ARDS By Dr Muhammad Akram Khan Qaim KHani
 
The best definition of ARDS
The best definition of ARDSThe best definition of ARDS
The best definition of ARDS
 
Ards and ventilator management
Ards and ventilator managementArds and ventilator management
Ards and ventilator management
 
Mechanical Ventilation in ARDS vs COPD
Mechanical Ventilation in ARDS vs COPDMechanical Ventilation in ARDS vs COPD
Mechanical Ventilation in ARDS vs COPD
 
Is ECMO the Answer? A North American Perspective - Fan
Is ECMO the Answer? A North American Perspective - FanIs ECMO the Answer? A North American Perspective - Fan
Is ECMO the Answer? A North American Perspective - Fan
 
Pediatric and adult ecmo talk
Pediatric and adult ecmo talkPediatric and adult ecmo talk
Pediatric and adult ecmo talk
 
Recruitment Maneuvers in ARDS Dr Chennamchetty Vijay Kumar
Recruitment  Maneuvers in ARDS Dr Chennamchetty Vijay KumarRecruitment  Maneuvers in ARDS Dr Chennamchetty Vijay Kumar
Recruitment Maneuvers in ARDS Dr Chennamchetty Vijay Kumar
 
Ventilator Induced Lung Injury
Ventilator Induced Lung InjuryVentilator Induced Lung Injury
Ventilator Induced Lung Injury
 
ventilator1
ventilator1ventilator1
ventilator1
 
Advanced Mechanical Ventilation
Advanced Mechanical VentilationAdvanced Mechanical Ventilation
Advanced Mechanical Ventilation
 
Unipulmonar 1
Unipulmonar 1Unipulmonar 1
Unipulmonar 1
 
Oxygen Therapy is not Beneficial in COPD Patients with Moderate Hypoxaemia
Oxygen Therapy is not  Beneficial in COPD Patients with Moderate HypoxaemiaOxygen Therapy is not  Beneficial in COPD Patients with Moderate Hypoxaemia
Oxygen Therapy is not Beneficial in COPD Patients with Moderate Hypoxaemia
 
Using Imaging as a Biomarker for Asthma
Using Imaging as a Biomarker for AsthmaUsing Imaging as a Biomarker for Asthma
Using Imaging as a Biomarker for Asthma
 
Lung protective strategies in anaesthesia
Lung protective strategies in anaesthesiaLung protective strategies in anaesthesia
Lung protective strategies in anaesthesia
 

Similar to ARDS - principles of mechanical ventilation

Weaning from ventilator
Weaning from ventilatorWeaning from ventilator
Weaning from ventilator
Ritoban C
 
Ventilatory support in special situations balamugesh
Ventilatory support in special situations   balamugeshVentilatory support in special situations   balamugesh
Ventilatory support in special situations balamugesh
Dang Thanh Tuan
 
5)VENTILATORY MANAGEMANT OF ARDS.pptx
5)VENTILATORY MANAGEMANT OF ARDS.pptx5)VENTILATORY MANAGEMANT OF ARDS.pptx
5)VENTILATORY MANAGEMANT OF ARDS.pptx
Raj Kumar
 
Acute Respiratory Distress-Syndrome_0
Acute Respiratory Distress-Syndrome_0Acute Respiratory Distress-Syndrome_0
Acute Respiratory Distress-Syndrome_0
MAGED ABULMAGD
 
Acute Respiratory Distress-Syndrome_0
Acute Respiratory Distress-Syndrome_0Acute Respiratory Distress-Syndrome_0
Acute Respiratory Distress-Syndrome_0
MAGED ABULMAGD
 
Mechanical ventilation
Mechanical ventilationMechanical ventilation
Mechanical ventilation
NTAPARIA
 
A C U T E R E S P I R A T O R Y F A I L U R E
A C U T E  R E S P I R A T O R Y  F A I L U R EA C U T E  R E S P I R A T O R Y  F A I L U R E
A C U T E R E S P I R A T O R Y F A I L U R E
Dang Thanh Tuan
 
Acute Respiratory Failure
Acute Respiratory FailureAcute Respiratory Failure
Acute Respiratory Failure
Dang Thanh Tuan
 

Similar to ARDS - principles of mechanical ventilation (20)

Ards
ArdsArds
Ards
 
acute respiratory distress syndrome
acute respiratory distress syndromeacute respiratory distress syndrome
acute respiratory distress syndrome
 
Pediatric ARDS
Pediatric ARDSPediatric ARDS
Pediatric ARDS
 
03_Acute_Lung_Injury_and_ARDS_dr._divatia.ppt
03_Acute_Lung_Injury_and_ARDS_dr._divatia.ppt03_Acute_Lung_Injury_and_ARDS_dr._divatia.ppt
03_Acute_Lung_Injury_and_ARDS_dr._divatia.ppt
 
Ards
ArdsArds
Ards
 
Weaning from ventilator
Weaning from ventilatorWeaning from ventilator
Weaning from ventilator
 
Weaning from ventilator
Weaning from ventilatorWeaning from ventilator
Weaning from ventilator
 
ASSISTED/MECHANICAL VENTILATION in NEONATES. AHMAD REFAAT, MD
ASSISTED/MECHANICAL VENTILATION in NEONATES. AHMAD REFAAT, MDASSISTED/MECHANICAL VENTILATION in NEONATES. AHMAD REFAAT, MD
ASSISTED/MECHANICAL VENTILATION in NEONATES. AHMAD REFAAT, MD
 
Ventilatory support in special situations balamugesh
Ventilatory support in special situations   balamugeshVentilatory support in special situations   balamugesh
Ventilatory support in special situations balamugesh
 
PATHOGENESIS AND MANAGEMENT OF ARDS-2.pptx
PATHOGENESIS AND MANAGEMENT OF ARDS-2.pptxPATHOGENESIS AND MANAGEMENT OF ARDS-2.pptx
PATHOGENESIS AND MANAGEMENT OF ARDS-2.pptx
 
5)VENTILATORY MANAGEMANT OF ARDS.pptx
5)VENTILATORY MANAGEMANT OF ARDS.pptx5)VENTILATORY MANAGEMANT OF ARDS.pptx
5)VENTILATORY MANAGEMANT OF ARDS.pptx
 
Acute respiratory distress syndrome
Acute respiratory distress syndromeAcute respiratory distress syndrome
Acute respiratory distress syndrome
 
Acute Respiratory Distress-Syndrome_0
Acute Respiratory Distress-Syndrome_0Acute Respiratory Distress-Syndrome_0
Acute Respiratory Distress-Syndrome_0
 
Acute Respiratory Distress-Syndrome_0
Acute Respiratory Distress-Syndrome_0Acute Respiratory Distress-Syndrome_0
Acute Respiratory Distress-Syndrome_0
 
Pulmonary fuction test seminar
Pulmonary fuction test seminar Pulmonary fuction test seminar
Pulmonary fuction test seminar
 
Common pulmonary functions and interpretation
Common pulmonary functions and interpretationCommon pulmonary functions and interpretation
Common pulmonary functions and interpretation
 
Resp physiology & respiratory failure in children
Resp physiology & respiratory failure in childrenResp physiology & respiratory failure in children
Resp physiology & respiratory failure in children
 
Mechanical ventilation
Mechanical ventilationMechanical ventilation
Mechanical ventilation
 
A C U T E R E S P I R A T O R Y F A I L U R E
A C U T E  R E S P I R A T O R Y  F A I L U R EA C U T E  R E S P I R A T O R Y  F A I L U R E
A C U T E R E S P I R A T O R Y F A I L U R E
 
Acute Respiratory Failure
Acute Respiratory FailureAcute Respiratory Failure
Acute Respiratory Failure
 

More from Cosmin Balan

More from Cosmin Balan (12)

Quantitative approach in dysnatremias
Quantitative approach in dysnatremiasQuantitative approach in dysnatremias
Quantitative approach in dysnatremias
 
Alkalinization induced inotropic enhancement
Alkalinization induced inotropic enhancementAlkalinization induced inotropic enhancement
Alkalinization induced inotropic enhancement
 
Math modelled approach to gas-exchange monitoring
Math modelled approach to gas-exchange monitoring Math modelled approach to gas-exchange monitoring
Math modelled approach to gas-exchange monitoring
 
Inhalational Anaesthetics Induced Cardioprotection
Inhalational Anaesthetics Induced CardioprotectionInhalational Anaesthetics Induced Cardioprotection
Inhalational Anaesthetics Induced Cardioprotection
 
Hemodynamics - paradigm shifts
Hemodynamics - paradigm shiftsHemodynamics - paradigm shifts
Hemodynamics - paradigm shifts
 
Ttp shu
Ttp shuTtp shu
Ttp shu
 
Short bowel syndrome acid base physiology
Short bowel syndrome acid base physiologyShort bowel syndrome acid base physiology
Short bowel syndrome acid base physiology
 
Acid Base Physiology – Stewart and beyond
Acid Base Physiology – Stewart and beyond Acid Base Physiology – Stewart and beyond
Acid Base Physiology – Stewart and beyond
 
Contrast Induced Nephropathy
Contrast Induced NephropathyContrast Induced Nephropathy
Contrast Induced Nephropathy
 
Abord arterial si venos
Abord arterial si venos Abord arterial si venos
Abord arterial si venos
 
Monitoring hemodynamics-lost in translation
Monitoring hemodynamics-lost in translationMonitoring hemodynamics-lost in translation
Monitoring hemodynamics-lost in translation
 
Guytonian approach to shock - mean systemic filling pressure centered
Guytonian approach to shock - mean systemic filling pressure centeredGuytonian approach to shock - mean systemic filling pressure centered
Guytonian approach to shock - mean systemic filling pressure centered
 

Recently uploaded

💚Chandigarh Call Girls Service 💯Piya 📲🔝8868886958🔝Call Girls In Chandigarh No...
💚Chandigarh Call Girls Service 💯Piya 📲🔝8868886958🔝Call Girls In Chandigarh No...💚Chandigarh Call Girls Service 💯Piya 📲🔝8868886958🔝Call Girls In Chandigarh No...
💚Chandigarh Call Girls Service 💯Piya 📲🔝8868886958🔝Call Girls In Chandigarh No...
Sheetaleventcompany
 
Difference Between Skeletal Smooth and Cardiac Muscles
Difference Between Skeletal Smooth and Cardiac MusclesDifference Between Skeletal Smooth and Cardiac Muscles
Difference Between Skeletal Smooth and Cardiac Muscles
MedicoseAcademics
 
Call Girl In Indore 📞9235973566📞 Just📲 Call Inaaya Indore Call Girls Service ...
Call Girl In Indore 📞9235973566📞 Just📲 Call Inaaya Indore Call Girls Service ...Call Girl In Indore 📞9235973566📞 Just📲 Call Inaaya Indore Call Girls Service ...
Call Girl In Indore 📞9235973566📞 Just📲 Call Inaaya Indore Call Girls Service ...
Sheetaleventcompany
 
💚Call Girls In Amritsar 💯Anvi 📲🔝8725944379🔝Amritsar Call Girl No💰Advance Cash...
💚Call Girls In Amritsar 💯Anvi 📲🔝8725944379🔝Amritsar Call Girl No💰Advance Cash...💚Call Girls In Amritsar 💯Anvi 📲🔝8725944379🔝Amritsar Call Girl No💰Advance Cash...
💚Call Girls In Amritsar 💯Anvi 📲🔝8725944379🔝Amritsar Call Girl No💰Advance Cash...
Sheetaleventcompany
 
Kolkata Call Girls Service ❤️🍑 9xx000xx09 👄🫦 Independent Escort Service Kolka...
Kolkata Call Girls Service ❤️🍑 9xx000xx09 👄🫦 Independent Escort Service Kolka...Kolkata Call Girls Service ❤️🍑 9xx000xx09 👄🫦 Independent Escort Service Kolka...
Kolkata Call Girls Service ❤️🍑 9xx000xx09 👄🫦 Independent Escort Service Kolka...
Sheetaleventcompany
 

Recently uploaded (20)

Call girls Service Phullen / 9332606886 Genuine Call girls with real Photos a...
Call girls Service Phullen / 9332606886 Genuine Call girls with real Photos a...Call girls Service Phullen / 9332606886 Genuine Call girls with real Photos a...
Call girls Service Phullen / 9332606886 Genuine Call girls with real Photos a...
 
Call Girls Rishikesh Just Call 9667172968 Top Class Call Girl Service Available
Call Girls Rishikesh Just Call 9667172968 Top Class Call Girl Service AvailableCall Girls Rishikesh Just Call 9667172968 Top Class Call Girl Service Available
Call Girls Rishikesh Just Call 9667172968 Top Class Call Girl Service Available
 
💰Call Girl In Bangalore☎️63788-78445💰 Call Girl service in Bangalore☎️Bangalo...
💰Call Girl In Bangalore☎️63788-78445💰 Call Girl service in Bangalore☎️Bangalo...💰Call Girl In Bangalore☎️63788-78445💰 Call Girl service in Bangalore☎️Bangalo...
💰Call Girl In Bangalore☎️63788-78445💰 Call Girl service in Bangalore☎️Bangalo...
 
Call 8250092165 Patna Call Girls ₹4.5k Cash Payment With Room Delivery
Call 8250092165 Patna Call Girls ₹4.5k Cash Payment With Room DeliveryCall 8250092165 Patna Call Girls ₹4.5k Cash Payment With Room Delivery
Call 8250092165 Patna Call Girls ₹4.5k Cash Payment With Room Delivery
 
💚Chandigarh Call Girls Service 💯Piya 📲🔝8868886958🔝Call Girls In Chandigarh No...
💚Chandigarh Call Girls Service 💯Piya 📲🔝8868886958🔝Call Girls In Chandigarh No...💚Chandigarh Call Girls Service 💯Piya 📲🔝8868886958🔝Call Girls In Chandigarh No...
💚Chandigarh Call Girls Service 💯Piya 📲🔝8868886958🔝Call Girls In Chandigarh No...
 
Call Girls in Lucknow Just Call 👉👉 8875999948 Top Class Call Girl Service Ava...
Call Girls in Lucknow Just Call 👉👉 8875999948 Top Class Call Girl Service Ava...Call Girls in Lucknow Just Call 👉👉 8875999948 Top Class Call Girl Service Ava...
Call Girls in Lucknow Just Call 👉👉 8875999948 Top Class Call Girl Service Ava...
 
💚Reliable Call Girls Chandigarh 💯Niamh 📲🔝8868886958🔝Call Girl In Chandigarh N...
💚Reliable Call Girls Chandigarh 💯Niamh 📲🔝8868886958🔝Call Girl In Chandigarh N...💚Reliable Call Girls Chandigarh 💯Niamh 📲🔝8868886958🔝Call Girl In Chandigarh N...
💚Reliable Call Girls Chandigarh 💯Niamh 📲🔝8868886958🔝Call Girl In Chandigarh N...
 
❤️Call Girl Service In Chandigarh☎️9814379184☎️ Call Girl in Chandigarh☎️ Cha...
❤️Call Girl Service In Chandigarh☎️9814379184☎️ Call Girl in Chandigarh☎️ Cha...❤️Call Girl Service In Chandigarh☎️9814379184☎️ Call Girl in Chandigarh☎️ Cha...
❤️Call Girl Service In Chandigarh☎️9814379184☎️ Call Girl in Chandigarh☎️ Cha...
 
Difference Between Skeletal Smooth and Cardiac Muscles
Difference Between Skeletal Smooth and Cardiac MusclesDifference Between Skeletal Smooth and Cardiac Muscles
Difference Between Skeletal Smooth and Cardiac Muscles
 
Call Girl In Indore 📞9235973566📞 Just📲 Call Inaaya Indore Call Girls Service ...
Call Girl In Indore 📞9235973566📞 Just📲 Call Inaaya Indore Call Girls Service ...Call Girl In Indore 📞9235973566📞 Just📲 Call Inaaya Indore Call Girls Service ...
Call Girl In Indore 📞9235973566📞 Just📲 Call Inaaya Indore Call Girls Service ...
 
Independent Bangalore Call Girls (Adult Only) 💯Call Us 🔝 7304373326 🔝 💃 Escor...
Independent Bangalore Call Girls (Adult Only) 💯Call Us 🔝 7304373326 🔝 💃 Escor...Independent Bangalore Call Girls (Adult Only) 💯Call Us 🔝 7304373326 🔝 💃 Escor...
Independent Bangalore Call Girls (Adult Only) 💯Call Us 🔝 7304373326 🔝 💃 Escor...
 
Chennai ❣️ Call Girl 6378878445 Call Girls in Chennai Escort service book now
Chennai ❣️ Call Girl 6378878445 Call Girls in Chennai Escort service book nowChennai ❣️ Call Girl 6378878445 Call Girls in Chennai Escort service book now
Chennai ❣️ Call Girl 6378878445 Call Girls in Chennai Escort service book now
 
(RIYA)🎄Airhostess Call Girl Jaipur Call Now 8445551418 Premium Collection Of ...
(RIYA)🎄Airhostess Call Girl Jaipur Call Now 8445551418 Premium Collection Of ...(RIYA)🎄Airhostess Call Girl Jaipur Call Now 8445551418 Premium Collection Of ...
(RIYA)🎄Airhostess Call Girl Jaipur Call Now 8445551418 Premium Collection Of ...
 
Call Girls in Lucknow Just Call 👉👉8630512678 Top Class Call Girl Service Avai...
Call Girls in Lucknow Just Call 👉👉8630512678 Top Class Call Girl Service Avai...Call Girls in Lucknow Just Call 👉👉8630512678 Top Class Call Girl Service Avai...
Call Girls in Lucknow Just Call 👉👉8630512678 Top Class Call Girl Service Avai...
 
Circulatory Shock, types and stages, compensatory mechanisms
Circulatory Shock, types and stages, compensatory mechanismsCirculatory Shock, types and stages, compensatory mechanisms
Circulatory Shock, types and stages, compensatory mechanisms
 
Race Course Road } Book Call Girls in Bangalore | Whatsapp No 6378878445 VIP ...
Race Course Road } Book Call Girls in Bangalore | Whatsapp No 6378878445 VIP ...Race Course Road } Book Call Girls in Bangalore | Whatsapp No 6378878445 VIP ...
Race Course Road } Book Call Girls in Bangalore | Whatsapp No 6378878445 VIP ...
 
💚Call Girls In Amritsar 💯Anvi 📲🔝8725944379🔝Amritsar Call Girl No💰Advance Cash...
💚Call Girls In Amritsar 💯Anvi 📲🔝8725944379🔝Amritsar Call Girl No💰Advance Cash...💚Call Girls In Amritsar 💯Anvi 📲🔝8725944379🔝Amritsar Call Girl No💰Advance Cash...
💚Call Girls In Amritsar 💯Anvi 📲🔝8725944379🔝Amritsar Call Girl No💰Advance Cash...
 
Kolkata Call Girls Service ❤️🍑 9xx000xx09 👄🫦 Independent Escort Service Kolka...
Kolkata Call Girls Service ❤️🍑 9xx000xx09 👄🫦 Independent Escort Service Kolka...Kolkata Call Girls Service ❤️🍑 9xx000xx09 👄🫦 Independent Escort Service Kolka...
Kolkata Call Girls Service ❤️🍑 9xx000xx09 👄🫦 Independent Escort Service Kolka...
 
❤️Chandigarh Escorts Service☎️9814379184☎️ Call Girl service in Chandigarh☎️ ...
❤️Chandigarh Escorts Service☎️9814379184☎️ Call Girl service in Chandigarh☎️ ...❤️Chandigarh Escorts Service☎️9814379184☎️ Call Girl service in Chandigarh☎️ ...
❤️Chandigarh Escorts Service☎️9814379184☎️ Call Girl service in Chandigarh☎️ ...
 
💰Call Girl In Bangalore☎️7304373326💰 Call Girl service in Bangalore☎️Bangalor...
💰Call Girl In Bangalore☎️7304373326💰 Call Girl service in Bangalore☎️Bangalor...💰Call Girl In Bangalore☎️7304373326💰 Call Girl service in Bangalore☎️Bangalor...
💰Call Girl In Bangalore☎️7304373326💰 Call Girl service in Bangalore☎️Bangalor...
 

ARDS - principles of mechanical ventilation

  • 1. Principii de ventilatie in ALI/ARDS SUUB Clinica Anestezie Terapie Intensiva
  • 2. ALI / ARDS – Definitie: American-European Consensus Conference – 1994 Sindrom caracterizat prin inflamatie acuta si persistenta, permeabilitate vasculara si alveolara crescuta
  • 3. ALI / ARDS – Definitie: • Debut acut • Infiltrate pulmonare bilaterale ( ˜EP) pe RxCP • PaO2/FiO2 = 201-300 mmHg PaO2/FiO2 ≤ 200 mmHg -Revarsat pleural -Volum pulmonar redus -Variabilitate -CT -PEEP? MAwP? -D.p. cu frecventa EAB, care EAB este ales -La FiO2 <0,5 – nu mai reflecta suntul -ALI + EP – PAWP > 18 -E TOR Ĺ sau MAwP Ĺ , PEEP Ĺ -Protocol ptr diagnostic clinic de LAH • PAWP≤ 18 mmHg sau/si fara dovada clinica de LAH
  • 4.
  • 5.
  • 6. ALI / ARDS – Dg. Diferential: • EP cardiogen • DAH • Pneumonia acuta eozinofilica idiopatica • Pneumonia lupica • Proteinoza alveolara • Infiltrat leucemic • Sarcoidoza • Pneumonia acuta interstitiala (Hamman- Rich) • Clinica • Istoric • Eco • BNP • Swan Ganz • Bronhoscopie • Biopsie • CT
  • 7. DIRECT LUNG INJURY • Pneumonia • Aspiratia continutului gastric • Contuzia pulmonara • Inhalatie de toxice • Inecul INDIRECT LUNG INJURY • Sepsis • Traumatism nou toracic sever • Bypass CP • Pancreatita acuta • Arsuri • TRALI cea mai frecventa cauza extraspitaliceasca cea mai frecventa cauza
  • 8. Patogeneza: • activare neutrofile, macrofage, plachete • citokine: IL1β, TNFα, IL6, IL8 • radicali liberi, proteaze • activare complement • eicosanoizi: PGI2, LT, TXA2 • NO • PAF
  • 9. Consecinte morfopatologice: - Injurie la nivelul endoteliului capilar si epiteliului alveolar - edem interstitial si alveolar - fluid proteinaceu, celule distruse - pierdere surfactant colaps alveolar
  • 10. Consecinte fiziopatologice: • Schimburi gazoase alterate  hO2  - V/Q mismatch - sunt - VD fiziologic Ĺ  HCO2 • Complianta scazuta -- “baby lung” (Csp ~ N) • HTP (25%) - VC hipoxica - PPV - HCO2 - subst VC (PAF Ĺ) - injurie parenchim  pat vascular Ļ - IC dr acuta RAR
  • 11. Figure: Schema representation of sponge model. In ARDS the “tissue”, likely edema in the early phase, is almost doubled in each lung level compared with normal, indicating the nongravitational distribution of edema. The increased mass, however, causes an increased superimposed pressure (SP), which in turn, leads to a “gas squeezing” from the most dependent lung regions. Superimposed pressure in expressed as cm H2O. The values indicated in the figures are taken from Pelosi and cowerkers.
  • 12. 1. Greutatea inimii in pozitie supina 2. Cresterea presiunii abdominale
  • 13.
  • 14. ARDS = Heterogenitate • Intre pacienti • In timp, la acelasi pacient • In acelasi plaman Faza precoce (0-3 zile) Faza tardiva (>7 zile) Colagen structural puternic degradat Atelectazie ++++ ++ Edem ++++ ++ Mecanica heterogena mai putin heterogena VILI edem si hemoragie pneumotorax pneumatocele -Regiuni inflate – mult, putin, mediu -Regiuni consolidate (sticky atelect) – deja proces de fibrinoformare -Regiuni atelecto-colabate(loose atelect)- mecanism presional
  • 15. Factori determinanti ai presiunii de deschidere: 1. Absenta surfactantului 2. Ppl, SP mai crescute in partea dependenta 3. Reducerea compliantei toracice 4. Fibrinoformare 5. Marimea alveolei(T=Δ pr/2h)
  • 16. • • EL > N ĺ TPĹĺ VILI / VALI • EW > N ĺ TPĻĺ PplĹĺ Alterare hemodinamica
  • 17.
  • 18. Mecanica heterogena • Deschiderea plamanului are loc la p > decat colabarea • Deschiderea unor unitati poate presupune hiperinflatia altora
  • 19.
  • 20. Mecanica respiratorie ARDS pulmonar vs. ARDS extrapulmonar • Consolidare ↑ • EL ↑↑ ↑ • Raspunde la manevre de reĐrutare↓ • Nu raspunde la pozitia prona • R ~ • ERS ~ • Sticky atelectasis • Risc de barotrauma • IAP normal • Ground-glass • EW ↑↑, EL ↑ • Raspunde la manevre de reĐrutare ↑ • Raspunde la pozitia prona • R ~ • ERS ~ • IAP ↑↑ ;~ EWͿ • Edem interstitial • Loose atelectasis • Risc de alterare hemodinamica
  • 21. Figure: Changes of static elastances of the respiratory system (Est,rs), lung (Est,L), and chest wall (Est,w) as a function of PEEP in pacients with ARDS caused by pulmonary disease (Group 1, top panel) with in ARDS caused by extrapulmonary disease (Group 2, bottom panel). Comparison within each group: *p<0.05 versus PEEP O cm H2O; **p<0.01 versus PEEP O cm H2O. Comparison between the two groups; ^p<0.05 versus Group 1; ^^p<0.01 versus Group 1.
  • 22.
  • 23.
  • 24. VILI / VALI Def: “Acute lung injury that develops during mechanical ventilation is termed VALI if one cannot prove beyond any doubt a causative relationship. VILI – a causative relationship can be proven.”
  • 25. VILI / VALI Principalele cauze: 1. Barotrauma 2. Volutrauma 3. Atelectrauma 4. Toxicitatea oxigenului 5. Biotrauma
  • 26. BAROTRAUMA Odata principala cauza de VILI Astazi “doar” un accident mecanic Cauzata de: Include: • MAwP ↑ • PP ↑ • PEEP ↑ • Emfizem interstitial • Pneumomediastin • Pneumotorax • Embolism gazos
  • 27. VOLUTRAUMA (supradistensia alveolara) • Volumele tidal mari produc ALI • 2 studii pe animale demonstreaza ca volumele tidal mari, nu presiunile, produc ALI • In realitate presiunea TP explica ambele fenomene si: -- presiunile mari nu produc tot timpul barotrauma (Cw Ļ) -- volumele mici pot produce ALI (CL Ļ)
  • 28. Extravascular lung water (Qwl), dry lung weight, and albumin space are indicative of the development of lung injury. These abnormalities were induced in rats ventilated with high pressure and high tidal volume (HiP-HiV), low pressure and high volume (LoP-HiV), but not in those ventilated with high pressure and low volume (HiP-LoV). Redrawn from Dreyfuss, D,Soler, P,Bassett, G, Saumon, Am Rev Respir Dis 1988
  • 29. The effect of limited intrathoracic expansion by means of a body cast on ventilator-induced lung injury in rabbits. Rabbits were ventilated with 15, 30, and 45 cmH20 peak inspiratory pressure for one hour. Redrawn from Hernandez, LA, Peevy, Kj, Moise, AA, Parker, JC, J Appl Physiol 1989.
  • 30. Atelectazia ciclica (atelectrauma; shear stress trauma)
  • 32. Popping open of lung units under high pressure might be the answer
  • 33.
  • 34.
  • 35.
  • 36.
  • 37. • “cyclic stress “ endotelial • Zona 2 intermitenta • Forte de sens opus la nivelul lumenului ce uneste cele doua tipuri de vase
  • 38.
  • 39. Toxicitatea oxigenului • Form rad. liberi - superoxid - hidrogen peroxid - ion hidroxil • Atelectazie de resorbtie • Studii pe animale cu FiO2=1 DECES IN 48-72 h (ALI/ARDS) • Voluntari umani respirand FiO2=1 • Target: FiO2 ≤ 0,6 • Target: PaO2 = 55-80 SpO2 = 88-95% Importanta hipoxemiei depaseste pe cea a toxicitatii O2 RASP INFLAMATOR IN 24 h
  • 40. BIOTRAUMA • Rasunet celular al unui pattern ventilator inadecvat • Presupune mecanotransductie • Producere excesiva si import inadecvat de mediatori inflamatori si antiinflamatori • Raspunsul inflamator este intra si extracompartimental (decompartimentalizare) • Predispune la SIRS si MODS • Alterarea patternului de crestere bacteriana si imunosupresie
  • 43. Lung protective ventilation Conventional “Lung protective” Large tidal volume Small tidal volume Minimum PEEP “Sufficient PEEP” Normalize PaCO2 Permissive hypercapnia Unrestrained airway pressure Pressure limitation 1. Open Lung Ventilation “Open up the lung and keep the lung open” (1992, Lachmann) 2. ARDS net
  • 44. Open Lung Ventilation(1) • Volume tidal mici (4-8 ml/kgc) (˜ ARDS net) • Pplateau ≤ 25-30 cm H2O (˜ ARDS net) • Manevre de recrutare • PEEP optimizat • RR ≤ 35/min (˜ ARDS net) • Compromis: HCO2, hO2 (˜ ARDS net)
  • 45. Open Lung Ventilation(2) • Nu exista un protocol universal • Mare variabilitate • Optimizarea PEEP-ului, manevra de recrutare, potential de recrutare – puncte de interes • Abordare fiziopatologica • Permite individualizarea ventilatiei • Presupune cunoastere aprofundata a mecanicii respiratorii
  • 46. Model clasic de Open Lung Ventilation (Lachmann) Action (1) Data Comments Pacient at day 2: volume controlled ventilation with tidal volumes of 6 ml/kg FiO2=70%; PEEP=11cm H2O RR=32; I:E=1:2; SaO2=92% ; PAWP=26cmH2O ; TV=6 ml/kg=480 ml; PaO2=72mmHg; PaCO2=48 mmHg Switch to pressure controlled ventilation FiO2 set to 100% I:E=1:1; RR:40 PAW 26 cm H2O PEEP 20 SaO2=100% PaO2=140 mmHg PaCO2=39 mmHg Increase PAWP to 45 cmH2O for three breaths (5 seconds), then back to 30 PaO2=265 mmHg 1 min after stabilization increase PAWP to 50 for 5 sec, then back to 30 PaO2=350 mmHg 1 min after stabilization increase PAWP to 55 for 5 sec, then back to 30 PaO2=530 mmHg PaCO2=28 mmHg
  • 47. Model clasic de Open Lung Ventilation (Lachmann) Action (2) Data Comments 1 min after stabilization increase PaO2=531 mmHg PAWP to 60 for 5 sec, then back PaCO2=28 mmHg to 30 PaO2 does no further increase. Opening presure=55 cmH2O. Decrease PAWP to 28-24 No changes Decrease PAWP to 23 PaO2=480 mmHg The lung is collapsing. Minimum required upper pressure limit = 24 cmH2O Recruit the lung (PAWP to 55, then 24) Reach opening pressure and airway pressure set back just above collapse pressure PAWP 24, decrease PEEP to 18 No changes PEEP to 17 PaO2=541 mmHg PEEP to 16 PaO2=470 mmHg Minimum required lower pressure limit = 17 cm H2O
  • 48. Model clasic de Open Lung Ventilation (Lachmann) Action (3) Data Comments Set PEEP to 17 PaO2=544mmHg Increase PAWP to 55 for 5 sec PaCO2=34 mmHg (recruit) and back to 24 Optimal CO2 removal requires VCO2 of 430 ml/min; Slight hyperventilation Increase RR to 47 I:E=3:2 PaCO2=36mmHg VCO2=435 ml/min TV=395 ml=4,9 Smaller pressure amplitude due to auto-PEEP and increased dead space ventilation Decrease FiO2 to 30% PaO2=114 mmHg PaCO2=36 mmHg Optimized patient ventilation at open lung
  • 49. Manevre de recrutare • Nu exista “o cea mai buna” • Cele mai folosite: 1 si 2 • 1:Cel mai mare impact hemodinamic • 3>1 daca presiuni mai mari ca cele tolerate la 1 sunt necesare • 1>3 pentru ca recrutarea depinde mult de MANP
  • 50. Recrutam pas cu pas? When collapse is prevalent (top), the overall pleural pressure results very low and the local transpulmonary pressures increase significantly. The risk of overdistension is very high at this condition, especially if one considers a single step – high pressure recruiting maneuver. Contrarily, we propose the application of lower pressure at this moment (top), increasing it progressively as new units get recruited.
  • 51. Facilitarea recrutarii • Pozitie prona • Presiune de inspir adecvata (40-45 cmH2O) • PEEP adecvat • Cel mai mic FiO2 acceptabil (in afara momentului recrutarii – Lachmann) • Respiratie spontana posibila (BIPAP, Autoflow, APRV) • Minimizeaza edemul interstitial (repletie volemica adecvata, monitorizare EVLW-PICCO,Vigileo, TA invaziv - ΔdoǁŶ+Δup)
  • 52. Factori determinanti ai eficientei recrutarii (1) • Tipul de ARDS EP>Pulm • Stadiul ARDS • Punctul de pornire • PEEP postrecrutare • Tipul de manevra • PaO2/FiO2 < 150 (at PEEP 5 cm H2O) • RxCP – voalat • LIP – pe curba PV, bratul inspirator
  • 53. Factori determinanti ai eficientei recrutarii (2) • Recrutezi doar ce este recrutabil • ↑PEEP are seŶs peŶtru plaŵaŶul reĐrutaďil • Cat de recrutabil este recrutabil? ENGSTRÖM > 9 % CT
  • 54. Cel mai des derecrutezi prin: • FiO2 ↑ (>0,6) pentru Δt ↑ • Aspiratie / Bronhoscopie
  • 55. Care este PEEP-ul optim? Maximum de recrutare cu minimum de distensie Electric impedance tomography (EIT) images are presented on the right, whereas the corresponding CT images (obtained at the same PEEP level) are represented in the left side of the figure. The EIT images represent the ventilation map during tidal breaths. Brighter areas indicate pixels with larger impedance variations (larger alveolar ventilation) during tidal breaths. Excessive, as well as insufficient PEEP levels, caused uneven ventilation. Excessive PEEP caused preferential ventilation in the dependent lung zones (because of the relative overdistention of non – dependent lung zones). Insufficient PEEP caused dependent collapse with preferential ventilation towards the patent airspaces at the non- dependent “baby lung”.
  • 56. Care este PEEP-ul optim? 1. Curba P-V brat inspirator (Engstrom dynostatic curve – dynostatic algorithm, constant low flow P-V loop pe Drager (VCV)) 2. DO2 DO2>600 mlO2/min chiar cu PEEP ↓ → ateleĐtrauŵa ↑ 3. Evaluare PaO2,PaCO2 4. Monitorizarea compliantei tidal (CRS) 5. Indexul de stress 6. CRF, volum recrutat - Engstrom
  • 57. Clasic: -Faza 1 – recrutare -Faza 2 – inflatie normala -Faza 3 -- supradistensie CURBA P-V In realitate…
  • 58. Evaluare PaCO2, PaO2 A. Model Lachmann (PaO2) B. PaCO2 -- necesita VCV (MV=const) --la ↓ PEEP ;de la ϭ5 - 20): 1. PaCO2 ~ (overdist=recr) Ϯ. PaCOϮ ↓ ;reĐr>oǀerdistͿ ϯ. PaCOϮ ↑ ;dereĐrutareͿ PEEP optim = cea mai mica PCO2 Dezavantaje  redistributia sangelui intre teritorii cu V/Q diferit
  • 59. CRS • Cea mai la indemana • CRS d.p. cu recrutare/supradistensie • Dezavantaje: - CRS are Sb ↓ la Đei Đu Cǁ ↓ - ΔCRS suŶt ↓↓
  • 60. Stress index • Analiza in dinamica a curbei P-T (Paw) • Ventilatie cu flux constant (VCV) • Permite (teoretic) optimizarea ventilatiei - setare PEEP optim -setare VT optim • Vede raportul recrutare/supradistensie • Nu vede recrutarea sau distensia • Pp. culegerea de semnale cu frecventa ↑ • Foarte controversata • Odata efectuata optimizarea autoflow
  • 62.
  • 63.
  • 64.
  • 65.
  • 66. Date statistice (1) ARMA TRIAL (ARDS Network) • Studiu prospectiv, randomizat, multicentric • 861 pacienti cu ARDS • 12 ml/kg (A) vs 6 ml/kg (B) volum tidal • Grupul B: rata mortalitatii ↓ (31% vs 40%) • Grupul B: zile fara ventilatie mecanica (12 vs 10)
  • 67. Date statistice (2) ALVEOLI TRIAL (ARDS NETWORK) • Studiu prospectiv, randomizat, multicentric • 768 pacienti cu ARDS ventilati conform ARMA cu exceptia FiO2 / PEEP • PEEP ↑ ǀs PEEP ↓ • PEEP mediu 13 vs 8 • Rata mortalitatii: scadere nesemnificativa statistic • NB: Nu s-au efectuat MR • NB: Grupul PEEP ↑ -pacienti cu varste mai ↑ - PaO2/FiO2 mai ↓
  • 68. Date statistice (3) (A) Open Lung Ventilation MR  PEEP optim/ ↑ (B) Conventional LPV ARDS net • Fara impact pe mortalitate • A – incidenta mai mica a hO2 – recuperare mai rapida • Majoritatea studiilor au limite -- potentialul de recrutare este omis -- + MR - ĹPEEP -- + Ĺ PEEP - MR -- heterogenitate dpdv al bolii de baza -- randomizare defectuoasa (pacienti mai varstnici cu PaO2/FiO2 mai Ļ in grupul A) Recrutezi doar ce e recrutabil! Castigi doar unde poti castiga!
  • 69. PRO si CONTRA respiratie spontana in managementul ventilator ALI/ARDS PRO • V/Q ↑in teritoriile supradiafragmatice • Efort inspirator Ppl ↓ ↑TP ↑ raspuŶsul la MR • CO↑ DO2 ↑ CONTRA • VO2 Ĺ • VCO2 Ĺ • ITBV Ĺ EVLW Ĺ EDEM Ĺ SP,Ppl Ĺ ĻTP Atelectazie Efort exp ↑ Ppl↑
  • 73. Hipercapnia permisiva - Efecte Hemodinamice si CV: • Simpaticotonie  • ↑HR, ↑ SV, VC  MS + Catecolamine Ĺ • Ļ inotropism (pHi Ļ, direct) • VD (direct, pHi Ļ ) • VD coronariana in teritoriile normale furt • ĹVC pulm prin Ĺ reflex von Euler Lyljestrand • Curba disociere O2 la dreapta SaO2 Ļ dar Ĺ elib. Tis. O2 • Creste QT • Scade injuria mitocondriala in modele de ischemie/ reperfuzie
  • 74.
  • 75. Hipercapnia permisiva - Efecte SNC: • VD cerebrala in teritoriile normale furt • CBF Ĺ • ICP Ĺ CPP Ļ • Convulsii (la peste 100 mmHg) Diverse: • Ļ  renal • HK+
  • 76. Hipercapnia permisiva Are the effects of high PaCO2 deleterious or Protective? CO2 Activation of signal transduction pathways Decreased alveolar fluid Cl Decreased inflamatory response Decreased VILI/VALI
  • 77. Hipercapnia permisiva – Contraindicatii (absolute si relative) • ICP ↑ ;trauŵa, tuŵora, HTA seǀeraͿ • Acidoza metabolica severa • B. coronariana, IC, aritmii • Tratament cu beta blocante • HTP, IC dreapta • Hipovolemie • Sangerari GI • Siclemie • ATC – supradozaj • SarĐiŶa risĐ de FBF ↓ priŶ sdr. de furt datorat VD
  • 78. Hipercapnia permisiva – Principii 1. Monitorizare atenta pana la stabilizarea PaCO2 2. ĹPaCO2 gradata (≤10 mmHg/h) pt Ļ efecte adverse ( Δt suficient pt autoreglarea pHi) 3. Limita PaCO2 – 80 mmHg (exceptional 100mmHg) 4. pH target  7,15 – 7,20 sau 7,30 – 7,45 (ARDS net) 5. Nu exista consens in privinta corectarii acidemiei datorata PaCO2 Ĺ Cand? Cu ce? Cum?
  • 79. Hipercapnia permisiva • PRO pH≥7,15 • PRO pH=7,3-7,45 • CONCLUZIE: 1. Nu corectezi acidemia (pH-ul) ci acidoza 2. Acidoza este un raspuns individual la acidemie (ex – instab. hemod) Corectarea se va face individual (vezi CI) iar pH-ulĻ este UN semnal de alarma si NU indicator al corectarii Cand ? -Relativ bine tolerata cand PaCO2a Ĺ treptat - Ļ VALI independent de VT Ļ - pH  fiziologic
  • 80. Hipercapnia permisiva Cu ce? Cum? 1. Setarea parametrilor ventilatori (RR, VT) a.i. sa ramai in intervalul de LPV 2. Adm subst alcalinizante -- NaHCO3 – folosit in protocolul ARDS net -- THAM (trishidroximetilaminometan – R – NH2) -- Carbicarb- amestec echimolar CO3/HCO3 NaHCO3+H+ H2CO3 CO2Ĺ ĹPaCO2 ĹCO2icel ↓pH icel Obs: ĹPaCO2 este temporara  Ļ pH icel este temporara VA=const – PaCO2 dp FACO2= Adm NaHCO3 treptata are impact minim pe PaCO2, pHicel
  • 81. Interventii de salvare in managementul ventilator 1. Ventilatia in pozitie prona 2. TGI (tracheal gas insufflation) 3. ECMO (extracorporeal membrane oxygenation) 4. EC CO2R (extracorporeal CO2 removal) 5. LPPPV – EC CO2 R (low frequency positive pressure vent + EC CO2 R) 6. HFV (high frequency ventilation) 7. LV (liquid ventilation) 8. ILV (independent lung ventilation) 9. PC – IRV (pressure controlled inverted ratio ventilation) clasic, APRV (airway pressure release ventilation) modern 10. Surfactant inhalator 11. Redistribuirea din teritorii de sunt inspre teritorii ventilate: NO inhalator, Almitrina iv, prostanoizi inhalator (epoprostenol, iloprost)
  • 82. Ventilatia in pozitie prona – Robin Hood SUPINA PRONA VENTRAL (x): Va, Qa, CRFa NON-DEPEND DORSAL (y): Vb, Qb, CRFb DEPEND QbQa; Va>Vb CRFa>CRFb CRFa+CRFb = CRFz Va/Qa Ĺ (>N); Vb/Qb Ļ (<N) Va+Vb=Vz VENTRAL (y): Vd, Qb((Qa+Qb)/2),CRFd NON-DEPEND DORSAL (x): Vc, Qa((Qa+Qb/2)), CRFc DEPEND Vd>Vb(Ppl Ļ)(Vd/Qb)>(Vb/Qb) deci Vd/Qb  N Vc<Va (Ppl Ĺ ) (Vc/Qa)<(Va/Qa) deci Vc/Qa  N Vd+Vc= Vz CRFd>CRFb (Ppl Ļ) CRFc<CRFa (Ppl Ĺ) CRFd+CRFc = CRFz
  • 83. Ventilatia in pozitia prona SUPIN: Cwstern – Cwcol ĹĹĹ  ventilatie ventrala (PTPventr – PTPdorsal ĹĹĹ) PRONA: Cwstern – Cwcol Ĺ  ventilatie ventrala + dorsala (PTPventr – PTPdorsal Ĺ) • Distributie diferita a VT (mai omogena) • PTP omogenizata (Ppl omogenizata) • Cw Ļ dar Cw e mai omogenizata • Perfuzie putin modificata  Ĺ rasp la MR
  • 84. Ventilatia in pozitia prona Contraindicatii: • Trauma col. vertebrala (CI majora) • Instabilitate hemodinamica (CI relativa puternica) • Chirurgie toracica+abd (CI relativa) Riscuri: - Instab hemod 1,1 % / ciclu - Extubatie 0,4 % /ciclu - SaO2 scazuta 0,3 % / ciclu - Dislocare CVC 0,1 % / ciclu - Dislocare cat femural 0,1 % / ciclu - Obstructie sonda IOT 0,1 % / ciclu - TPSV 0,1 % / ciclu
  • 85. Ventilatia prona SUMMARY AND RECOMMENDATIONS • Prone positioning appears to improve the oxygenation of most patients with ALI or ARDS; however, a mortality benefit has not been established. • Post-hoc analyses of multiple studies suggest that the greatest benefit of prone positioning occurs in the sickest patients if used early after the diagnosis of ALI or ARDS. • Duration: The optimal duration of prone positioning is unknown. While many studies have used repeated sessions lasting approximately six to eight hours per day, impressive and persistent improvements in oxygenation have been noted with prone positioning of longer duration • Routine prone positioning of all patients with ALI or ARDS is not recommended because there is substantial inconvenience associated with its use and there is insufficient data demonstrating improvement of patient-important outcomes. • In our clinical practice, however, we implement prone positioning early in selected patients with ALI or ARDS. Specifically, we initiate prone positioning if our goals of lung-protective ventilation are not being met, or if there is persistent respiratory acidosis or tissue hypoxia despite standard ventilation in the supine position. This reflects our belief that the risks of prone positioning are minimal when properly performed and that the physiologic rationale for its use is sound. www.UpToDate.org
  • 86. Insuflatia traheala (TGI) • Concept vechi (1969) •  Mapleson D. • Flux secundar de O2/aer la niv carinei • Necesar doar spre sfarsitul expirului • Cateterul TGI spre carina sau spre circuitul ventilator (Ĺ PEEP) • TGI flow 4-15 l / min • Eficienta Ĺpentru Vda/Vdf ĺ1 • Pentru siguranta trebuie sa “comunice” cu ventilatorul TGE (Tracheal Gas Exsufflation) Sistem coaxial (5mm+8mm)
  • 87. HFV (High Frequency Ventilation) • VT<Vsma si RR>60/min • 4 tipuri: 1. HFJV(RR=100-150) 2. HFOV(RR≤900) 3. HFPV (HFOV+PCV) 4. HFPPV
  • 88. HFV - Indicatii • There are no universally accepted indications for HFV. Its use has also been described in a variety of clinical situations. HFV should be avoided in patients with obstructive lung disease. . • There is evidence that HFOV and HFPV improve oxygenation, although neither has been shown to improve clinical outcomes (eg, mortality, duration of mechanical ventilation, or length of ICU stay). • HFV is not risk free. Potential harms include intrinsic positive end-expiratory pressure (auto-PEEP), dynamic hyperinflation, and related sequelae (eg, pulmonary barotrauma, hemodynamic instability). In addition, there are specific risks associated with each type of HFV. • Bronchopleural fistula — HFJV is approved by the United States Food and Drug Administration for ventilating patients in whom a large and persistent bronchopleural fistula exists. However, the likelihood that HFJV will allow the bronchopleural fistula to close is unpredictable. While HFJV may promote fistula closure by limiting alveolar distension, this may be outweighed in some patients by increased plateau airway pressure (alveolar pressure), decreased oxygenation, or worse hypercapnia. • ALI/ARDS — The theoretical benefit of using HFV in patients with ALI/ARDS relates to the small tidal volumes. A strategy of low tidal volume ventilation has been proven in randomized trials to improve mortality, possibly due to decreased alveolar distension and ventilator-associated lung injury. Although the trials did not use HFV, many clinicians suspect that HFV confers a similar benefit. Until this is proven, HFV should not be considered routine care for patients with ALI/ARDS. HFV is used by some clinicians when there is persistent hypoxemia during the first three days of mechanical ventilation despite maximal conventional therapy, although the data to support this are limited www.UpToDate.org
  • 90. PC-IRV / VC - IRV
  • 91. LV (TLV+PLV) • Ventilatie cu perfluorocarbon (Ex perflubron – C,H, fluor, brom-radioopac) • Carrier inert de oxigen si CO2(O2=15 x plasma) • Nontoxic, abs sistemica minima, stabil chimic • Incolor, inodor, limpede • PFG abs e metabolizat de macrofage • Eliminare I prin volatilizare Avantaje: 1. Ļ TS 2. Rezervor de oxigen 3. Deschide si mentine deschise alveolele prin presiune hidraulica (Ļ riscul de barotrauma) 4. Δ Q minima 5. V/Q mismatch Ļ (PFG sunt grele si “merg” in zonele dependente) 6. Favorizeaza lavajul 7. Efect antiinflamator In theory, LV may be of benefit for numerous neonatal and adult diseases. Clinical trials, however, have shown little improvement in important clinical outcomes. As a result, LV cannot be recommended in routine clinical care. (www.UpToDate.org)
  • 92. Masurarea Vds / VT pe aparatul Drager
  • 93. Indicator of the Severity of Lung Injury and a Predictor of Mortality •For every 0.05 increase in dead space fraction, the odds of death increased by 45%. •Other observational studies suggest that a value of 0.60 or higher may be associated with more severe lung injury.
  • 94. Indicator of the Severity of Lung Injury and a Predictor of Mortality
  • 95. Indicator of Lung Overdistension During PEEP Titration • Optimum End Expiratory Airway Pressure in Patients with Acute Pulmonary Failure • Suter PM, Fairley HB, Isenberg MD. NEJM 1975 • Best PEEP corresponds to the lowest dead space fraction and the highest compliance
  • 96. Anatomic Vd Alveolar Vd Components of Physiologic Dead Space = Anatomic + Alveolar 20 – 40 % 15 – 25 % 5 – 15 %
  • 97. Douglas Bag Exhaled Gas Collection PēCO2 VDphys = PaCO2 - PēCO2 VT PaCO2
  • 98. Dead Space Fraction Measurements on the Dräger Ventilator Uses Fowler Method to Calculate Anatomic Dead Space Fraction and Volume Vds / Vt Vds (mL) Integrated Mainstream CO2 Sensor
  • 99. Dead Space Fraction Measurements on the Dräger Ventilator VCO2 Minute Ventilation VCO2 = FēCO2 MV FēCO2 x (760 – 47) = PēCO2 VDphys = PaCO2 - PēCO2 VT PaCO2
  • 100. Dead Space Fraction Measurements on the Dräger Ventilator • Requires manually averaging VCO2 and MV over a 5 – 10 minutes especially with large variations. • Validation study is not complete. • Requires commitment by Dräger to implement software revision.