SlideShare a Scribd company logo
1 of 37
Download to read offline
Mathematical Induction
Mathematical Induction
      
e.g. iii Prove n n  1 n  2 is divisible by 3
Mathematical Induction
      
e.g. iii Prove n n  1 n  2 is divisible by 3
 Step 1: Prove the result is true for n = 1
Mathematical Induction
      
e.g. iii Prove n n  1 n  2 is divisible by 3
 Step 1: Prove the result is true for n = 1
          123
         6
Mathematical Induction
      
e.g. iii Prove n n  1 n  2 is divisible by 3
 Step 1: Prove the result is true for n = 1
          123
         6       which is divisible by 3
Mathematical Induction
      
e.g. iii Prove n n  1 n  2 is divisible by 3
 Step 1: Prove the result is true for n = 1
          123
         6      which is divisible by 3
                 Hence the result is true for n = 1
Mathematical Induction
      
e.g. iii Prove n n  1 n  2 is divisible by 3
 Step 1: Prove the result is true for n = 1
          123
         6      which is divisible by 3
                 Hence the result is true for n = 1
 Step 2: Assume the result is true for n = k, where k is a positive
         integer
Mathematical Induction
      
e.g. iii Prove n n  1 n  2 is divisible by 3
 Step 1: Prove the result is true for n = 1
          123
         6      which is divisible by 3
                 Hence the result is true for n = 1
 Step 2: Assume the result is true for n = k, where k is a positive
         integer
        i.e. k k  1k  2  3P, where P is an integer
Mathematical Induction
      
e.g. iii Prove n n  1 n  2 is divisible by 3
 Step 1: Prove the result is true for n = 1
          123
         6      which is divisible by 3
                 Hence the result is true for n = 1
 Step 2: Assume the result is true for n = k, where k is a positive
         integer
        i.e. k k  1k  2  3P, where P is an integer

 Step 3: Prove the result is true for n = k + 1
Mathematical Induction
      
e.g. iii Prove n n  1 n  2 is divisible by 3
 Step 1: Prove the result is true for n = 1
          123
         6      which is divisible by 3
                 Hence the result is true for n = 1
 Step 2: Assume the result is true for n = k, where k is a positive
         integer
        i.e. k k  1k  2  3P, where P is an integer

 Step 3: Prove the result is true for n = k + 1
        i.e. Prove : k  1k  2k  3  3Q, where Q is an integer
Proof:
Proof:
         k  1k  2k  3
Proof:
           k  1k  2k  3
          k k  1k  2  3k  1k  2
Proof:
           k  1k  2k  3
          k k  1k  2  3k  1k  2
          3P  3k  1k  2
Proof:
           k  1k  2k  3
          k k  1k  2  3k  1k  2
          3P  3k  1k  2
          3P  k  1k  2
Proof:
           k  1k  2k  3
          k k  1k  2  3k  1k  2
          3P  3k  1k  2
          3P  k  1k  2
          3Q, where Q  P  k  1k  2 which is an integer
Proof:
           k  1k  2k  3
          k k  1k  2  3k  1k  2
          3P  3k  1k  2
          3P  k  1k  2
          3Q, where Q  P  k  1k  2 which is an integer
  Hence the result is true for n = k + 1 if it is also true for n = k
Proof:
           k  1k  2k  3
          k k  1k  2  3k  1k  2
          3P  3k  1k  2
          3P  k  1k  2
          3Q, where Q  P  k  1k  2 which is an integer
  Hence the result is true for n = k + 1 if it is also true for n = k


Step 4: Since the result is true for n = 1, then the result is true for
        all positive integral values of n by induction.
iv Prove 33n  2n2 is divisible by 5
iv Prove 33n  2n2 is divisible by 5
Step 1: Prove the result is true for n = 1
iv Prove 33n  2n2 is divisible by 5
Step 1: Prove the result is true for n = 1
        33  23
        27  8
        35
iv Prove 33n  2n2 is divisible by 5
Step 1: Prove the result is true for n = 1
        33  23
        27  8
        35     which is divisible by 5
iv Prove 33n  2n2 is divisible by 5
Step 1: Prove the result is true for n = 1
        33  23
        27  8
        35     which is divisible by 5
                Hence the result is true for n = 1
iv Prove 33n  2n2 is divisible by 5
Step 1: Prove the result is true for n = 1
        33  23
        27  8
        35     which is divisible by 5
                Hence the result is true for n = 1

Step 2: Assume the result is true for n = k, where k is a positive
        integer
        i.e. 33k  2k 2  5P, where P is an integer
iv Prove 33n  2n2 is divisible by 5
Step 1: Prove the result is true for n = 1
        33  23
        27  8
        35     which is divisible by 5
                Hence the result is true for n = 1

Step 2: Assume the result is true for n = k, where k is a positive
        integer
        i.e. 33k  2k 2  5P, where P is an integer
Step 3: Prove the result is true for n = k + 1
        i.e. Prove : 33k 3  2k 3  5Q, where Q is an integer
Proof:
Proof: 33k 3  2k 3
Proof: 33k 3  2k 3
       27  33k  2k 3
Proof: 33k 3  2k 3
       27  33k  2k 3
       275P  2k 2   2k 3
Proof: 33k 3  2k 3
       27  33k  2k 3
       275P  2k 2   2k 3
       135P  27  2k 2  2k 3
Proof: 33k 3  2k 3
       27  33k  2k 3
       275P  2k 2   2k 3
       135P  27  2k 2  2k 3
       135P  27  2k 2  2  2k 2
Proof: 33k 3  2k 3
       27  33k  2k 3
       275P  2k 2   2k 3
       135P  27  2k 2  2k 3
       135P  27  2k 2  2  2k 2
       135P  25  2k 2
Proof: 33k 3  2k 3
       27  33k  2k 3
       275P  2k 2   2k 3
       135P  27  2k 2  2k 3
       135P  27  2k 2  2  2k 2
       135P  25  2k 2
       527 P  5  2k 2 
Proof: 33k 3  2k 3
       27  33k  2k 3
       275P  2k 2   2k 3
       135P  27  2k 2  2k 3
       135P  27  2k 2  2  2k 2
       135P  25  2k 2
       527 P  5  2k 2 
        5Q, where Q  27 P  5  2k 2 which is an integer
Proof: 33k 3  2k 3
       27  33k  2k 3
       275P  2k 2   2k 3
       135P  27  2k 2  2k 3
       135P  27  2k 2  2  2k 2
       135P  25  2k 2
       527 P  5  2k 2 
        5Q, where Q  27 P  5  2k 2 which is an integer
  Hence the result is true for n = k + 1 if it is also true for n = k
Proof: 33k 3  2k 3
       27  33k  2k 3
       275P  2k 2   2k 3
       135P  27  2k 2  2k 3
       135P  27  2k 2  2  2k 2
       135P  25  2k 2
       527 P  5  2k 2 
        5Q, where Q  27 P  5  2k 2 which is an integer
  Hence the result is true for n = k + 1 if it is also true for n = k

Step 4: Since the result is true for n = 1, then the result is true for
        all positive integral values of n by induction.
Proof: 33k 3  2k 3
       27  33k  2k 3
       275P  2k 2   2k 3
       135P  27  2k 2  2k 3                Exercise 6N;
                                                3bdf, 4 ab(i), 9
       135P  27  2k 2  2  2k 2
       135P  25  2k 2
       527 P  5  2k 2 
        5Q, where Q  27 P  5  2k 2 which is an integer
  Hence the result is true for n = k + 1 if it is also true for n = k

Step 4: Since the result is true for n = 1, then the result is true for
        all positive integral values of n by induction.

More Related Content

Viewers also liked

14075517 chapter 3_-_relation_and_function
14075517 chapter 3_-_relation_and_function14075517 chapter 3_-_relation_and_function
14075517 chapter 3_-_relation_and_function
Mila Catalina
 
Module 1 Lesson 1 Remediation Notes
Module 1 Lesson 1 Remediation NotesModule 1 Lesson 1 Remediation Notes
Module 1 Lesson 1 Remediation Notes
toni dimella
 
Systems of equaions graphing
Systems of equaions graphingSystems of equaions graphing
Systems of equaions graphing
Jessica Garcia
 
Principle of mathematical induction
Principle of mathematical inductionPrinciple of mathematical induction
Principle of mathematical induction
Ritesh Kumar
 
mathematical induction
mathematical inductionmathematical induction
mathematical induction
ankush_kumar
 
mathematical induction
mathematical inductionmathematical induction
mathematical induction
ankush_kumar
 

Viewers also liked (20)

14075517 chapter 3_-_relation_and_function
14075517 chapter 3_-_relation_and_function14075517 chapter 3_-_relation_and_function
14075517 chapter 3_-_relation_and_function
 
GWR
GWRGWR
GWR
 
function and relation
function and relationfunction and relation
function and relation
 
Module 1 Lesson 1 Remediation Notes
Module 1 Lesson 1 Remediation NotesModule 1 Lesson 1 Remediation Notes
Module 1 Lesson 1 Remediation Notes
 
methods of english grammer
methods of english grammermethods of english grammer
methods of english grammer
 
Benginning Calculus Lecture notes 10 - max, min
Benginning Calculus Lecture notes 10 - max, minBenginning Calculus Lecture notes 10 - max, min
Benginning Calculus Lecture notes 10 - max, min
 
Benginning Calculus Lecture notes 11 - related rates
Benginning Calculus Lecture notes 11 - related ratesBenginning Calculus Lecture notes 11 - related rates
Benginning Calculus Lecture notes 11 - related rates
 
Systems of equaions graphing
Systems of equaions graphingSystems of equaions graphing
Systems of equaions graphing
 
Benginning Calculus Lecture notes 8 - linear, quadratic approximation
Benginning Calculus Lecture notes 8 - linear, quadratic approximationBenginning Calculus Lecture notes 8 - linear, quadratic approximation
Benginning Calculus Lecture notes 8 - linear, quadratic approximation
 
Benginning Calculus Lecture notes 9 - derivative functions
Benginning Calculus Lecture notes 9 - derivative functionsBenginning Calculus Lecture notes 9 - derivative functions
Benginning Calculus Lecture notes 9 - derivative functions
 
Benginning Calculus Lecture notes 14 - areas & volumes
Benginning Calculus Lecture notes 14 - areas & volumesBenginning Calculus Lecture notes 14 - areas & volumes
Benginning Calculus Lecture notes 14 - areas & volumes
 
Principle of mathematical induction
Principle of mathematical inductionPrinciple of mathematical induction
Principle of mathematical induction
 
Tips to crack Mathematics section - JEE Main 2014
Tips to crack Mathematics section - JEE Main 2014 Tips to crack Mathematics section - JEE Main 2014
Tips to crack Mathematics section - JEE Main 2014
 
Benginning Calculus Lecture notes 13 - fundamental theorem of calculus 1 & 2
Benginning Calculus Lecture notes 13 - fundamental theorem of calculus 1 & 2Benginning Calculus Lecture notes 13 - fundamental theorem of calculus 1 & 2
Benginning Calculus Lecture notes 13 - fundamental theorem of calculus 1 & 2
 
Math12 lesson7
Math12 lesson7Math12 lesson7
Math12 lesson7
 
Newton's Laws of Motion
Newton's Laws of MotionNewton's Laws of Motion
Newton's Laws of Motion
 
mathematical induction
mathematical inductionmathematical induction
mathematical induction
 
mathematical induction
mathematical inductionmathematical induction
mathematical induction
 
Social Networking
Social NetworkingSocial Networking
Social Networking
 
Real numbers
Real numbersReal numbers
Real numbers
 

Similar to mathematical induction

11 x1 t14 09 mathematical induction 2 (2013)
11 x1 t14 09 mathematical induction 2 (2013)11 x1 t14 09 mathematical induction 2 (2013)
11 x1 t14 09 mathematical induction 2 (2013)
Nigel Simmons
 
11 x1 t14 08 mathematical induction 1 (2013)
11 x1 t14 08 mathematical induction 1 (2013)11 x1 t14 08 mathematical induction 1 (2013)
11 x1 t14 08 mathematical induction 1 (2013)
Nigel Simmons
 
11 x1 t14 10 mathematical induction 3 (2013)
11 x1 t14 10 mathematical induction 3 (2013)11 x1 t14 10 mathematical induction 3 (2013)
11 x1 t14 10 mathematical induction 3 (2013)
Nigel Simmons
 
11 x1 t14 10 mathematical induction 3 (2012)
11 x1 t14 10 mathematical induction 3 (2012)11 x1 t14 10 mathematical induction 3 (2012)
11 x1 t14 10 mathematical induction 3 (2012)
Nigel Simmons
 
11X1 T14 10 mathematical induction 3 (2011)
11X1 T14 10 mathematical induction 3 (2011)11X1 T14 10 mathematical induction 3 (2011)
11X1 T14 10 mathematical induction 3 (2011)
Nigel Simmons
 
11X1 T10 10 mathematical induction 3
11X1 T10 10 mathematical induction 311X1 T10 10 mathematical induction 3
11X1 T10 10 mathematical induction 3
Nigel Simmons
 
Chapter 4 dis 2011
Chapter 4 dis 2011Chapter 4 dis 2011
Chapter 4 dis 2011
noraidawati
 
X2 t08 03 inequalities & graphs (2013)
X2 t08 03 inequalities & graphs (2013)X2 t08 03 inequalities & graphs (2013)
X2 t08 03 inequalities & graphs (2013)
Nigel Simmons
 
17-mathematical-induction.ppt
17-mathematical-induction.ppt17-mathematical-induction.ppt
17-mathematical-induction.ppt
SintaVeDe
 
Mcs lecture19.methods ofproof(1)
Mcs lecture19.methods ofproof(1)Mcs lecture19.methods ofproof(1)
Mcs lecture19.methods ofproof(1)
kevinwu1994
 

Similar to mathematical induction (20)

11 x1 t14 09 mathematical induction 2 (2013)
11 x1 t14 09 mathematical induction 2 (2013)11 x1 t14 09 mathematical induction 2 (2013)
11 x1 t14 09 mathematical induction 2 (2013)
 
11 x1 t14 08 mathematical induction 1 (2013)
11 x1 t14 08 mathematical induction 1 (2013)11 x1 t14 08 mathematical induction 1 (2013)
11 x1 t14 08 mathematical induction 1 (2013)
 
11 x1 t14 10 mathematical induction 3 (2013)
11 x1 t14 10 mathematical induction 3 (2013)11 x1 t14 10 mathematical induction 3 (2013)
11 x1 t14 10 mathematical induction 3 (2013)
 
11 x1 t14 10 mathematical induction 3 (2012)
11 x1 t14 10 mathematical induction 3 (2012)11 x1 t14 10 mathematical induction 3 (2012)
11 x1 t14 10 mathematical induction 3 (2012)
 
11X1 T14 10 mathematical induction 3 (2011)
11X1 T14 10 mathematical induction 3 (2011)11X1 T14 10 mathematical induction 3 (2011)
11X1 T14 10 mathematical induction 3 (2011)
 
11X1 T10 10 mathematical induction 3
11X1 T10 10 mathematical induction 311X1 T10 10 mathematical induction 3
11X1 T10 10 mathematical induction 3
 
CMSC 56 | Lecture 5: Proofs Methods and Strategy
CMSC 56 | Lecture 5: Proofs Methods and StrategyCMSC 56 | Lecture 5: Proofs Methods and Strategy
CMSC 56 | Lecture 5: Proofs Methods and Strategy
 
Chapter 4 dis 2011
Chapter 4 dis 2011Chapter 4 dis 2011
Chapter 4 dis 2011
 
Induction.pdf
Induction.pdfInduction.pdf
Induction.pdf
 
Proofs by contraposition
Proofs by contrapositionProofs by contraposition
Proofs by contraposition
 
X2 t08 03 inequalities & graphs (2013)
X2 t08 03 inequalities & graphs (2013)X2 t08 03 inequalities & graphs (2013)
X2 t08 03 inequalities & graphs (2013)
 
Lect 18
Lect 18Lect 18
Lect 18
 
2.4 edited1
2.4 edited12.4 edited1
2.4 edited1
 
Chapter5.pptx
Chapter5.pptxChapter5.pptx
Chapter5.pptx
 
17-mathematical-induction.ppt
17-mathematical-induction.ppt17-mathematical-induction.ppt
17-mathematical-induction.ppt
 
17-mathematical-induction.ppt
17-mathematical-induction.ppt17-mathematical-induction.ppt
17-mathematical-induction.ppt
 
Induction.pptx
Induction.pptxInduction.pptx
Induction.pptx
 
Lecture_4.pptx
Lecture_4.pptxLecture_4.pptx
Lecture_4.pptx
 
Mcs lecture19.methods ofproof(1)
Mcs lecture19.methods ofproof(1)Mcs lecture19.methods ofproof(1)
Mcs lecture19.methods ofproof(1)
 
Mathematical induction
Mathematical inductionMathematical induction
Mathematical induction
 

More from ankush_kumar

mathematical induction
mathematical inductionmathematical induction
mathematical induction
ankush_kumar
 
Propositional And First-Order Logic
Propositional And First-Order LogicPropositional And First-Order Logic
Propositional And First-Order Logic
ankush_kumar
 
Soacial networking 3
Soacial networking  3Soacial networking  3
Soacial networking 3
ankush_kumar
 
Soacial networking 1
Soacial networking  1Soacial networking  1
Soacial networking 1
ankush_kumar
 
Memory organisation
Memory organisationMemory organisation
Memory organisation
ankush_kumar
 
Social networking 2
Social networking 2Social networking 2
Social networking 2
ankush_kumar
 
Classes function overloading
Classes function overloadingClasses function overloading
Classes function overloading
ankush_kumar
 
Set theory and relation
Set theory and relationSet theory and relation
Set theory and relation
ankush_kumar
 

More from ankush_kumar (11)

mathematical induction
mathematical inductionmathematical induction
mathematical induction
 
Inheritance
InheritanceInheritance
Inheritance
 
Propositional And First-Order Logic
Propositional And First-Order LogicPropositional And First-Order Logic
Propositional And First-Order Logic
 
Oops
OopsOops
Oops
 
Soacial networking 3
Soacial networking  3Soacial networking  3
Soacial networking 3
 
Soacial networking 1
Soacial networking  1Soacial networking  1
Soacial networking 1
 
Memory organisation
Memory organisationMemory organisation
Memory organisation
 
Social networking 2
Social networking 2Social networking 2
Social networking 2
 
Linked list
Linked listLinked list
Linked list
 
Classes function overloading
Classes function overloadingClasses function overloading
Classes function overloading
 
Set theory and relation
Set theory and relationSet theory and relation
Set theory and relation
 

mathematical induction

  • 2. Mathematical Induction      e.g. iii Prove n n  1 n  2 is divisible by 3
  • 3. Mathematical Induction      e.g. iii Prove n n  1 n  2 is divisible by 3 Step 1: Prove the result is true for n = 1
  • 4. Mathematical Induction      e.g. iii Prove n n  1 n  2 is divisible by 3 Step 1: Prove the result is true for n = 1 123 6
  • 5. Mathematical Induction      e.g. iii Prove n n  1 n  2 is divisible by 3 Step 1: Prove the result is true for n = 1 123 6 which is divisible by 3
  • 6. Mathematical Induction      e.g. iii Prove n n  1 n  2 is divisible by 3 Step 1: Prove the result is true for n = 1 123 6 which is divisible by 3 Hence the result is true for n = 1
  • 7. Mathematical Induction      e.g. iii Prove n n  1 n  2 is divisible by 3 Step 1: Prove the result is true for n = 1 123 6 which is divisible by 3 Hence the result is true for n = 1 Step 2: Assume the result is true for n = k, where k is a positive integer
  • 8. Mathematical Induction      e.g. iii Prove n n  1 n  2 is divisible by 3 Step 1: Prove the result is true for n = 1 123 6 which is divisible by 3 Hence the result is true for n = 1 Step 2: Assume the result is true for n = k, where k is a positive integer i.e. k k  1k  2  3P, where P is an integer
  • 9. Mathematical Induction      e.g. iii Prove n n  1 n  2 is divisible by 3 Step 1: Prove the result is true for n = 1 123 6 which is divisible by 3 Hence the result is true for n = 1 Step 2: Assume the result is true for n = k, where k is a positive integer i.e. k k  1k  2  3P, where P is an integer Step 3: Prove the result is true for n = k + 1
  • 10. Mathematical Induction      e.g. iii Prove n n  1 n  2 is divisible by 3 Step 1: Prove the result is true for n = 1 123 6 which is divisible by 3 Hence the result is true for n = 1 Step 2: Assume the result is true for n = k, where k is a positive integer i.e. k k  1k  2  3P, where P is an integer Step 3: Prove the result is true for n = k + 1 i.e. Prove : k  1k  2k  3  3Q, where Q is an integer
  • 12. Proof: k  1k  2k  3
  • 13. Proof: k  1k  2k  3  k k  1k  2  3k  1k  2
  • 14. Proof: k  1k  2k  3  k k  1k  2  3k  1k  2  3P  3k  1k  2
  • 15. Proof: k  1k  2k  3  k k  1k  2  3k  1k  2  3P  3k  1k  2  3P  k  1k  2
  • 16. Proof: k  1k  2k  3  k k  1k  2  3k  1k  2  3P  3k  1k  2  3P  k  1k  2  3Q, where Q  P  k  1k  2 which is an integer
  • 17. Proof: k  1k  2k  3  k k  1k  2  3k  1k  2  3P  3k  1k  2  3P  k  1k  2  3Q, where Q  P  k  1k  2 which is an integer Hence the result is true for n = k + 1 if it is also true for n = k
  • 18. Proof: k  1k  2k  3  k k  1k  2  3k  1k  2  3P  3k  1k  2  3P  k  1k  2  3Q, where Q  P  k  1k  2 which is an integer Hence the result is true for n = k + 1 if it is also true for n = k Step 4: Since the result is true for n = 1, then the result is true for all positive integral values of n by induction.
  • 19. iv Prove 33n  2n2 is divisible by 5
  • 20. iv Prove 33n  2n2 is divisible by 5 Step 1: Prove the result is true for n = 1
  • 21. iv Prove 33n  2n2 is divisible by 5 Step 1: Prove the result is true for n = 1 33  23  27  8  35
  • 22. iv Prove 33n  2n2 is divisible by 5 Step 1: Prove the result is true for n = 1 33  23  27  8  35 which is divisible by 5
  • 23. iv Prove 33n  2n2 is divisible by 5 Step 1: Prove the result is true for n = 1 33  23  27  8  35 which is divisible by 5 Hence the result is true for n = 1
  • 24. iv Prove 33n  2n2 is divisible by 5 Step 1: Prove the result is true for n = 1 33  23  27  8  35 which is divisible by 5 Hence the result is true for n = 1 Step 2: Assume the result is true for n = k, where k is a positive integer i.e. 33k  2k 2  5P, where P is an integer
  • 25. iv Prove 33n  2n2 is divisible by 5 Step 1: Prove the result is true for n = 1 33  23  27  8  35 which is divisible by 5 Hence the result is true for n = 1 Step 2: Assume the result is true for n = k, where k is a positive integer i.e. 33k  2k 2  5P, where P is an integer Step 3: Prove the result is true for n = k + 1 i.e. Prove : 33k 3  2k 3  5Q, where Q is an integer
  • 27. Proof: 33k 3  2k 3
  • 28. Proof: 33k 3  2k 3  27  33k  2k 3
  • 29. Proof: 33k 3  2k 3  27  33k  2k 3  275P  2k 2   2k 3
  • 30. Proof: 33k 3  2k 3  27  33k  2k 3  275P  2k 2   2k 3  135P  27  2k 2  2k 3
  • 31. Proof: 33k 3  2k 3  27  33k  2k 3  275P  2k 2   2k 3  135P  27  2k 2  2k 3  135P  27  2k 2  2  2k 2
  • 32. Proof: 33k 3  2k 3  27  33k  2k 3  275P  2k 2   2k 3  135P  27  2k 2  2k 3  135P  27  2k 2  2  2k 2  135P  25  2k 2
  • 33. Proof: 33k 3  2k 3  27  33k  2k 3  275P  2k 2   2k 3  135P  27  2k 2  2k 3  135P  27  2k 2  2  2k 2  135P  25  2k 2  527 P  5  2k 2 
  • 34. Proof: 33k 3  2k 3  27  33k  2k 3  275P  2k 2   2k 3  135P  27  2k 2  2k 3  135P  27  2k 2  2  2k 2  135P  25  2k 2  527 P  5  2k 2   5Q, where Q  27 P  5  2k 2 which is an integer
  • 35. Proof: 33k 3  2k 3  27  33k  2k 3  275P  2k 2   2k 3  135P  27  2k 2  2k 3  135P  27  2k 2  2  2k 2  135P  25  2k 2  527 P  5  2k 2   5Q, where Q  27 P  5  2k 2 which is an integer Hence the result is true for n = k + 1 if it is also true for n = k
  • 36. Proof: 33k 3  2k 3  27  33k  2k 3  275P  2k 2   2k 3  135P  27  2k 2  2k 3  135P  27  2k 2  2  2k 2  135P  25  2k 2  527 P  5  2k 2   5Q, where Q  27 P  5  2k 2 which is an integer Hence the result is true for n = k + 1 if it is also true for n = k Step 4: Since the result is true for n = 1, then the result is true for all positive integral values of n by induction.
  • 37. Proof: 33k 3  2k 3  27  33k  2k 3  275P  2k 2   2k 3  135P  27  2k 2  2k 3 Exercise 6N; 3bdf, 4 ab(i), 9  135P  27  2k 2  2  2k 2  135P  25  2k 2  527 P  5  2k 2   5Q, where Q  27 P  5  2k 2 which is an integer Hence the result is true for n = k + 1 if it is also true for n = k Step 4: Since the result is true for n = 1, then the result is true for all positive integral values of n by induction.