SlideShare a Scribd company logo
1 of 37
Download to read offline
THE ANALYTICAL SOLUTION TO THE HEAT EQUATION USING AN INTEGRAL METHOD
By Wasswa Derrick
Contact
wasswaderricktimothy7@gmail.com
TABLE OF CONTENTS
SEMI INFINITE WALL ANALYTICAL SOLUTION TO THE HEAT EQUATION................3
ALTERNATIVE SOLUTION TO THE SEMI-INFINITE WALL PROBLEM ...........................5
HOW DO WE EXPLAIN THE EXISTENCE OF THE FOURIER LAW IN STEADY
STATE?......................................................................................................................................................8
HOW DO WE DEAL WITH CONVECTION AT THE SURFACE AREA OF THE METAL
ROD...........................................................................................................................................................11
EQUAL FIXED TEMPERATURES AT THE END OF AN INSULATED METAL ROD....14
UNEQUAL FIXED TEMPERATURES AT THE END OF AN INSULATED METAL ROD.
....................................................................................................................................................................17
HOW DO WE DEAL WITH OTHER TYPES OF BOUNDARY CONDITIONS?..................20
HOW DO WE DEAL WITH CONVECTION AT THE SURFACE AREA OF THE METAL
ROD FOR FIXED END TEMPERATURE......................................................................................22
WHAT HAPPENS WHEN THE INITIAL TEMPERATURE IS A FUNCTION OF X? .......31
HOW DO WE DEAL WITH CYLINDRICAL CO-ORDINATES?..............................................34
SEMI INFINITE WALL ANALYTICAL SOLUTION TO THE
HEAT EQUATION.
The differential equation to be solved is
πœ•π‘‡
πœ•π‘‘
= 𝛼
πœ•2
𝑇
πœ•π‘₯2
Where the initial and boundary conditions are
𝑻 = 𝑻𝒔 𝒂𝒕 𝒙 = 𝟎 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒕
𝑻 = π‘»βˆž 𝒂𝒕 𝒙 = ∞ 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒕
𝑻 = π‘»βˆž 𝒂𝒕 𝒕 = 𝟎 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒙
We postulate:
π‘Œ =
𝑇 βˆ’ π‘‡βˆž
𝑇𝑠 βˆ’ π‘‡βˆž
And
πœ‚ =
π‘₯
2βˆšπ›Όπ‘‘
We get
𝑑2
π‘Œ
π‘‘πœ‚2
+ 2πœ‚
π‘‘π‘Œ
π‘‘πœ‚
= 0 (1)
With the transformed boundary and initial conditions
π‘Œ β†’ 0 π‘Žπ‘  πœ‚ β†’ ∞
And
π‘Œ = 1 π‘Žπ‘‘ πœ‚ = 0
The first condition is the same as the initial condition 𝑇 = π‘‡βˆž π‘Žπ‘‘ 𝑑 = 0 and the
boundary condition
𝑇 β†’ π‘‡βˆž π‘Žπ‘  π‘₯ β†’ ∞
Equation 1 may be integrated once to get
𝑙𝑛
π‘‘π‘Œ
π‘‘πœ‚
= 𝑐1 βˆ’ πœ‚2
π‘‘π‘Œ
π‘‘πœ‚
= 𝑐2π‘’βˆ’πœ‚2
And integrated once more to get
π‘Œ = 𝑐3 + 𝑐2 ∫ π‘’βˆ’πœ‚2
𝑑 πœ‚
Applying the boundary conditions to the equation, we get
π‘Œ = 1 βˆ’ erf (
π‘₯
2βˆšπ›Όπ‘‘
)
𝑻 βˆ’ π‘»βˆž
𝑻𝒔 βˆ’ π‘»βˆž
= 𝟏 βˆ’ 𝐞𝐫𝐟 (
𝒙
πŸβˆšπœΆπ’•
)
Or
𝑻𝒔 βˆ’ 𝑻
𝑻𝒔 βˆ’ π‘»βˆž
= 𝐞𝐫𝐟 (
𝒙
πŸβˆšπœΆπ’•
)
ALTERNATIVE SOLUTION TO THE SEMI-INFINITE WALL PROBLEM
The problem of the semi-infinite wall could also be solved as below:
Given the boundary and initial conditions
𝑻 = 𝑻𝒔 𝒂𝒕 𝒙 = 𝟎 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒕
𝑻 = π‘»βˆž 𝒂𝒕 𝒙 = ∞
𝑻 = π‘»βˆž 𝒂𝒕 𝒕 = 𝟎
And the governing equation
πœ•π‘‡
πœ•π‘‘
= 𝛼
πœ•2
𝑇
πœ•π‘₯2
We assume an exponential temperature profile that satisfies the boundary
conditions:
𝑇 βˆ’ π‘‡βˆž
𝑇𝑠 βˆ’ π‘‡βˆž
= 𝑒
βˆ’π‘₯
𝛿
We can satisfy the initial condition if we assume that 𝛿 will have a solution as
𝛿 = 𝑐𝑑𝑛
Where c and n are constants so that at 𝑑 = 0, 𝛿 = 0 and the initial condition is
satisfied as shown below.
𝑇 βˆ’ π‘‡βˆž
𝑇𝑠 βˆ’ π‘‡βˆž
= 𝑒
βˆ’π‘₯
0 = π‘’βˆ’βˆž
= 0
𝑇 = π‘‡βˆž π‘Žπ‘‘ 𝑑 = 0
We then transform the heat governing equation into an integral equation as:
𝛼 ∫ (
πœ•2
𝑇
πœ•π‘₯2
) 𝑑π‘₯
𝑙
0
= ∫
πœ•π‘‡
πœ•π‘‘
𝑑π‘₯
𝑙
0
𝛼 ∫ (
πœ•2
𝑇
πœ•π‘₯2
) 𝑑π‘₯
𝑙
0
=
πœ•
πœ•π‘‘
∫ 𝑇𝑑π‘₯
𝑙
0
You notice that the integral
πœ•
πœ•π‘‘
∫ 𝑇𝑑π‘₯
𝑙
0
=
πœ•
πœ•π‘‘
∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯ =
πœ•
πœ•π‘‘
∫ 𝑇𝑑π‘₯
𝑙
0
βˆ’
πœ•(π‘™π‘‡βˆž)
πœ•π‘‘
𝑙
0
Since 𝑙 and π‘‡βˆž are constants independent of time
πœ•(π‘™π‘‡βˆž)
πœ•π‘‘
= 0
So
πœ•
πœ•π‘‘
∫ 𝑇𝑑π‘₯
𝑙
0
=
πœ•
πœ•π‘‘
∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯
𝑙
0
We go ahead and find
πœ•2
𝑇
πœ•π‘₯2
=
(𝑇𝑠 βˆ’ π‘‡βˆž)
𝛿2
∫ (
πœ•2
𝑇
πœ•π‘₯2
) 𝑑π‘₯
𝛿
0
= βˆ’
(𝑇𝑠 βˆ’ π‘‡βˆž)
𝛿
(𝑒
βˆ’π‘™
𝛿 βˆ’ 1) =
(𝑇𝑠 βˆ’ π‘‡βˆž)
𝛿
(1 βˆ’ 𝑒
βˆ’π‘™
𝛿 )
πœ•
πœ•π‘‘
∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯
𝛿
0
=
𝑑𝛿
𝑑𝑑
[(𝑇𝑠 βˆ’ π‘‡βˆž) (1 βˆ’ 𝑒
βˆ’π‘™
𝛿 )]
Substituting into the integral equation, we get
𝛼
(𝑇𝑠 βˆ’ π‘‡βˆž)
𝛿
(1 βˆ’ 𝑒
βˆ’π‘™
𝛿 ) =
𝑑𝛿
𝑑𝑑
(1 βˆ’ 𝑒
βˆ’π‘™
𝛿 )
The boundary conditions are
𝛿 = 0 π‘Žπ‘‘ 𝑑 = 0
We find
𝛿 = √2𝛼𝑑
We substitute in the temperature profile and get
𝑻 βˆ’ π‘»βˆž
𝑻𝒔 βˆ’ π‘»βˆž
= 𝒆
βˆ’π’™
βˆšπŸπœΆπ’•
You notice that the initial condition is satisfied by the temperature profile
above i.e.,
At 𝑑 = 0
𝑻 βˆ’ π‘»βˆž
𝑻𝒔 βˆ’ π‘»βˆž
= 𝒆
βˆ’π’™
βˆšπŸπœΆπ’•
Becomes
𝑻 βˆ’ π‘»βˆž
𝑻𝒔 βˆ’ π‘»βˆž
= 𝒆
βˆ’π’™
𝟎 = π’†βˆ’βˆž
= 𝟎
Hence 𝑻 = π‘»βˆž throughout the rod at 𝑑 = 0
Observation.
The two equations
𝑻 βˆ’ π‘»βˆž
𝑻𝒔 βˆ’ π‘»βˆž
= 𝒆
βˆ’π’™
βˆšπŸπœΆπ’•
And
𝑻 βˆ’ π‘»βˆž
𝑻𝒔 βˆ’ π‘»βˆž
= 𝟏 βˆ’ 𝐞𝐫𝐟 (
𝒙
πŸβˆšπœΆπ’•
)
Should give the same answer. Indeed, they give answers that are the same with
a small error since the error function is got from tables after rounding off yet in
the exponential temperature profile there is no rounding off.
HOW DO WE EXPLAIN THE EXISTENCE OF THE
FOURIER LAW IN STEADY STATE?
The Fourier law states:
𝑄 = βˆ’π‘˜π΄
πœ•π‘‡
πœ•π‘₯
Under steady state.
It can be stated as:
πœ•π‘‡
πœ•π‘₯
= βˆ’
𝑄
π‘˜π΄
Under steady state.
To satisfy the Fourier law under steady state, we postulate the temperature
profile to be:
𝑻 βˆ’ π‘»βˆž =
𝑸
π’Œπ‘¨
πœΉπ’†
βˆ’π’™
𝜹
𝛿 is a function of time 𝑑 and not distance π‘₯
We believe that after solving for 𝛿, 𝛿 will be directly proportional to time t so
that 𝛿 = π‘˜π‘‘π‘›
sothat at 𝑑 = ∞ , 𝛿 = ∞
And taking the first derivative of temperature with distance x at 𝑑 = ∞ , we get
πœ•π‘‡
πœ•π‘₯
|𝑑=∞ = βˆ’
𝑄
π‘˜π΄
𝑒
βˆ’π‘₯
𝛿 = βˆ’
𝑄
π‘˜π΄
𝑒
βˆ’π‘₯
∞ = βˆ’
𝑄
π‘˜π΄
𝑒0
𝝏𝑻
𝝏𝒙
= βˆ’
𝑸
π’Œπ‘¨
Hence the Fourier law is satisfied.
Now let us go ahead and solve for 𝛿.
Recall
PDE
πœ•π‘‡
πœ•π‘‘
= 𝛼
πœ•2
𝑇
πœ•π‘₯2
The initial condition is
𝑇 = π‘‡βˆž π‘Žπ‘‘ 𝑑 = 0
The boundary conditions are
𝑇 = π‘‡βˆž π‘Žπ‘‘ π‘₯ = ∞
πœ•π‘‡
πœ•π‘₯
|π‘₯=0 = βˆ’
𝑄
π‘˜π΄
The PDE is
The temperature profile that satisfies the conditions above is
𝑇 βˆ’ π‘‡βˆž =
𝑄
π‘˜π΄
𝛿𝑒
βˆ’π‘₯
𝛿
We transform the PDE into an integral equation
πœ•
πœ•π‘‘
∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯
𝛿
0
= 𝛼 ∫ (
πœ•2
𝑇
πœ•π‘₯2
) 𝑑π‘₯
𝛿
0
And using the temperature profile, we get
∫ (
πœ•2
𝑇
πœ•π‘₯2
) 𝑑π‘₯
𝛿
0
=
𝑄
π‘˜π΄
(1 βˆ’ 𝑒
βˆ’π‘™
𝛿 )
πœ•
πœ•π‘‘
∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯
𝛿
0
=
𝑄
π‘˜π΄
𝛿2
(1 βˆ’ 𝑒
βˆ’π‘™
𝛿 )
We then substitute into the integral equation
𝛼
𝑄
π‘˜π΄
(1 βˆ’ 𝑒
βˆ’π‘™
𝛿 ) = 2𝛿
𝑑𝛿
𝑑𝑑
(
𝑄
π‘˜π΄
(1 βˆ’ 𝑒
βˆ’π‘™
𝛿 ))
The boundary conditions are
𝛿 = 0 π‘Žπ‘‘ 𝑑 = 0
𝛿 = βˆšπ›Όπ‘‘
Substituting into the temperature profile, we get
𝑇 βˆ’ π‘‡βˆž =
𝑄
π‘˜π΄
𝛿𝑒
βˆ’π‘₯
𝛿
𝑻 βˆ’ π‘»βˆž =
𝑸
π’Œπ‘¨
Γ— βˆšπœΆπ’• Γ— 𝒆
βˆ’π’™
βˆšπœΆπ’•
You notice that the initial condition is satisfied
𝝏𝑻
𝝏𝒙
|𝒕=∞ = βˆ’
𝑸
π’Œπ‘¨
Hence the Fourier law
So, our assumption of 𝛿 = π‘˜π‘‘π‘›
is satisfied
HOW DO WE DEAL WITH CONVECTION AT THE
SURFACE AREA OF THE METAL ROD
Recall that the temperature profile that satisfies the Fourier law was
𝑇 βˆ’ π‘‡βˆž =
𝑄
π‘˜π΄
𝛿𝑒
βˆ’π‘₯
𝛿
Recall
PDE
𝛼
πœ•2
𝑇
πœ•π‘₯2
βˆ’
β„Žπ‘ƒ
𝐴𝜌𝐢
(𝑇 βˆ’ π‘‡βˆž) =
πœ•π‘‡
πœ•π‘‘
The initial condition is
𝑇 = π‘‡βˆž π‘Žπ‘‘ 𝑑 = 0
The boundary conditions are
𝑇 = π‘‡βˆž π‘Žπ‘‘ π‘₯ = ∞
πœ•π‘‡
πœ•π‘₯
|π‘₯=0 = βˆ’
𝑄
π‘˜π΄
We transform the PDE into an integral equation
𝛼 ∫ (
πœ•2
𝑇
πœ•π‘₯2
) 𝑑π‘₯
𝑙
0
βˆ’
β„Žπ‘ƒ
𝐴𝜌𝐢
∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯
𝑙
0
=
πœ•
πœ•π‘‘
∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯
𝑙
0
Where:
We are dealing with a cylindrical metal rod.
𝑃 = 2πœ‹π‘Ÿ π‘Žπ‘›π‘‘ 𝜌 = 𝑑𝑒𝑛𝑠𝑖𝑑𝑦 π‘œπ‘“ π‘šπ‘’π‘‘π‘Žπ‘™ π‘Ÿπ‘œπ‘‘
And using the temperature profile, we get
∫ (
πœ•2
𝑇
πœ•π‘₯2
) 𝑑π‘₯
𝑙
0
=
𝑄
π‘˜π΄
(1 βˆ’ 𝑒
βˆ’π‘™
𝛿 )
∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯
𝑙
0
=
𝑄
π‘˜π΄
𝛿2
(1 βˆ’ 𝑒
βˆ’π‘™
𝛿 )
Substituting in the integral equation above, we get
𝛼 βˆ’
β„Žπ‘ƒ
𝐴𝜌𝐢
𝛿2
= 2𝛿
𝑑𝛿
𝑑𝑑
The boundary condition is
𝛿 = 0 π‘Žπ‘‘ 𝑑 = 0
We solve and get
𝛿 = √
π΄πœŒπΆπ›Ό
β„Žπ‘ƒ
(1 βˆ’ 𝑒
βˆ’β„Žπ‘ƒπ‘‘
𝐴𝜌𝐢 )
Substituting in the temperature profile, we get
𝑇 βˆ’ π‘‡βˆž =
𝑄
π‘˜π΄
𝛿𝑒
βˆ’π‘₯
𝛿
𝑻 βˆ’ π‘»βˆž =
𝑸
π’Œπ‘¨
Γ— √
𝑨𝝆π‘ͺ𝜢
𝒉𝑷
(𝟏 βˆ’ 𝒆
βˆ’π’‰π‘·π’•
𝑨𝝆π‘ͺ ) Γ— 𝒆
βˆ’π’™
βˆšπ‘¨π†π‘ͺ
𝒉𝑷
(πŸβˆ’π’†
βˆ’π’‰π‘·π’•
𝑨𝝆π‘ͺ )
We notice that the initial condition and boundary conditions are satisfied.
For small time the term
β„Žπ‘ƒπ‘‘
𝐴𝜌𝐢
β‰ͺ 1
And using binomial approximation of the exponential, we get
𝑒
βˆ’β„Žπ‘ƒπ‘‘
𝐴𝜌𝐢 = 1 βˆ’
β„Žπ‘ƒπ‘‘
𝐴𝜌𝐢
Then
(1 βˆ’ 𝑒
βˆ’β„Žπ‘ƒπ‘‘
𝐴𝜌𝐢 ) =
β„Žπ‘ƒπ‘‘
𝐴𝜌𝐢
Upon substitution in the temperature profile, we get
𝑇 βˆ’ π‘‡βˆž =
𝑄
π‘˜π΄
Γ— βˆšπ›Όπ‘‘ Γ— 𝑒
βˆ’π‘₯
βˆšπ›Όπ‘‘
Upon rearranging, we get
π‘₯
βˆšπ›Όπ‘‘
= ln (
𝑄
π‘˜π΄
βˆšπ›Όπ‘‘) βˆ’ ln (𝑇 βˆ’ π‘‡βˆž)
π‘₯
βˆšπ‘‘
= βˆšπ›Όln(βˆšπ‘‘) + βˆšπ›Ό [ln (
𝑄
π‘˜π΄
βˆšπ›Ό) βˆ’ ln(𝑇 βˆ’ π‘‡βˆž)]
What we observe is
𝒙
βˆšπ’•
= √𝜢π₯𝐧(βˆšπ’•) + √𝜢 [π₯𝐧 (
𝑸
π’Œπ‘¨βˆšπœΆ
(𝑻 βˆ’ π‘»βˆž)
)]
That is what we observe for short times.
When the times become big, we observe
𝑻 βˆ’ π‘»βˆž =
𝑸
π’Œπ‘¨
Γ— √
𝑨𝝆π‘ͺ𝜢
𝒉𝑷
(𝟏 βˆ’ 𝒆
βˆ’π’‰π‘·π’•
𝑨𝝆π‘ͺ ) Γ— 𝒆
βˆ’π’™
βˆšπ‘¨π†π‘ͺ
𝒉𝑷
(πŸβˆ’π’†
βˆ’π’‰π‘·π’•
𝑨𝝆π‘ͺ )
And in steady state (𝑑 = ∞), we observe
𝑻 βˆ’ π‘»βˆž =
𝑸
π’Œπ‘¨
Γ— √
𝑨𝝆π‘ͺ𝜢
𝒉𝑷
Γ— 𝒆
βˆ’π’™
βˆšπ‘¨π†π‘ͺ𝜢
𝒉𝑷
𝛼 =
π‘˜
𝜌𝐢
We finally get
𝑻 βˆ’ π‘»βˆž =
𝑸
π’Œπ‘¨
Γ— √
π’Œπ‘¨
𝒉𝑷
Γ— 𝒆
βˆ’π’™
βˆšπ’Œπ‘¨
𝒉𝑷
the heat flow in steady state is given by:
πœ•π‘‡
πœ•π‘₯
= βˆ’
𝑄
π‘˜π΄
𝑒
βˆ’π‘₯
βˆšπ‘˜π΄
β„Žπ‘ƒ
βˆ’π’Œπ‘¨
𝝏𝑻
𝝏𝒙
= 𝑸𝒆
βˆ’π’™
βˆšπ’Œπ‘¨
𝒉𝑷
EQUAL FIXED TEMPERATURES AT THE END OF AN
INSULATED METAL ROD.
PDE
πœ•π‘‡
πœ•π‘‘
= 𝛼
πœ•2
𝑇
πœ•π‘₯2
BCs
𝑻 = 𝑻𝒔 𝒂𝒕 𝒙 = 𝟎 𝟎 < 𝒕 < ∞
𝑻 = 𝑻𝒔 𝒂𝒕 𝒙 = 𝒍 𝟎 < 𝒕 < ∞
IC
𝑻 = π‘»βˆž 𝒂𝒕 𝒕 = 𝟎 𝟎 ≀ 𝒙 ≀ 𝒍
we know a Fourier series solution exists given by
𝑻 βˆ’ 𝑻𝒔
π‘»βˆž βˆ’ 𝑻𝒔
=
πŸ’
𝝅
βˆ‘
𝟏
𝒏
∞
𝒏=𝟏
π’”π’Šπ’ (
𝒏𝝅𝒙
𝒍
) 𝒆
βˆ’(
𝒏𝝅
𝟐 )
πœΆπ’•
(
𝒍
𝟐
)𝟐
𝒏 = 𝟏, πŸ‘, πŸ“, …
You notice that this solution is not entirely deterministic since it involves
summing terms up to infinity.
There is an alternative solution as shown below:
πœ•π‘‡
πœ•π‘‘
= 𝛼
πœ•2
𝑇
πœ•π‘₯2
BCs
𝑻 = 𝑻𝒔 𝒂𝒕 𝒙 = 𝟎 𝟎 < 𝒕 < ∞
𝑻 = 𝑻𝒔 𝒂𝒕 𝒙 = 𝒍 𝟎 < 𝒕 < ∞
IC
𝑻 = π‘»βˆž 𝒂𝒕 𝒕 = 𝟎 𝟎 ≀ 𝒙 ≀ 𝒍
We assume an exponential temperature profile that satisfies the boundary
conditions:
𝑇 βˆ’ π‘‡βˆž
𝑇𝑠 βˆ’ π‘‡βˆž
= 𝑒
βˆ’π‘₯
𝛿
(1βˆ’
π‘₯
𝑙
)
You notice that the temperature profile above satisfies the boundary
conditions. We can satisfy the initial condition if we assume that 𝛿 will assume
a solution as
𝛿 = 𝑐𝑑𝑛
Where c and n are constants so that at 𝑑 = 0, 𝛿 = 0 and the initial condition is
satisfied as shown below.
𝑇 βˆ’ π‘‡βˆž
𝑇𝑠 βˆ’ π‘‡βˆž
= 𝑒
βˆ’π‘₯
0 = π‘’βˆ’βˆž
= 0
𝑇 = π‘‡βˆž π‘Žπ‘‘ 𝑑 = 0
We transform the PDE into an integral equation
πœ•
πœ•π‘‘
∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯
𝑙
0
= 𝛼 ∫ (
πœ•2
𝑇
πœ•π‘₯2
) 𝑑π‘₯
𝑙
0
∫ (
πœ•2
𝑇
πœ•π‘₯2
) 𝑑π‘₯
𝑙
0
= [
(βˆ’π‘™ + 2π‘₯)
𝛿𝑙
Γ— 𝑒
βˆ’π‘₯
𝛿
(1βˆ’
π‘₯
𝑙
)
] 𝑙
0
=
2
𝛿
∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯
𝑙
0
= [
𝛿𝑙
(βˆ’π‘™ + 2π‘₯)
Γ— 𝑒
βˆ’π‘₯
𝛿
(1βˆ’
π‘₯
𝑙
)
] 𝑙
0
= 2𝛿
Substituting in the integral equation above, we get:
𝛼 (
2
𝛿
) = 2
𝑑𝛿
𝑑𝑑
𝛿 = √2𝛼𝑑
Substituting back 𝛿 into the temperature profile, we get
𝑻 βˆ’ π‘»βˆž
𝑻𝒔 βˆ’ π‘»βˆž
= 𝒆
βˆ’π’™
βˆšπŸπœΆπ’•
(πŸβˆ’
𝒙
𝒍
)
Or
𝑻 βˆ’ 𝑻𝒔
π‘»βˆž βˆ’ 𝑻𝒔
= 𝟏 βˆ’ 𝒆
βˆ’π’™
βˆšπŸπœΆπ’•
(πŸβˆ’
𝒙
𝒍
)
You notice that the initial condition is satisfied.
You notice that when 𝑙 = ∞ , we reduce to the temperature profile we derived
before
𝑻 βˆ’ π‘»βˆž
𝑻𝒔 βˆ’ π‘»βˆž
= 𝒆
βˆ’π’™
βˆšπŸπœΆπ’•
you notice that in the temperature profile developed, we get an exact solution
to the problem not an approximate as the Fourier series.
UNEQUAL FIXED TEMPERATURES AT THE END OF AN
INSULATED METAL ROD.
πœ•π‘‡
πœ•π‘‘
= 𝛼
πœ•2
𝑇
πœ•π‘₯2
The boundary conditions are:
𝑇 = 𝑇𝑠 π‘Žπ‘‘ π‘₯ = 0 π‘“π‘œπ‘Ÿ π‘Žπ‘™π‘™ 𝑑
𝑇 = 𝑇1 π‘Žπ‘‘ π‘₯ = 𝑙 π‘“π‘œπ‘Ÿ π‘Žπ‘™π‘™ 𝑑
The initial condition is
𝑇 = π‘‡βˆž π‘Žπ‘‘ 𝑑 = 0 0 ≀ π‘₯ ≀ 𝑙
The temperature profile that satisfies the boundary conditions is:
𝑻 βˆ’ π‘»βˆž
[
𝒙
𝒍
(π‘»πŸ βˆ’ π‘»βˆž) + (𝑻𝒔 βˆ’ π‘»βˆž) (𝟏 βˆ’
𝒙
𝒍)]
= π’†βˆ’
𝒙
𝜹
(πŸβˆ’
𝒙
𝒍
)
For now, we shall have a solution where 𝛿 is proportional to time t so that at
𝑑 = 0, 𝛿 = 0 and the initial condition will be satisfied.
We then transform the heat governing equation into an integral equation as:
𝛼 ∫ (
πœ•2
𝑇
πœ•π‘₯2
) 𝑑π‘₯
𝑙
0
= ∫
πœ•π‘‡
πœ•π‘‘
𝑑π‘₯
𝑙
0
Where:
𝑙 = π‘™π‘’π‘›π‘”π‘‘β„Ž π‘œπ‘“ π‘‘β„Žπ‘’ π‘šπ‘’π‘‘π‘Žπ‘™ π‘Ÿπ‘œπ‘‘
You notice that the integral
∫
πœ•π‘‡
πœ•π‘‘
𝑑π‘₯
𝑙
0
=
πœ•
πœ•π‘‘
∫ 𝑇𝑑π‘₯
𝑙
0
=
πœ•
πœ•π‘‘
∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯
𝑙
0
Since 𝑙 and π‘‡βˆž are constants independent of time
So, the integral equation becomes:
𝛼 ∫ (
πœ•2
𝑇
πœ•π‘₯2
) 𝑑π‘₯
𝑙
0
=
πœ•
πœ•π‘‘
∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯
𝑙
0
We go ahead and find
∫ (
πœ•2
𝑇
πœ•π‘₯2
) 𝑑π‘₯
𝑙
0
= [
πœ•π‘‡
πœ•π‘₯
]
𝑙
0
πœ•π‘‡
πœ•π‘₯
= (𝑇𝑠 βˆ’ π‘‡βˆž)π‘’βˆ’
π‘₯
𝛿
(1βˆ’
π‘₯
𝑙
)
[
1
𝑙
(𝑇1 βˆ’ π‘‡βˆž)
(𝑇𝑠 βˆ’ π‘‡βˆž)
βˆ’
1
𝑙
] + (𝑇𝑠 βˆ’ π‘‡βˆž)π‘’βˆ’
π‘₯
𝛿
(1βˆ’
π‘₯
𝑙
)
[
π‘₯
𝑙
(𝑇1 βˆ’ π‘‡βˆž)
(𝑇𝑠 βˆ’ π‘‡βˆž)
βˆ’ (1 βˆ’
π‘₯
𝑙
)] (
βˆ’π‘™ + 2π‘₯
𝛿𝑙
)
∫ (
πœ•2
𝑇
πœ•π‘₯2
) 𝑑π‘₯
𝑙
0
= [
πœ•π‘‡
πœ•π‘₯
]
𝑙
0
=
(𝑇𝑠 + 𝑇1 βˆ’ 2π‘‡βˆž)
𝛿
∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯
𝑙
0
=
(𝑇1 βˆ’ π‘‡βˆž)
𝑙
∫ π‘₯
𝑙
0
𝑒
βˆ’
π‘₯
𝛿
(1βˆ’
π‘₯
𝑙
)
𝑑π‘₯ + (𝑇𝑠 βˆ’ π‘‡βˆž) ∫ 𝑒
βˆ’
π‘₯
𝛿
(1βˆ’
π‘₯
𝑙
)
𝑑π‘₯
𝑙
0
βˆ’
(𝑇𝑠 βˆ’ π‘‡βˆž)
𝑙
∫ π‘₯
𝑙
0
𝑒
βˆ’
π‘₯
𝛿
(1βˆ’
π‘₯
𝑙
)
∫ π‘₯
𝑙
0
𝑒
βˆ’
π‘₯
𝛿
(1βˆ’
π‘₯
𝑙
)
𝑑π‘₯ = 𝑙𝛿
∫ 𝑒
βˆ’
π‘₯
𝛿
(1βˆ’
π‘₯
𝑙
)
𝑑π‘₯
𝑙
0
= 2𝛿
So
∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯
𝑙
0
= 𝛿(𝑇𝑠 + 𝑇1 βˆ’ 2π‘‡βˆž)
Substituting ∫ (
πœ•2𝑇
πœ•π‘₯2) 𝑑π‘₯
𝑙
0
and ∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯
𝑙
0
in the integral equation, we get
𝛼
𝛿
=
𝑑𝛿
𝑑𝑑
Where:
𝛿 = 0 π‘Žπ‘‘ 𝑑 = 0
𝛿 = √2𝛼𝑑
You notice that the initial condition is satisfied since after finding the solution
as done before to the PDE,
𝛿 = √2𝛼𝑑
Therefore substituting 𝛿 in the temperature profile, we get:
𝑻 βˆ’ π‘»βˆž
[
𝒙
𝒍
(π‘»πŸ βˆ’ π‘»βˆž) + (𝑻𝒔 βˆ’ π‘»βˆž) (𝟏 βˆ’
𝒙
𝒍)]
= 𝒆
βˆ’
𝒙
βˆšπŸπœΆπ’•
(πŸβˆ’
𝒙
𝒍
)
you notice that at steady state (𝑑 = ∞)
𝒆
βˆ’
𝒙
βˆšπŸπœΆπ’•
(πŸβˆ’
𝒙
𝒍
)
= π’†βˆ’
𝒙
∞
(πŸβˆ’
𝒙
𝒍
)
= π’†βˆ’πŸŽ
= 𝟏
The temperature profile becomes:
𝑻 βˆ’ π‘»βˆž = [
𝒙
𝒍
(π‘»πŸ βˆ’ π‘»βˆž) + (𝑻𝒔 βˆ’ π‘»βˆž) (𝟏 βˆ’
𝒙
𝒍
)]
HOW DO WE DEAL WITH OTHER TYPES OF BOUNDARY
CONDITIONS?
Consider the following types of boundary conditions and initial condition:
A)
𝑻 = 𝑻𝒔 𝒂𝒕 𝒙 = 𝟎
𝒅𝑻
𝒅𝒙
= 𝟎 𝒂𝒕 𝒙 = 𝒍
𝑻 = π‘»βˆž 𝒂𝒕 𝒕 = 𝟎
B)
𝑻 = 𝑻𝒔 𝒂𝒕 𝒙 = 𝟎
βˆ’π’Œ
𝒅𝑻
𝒅𝒙
= 𝒉(𝑻 βˆ’ π‘»βˆž) 𝒂𝒕 𝒙 = 𝒍
𝑻 = π‘»βˆž 𝒂𝒕 𝒕 = 𝟎
Let us go about solving for the above boundary conditions but let us deal with set A
boundary conditions and then we can deal with set B later.
We start with a temperature profile below:
𝑇 βˆ’ π‘‡βˆž = (𝑇𝑠 βˆ’ π‘‡βˆž)π‘’βˆ’
π‘₯
𝛿
(1βˆ’
π‘₯
𝑙
)
[
π‘₯
𝑙
(𝑇1 βˆ’ π‘‡βˆž)
(𝑇𝑠 βˆ’ π‘‡βˆž)
+ (1 βˆ’
π‘₯
𝑙
)]
we take the derivative
𝒅𝑻
𝒅𝒙
𝒂𝒕 𝒙 = 𝒍 and equate it to 0 and get:
𝑑𝑇
𝑑π‘₯
|π‘₯=𝑙 = (
(𝑇1 βˆ’ π‘‡βˆž)
𝑙
βˆ’
(𝑇𝑠 βˆ’ π‘‡βˆž)
𝑙
+
(𝑇1 βˆ’ π‘‡βˆž)
𝛿
)
𝑑𝑇
𝑑π‘₯
|π‘₯=𝑙 = (
(𝑇1 βˆ’ π‘‡βˆž)
𝑙
βˆ’
(𝑇𝑠 βˆ’ π‘‡βˆž)
𝑙
+
(𝑇1 βˆ’ π‘‡βˆž)
𝛿
) = 0
We finally get
(𝑇1 βˆ’ π‘‡βˆž) = (𝑇𝑠 βˆ’ π‘‡βˆž)(
𝛿
𝑙 + 𝛿
)
We substitute 𝑇1 βˆ’ π‘‡βˆž into the temperature profile and get
(𝑻 βˆ’ π‘»βˆž) = (𝑻𝒔 βˆ’ π‘»βˆž)π’†βˆ’
𝒙
𝜹
(𝟏 βˆ’
𝒙
𝒍
)
[
𝒙
𝒍
(
𝜹
𝜹 + 𝒍
) + (𝟏 βˆ’
𝒙
𝒍
)]
So, the temperature profile above satisfies the set A) boundary and initial
conditions and we can go ahead and solve the governing equation using the
temperature profile above.
For set B) boundary conditions, we again start with the temperature profile
below:
𝑇 βˆ’ π‘‡βˆž = (𝑇𝑠 βˆ’ π‘‡βˆž)π‘’βˆ’
π‘₯
𝛿
(1 βˆ’
π‘₯
𝑙
)
[
π‘₯
𝑙
(𝑇1 βˆ’ π‘‡βˆž)
(𝑇𝑠 βˆ’ π‘‡βˆž)
+ (1 βˆ’
π‘₯
𝑙
)]
we take the derivative
𝒅𝑻
𝒅𝒙
𝒂𝒕 𝒙 = 𝒍 and equate it to:
𝑑𝑇
𝑑π‘₯
|π‘₯=𝑙 = (
(𝑇1 βˆ’ π‘‡βˆž)
𝑙
βˆ’
(𝑇𝑠 βˆ’ π‘‡βˆž)
𝑙
+
(𝑇1 βˆ’ π‘‡βˆž)
𝛿
)
𝒅𝑻
𝒅𝒙
|𝒙=𝒍 = βˆ’
𝒉
π’Œ
(π‘»πŸ βˆ’ π‘»βˆž)
We then find the required temperature profile which we can use to solve the
governing equation.
HOW DO WE DEAL WITH CONVECTION AT THE
SURFACE AREA OF THE METAL ROD FOR FIXED END
TEMPERATURE
𝛼
πœ•2
𝑇
πœ•π‘₯2
βˆ’
β„Žπ‘ƒ
𝐴𝜌𝐢
(𝑇 βˆ’ π‘‡βˆž) =
πœ•π‘‡
πœ•π‘‘
We shall use the integral approach.
The boundary and initial conditions are
𝑻 = 𝑻𝒔 𝒂𝒕 𝒙 = 𝟎 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒕
𝑻 = π‘»βˆž 𝒂𝒕 𝒙 = ∞
𝑻 = π‘»βˆž 𝒂𝒕 𝒕 = 𝟎
Where: π‘»βˆž = π’“π’π’π’Ž π’•π’†π’Žπ’‘π’†π’“π’‚π’•π’–π’“π’†
First, we assume a temperature profile that satisfies the boundary conditions
as:
𝑇 βˆ’ π‘‡βˆž
𝑇𝑠 βˆ’ π‘‡βˆž
= 𝑒
βˆ’π‘₯
𝛿
where 𝛿 is to be determined and is a function of time t.
The governing equation is
𝛼
πœ•2
𝑇
πœ•π‘₯2
βˆ’
β„Žπ‘ƒ
𝐴𝜌𝐢
(𝑇 βˆ’ π‘‡βˆž) =
πœ•π‘‡
πœ•π‘‘
Let us change this equation into an integral as below:
𝛼 ∫ (
πœ•2
𝑇
πœ•π‘₯2
) 𝑑π‘₯
𝑙
0
βˆ’
β„Žπ‘ƒ
𝐴𝜌𝐢
∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯
𝑙
0
=
πœ•
πœ•π‘‘
∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯
𝑙
0
… … . . 𝑏)
πœ•2
𝑇
πœ•π‘₯2
=
(𝑇𝑠 βˆ’ π‘‡βˆž)
𝛿2
𝑒
βˆ’π‘₯
𝛿
∫ (
πœ•2
𝑇
πœ•π‘₯2
) 𝑑π‘₯
𝑙
0
=
βˆ’(𝑇𝑠 βˆ’ π‘‡βˆž)
𝛿
(𝑒
βˆ’π‘₯
𝑙 βˆ’ 1)
∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯
𝑙
0
= βˆ’π›Ώ(𝑇𝑠 βˆ’ π‘‡βˆž)(𝑒
βˆ’π‘₯
𝑙 βˆ’ 1)
Substituting the above expressions in equation b) above, we get
𝛼 βˆ’
β„Žπ‘ƒ
𝐴𝜌𝐢
𝛿2
= 𝛿
𝑑𝛿
𝑑𝑑
We solve the equation above assuming that
𝛿 = 0 π‘Žπ‘‘ 𝑑 = 0
And get
𝛿 = √
π›Όπ΄πœŒπΆ
β„Žπ‘ƒ
(1 βˆ’ 𝑒
βˆ’2β„Žπ‘ƒ
𝐴𝜌𝐢
𝑑
)
𝛿 = √
𝐾𝐴
β„Žπ‘ƒ
(1 βˆ’ 𝑒
βˆ’2β„Žπ‘ƒ
𝐴𝜌𝐢
𝑑
)
Substituting for 𝛿 in the temperature profile, we get
𝑻 βˆ’ π‘»βˆž
𝑻𝒔 βˆ’ π‘»βˆž
= 𝒆
βˆ’π’™
βˆšπ‘²π‘¨
𝒉𝑷
(πŸβˆ’π’†
βˆ’πŸπ’‰π‘·
𝑨𝝆π‘ͺ
𝒕
)
From the equation above, we notice that the initial condition is satisfied i.e.,
𝑻 = π‘»βˆž 𝒂𝒕 𝒕 = 𝟎
The equation above predicts the transient state and in steady state (𝑑 = ∞) it
reduces to
𝑻 βˆ’ π‘»βˆž
𝑻𝒔 βˆ’ π‘»βˆž
= 𝒆
βˆ’βˆš(
𝒉𝑷
𝑲𝑨
)𝒙
What are the predictions of the transient state?
Let us make π‘₯ the subject of the equation of transient state and get:
π‘₯2
= [ln (
𝑇𝑠 βˆ’ π‘‡βˆž
𝑇 βˆ’ π‘‡βˆž
)]2
Γ—
𝐾𝐴
β„Žπ‘ƒ
(1 βˆ’ 𝑒
βˆ’2β„Žπ‘ƒ
𝐴𝜌𝐢
𝑑
)
When the time duration is small and
2β„Žπ‘ƒ
𝐴𝜌𝐢
𝑑 β‰ͺ 1
We use the binomial expansion approximation
𝑒
βˆ’2β„Žπ‘ƒ
𝐴𝜌𝐢
𝑑
= 1 βˆ’
2β„Žπ‘ƒ
𝐴𝜌𝐢
𝑑
Substituting in the equation of π‘₯2
as the subject, we get
π‘₯2
= 2𝛼[ln (
𝑇𝑠 βˆ’ π‘‡βˆž
𝑇 βˆ’ π‘‡βˆž
)]2
Γ— 𝑑
Where:
𝛼 =
𝐾
𝜌𝐢
What that equation says is that when you stick wax particles on a long metal
rod (𝑙 = ∞) at distances x from the hot end of the rod and note the time t it
takes the wax particles to melt, then a graph of π‘₯2
against 𝑑 is a straight-line
graph through the origin as stated by the equation above when the times are
small. The equation is true because that is what is observed experimentally.
How do we measure the heat transfer coefficient?
From,
π‘₯2
= [ln (
𝑇𝑠 βˆ’ π‘‡βˆž
𝑇 βˆ’ π‘‡βˆž
)]2
Γ—
𝐾𝐴
β„Žπ‘ƒ
(1 βˆ’ 𝑒
βˆ’2β„Žπ‘ƒ
𝐴𝜌𝐢
𝑑
)
When the times concerned are big, we shall observe the above equation.
Let us call
𝐡 = [ln (
𝑇𝑠 βˆ’ π‘‡βˆž
𝑇 βˆ’ π‘‡βˆž
)]2
Γ—
𝐾𝐴
β„Žπ‘ƒ
So, the equation above becomes
π‘₯2
= 𝐡 (1 βˆ’ 𝑒
βˆ’2β„Žπ‘ƒ
𝐴𝜌𝐢
𝑑
)
Let’s take the derivative of x against time t and get
π‘₯
𝑑π‘₯
𝑑𝑑
= 𝐡
2β„Ž
π‘ŸπœŒπΆ
𝑒
βˆ’2β„Žπ‘ƒ
𝐴𝜌𝐢
𝑑
𝑒
βˆ’2β„Žπ‘ƒ
𝐴𝜌𝐢
𝑑
=
(𝐡 βˆ’ π‘₯2
)
𝐡
Substitute and get
π‘₯
𝑑π‘₯
𝑑𝑑
=
2β„Ž
π‘ŸπœŒπΆ
(𝐡 βˆ’ π‘₯2
)
𝒙
𝒅𝒙
𝒅𝒕
=
πŸπ’‰
𝒓𝝆π‘ͺ
𝑩 βˆ’
πŸπ’‰
𝒓𝝆π‘ͺ
π’™πŸ
A graph of π‘₯
𝑑π‘₯
𝑑𝑑
against π‘₯2
when the time is big has a negative gradient of
β„Ž
π‘ŸπœŒπΆ
from which h can be measured experimentally.
From experiments using aluminium rod, h was found to be
β„Ž = 5.7712π‘Šπ‘šβˆ’2
πΎβˆ’1
h can also be got from Stefan’s law of cooling that reduces to the Newton’s law
of cooling.
Stefan’s law of cooling in natural convection states
𝒅𝑸
𝒅𝒕
= (𝟏 + 𝜷)π‘¨πˆπœΊ[π‘»πŸ’
βˆ’ π‘»βˆž
πŸ’
]
From tables
𝜺 = 𝟎. πŸ‘ 𝒇𝒐𝒓 π’‚π’π’–π’Žπ’Šπ’π’Šπ’–π’Ž
Where:
𝜷 = πŸ’. πŸ“πŸ•πŸ—πŸ• = π’Œπ‘·π’“π’
Considering
𝑇 = π‘‡βˆž + βˆ†π‘‡
𝑑𝑄
𝑑𝑑
= (1 + 𝛽)π΄πœŽπœ€[(π‘‡βˆž + βˆ†π‘‡)4
βˆ’ π‘‡βˆž
4
]
Factorizing out 𝑇1, we get
𝑑𝑄
𝑑𝑑
= (1 + 𝛽)π΄πœŽπœ€[π‘‡βˆž
4
(1 +
(𝑇 βˆ’ π‘‡βˆž)
π‘‡βˆž
)4
βˆ’ π‘‡βˆž
4
]
It is known from Binomial expansion that:
(1 + π‘₯)𝑛
β‰ˆ 1 + 𝑛π‘₯ π‘“π‘œπ‘Ÿ π‘₯ β‰ͺ 1
So:
(1 +
(𝑇 βˆ’ π‘‡βˆž)
π‘‡βˆž
)4
β‰ˆ 1 + 4
(𝑇 βˆ’ π‘‡βˆž)
π‘‡βˆž
= 1 + 4
βˆ†π‘‡
π‘‡βˆž
= π‘“π‘œπ‘Ÿ
βˆ†π‘‡
π‘‡βˆž
β‰ͺ 1
Simplifying, we get Newton’s law of cooling i.e.
𝒅𝑸
𝒅𝒕
= πŸ’(𝟏 + 𝜷)π‘¨πˆπœΊπ‘»βˆž
πŸ‘ (𝑻 βˆ’ π‘»βˆž)
𝒅𝑸
𝒅𝒕
= 𝒉𝑨(𝑻 βˆ’ π‘»βˆž)
Where:
𝒉 = πŸ’(𝟏 + 𝜷)πˆπœΊπ‘»βˆž
πŸ‘
Substitute for the above parameters of aluminium and get h theoretically and
compare as got experimentally.
How do we deal with metal rods of finite length 𝒍 ?
The boundary and initial conditions are
𝑻 = 𝑻𝒔 𝒂𝒕 𝒙 = 𝟎
βˆ’π’Œ
𝒅𝑻
𝒅𝒙
= 𝒉(𝑻 βˆ’ π‘»βˆž) 𝒂𝒕 𝒙 = 𝒍
𝑻 = π‘»βˆž 𝒂𝒕 𝒕 = 𝟎
Let us go about solving for the above boundary conditions
We start with a temperature profile below:
𝑇 βˆ’ π‘‡βˆž = (𝑇𝑠 βˆ’ π‘‡βˆž)π‘’βˆ’
π‘₯
𝛿
(1βˆ’
π‘₯
𝑙
)
[
π‘₯
𝑙
(𝑇1 βˆ’ π‘‡βˆž)
(𝑇𝑠 βˆ’ π‘‡βˆž)
+ (1 βˆ’
π‘₯
𝑙
)]
Which says
𝑇 = 𝑇𝑠 π‘Žπ‘‘ π‘₯ = 0
𝑇 = 𝑇1 π‘Žπ‘‘ π‘₯ = 𝑙
𝑇 = π‘‡βˆž π‘Žπ‘‘ 𝑑 = 0
Provided 𝛿 = 0 π‘Žπ‘‘ 𝑑 = 0 , then the initial condition above is satisfied
we take the derivative
𝒅𝑻
𝒅𝒙
𝒂𝒕 𝒙 = 𝒍 and equate it to βˆ’
β„Ž
π‘˜
(𝑇1 βˆ’ π‘‡βˆž) and get:
𝑑𝑇
𝑑π‘₯
|π‘₯=𝑙 = (
(𝑇1 βˆ’ π‘‡βˆž)
𝑙
βˆ’
(𝑇𝑠 βˆ’ π‘‡βˆž)
𝑙
+
(𝑇1 βˆ’ π‘‡βˆž)
𝛿
)
𝑑𝑇
𝑑π‘₯
|π‘₯=𝑙 = βˆ’
β„Ž
π‘˜
(𝑇1 βˆ’ π‘‡βˆž)
We equate the two and get
(
(𝑇1 βˆ’ π‘‡βˆž)
𝑙
βˆ’
(𝑇𝑠 βˆ’ π‘‡βˆž)
𝑙
+
(𝑇1 βˆ’ π‘‡βˆž)
𝛿
) = βˆ’
β„Ž
π‘˜
(𝑇1 βˆ’ π‘‡βˆž)
We finally get
(𝑇1 βˆ’ π‘‡βˆž) = (𝑇𝑠 βˆ’ π‘‡βˆž)(
π›Ώπ‘˜
π›Ώπ‘˜ + π‘™π‘˜ + β„Žπ‘™π›Ώ
)
We substitute 𝑇1 βˆ’ π‘‡βˆž into the temperature profile and get
(𝑻 βˆ’ π‘»βˆž) = (𝑻𝒔 βˆ’ π‘»βˆž)π’†βˆ’
𝒙
𝜹
(𝟏 βˆ’
𝒙
𝒍
)
[
𝒙
𝒍
(
πœΉπ’Œ
πœΉπ’Œ + π’π’Œ + π’‰π’πœΉ
) + (𝟏 βˆ’
𝒙
𝒍
)]
This the temperature profile that satisfies the boundary and initial conditions
below
𝑻 = 𝑻𝒔 𝒂𝒕 𝒙 = 𝟎
βˆ’π’Œ
𝒅𝑻
𝒅𝒙
= 𝒉(𝑻 βˆ’ π‘»βˆž) 𝒂𝒕 𝒙 = 𝒍
𝑻 = π‘»βˆž 𝒂𝒕 𝒕 = 𝟎
Let us go ahead and solve for 𝛿
The governing equation is
𝛼
πœ•2
𝑇
πœ•π‘₯2
βˆ’
β„Žπ‘ƒ
𝐴𝜌𝐢
(𝑇 βˆ’ π‘‡βˆž) =
πœ•π‘‡
πœ•π‘‘
Let us change this equation into an integral as below:
𝛼 ∫ (
πœ•2
𝑇
πœ•π‘₯2
) 𝑑π‘₯
𝑙
0
βˆ’
β„Žπ‘ƒ
𝐴𝜌𝐢
∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯
𝑙
0
=
πœ•
πœ•π‘‘
∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯
𝑙
0
… … . . 𝑏)
𝛼 ∫ (
πœ•2
𝑇
πœ•π‘₯2
) 𝑑π‘₯
𝑙
0
βˆ’
2β„Ž
π‘ŸπœŒπΆ
∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯
𝑙
0
=
πœ•
πœ•π‘‘
∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯
𝑙
0
∫ (
πœ•2
𝑇
πœ•π‘₯2
) 𝑑π‘₯
𝑙
0
= [
πœ•π‘‡
πœ•π‘₯
]
𝑙
0
πœ•π‘‡
πœ•π‘₯
= (𝑇𝑠 βˆ’ π‘‡βˆž)π‘’βˆ’
π‘₯
𝛿
(1βˆ’
π‘₯
𝑙
)
[
1
𝑙
(𝑇1 βˆ’ π‘‡βˆž)
(𝑇𝑠 βˆ’ π‘‡βˆž)
βˆ’
1
𝑙
] + (𝑇𝑠 βˆ’ π‘‡βˆž)π‘’βˆ’
π‘₯
𝛿
(1βˆ’
π‘₯
𝑙
)
[
π‘₯
𝑙
(𝑇1 βˆ’ π‘‡βˆž)
(𝑇𝑠 βˆ’ π‘‡βˆž)
βˆ’ (1 βˆ’
π‘₯
𝑙
)] (
βˆ’π‘™ + 2π‘₯
𝛿𝑙
)
∫ (
πœ•2
𝑇
πœ•π‘₯2
) 𝑑π‘₯
𝑙
0
= [
πœ•π‘‡
πœ•π‘₯
]
𝑙
0
=
(𝑇𝑠 βˆ’ π‘‡βˆž)
𝛿
+
(𝑇1 βˆ’ π‘‡βˆž)
𝛿
Substitute for
(𝑇1 βˆ’ π‘‡βˆž) = (𝑇𝑠 βˆ’ π‘‡βˆž)(
π›Ώπ‘˜
π›Ώπ‘˜ + π‘™π‘˜ + β„Žπ‘™π›Ώ
)
∫ (
πœ•2
𝑇
πœ•π‘₯2
) 𝑑π‘₯
𝑙
0
= [
πœ•π‘‡
πœ•π‘₯
]
𝑙
0
= (𝑇𝑠 βˆ’ π‘‡βˆž)(
2π›Ώπ‘˜ + π‘™π‘˜ + β„Žπ‘™π›Ώ
𝛿(π›Ώπ‘˜ + π‘™π‘˜ + β„Žπ‘™π›Ώ)
)
2β„Ž
π‘ŸπœŒπΆ
∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯
𝑙
0
= β„Ž2πœ‹π‘Ÿ ∫ ((𝑇𝑠 βˆ’ π‘‡βˆž)π‘’βˆ’
π‘₯
𝛿
(1βˆ’
π‘₯
𝑙
)
[
π‘₯
𝑙
(𝑇1 βˆ’ π‘‡βˆž)
(𝑇𝑠 βˆ’ π‘‡βˆž)
+ (1 βˆ’
π‘₯
𝑙
)])𝑑π‘₯
𝑙
0
2β„Ž
π‘ŸπœŒπΆ
∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯
𝑙
0
= β„Ž2πœ‹π‘Ÿ[
(𝑇1 βˆ’ π‘‡βˆž)
𝑙
∫ π‘₯π‘’βˆ’
π‘₯
𝛿
(1βˆ’
π‘₯
𝑙
)
𝑑π‘₯
𝑙
0
+ (𝑇𝑠 βˆ’ π‘‡βˆž) ∫ π‘’βˆ’
π‘₯
𝛿
(1βˆ’
π‘₯
𝑙
)
𝑑π‘₯
𝑙
0
βˆ’
(𝑇𝑠 βˆ’ π‘‡βˆž)
𝑙
∫ π‘₯π‘’βˆ’
π‘₯
𝛿
(1βˆ’
π‘₯
𝑙
)
𝑑π‘₯
𝑙
0
]
Integrating by parts shows that
∫ 𝑒
βˆ’
π‘₯
𝛿
(1βˆ’
π‘₯
𝑙
)
𝑑π‘₯
𝑙
0
= [(
𝑙𝛿
βˆ’π‘™ + 2π‘₯
)𝑒
βˆ’
π‘₯
𝛿
(1βˆ’
π‘₯
𝑙
)
]
𝑙
0
= 2𝛿
∫ π‘₯𝑒
βˆ’
π‘₯
𝛿
(1βˆ’
π‘₯
𝑙
)
𝑑π‘₯
𝑙
0
= [(
π‘₯𝑙𝛿
βˆ’π‘™ + 2π‘₯
βˆ’
𝑙2
𝛿2
(βˆ’π‘™ + 2π‘₯)2[1 βˆ’
2𝑙𝛿
(βˆ’π‘™ + 2π‘₯)2]
) 𝑒
βˆ’
π‘₯
𝛿
(1βˆ’
π‘₯
𝑙
)
]
𝑙
0
= 𝑙𝛿
Substituting back into the heat loss equation we get
2β„Ž
π‘ŸπœŒπΆ
∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯
𝑙
0
=
2β„Ž
π‘ŸπœŒπΆ
[(𝑇1 βˆ’ π‘‡βˆž) + (𝑇𝑠 βˆ’ π‘‡βˆž)]𝛿
substitute for (𝑇1 βˆ’ π‘‡βˆž) and get
2β„Ž
π‘ŸπœŒπΆ
∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯
𝑙
0
=
2β„Ž
π‘ŸπœŒπΆ
(𝑇𝑠 βˆ’ π‘‡βˆž)(
2π›Ώπ‘˜ + π‘™π‘˜ + β„Žπ‘™π›Ώ
(π›Ώπ‘˜ + π‘™π‘˜ + β„Žπ‘™π›Ώ)
)𝛿
πœ•
πœ•π‘‘
∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯
𝑙
0
= (𝑇𝑠 βˆ’ π‘‡βˆž)(
2π›Ώπ‘˜ + π‘™π‘˜ + β„Žπ‘™π›Ώ
(π›Ώπ‘˜ + π‘™π‘˜ + β„Žπ‘™π›Ώ)
)
𝑑𝛿
𝑑𝑑
Substituting into the integral equation we get
𝛼(𝑇𝑠 βˆ’ π‘‡βˆž) (
2π›Ώπ‘˜ + π‘™π‘˜ + β„Žπ‘™π›Ώ
𝛿(π›Ώπ‘˜ + π‘™π‘˜ + β„Žπ‘™π›Ώ)
) βˆ’
2β„Ž
π‘ŸπœŒπΆ
(𝑇𝑠 βˆ’ π‘‡βˆž) (
2π›Ώπ‘˜ + π‘™π‘˜ + β„Žπ‘™π›Ώ
(π›Ώπ‘˜ + π‘™π‘˜ + β„Žπ‘™π›Ώ)
) 𝛿 = (𝑇𝑠 βˆ’ π‘‡βˆž)(
2π›Ώπ‘˜ + π‘™π‘˜ + β„Žπ‘™π›Ώ
(π›Ώπ‘˜ + π‘™π‘˜ + β„Žπ‘™π›Ώ)
)
𝑑𝛿
𝑑𝑑
𝛼 βˆ’
β„Žπ‘ƒ
𝐴𝜌𝐢
𝛿2
= 𝛿
𝑑𝛿
𝑑𝑑
We solve the equation above assuming that
𝛿 = 0 π‘Žπ‘‘ 𝑑 = 0
And get
𝛿 = √
π›Όπ΄πœŒπΆ
β„Žπ‘ƒ
(1 βˆ’ 𝑒
βˆ’2β„Žπ‘ƒ
𝐴𝜌𝐢
𝑑
)
𝛿 = √
𝐾𝐴
β„Žπ‘ƒ
(1 βˆ’ 𝑒
βˆ’2β„Žπ‘ƒ
𝐴𝜌𝐢
𝑑
)
We go ahead and substitute for 𝛿 in the temperature profile below
(𝑻 βˆ’ π‘»βˆž) = (𝑻𝒔 βˆ’ π‘»βˆž)π’†βˆ’
𝒙
𝜹
(𝟏 βˆ’
𝒙
𝒍
)
[
𝒙
𝒍
(
πœΉπ’Œ
πœΉπ’Œ + π’π’Œ + π’‰π’πœΉ
) + (𝟏 βˆ’
𝒙
𝒍
)]
When the time is small, 𝛿 using binomial approximation becomes
𝛿 = √
𝐾𝐴
β„Žπ‘ƒ
(1 βˆ’ 𝑒
βˆ’2β„Žπ‘ƒ
𝐴𝜌𝐢
𝑑
)
2β„Žπ‘ƒ
𝐴𝜌𝐢
𝑑 β‰ͺ 1
𝑒
βˆ’β„Žπ‘ƒ
𝐴𝜌𝐢
𝑑
= 1 βˆ’
2β„Žπ‘ƒ
𝐴𝜌𝐢
𝑑
1 βˆ’ 𝑒
βˆ’2β„Žπ‘ƒ
𝐴𝜌𝐢
𝑑
=
2β„Žπ‘ƒ
𝐴𝜌𝐢
𝑑
𝛿 = √2𝛼𝑑
We substitute for 𝛿 in the temperature profile.
What happens when the length is big or tends to infinity?
(𝑻 βˆ’ π‘»βˆž) = (𝑻𝒔 βˆ’ π‘»βˆž)π’†βˆ’
𝒙
𝜹
(𝟏 βˆ’
𝒙
𝒍
)
[
𝒙
𝒍
(
πœΉπ’Œ
πœΉπ’Œ + π’π’Œ + π’‰π‘³π’πœΉ
) + (𝟏 βˆ’
𝒙
𝒍
)]
Becomes
(𝑻 βˆ’ π‘»βˆž) = (𝑻𝒔 βˆ’ π‘»βˆž)π’†βˆ’
𝒙
𝜹
(𝑻 βˆ’ π‘»βˆž) = (𝑻𝒔 βˆ’ π‘»βˆž)𝒆
βˆ’
𝒙
βˆšπ‘²π‘¨
𝒉𝑷
(πŸβˆ’π’†
βˆ’πŸπ’‰π‘·
𝑨𝝆π‘ͺ
𝒕
)
Which is what we got before.
WHAT HAPPENS WHEN THE INITIAL TEMPERATURE IS
A FUNCTION OF X?
The governing equation is
𝛼
πœ•2
𝑇
πœ•π‘₯2
=
πœ•π‘‡
πœ•π‘‘
BCs
𝑻 = 𝑻𝒔 𝒂𝒕 𝒙 = 𝟎 𝟎 < 𝒕 < ∞
𝑻 = 𝑻𝒔 𝒂𝒕 𝒙 = 𝒍 𝟎 < 𝒕 < ∞
IC
𝑻 = βˆ…(𝒙) 𝒂𝒕 𝒕 = 𝟎 𝟎 ≀ 𝒙 ≀ 𝒍
We assume an exponential temperature profile that satisfies the boundary
conditions:
𝑇 βˆ’ βˆ…
𝑇𝑠 βˆ’ βˆ…
= 𝑒
βˆ’π‘₯
𝛿
𝑇 = βˆ… + 𝑇𝑠𝑒
βˆ’π‘₯
𝛿 βˆ’ βˆ…π‘’
βˆ’π‘₯
𝛿
The PDE becomes an integral equation given by:
𝛼 ∫ (
πœ•2
𝑇
πœ•π‘₯2
) 𝑑π‘₯
𝛿
0
=
πœ•
πœ•π‘‘
∫ 𝑇𝑑π‘₯
𝛿
0
You notice the limits of the integral become from 0 π‘‘π‘œ 𝛿 as this eliminate
exponentials which are functions of 𝛿 and this will make the integration
simpler.
Let us give an example say
βˆ… = π‘₯
We make T the subject of the formula and get
𝑇 = βˆ… + 𝑇𝑠𝑒
βˆ’π‘₯
𝛿 βˆ’ βˆ…π‘’
βˆ’π‘₯
𝛿
βˆ… = π‘₯
𝑇 = π‘₯ + 𝑇𝑠𝑒
βˆ’π‘₯
𝛿 βˆ’ π‘₯𝑒
βˆ’π‘₯
𝛿
∫ (
πœ•2
𝑇
πœ•π‘₯2
) 𝑑π‘₯
𝛿
0
= [
πœ•π‘‡
πœ•π‘₯
]
𝛿
0
πœ•π‘‡
πœ•π‘₯
= 1 βˆ’
𝑇𝑠
𝛿
𝑒
βˆ’π‘₯
𝛿 βˆ’
π‘₯
𝛿
𝑒
βˆ’π‘₯
𝛿 + 𝑒
βˆ’π‘₯
𝛿
∫ (
πœ•2
𝑇
πœ•π‘₯2
) 𝑑π‘₯
𝛿
0
= [1 βˆ’
𝑇𝑠
𝛿
𝑒
βˆ’π‘₯
𝛿 βˆ’
π‘₯
𝛿
𝑒
βˆ’π‘₯
𝛿 + 𝑒
βˆ’π‘₯
𝛿 ]
𝛿
0
=
𝑇𝑠
𝛿
(1 βˆ’ 𝑒
βˆ’1
)
∫ 𝑇𝑑π‘₯
𝛿
0
= ∫ [π‘₯ + 𝑇𝑠𝑒
βˆ’π‘₯
𝛿 βˆ’ π‘₯𝑒
βˆ’π‘₯
𝛿 ]𝑑π‘₯
𝛿
0
= [
π‘₯2
2
βˆ’ 𝛿𝑇𝑠𝑒
βˆ’π‘₯
𝛿 + π‘₯𝛿𝑒
βˆ’π‘₯
𝛿 + 𝛿2
𝑒
βˆ’π‘₯
𝛿 ]
𝛿
0
= [βˆ’
𝛿2
2
+ 𝛿𝑇𝑠(1 βˆ’ π‘’βˆ’1) + 2𝛿2
π‘’βˆ’1
]
πœ•
πœ•π‘‘
∫ 𝑇𝑑π‘₯
𝛿
0
= βˆ’2𝛿
𝑑𝛿
𝑑𝑑
+ 𝑇𝑠(1 βˆ’ π‘’βˆ’1)
𝑑𝛿
𝑑𝑑
+ 4π›Ώπ‘’βˆ’1
𝑑𝛿
𝑑𝑑
Substituting ∫ (
πœ•2𝑇
πœ•π‘₯2
) 𝑑π‘₯
𝛿
0
and
πœ•
πœ•π‘‘
∫ 𝑇𝑑π‘₯
𝛿
0
into the integral equation, we get
𝑇𝑠
𝛿
(1 βˆ’ 𝑒
βˆ’1
) = [βˆ’2𝛿 + 𝑇𝑠(1 βˆ’ π‘’βˆ’1) + 4π›Ώπ‘’βˆ’1
]
𝑑𝛿
𝑑𝑑
The boundary conditions are 𝛿 = 0 π‘Žπ‘‘ 𝑑 = 0
𝑇𝑠(1 βˆ’ π‘’βˆ’1
) ∫ 𝑑𝑑
𝑑
0
= [βˆ’2 ∫ 𝛿2
𝑑𝛿
𝛿
0
+ 𝑇𝑠(1 βˆ’ π‘’βˆ’1
) ∫ 𝛿𝑑𝛿
𝛿
0
+ 4π‘’βˆ’1
∫ 𝛿2
𝛿
0
𝑑𝛿]
We end up with
6𝑇𝑠(1 βˆ’ 𝑒
βˆ’1
)𝑑 = (8π‘’βˆ’1
βˆ’ 4)𝛿
3
+ 3𝑇𝑠(1 βˆ’ π‘’βˆ’1
)𝛿2
From which we can get 𝛿
Where 𝛿 is in the form
π‘Žπ›Ώ3
+ 𝑏𝛿2
+ 𝑑 = 0
The above is a cubic equation whose solutions exist.
Where:
π‘Ž = (8π‘’βˆ’1
βˆ’ 4)
𝑏 = 3𝑇𝑠(1 βˆ’ π‘’βˆ’1
)
𝑑 = βˆ’6𝑇𝑠(1 βˆ’ 𝑒
βˆ’1
)𝑑
There are three roots of 𝛿 but we choose those which reduce to zero when time
is zero.
The two roots that satisfy the above condition are
𝛿1 = βˆ’
𝑏
3π‘Ž
+
1 + π‘–βˆš3
6π‘Ž
√(
1
2
) [2𝑏3 + 27π‘Ž2𝑑 + √(2𝑏3 + 27π‘Ž2𝑑)2 βˆ’ 4𝑏6)]
3
+
1 βˆ’ π‘–βˆš3
6π‘Ž
√(
1
2
) [2𝑏3 + 27π‘Ž2𝑑 βˆ’ √(2𝑏3 + 27π‘Ž2𝑑)2 βˆ’ 4𝑏6)]
3
Or
𝛿2 = βˆ’
𝑏
3π‘Ž
+
1 βˆ’ π‘–βˆš3
6π‘Ž
√(
1
2
) [2𝑏3 + 27π‘Ž2𝑑 + √(2𝑏3 + 27π‘Ž2𝑑)2 βˆ’ 4𝑏6)]
3
+
1 + π‘–βˆš3
6π‘Ž
√(
1
2
) [2𝑏3 + 27π‘Ž2𝑑 βˆ’ √(2𝑏3 + 27π‘Ž2𝑑)2 βˆ’ 4𝑏6)]
3
After getting the solution of 𝛿 ,we go ahead and substitute it into the
exponential temperature profile.
We shall be faced with more scenarios where 𝛿 is a cubic equation with time
but the root or solution of 𝛿 to choose is the one for which 𝛿 = 0 π‘Žπ‘‘ 𝑑 = 0.
Using this analytical method, we can also go ahead and solve PDES like
πœ•π‘‡
πœ•π‘‘
= 𝛼
πœ•2
𝑇
πœ•π‘₯2
+ 𝑓(π‘₯)
Again, we take limits from 0 π‘‘π‘œ 𝛿 when solving the integral equation to eliminate
exponentials with a function of 𝛿 in order to make solving for the solution easy.
HOW DO WE DEAL WITH CYLINDRICAL CO-
ORDINATES?
We know that for an insulated cylinder where there is no heat loss by
convection from the sides, the governing PDE equation is
𝛼 [
πœ•2
𝑇
πœ•π‘Ÿ2
+
1
π‘Ÿ
πœ•π‘‡
πœ•π‘Ÿ
] =
πœ•π‘‡
πœ•π‘‘
The boundary conditions are
𝑇 = 𝑇𝑠 π‘Žπ‘‘ π‘Ÿ = 0
𝑇 = π‘‡βˆž π‘Žπ‘‘ π‘Ÿ = ∞
The initial condition is:
𝑇 = π‘‡βˆž π‘Žπ‘‘ 𝑑 = 0
The temperature profile that satisfies the conditions above is
𝑇 βˆ’ π‘‡βˆž
𝑇𝑠 βˆ’ π‘‡βˆž
= 𝑒
βˆ’(π‘Ÿβˆ’π‘Ÿ1)
𝛿
We transform the PDE into an integral equation
𝛼 [
πœ•2
𝑇
πœ•π‘Ÿ2
+
1
π‘Ÿ
πœ•π‘‡
πœ•π‘Ÿ
] =
πœ•π‘‡
πœ•π‘‘
𝛼 ∫ (
πœ•2
𝑇
πœ•π‘Ÿ2
) π‘‘π‘Ÿ
𝛿+π‘Ÿ1
π‘Ÿ1
+ 𝛼 ∫ [
1
π‘Ÿ
(
πœ•π‘‡
πœ•π‘Ÿ
)]π‘‘π‘Ÿ
𝛿+π‘Ÿ1
π‘Ÿ1
=
πœ•
πœ•π‘‘
∫ π‘‡π‘‘π‘Ÿ
𝛿+π‘Ÿ1
π‘Ÿ1
We then go ahead to solve and find 𝛿 as before.
∫ (
πœ•2
𝑇
πœ•π‘Ÿ2
) π‘‘π‘Ÿ
𝛿+π‘Ÿ1
π‘Ÿ1
= [
πœ•π‘‡
πœ•π‘Ÿ
]
𝛿 + π‘Ÿ1
π‘Ÿ1
= βˆ’
𝑇𝑠 βˆ’ π‘‡βˆž
𝛿
[𝑒
βˆ’(π‘Ÿβˆ’π‘Ÿ1)
𝛿 ]
𝛿 + π‘Ÿ1
π‘Ÿ1
=
𝑇𝑠 βˆ’ π‘‡βˆž
𝛿
(1 βˆ’ π‘’βˆ’1
)
πœ•π‘‡
πœ•π‘Ÿ
= βˆ’
𝑇𝑠 βˆ’ π‘‡βˆž
𝛿
𝑒
βˆ’(π‘Ÿβˆ’π‘Ÿ1)
𝛿
∫ [
1
π‘Ÿ
(
πœ•π‘‡
πœ•π‘Ÿ
)] π‘‘π‘Ÿ
𝛿+π‘Ÿ1
π‘Ÿ1
= βˆ’
(𝑇𝑠 βˆ’ π‘‡βˆž)
𝛿
∫
1
π‘Ÿ
𝑒
βˆ’(π‘Ÿβˆ’π‘Ÿ1)
𝛿 π‘‘π‘Ÿ
𝛿+π‘Ÿ1
π‘Ÿ1
∫
1
π‘Ÿ
𝑒
βˆ’(π‘Ÿβˆ’π‘Ÿ1)
𝛿 π‘‘π‘Ÿ
𝛿+π‘Ÿ1
π‘Ÿ1
= 𝑒𝑣 βˆ’ ∫ 𝑣
𝑑𝑒
π‘‘π‘Ÿ
π‘‘π‘Ÿ
𝑒 =
1
π‘Ÿ
𝑑𝑣
π‘‘π‘Ÿ
= 𝑒
βˆ’(π‘Ÿβˆ’π‘Ÿ1)
𝛿
𝑣 = βˆ’π›Ώπ‘’
βˆ’(π‘Ÿβˆ’π‘Ÿ1)
𝛿
∫
1
π‘Ÿ
𝑒
βˆ’(π‘Ÿβˆ’π‘Ÿ1)
𝛿 π‘‘π‘Ÿ
𝛿+π‘Ÿ1
π‘Ÿ1
=
βˆ’π›Ώπ‘’
βˆ’(π‘Ÿβˆ’π‘Ÿ1)
𝛿
π‘Ÿ
βˆ’
𝛿
π‘Ÿ
∫
1
π‘Ÿ
𝑒
βˆ’(π‘Ÿβˆ’π‘Ÿ1)
𝛿 π‘‘π‘Ÿ
𝛿+
π‘Ÿ1
[1 +
𝛿
π‘Ÿ
] ∫
1
π‘Ÿ
𝑒
βˆ’(π‘Ÿβˆ’π‘Ÿ1)
𝛿 π‘‘π‘Ÿ
𝛿+π‘Ÿ1
π‘Ÿ1
=
βˆ’π›Ώπ‘’
βˆ’(π‘Ÿβˆ’π‘Ÿ1)
𝛿
π‘Ÿ
∫
1
π‘Ÿ
𝑒
βˆ’(π‘Ÿβˆ’π‘Ÿ1)
𝛿 π‘‘π‘Ÿ
𝛿+π‘Ÿ1
π‘Ÿ1
= [
βˆ’π›Ώ
π‘Ÿ + 𝛿
𝑒
βˆ’(π‘Ÿβˆ’π‘Ÿ1)
𝛿 ]
𝛿 + π‘Ÿ1
π‘Ÿ1
=
𝛿
𝛿 + π‘Ÿ1
βˆ’
π›Ώπ‘’βˆ’1
2𝛿 + π‘Ÿ1
Substituting in
∫ [
1
π‘Ÿ
(
πœ•π‘‡
πœ•π‘Ÿ
)]π‘‘π‘Ÿ
𝛿+π‘Ÿ1
π‘Ÿ1
= βˆ’
(𝑇𝑠 βˆ’ π‘‡βˆž)
𝛿
∫
1
π‘Ÿ
𝑒
βˆ’(π‘Ÿβˆ’π‘Ÿ1)
𝛿 π‘‘π‘Ÿ
𝛿+π‘Ÿ1
π‘Ÿ1
= βˆ’
(𝑇𝑠 βˆ’ π‘‡βˆž)
𝛿
(
𝛿
𝛿 + π‘Ÿ1
βˆ’
π›Ώπ‘’βˆ’1
2𝛿 + π‘Ÿ1
)
We get
∫ [
1
π‘Ÿ
(
πœ•π‘‡
πœ•π‘Ÿ
)]π‘‘π‘Ÿ
𝛿+π‘Ÿ1
π‘Ÿ1
=
(𝑇𝑠 βˆ’ π‘‡βˆž)
𝛿
(
π›Ώπ‘’βˆ’1
2𝛿 + π‘Ÿ1
βˆ’
𝛿
𝛿 + π‘Ÿ1
)
πœ•
πœ•π‘‘
∫ π‘‡π‘‘π‘Ÿ
𝛿+π‘Ÿ1
π‘Ÿ1
𝑇 = (𝑇𝑠 βˆ’ π‘‡βˆž)𝑒
βˆ’(π‘Ÿβˆ’π‘Ÿ1)
𝛿 + π‘‡βˆž
∫ π‘‡π‘‘π‘Ÿ
𝛿+π‘Ÿ1
π‘Ÿ1
= ∫ ((𝑇𝑠 βˆ’ π‘‡βˆž)𝑒
βˆ’(π‘Ÿβˆ’π‘Ÿ1)
𝛿 + π‘‡βˆž)π‘‘π‘Ÿ
𝛿+π‘Ÿ1
π‘Ÿ1
= 𝛿((𝑇𝑠 βˆ’ π‘‡βˆž)(1 βˆ’ π‘’βˆ’1) + π‘‡βˆž)
πœ•
πœ•π‘‘
∫ π‘‡π‘‘π‘Ÿ
𝛿+π‘Ÿ1
π‘Ÿ1
=
𝑑𝛿
𝑑𝑑
((𝑇𝑠 βˆ’ π‘‡βˆž)(1 βˆ’ π‘’βˆ’1) + π‘‡βˆž)
substituting all the above in the integral equation, we get
𝛼 ∫ (
πœ•2
𝑇
πœ•π‘Ÿ2
) π‘‘π‘Ÿ
𝛿+π‘Ÿ1
π‘Ÿ1
+ 𝛼 ∫ [
1
π‘Ÿ
(
πœ•π‘‡
πœ•π‘Ÿ
)]π‘‘π‘Ÿ
𝛿+π‘Ÿ1
π‘Ÿ1
=
πœ•
πœ•π‘‘
∫ π‘‡π‘‘π‘Ÿ
𝛿+π‘Ÿ1
π‘Ÿ1
𝛼
(𝑇𝑠 βˆ’ π‘‡βˆž)
𝛿
(1 βˆ’ π‘’βˆ’1
) + 𝛼(𝑇𝑠 βˆ’ π‘‡βˆž)(
π‘’βˆ’1
2𝛿 + π‘Ÿ1
βˆ’
1
𝛿 + π‘Ÿ1
) =
𝑑𝛿
𝑑𝑑
((𝑇𝑠 βˆ’ π‘‡βˆž)(1 βˆ’ π‘’βˆ’1) + π‘‡βˆž)
We go ahead and solve for 𝛿
We can also go ahead and look at situations where there is natural convection
and other situations where the radius r is finite and not infinite.

More Related Content

More from Wasswaderrick3

THE COOLING CURVE SOLUTION IN NATURAL CONVECTION EXPLAINED.pdf
THE COOLING CURVE SOLUTION IN NATURAL CONVECTION EXPLAINED.pdfTHE COOLING CURVE SOLUTION IN NATURAL CONVECTION EXPLAINED.pdf
THE COOLING CURVE SOLUTION IN NATURAL CONVECTION EXPLAINED.pdfWasswaderrick3
Β 
THE RATE OF COOLING IN NATURAL CONVECTION EXPLAINED AND SOLVED.pdf
THE RATE OF COOLING IN NATURAL CONVECTION EXPLAINED AND SOLVED.pdfTHE RATE OF COOLING IN NATURAL CONVECTION EXPLAINED AND SOLVED.pdf
THE RATE OF COOLING IN NATURAL CONVECTION EXPLAINED AND SOLVED.pdfWasswaderrick3
Β 
TRANSIENT STATE HEAT CONDUCTION SOLVED.pdf
TRANSIENT STATE HEAT CONDUCTION SOLVED.pdfTRANSIENT STATE HEAT CONDUCTION SOLVED.pdf
TRANSIENT STATE HEAT CONDUCTION SOLVED.pdfWasswaderrick3
Β 
FLUID MECHANICS DEMYSTIFIED 2nd Edition.pdf
FLUID MECHANICS DEMYSTIFIED 2nd Edition.pdfFLUID MECHANICS DEMYSTIFIED 2nd Edition.pdf
FLUID MECHANICS DEMYSTIFIED 2nd Edition.pdfWasswaderrick3
Β 
FUNDAMENTALS OF FLUID FLOW 2nd Edition.pdf
FUNDAMENTALS OF FLUID FLOW 2nd Edition.pdfFUNDAMENTALS OF FLUID FLOW 2nd Edition.pdf
FUNDAMENTALS OF FLUID FLOW 2nd Edition.pdfWasswaderrick3
Β 
2nd Edition FLUID MECHANICS DEMYSTIFIED.pdf
2nd Edition FLUID MECHANICS DEMYSTIFIED.pdf2nd Edition FLUID MECHANICS DEMYSTIFIED.pdf
2nd Edition FLUID MECHANICS DEMYSTIFIED.pdfWasswaderrick3
Β 
DERIVATION OF THE MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMIN...
DERIVATION OF THE MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMIN...DERIVATION OF THE MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMIN...
DERIVATION OF THE MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMIN...Wasswaderrick3
Β 
FUNDAMENTALS OF FLUID FLOW.pdf
FUNDAMENTALS OF FLUID FLOW.pdfFUNDAMENTALS OF FLUID FLOW.pdf
FUNDAMENTALS OF FLUID FLOW.pdfWasswaderrick3
Β 
FLUID MECHANICS DEMYSTIFIED.pdf
FLUID MECHANICS DEMYSTIFIED.pdfFLUID MECHANICS DEMYSTIFIED.pdf
FLUID MECHANICS DEMYSTIFIED.pdfWasswaderrick3
Β 
Integral methods for the analytic solutions to the heat equation.pdf
Integral methods for the analytic solutions to the heat equation.pdfIntegral methods for the analytic solutions to the heat equation.pdf
Integral methods for the analytic solutions to the heat equation.pdfWasswaderrick3
Β 

More from Wasswaderrick3 (10)

THE COOLING CURVE SOLUTION IN NATURAL CONVECTION EXPLAINED.pdf
THE COOLING CURVE SOLUTION IN NATURAL CONVECTION EXPLAINED.pdfTHE COOLING CURVE SOLUTION IN NATURAL CONVECTION EXPLAINED.pdf
THE COOLING CURVE SOLUTION IN NATURAL CONVECTION EXPLAINED.pdf
Β 
THE RATE OF COOLING IN NATURAL CONVECTION EXPLAINED AND SOLVED.pdf
THE RATE OF COOLING IN NATURAL CONVECTION EXPLAINED AND SOLVED.pdfTHE RATE OF COOLING IN NATURAL CONVECTION EXPLAINED AND SOLVED.pdf
THE RATE OF COOLING IN NATURAL CONVECTION EXPLAINED AND SOLVED.pdf
Β 
TRANSIENT STATE HEAT CONDUCTION SOLVED.pdf
TRANSIENT STATE HEAT CONDUCTION SOLVED.pdfTRANSIENT STATE HEAT CONDUCTION SOLVED.pdf
TRANSIENT STATE HEAT CONDUCTION SOLVED.pdf
Β 
FLUID MECHANICS DEMYSTIFIED 2nd Edition.pdf
FLUID MECHANICS DEMYSTIFIED 2nd Edition.pdfFLUID MECHANICS DEMYSTIFIED 2nd Edition.pdf
FLUID MECHANICS DEMYSTIFIED 2nd Edition.pdf
Β 
FUNDAMENTALS OF FLUID FLOW 2nd Edition.pdf
FUNDAMENTALS OF FLUID FLOW 2nd Edition.pdfFUNDAMENTALS OF FLUID FLOW 2nd Edition.pdf
FUNDAMENTALS OF FLUID FLOW 2nd Edition.pdf
Β 
2nd Edition FLUID MECHANICS DEMYSTIFIED.pdf
2nd Edition FLUID MECHANICS DEMYSTIFIED.pdf2nd Edition FLUID MECHANICS DEMYSTIFIED.pdf
2nd Edition FLUID MECHANICS DEMYSTIFIED.pdf
Β 
DERIVATION OF THE MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMIN...
DERIVATION OF THE MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMIN...DERIVATION OF THE MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMIN...
DERIVATION OF THE MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMIN...
Β 
FUNDAMENTALS OF FLUID FLOW.pdf
FUNDAMENTALS OF FLUID FLOW.pdfFUNDAMENTALS OF FLUID FLOW.pdf
FUNDAMENTALS OF FLUID FLOW.pdf
Β 
FLUID MECHANICS DEMYSTIFIED.pdf
FLUID MECHANICS DEMYSTIFIED.pdfFLUID MECHANICS DEMYSTIFIED.pdf
FLUID MECHANICS DEMYSTIFIED.pdf
Β 
Integral methods for the analytic solutions to the heat equation.pdf
Integral methods for the analytic solutions to the heat equation.pdfIntegral methods for the analytic solutions to the heat equation.pdf
Integral methods for the analytic solutions to the heat equation.pdf
Β 

Recently uploaded

UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduitsrknatarajan
Β 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...Call Girls in Nagpur High Profile
Β 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
Β 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
Β 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
Β 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).pptssuser5c9d4b1
Β 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
Β 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
Β 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
Β 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
Β 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
Β 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performancesivaprakash250
Β 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
Β 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
Β 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
Β 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
Β 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...RajaP95
Β 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...ranjana rawat
Β 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
Β 

Recently uploaded (20)

UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduits
Β 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Β 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
Β 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
Β 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
Β 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
Β 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Β 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
Β 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
Β 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Β 
β˜… CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
β˜… CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCRβ˜… CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
β˜… CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
Β 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
Β 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
Β 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
Β 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
Β 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
Β 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
Β 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
Β 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
Β 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Β 

ANALTICAL SOLUTIONS TO THE HEAT EQUATION USING THE INTEGRAL METHODS.pdf

  • 1. THE ANALYTICAL SOLUTION TO THE HEAT EQUATION USING AN INTEGRAL METHOD By Wasswa Derrick
  • 3. TABLE OF CONTENTS SEMI INFINITE WALL ANALYTICAL SOLUTION TO THE HEAT EQUATION................3 ALTERNATIVE SOLUTION TO THE SEMI-INFINITE WALL PROBLEM ...........................5 HOW DO WE EXPLAIN THE EXISTENCE OF THE FOURIER LAW IN STEADY STATE?......................................................................................................................................................8 HOW DO WE DEAL WITH CONVECTION AT THE SURFACE AREA OF THE METAL ROD...........................................................................................................................................................11 EQUAL FIXED TEMPERATURES AT THE END OF AN INSULATED METAL ROD....14 UNEQUAL FIXED TEMPERATURES AT THE END OF AN INSULATED METAL ROD. ....................................................................................................................................................................17 HOW DO WE DEAL WITH OTHER TYPES OF BOUNDARY CONDITIONS?..................20 HOW DO WE DEAL WITH CONVECTION AT THE SURFACE AREA OF THE METAL ROD FOR FIXED END TEMPERATURE......................................................................................22 WHAT HAPPENS WHEN THE INITIAL TEMPERATURE IS A FUNCTION OF X? .......31 HOW DO WE DEAL WITH CYLINDRICAL CO-ORDINATES?..............................................34
  • 4. SEMI INFINITE WALL ANALYTICAL SOLUTION TO THE HEAT EQUATION. The differential equation to be solved is πœ•π‘‡ πœ•π‘‘ = 𝛼 πœ•2 𝑇 πœ•π‘₯2 Where the initial and boundary conditions are 𝑻 = 𝑻𝒔 𝒂𝒕 𝒙 = 𝟎 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒕 𝑻 = π‘»βˆž 𝒂𝒕 𝒙 = ∞ 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒕 𝑻 = π‘»βˆž 𝒂𝒕 𝒕 = 𝟎 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒙 We postulate: π‘Œ = 𝑇 βˆ’ π‘‡βˆž 𝑇𝑠 βˆ’ π‘‡βˆž And πœ‚ = π‘₯ 2βˆšπ›Όπ‘‘ We get 𝑑2 π‘Œ π‘‘πœ‚2 + 2πœ‚ π‘‘π‘Œ π‘‘πœ‚ = 0 (1) With the transformed boundary and initial conditions π‘Œ β†’ 0 π‘Žπ‘  πœ‚ β†’ ∞ And π‘Œ = 1 π‘Žπ‘‘ πœ‚ = 0 The first condition is the same as the initial condition 𝑇 = π‘‡βˆž π‘Žπ‘‘ 𝑑 = 0 and the boundary condition 𝑇 β†’ π‘‡βˆž π‘Žπ‘  π‘₯ β†’ ∞ Equation 1 may be integrated once to get 𝑙𝑛 π‘‘π‘Œ π‘‘πœ‚ = 𝑐1 βˆ’ πœ‚2 π‘‘π‘Œ π‘‘πœ‚ = 𝑐2π‘’βˆ’πœ‚2
  • 5. And integrated once more to get π‘Œ = 𝑐3 + 𝑐2 ∫ π‘’βˆ’πœ‚2 𝑑 πœ‚ Applying the boundary conditions to the equation, we get π‘Œ = 1 βˆ’ erf ( π‘₯ 2βˆšπ›Όπ‘‘ ) 𝑻 βˆ’ π‘»βˆž 𝑻𝒔 βˆ’ π‘»βˆž = 𝟏 βˆ’ 𝐞𝐫𝐟 ( 𝒙 πŸβˆšπœΆπ’• ) Or 𝑻𝒔 βˆ’ 𝑻 𝑻𝒔 βˆ’ π‘»βˆž = 𝐞𝐫𝐟 ( 𝒙 πŸβˆšπœΆπ’• )
  • 6. ALTERNATIVE SOLUTION TO THE SEMI-INFINITE WALL PROBLEM The problem of the semi-infinite wall could also be solved as below: Given the boundary and initial conditions 𝑻 = 𝑻𝒔 𝒂𝒕 𝒙 = 𝟎 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒕 𝑻 = π‘»βˆž 𝒂𝒕 𝒙 = ∞ 𝑻 = π‘»βˆž 𝒂𝒕 𝒕 = 𝟎 And the governing equation πœ•π‘‡ πœ•π‘‘ = 𝛼 πœ•2 𝑇 πœ•π‘₯2 We assume an exponential temperature profile that satisfies the boundary conditions: 𝑇 βˆ’ π‘‡βˆž 𝑇𝑠 βˆ’ π‘‡βˆž = 𝑒 βˆ’π‘₯ 𝛿 We can satisfy the initial condition if we assume that 𝛿 will have a solution as 𝛿 = 𝑐𝑑𝑛 Where c and n are constants so that at 𝑑 = 0, 𝛿 = 0 and the initial condition is satisfied as shown below. 𝑇 βˆ’ π‘‡βˆž 𝑇𝑠 βˆ’ π‘‡βˆž = 𝑒 βˆ’π‘₯ 0 = π‘’βˆ’βˆž = 0 𝑇 = π‘‡βˆž π‘Žπ‘‘ 𝑑 = 0 We then transform the heat governing equation into an integral equation as: 𝛼 ∫ ( πœ•2 𝑇 πœ•π‘₯2 ) 𝑑π‘₯ 𝑙 0 = ∫ πœ•π‘‡ πœ•π‘‘ 𝑑π‘₯ 𝑙 0 𝛼 ∫ ( πœ•2 𝑇 πœ•π‘₯2 ) 𝑑π‘₯ 𝑙 0 = πœ• πœ•π‘‘ ∫ 𝑇𝑑π‘₯ 𝑙 0 You notice that the integral πœ• πœ•π‘‘ ∫ 𝑇𝑑π‘₯ 𝑙 0 = πœ• πœ•π‘‘ ∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯ = πœ• πœ•π‘‘ ∫ 𝑇𝑑π‘₯ 𝑙 0 βˆ’ πœ•(π‘™π‘‡βˆž) πœ•π‘‘ 𝑙 0 Since 𝑙 and π‘‡βˆž are constants independent of time πœ•(π‘™π‘‡βˆž) πœ•π‘‘ = 0
  • 7. So πœ• πœ•π‘‘ ∫ 𝑇𝑑π‘₯ 𝑙 0 = πœ• πœ•π‘‘ ∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯ 𝑙 0 We go ahead and find πœ•2 𝑇 πœ•π‘₯2 = (𝑇𝑠 βˆ’ π‘‡βˆž) 𝛿2 ∫ ( πœ•2 𝑇 πœ•π‘₯2 ) 𝑑π‘₯ 𝛿 0 = βˆ’ (𝑇𝑠 βˆ’ π‘‡βˆž) 𝛿 (𝑒 βˆ’π‘™ 𝛿 βˆ’ 1) = (𝑇𝑠 βˆ’ π‘‡βˆž) 𝛿 (1 βˆ’ 𝑒 βˆ’π‘™ 𝛿 ) πœ• πœ•π‘‘ ∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯ 𝛿 0 = 𝑑𝛿 𝑑𝑑 [(𝑇𝑠 βˆ’ π‘‡βˆž) (1 βˆ’ 𝑒 βˆ’π‘™ 𝛿 )] Substituting into the integral equation, we get 𝛼 (𝑇𝑠 βˆ’ π‘‡βˆž) 𝛿 (1 βˆ’ 𝑒 βˆ’π‘™ 𝛿 ) = 𝑑𝛿 𝑑𝑑 (1 βˆ’ 𝑒 βˆ’π‘™ 𝛿 ) The boundary conditions are 𝛿 = 0 π‘Žπ‘‘ 𝑑 = 0 We find 𝛿 = √2𝛼𝑑 We substitute in the temperature profile and get 𝑻 βˆ’ π‘»βˆž 𝑻𝒔 βˆ’ π‘»βˆž = 𝒆 βˆ’π’™ βˆšπŸπœΆπ’• You notice that the initial condition is satisfied by the temperature profile above i.e., At 𝑑 = 0 𝑻 βˆ’ π‘»βˆž 𝑻𝒔 βˆ’ π‘»βˆž = 𝒆 βˆ’π’™ βˆšπŸπœΆπ’• Becomes 𝑻 βˆ’ π‘»βˆž 𝑻𝒔 βˆ’ π‘»βˆž = 𝒆 βˆ’π’™ 𝟎 = π’†βˆ’βˆž = 𝟎 Hence 𝑻 = π‘»βˆž throughout the rod at 𝑑 = 0
  • 8. Observation. The two equations 𝑻 βˆ’ π‘»βˆž 𝑻𝒔 βˆ’ π‘»βˆž = 𝒆 βˆ’π’™ βˆšπŸπœΆπ’• And 𝑻 βˆ’ π‘»βˆž 𝑻𝒔 βˆ’ π‘»βˆž = 𝟏 βˆ’ 𝐞𝐫𝐟 ( 𝒙 πŸβˆšπœΆπ’• ) Should give the same answer. Indeed, they give answers that are the same with a small error since the error function is got from tables after rounding off yet in the exponential temperature profile there is no rounding off.
  • 9. HOW DO WE EXPLAIN THE EXISTENCE OF THE FOURIER LAW IN STEADY STATE? The Fourier law states: 𝑄 = βˆ’π‘˜π΄ πœ•π‘‡ πœ•π‘₯ Under steady state. It can be stated as: πœ•π‘‡ πœ•π‘₯ = βˆ’ 𝑄 π‘˜π΄ Under steady state. To satisfy the Fourier law under steady state, we postulate the temperature profile to be: 𝑻 βˆ’ π‘»βˆž = 𝑸 π’Œπ‘¨ πœΉπ’† βˆ’π’™ 𝜹 𝛿 is a function of time 𝑑 and not distance π‘₯ We believe that after solving for 𝛿, 𝛿 will be directly proportional to time t so that 𝛿 = π‘˜π‘‘π‘› sothat at 𝑑 = ∞ , 𝛿 = ∞ And taking the first derivative of temperature with distance x at 𝑑 = ∞ , we get πœ•π‘‡ πœ•π‘₯ |𝑑=∞ = βˆ’ 𝑄 π‘˜π΄ 𝑒 βˆ’π‘₯ 𝛿 = βˆ’ 𝑄 π‘˜π΄ 𝑒 βˆ’π‘₯ ∞ = βˆ’ 𝑄 π‘˜π΄ 𝑒0 𝝏𝑻 𝝏𝒙 = βˆ’ 𝑸 π’Œπ‘¨ Hence the Fourier law is satisfied. Now let us go ahead and solve for 𝛿. Recall PDE πœ•π‘‡ πœ•π‘‘ = 𝛼 πœ•2 𝑇 πœ•π‘₯2 The initial condition is 𝑇 = π‘‡βˆž π‘Žπ‘‘ 𝑑 = 0 The boundary conditions are
  • 10. 𝑇 = π‘‡βˆž π‘Žπ‘‘ π‘₯ = ∞ πœ•π‘‡ πœ•π‘₯ |π‘₯=0 = βˆ’ 𝑄 π‘˜π΄ The PDE is The temperature profile that satisfies the conditions above is 𝑇 βˆ’ π‘‡βˆž = 𝑄 π‘˜π΄ 𝛿𝑒 βˆ’π‘₯ 𝛿 We transform the PDE into an integral equation πœ• πœ•π‘‘ ∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯ 𝛿 0 = 𝛼 ∫ ( πœ•2 𝑇 πœ•π‘₯2 ) 𝑑π‘₯ 𝛿 0 And using the temperature profile, we get ∫ ( πœ•2 𝑇 πœ•π‘₯2 ) 𝑑π‘₯ 𝛿 0 = 𝑄 π‘˜π΄ (1 βˆ’ 𝑒 βˆ’π‘™ 𝛿 ) πœ• πœ•π‘‘ ∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯ 𝛿 0 = 𝑄 π‘˜π΄ 𝛿2 (1 βˆ’ 𝑒 βˆ’π‘™ 𝛿 ) We then substitute into the integral equation 𝛼 𝑄 π‘˜π΄ (1 βˆ’ 𝑒 βˆ’π‘™ 𝛿 ) = 2𝛿 𝑑𝛿 𝑑𝑑 ( 𝑄 π‘˜π΄ (1 βˆ’ 𝑒 βˆ’π‘™ 𝛿 )) The boundary conditions are 𝛿 = 0 π‘Žπ‘‘ 𝑑 = 0 𝛿 = βˆšπ›Όπ‘‘ Substituting into the temperature profile, we get 𝑇 βˆ’ π‘‡βˆž = 𝑄 π‘˜π΄ 𝛿𝑒 βˆ’π‘₯ 𝛿 𝑻 βˆ’ π‘»βˆž = 𝑸 π’Œπ‘¨ Γ— βˆšπœΆπ’• Γ— 𝒆 βˆ’π’™ βˆšπœΆπ’• You notice that the initial condition is satisfied
  • 11. 𝝏𝑻 𝝏𝒙 |𝒕=∞ = βˆ’ 𝑸 π’Œπ‘¨ Hence the Fourier law So, our assumption of 𝛿 = π‘˜π‘‘π‘› is satisfied
  • 12. HOW DO WE DEAL WITH CONVECTION AT THE SURFACE AREA OF THE METAL ROD Recall that the temperature profile that satisfies the Fourier law was 𝑇 βˆ’ π‘‡βˆž = 𝑄 π‘˜π΄ 𝛿𝑒 βˆ’π‘₯ 𝛿 Recall PDE 𝛼 πœ•2 𝑇 πœ•π‘₯2 βˆ’ β„Žπ‘ƒ 𝐴𝜌𝐢 (𝑇 βˆ’ π‘‡βˆž) = πœ•π‘‡ πœ•π‘‘ The initial condition is 𝑇 = π‘‡βˆž π‘Žπ‘‘ 𝑑 = 0 The boundary conditions are 𝑇 = π‘‡βˆž π‘Žπ‘‘ π‘₯ = ∞ πœ•π‘‡ πœ•π‘₯ |π‘₯=0 = βˆ’ 𝑄 π‘˜π΄ We transform the PDE into an integral equation 𝛼 ∫ ( πœ•2 𝑇 πœ•π‘₯2 ) 𝑑π‘₯ 𝑙 0 βˆ’ β„Žπ‘ƒ 𝐴𝜌𝐢 ∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯ 𝑙 0 = πœ• πœ•π‘‘ ∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯ 𝑙 0 Where: We are dealing with a cylindrical metal rod. 𝑃 = 2πœ‹π‘Ÿ π‘Žπ‘›π‘‘ 𝜌 = 𝑑𝑒𝑛𝑠𝑖𝑑𝑦 π‘œπ‘“ π‘šπ‘’π‘‘π‘Žπ‘™ π‘Ÿπ‘œπ‘‘ And using the temperature profile, we get ∫ ( πœ•2 𝑇 πœ•π‘₯2 ) 𝑑π‘₯ 𝑙 0 = 𝑄 π‘˜π΄ (1 βˆ’ 𝑒 βˆ’π‘™ 𝛿 ) ∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯ 𝑙 0 = 𝑄 π‘˜π΄ 𝛿2 (1 βˆ’ 𝑒 βˆ’π‘™ 𝛿 ) Substituting in the integral equation above, we get 𝛼 βˆ’ β„Žπ‘ƒ 𝐴𝜌𝐢 𝛿2 = 2𝛿 𝑑𝛿 𝑑𝑑 The boundary condition is
  • 13. 𝛿 = 0 π‘Žπ‘‘ 𝑑 = 0 We solve and get 𝛿 = √ π΄πœŒπΆπ›Ό β„Žπ‘ƒ (1 βˆ’ 𝑒 βˆ’β„Žπ‘ƒπ‘‘ 𝐴𝜌𝐢 ) Substituting in the temperature profile, we get 𝑇 βˆ’ π‘‡βˆž = 𝑄 π‘˜π΄ 𝛿𝑒 βˆ’π‘₯ 𝛿 𝑻 βˆ’ π‘»βˆž = 𝑸 π’Œπ‘¨ Γ— √ 𝑨𝝆π‘ͺ𝜢 𝒉𝑷 (𝟏 βˆ’ 𝒆 βˆ’π’‰π‘·π’• 𝑨𝝆π‘ͺ ) Γ— 𝒆 βˆ’π’™ βˆšπ‘¨π†π‘ͺ 𝒉𝑷 (πŸβˆ’π’† βˆ’π’‰π‘·π’• 𝑨𝝆π‘ͺ ) We notice that the initial condition and boundary conditions are satisfied. For small time the term β„Žπ‘ƒπ‘‘ 𝐴𝜌𝐢 β‰ͺ 1 And using binomial approximation of the exponential, we get 𝑒 βˆ’β„Žπ‘ƒπ‘‘ 𝐴𝜌𝐢 = 1 βˆ’ β„Žπ‘ƒπ‘‘ 𝐴𝜌𝐢 Then (1 βˆ’ 𝑒 βˆ’β„Žπ‘ƒπ‘‘ 𝐴𝜌𝐢 ) = β„Žπ‘ƒπ‘‘ 𝐴𝜌𝐢 Upon substitution in the temperature profile, we get 𝑇 βˆ’ π‘‡βˆž = 𝑄 π‘˜π΄ Γ— βˆšπ›Όπ‘‘ Γ— 𝑒 βˆ’π‘₯ βˆšπ›Όπ‘‘ Upon rearranging, we get π‘₯ βˆšπ›Όπ‘‘ = ln ( 𝑄 π‘˜π΄ βˆšπ›Όπ‘‘) βˆ’ ln (𝑇 βˆ’ π‘‡βˆž) π‘₯ βˆšπ‘‘ = βˆšπ›Όln(βˆšπ‘‘) + βˆšπ›Ό [ln ( 𝑄 π‘˜π΄ βˆšπ›Ό) βˆ’ ln(𝑇 βˆ’ π‘‡βˆž)] What we observe is
  • 14. 𝒙 βˆšπ’• = √𝜢π₯𝐧(βˆšπ’•) + √𝜢 [π₯𝐧 ( 𝑸 π’Œπ‘¨βˆšπœΆ (𝑻 βˆ’ π‘»βˆž) )] That is what we observe for short times. When the times become big, we observe 𝑻 βˆ’ π‘»βˆž = 𝑸 π’Œπ‘¨ Γ— √ 𝑨𝝆π‘ͺ𝜢 𝒉𝑷 (𝟏 βˆ’ 𝒆 βˆ’π’‰π‘·π’• 𝑨𝝆π‘ͺ ) Γ— 𝒆 βˆ’π’™ βˆšπ‘¨π†π‘ͺ 𝒉𝑷 (πŸβˆ’π’† βˆ’π’‰π‘·π’• 𝑨𝝆π‘ͺ ) And in steady state (𝑑 = ∞), we observe 𝑻 βˆ’ π‘»βˆž = 𝑸 π’Œπ‘¨ Γ— √ 𝑨𝝆π‘ͺ𝜢 𝒉𝑷 Γ— 𝒆 βˆ’π’™ βˆšπ‘¨π†π‘ͺ𝜢 𝒉𝑷 𝛼 = π‘˜ 𝜌𝐢 We finally get 𝑻 βˆ’ π‘»βˆž = 𝑸 π’Œπ‘¨ Γ— √ π’Œπ‘¨ 𝒉𝑷 Γ— 𝒆 βˆ’π’™ βˆšπ’Œπ‘¨ 𝒉𝑷 the heat flow in steady state is given by: πœ•π‘‡ πœ•π‘₯ = βˆ’ 𝑄 π‘˜π΄ 𝑒 βˆ’π‘₯ βˆšπ‘˜π΄ β„Žπ‘ƒ βˆ’π’Œπ‘¨ 𝝏𝑻 𝝏𝒙 = 𝑸𝒆 βˆ’π’™ βˆšπ’Œπ‘¨ 𝒉𝑷
  • 15. EQUAL FIXED TEMPERATURES AT THE END OF AN INSULATED METAL ROD. PDE πœ•π‘‡ πœ•π‘‘ = 𝛼 πœ•2 𝑇 πœ•π‘₯2 BCs 𝑻 = 𝑻𝒔 𝒂𝒕 𝒙 = 𝟎 𝟎 < 𝒕 < ∞ 𝑻 = 𝑻𝒔 𝒂𝒕 𝒙 = 𝒍 𝟎 < 𝒕 < ∞ IC 𝑻 = π‘»βˆž 𝒂𝒕 𝒕 = 𝟎 𝟎 ≀ 𝒙 ≀ 𝒍 we know a Fourier series solution exists given by 𝑻 βˆ’ 𝑻𝒔 π‘»βˆž βˆ’ 𝑻𝒔 = πŸ’ 𝝅 βˆ‘ 𝟏 𝒏 ∞ 𝒏=𝟏 π’”π’Šπ’ ( 𝒏𝝅𝒙 𝒍 ) 𝒆 βˆ’( 𝒏𝝅 𝟐 ) πœΆπ’• ( 𝒍 𝟐 )𝟐 𝒏 = 𝟏, πŸ‘, πŸ“, … You notice that this solution is not entirely deterministic since it involves summing terms up to infinity. There is an alternative solution as shown below: πœ•π‘‡ πœ•π‘‘ = 𝛼 πœ•2 𝑇 πœ•π‘₯2 BCs 𝑻 = 𝑻𝒔 𝒂𝒕 𝒙 = 𝟎 𝟎 < 𝒕 < ∞ 𝑻 = 𝑻𝒔 𝒂𝒕 𝒙 = 𝒍 𝟎 < 𝒕 < ∞ IC 𝑻 = π‘»βˆž 𝒂𝒕 𝒕 = 𝟎 𝟎 ≀ 𝒙 ≀ 𝒍 We assume an exponential temperature profile that satisfies the boundary conditions: 𝑇 βˆ’ π‘‡βˆž 𝑇𝑠 βˆ’ π‘‡βˆž = 𝑒 βˆ’π‘₯ 𝛿 (1βˆ’ π‘₯ 𝑙 )
  • 16. You notice that the temperature profile above satisfies the boundary conditions. We can satisfy the initial condition if we assume that 𝛿 will assume a solution as 𝛿 = 𝑐𝑑𝑛 Where c and n are constants so that at 𝑑 = 0, 𝛿 = 0 and the initial condition is satisfied as shown below. 𝑇 βˆ’ π‘‡βˆž 𝑇𝑠 βˆ’ π‘‡βˆž = 𝑒 βˆ’π‘₯ 0 = π‘’βˆ’βˆž = 0 𝑇 = π‘‡βˆž π‘Žπ‘‘ 𝑑 = 0 We transform the PDE into an integral equation πœ• πœ•π‘‘ ∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯ 𝑙 0 = 𝛼 ∫ ( πœ•2 𝑇 πœ•π‘₯2 ) 𝑑π‘₯ 𝑙 0 ∫ ( πœ•2 𝑇 πœ•π‘₯2 ) 𝑑π‘₯ 𝑙 0 = [ (βˆ’π‘™ + 2π‘₯) 𝛿𝑙 Γ— 𝑒 βˆ’π‘₯ 𝛿 (1βˆ’ π‘₯ 𝑙 ) ] 𝑙 0 = 2 𝛿 ∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯ 𝑙 0 = [ 𝛿𝑙 (βˆ’π‘™ + 2π‘₯) Γ— 𝑒 βˆ’π‘₯ 𝛿 (1βˆ’ π‘₯ 𝑙 ) ] 𝑙 0 = 2𝛿 Substituting in the integral equation above, we get: 𝛼 ( 2 𝛿 ) = 2 𝑑𝛿 𝑑𝑑 𝛿 = √2𝛼𝑑 Substituting back 𝛿 into the temperature profile, we get 𝑻 βˆ’ π‘»βˆž 𝑻𝒔 βˆ’ π‘»βˆž = 𝒆 βˆ’π’™ βˆšπŸπœΆπ’• (πŸβˆ’ 𝒙 𝒍 ) Or 𝑻 βˆ’ 𝑻𝒔 π‘»βˆž βˆ’ 𝑻𝒔 = 𝟏 βˆ’ 𝒆 βˆ’π’™ βˆšπŸπœΆπ’• (πŸβˆ’ 𝒙 𝒍 ) You notice that the initial condition is satisfied. You notice that when 𝑙 = ∞ , we reduce to the temperature profile we derived before
  • 17. 𝑻 βˆ’ π‘»βˆž 𝑻𝒔 βˆ’ π‘»βˆž = 𝒆 βˆ’π’™ βˆšπŸπœΆπ’• you notice that in the temperature profile developed, we get an exact solution to the problem not an approximate as the Fourier series.
  • 18. UNEQUAL FIXED TEMPERATURES AT THE END OF AN INSULATED METAL ROD. πœ•π‘‡ πœ•π‘‘ = 𝛼 πœ•2 𝑇 πœ•π‘₯2 The boundary conditions are: 𝑇 = 𝑇𝑠 π‘Žπ‘‘ π‘₯ = 0 π‘“π‘œπ‘Ÿ π‘Žπ‘™π‘™ 𝑑 𝑇 = 𝑇1 π‘Žπ‘‘ π‘₯ = 𝑙 π‘“π‘œπ‘Ÿ π‘Žπ‘™π‘™ 𝑑 The initial condition is 𝑇 = π‘‡βˆž π‘Žπ‘‘ 𝑑 = 0 0 ≀ π‘₯ ≀ 𝑙 The temperature profile that satisfies the boundary conditions is: 𝑻 βˆ’ π‘»βˆž [ 𝒙 𝒍 (π‘»πŸ βˆ’ π‘»βˆž) + (𝑻𝒔 βˆ’ π‘»βˆž) (𝟏 βˆ’ 𝒙 𝒍)] = π’†βˆ’ 𝒙 𝜹 (πŸβˆ’ 𝒙 𝒍 ) For now, we shall have a solution where 𝛿 is proportional to time t so that at 𝑑 = 0, 𝛿 = 0 and the initial condition will be satisfied. We then transform the heat governing equation into an integral equation as: 𝛼 ∫ ( πœ•2 𝑇 πœ•π‘₯2 ) 𝑑π‘₯ 𝑙 0 = ∫ πœ•π‘‡ πœ•π‘‘ 𝑑π‘₯ 𝑙 0 Where: 𝑙 = π‘™π‘’π‘›π‘”π‘‘β„Ž π‘œπ‘“ π‘‘β„Žπ‘’ π‘šπ‘’π‘‘π‘Žπ‘™ π‘Ÿπ‘œπ‘‘ You notice that the integral ∫ πœ•π‘‡ πœ•π‘‘ 𝑑π‘₯ 𝑙 0 = πœ• πœ•π‘‘ ∫ 𝑇𝑑π‘₯ 𝑙 0 = πœ• πœ•π‘‘ ∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯ 𝑙 0 Since 𝑙 and π‘‡βˆž are constants independent of time So, the integral equation becomes: 𝛼 ∫ ( πœ•2 𝑇 πœ•π‘₯2 ) 𝑑π‘₯ 𝑙 0 = πœ• πœ•π‘‘ ∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯ 𝑙 0 We go ahead and find
  • 19. ∫ ( πœ•2 𝑇 πœ•π‘₯2 ) 𝑑π‘₯ 𝑙 0 = [ πœ•π‘‡ πœ•π‘₯ ] 𝑙 0 πœ•π‘‡ πœ•π‘₯ = (𝑇𝑠 βˆ’ π‘‡βˆž)π‘’βˆ’ π‘₯ 𝛿 (1βˆ’ π‘₯ 𝑙 ) [ 1 𝑙 (𝑇1 βˆ’ π‘‡βˆž) (𝑇𝑠 βˆ’ π‘‡βˆž) βˆ’ 1 𝑙 ] + (𝑇𝑠 βˆ’ π‘‡βˆž)π‘’βˆ’ π‘₯ 𝛿 (1βˆ’ π‘₯ 𝑙 ) [ π‘₯ 𝑙 (𝑇1 βˆ’ π‘‡βˆž) (𝑇𝑠 βˆ’ π‘‡βˆž) βˆ’ (1 βˆ’ π‘₯ 𝑙 )] ( βˆ’π‘™ + 2π‘₯ 𝛿𝑙 ) ∫ ( πœ•2 𝑇 πœ•π‘₯2 ) 𝑑π‘₯ 𝑙 0 = [ πœ•π‘‡ πœ•π‘₯ ] 𝑙 0 = (𝑇𝑠 + 𝑇1 βˆ’ 2π‘‡βˆž) 𝛿 ∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯ 𝑙 0 = (𝑇1 βˆ’ π‘‡βˆž) 𝑙 ∫ π‘₯ 𝑙 0 𝑒 βˆ’ π‘₯ 𝛿 (1βˆ’ π‘₯ 𝑙 ) 𝑑π‘₯ + (𝑇𝑠 βˆ’ π‘‡βˆž) ∫ 𝑒 βˆ’ π‘₯ 𝛿 (1βˆ’ π‘₯ 𝑙 ) 𝑑π‘₯ 𝑙 0 βˆ’ (𝑇𝑠 βˆ’ π‘‡βˆž) 𝑙 ∫ π‘₯ 𝑙 0 𝑒 βˆ’ π‘₯ 𝛿 (1βˆ’ π‘₯ 𝑙 ) ∫ π‘₯ 𝑙 0 𝑒 βˆ’ π‘₯ 𝛿 (1βˆ’ π‘₯ 𝑙 ) 𝑑π‘₯ = 𝑙𝛿 ∫ 𝑒 βˆ’ π‘₯ 𝛿 (1βˆ’ π‘₯ 𝑙 ) 𝑑π‘₯ 𝑙 0 = 2𝛿 So ∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯ 𝑙 0 = 𝛿(𝑇𝑠 + 𝑇1 βˆ’ 2π‘‡βˆž) Substituting ∫ ( πœ•2𝑇 πœ•π‘₯2) 𝑑π‘₯ 𝑙 0 and ∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯ 𝑙 0 in the integral equation, we get 𝛼 𝛿 = 𝑑𝛿 𝑑𝑑 Where: 𝛿 = 0 π‘Žπ‘‘ 𝑑 = 0 𝛿 = √2𝛼𝑑 You notice that the initial condition is satisfied since after finding the solution as done before to the PDE, 𝛿 = √2𝛼𝑑 Therefore substituting 𝛿 in the temperature profile, we get: 𝑻 βˆ’ π‘»βˆž [ 𝒙 𝒍 (π‘»πŸ βˆ’ π‘»βˆž) + (𝑻𝒔 βˆ’ π‘»βˆž) (𝟏 βˆ’ 𝒙 𝒍)] = 𝒆 βˆ’ 𝒙 βˆšπŸπœΆπ’• (πŸβˆ’ 𝒙 𝒍 ) you notice that at steady state (𝑑 = ∞) 𝒆 βˆ’ 𝒙 βˆšπŸπœΆπ’• (πŸβˆ’ 𝒙 𝒍 ) = π’†βˆ’ 𝒙 ∞ (πŸβˆ’ 𝒙 𝒍 ) = π’†βˆ’πŸŽ = 𝟏
  • 20. The temperature profile becomes: 𝑻 βˆ’ π‘»βˆž = [ 𝒙 𝒍 (π‘»πŸ βˆ’ π‘»βˆž) + (𝑻𝒔 βˆ’ π‘»βˆž) (𝟏 βˆ’ 𝒙 𝒍 )]
  • 21. HOW DO WE DEAL WITH OTHER TYPES OF BOUNDARY CONDITIONS? Consider the following types of boundary conditions and initial condition: A) 𝑻 = 𝑻𝒔 𝒂𝒕 𝒙 = 𝟎 𝒅𝑻 𝒅𝒙 = 𝟎 𝒂𝒕 𝒙 = 𝒍 𝑻 = π‘»βˆž 𝒂𝒕 𝒕 = 𝟎 B) 𝑻 = 𝑻𝒔 𝒂𝒕 𝒙 = 𝟎 βˆ’π’Œ 𝒅𝑻 𝒅𝒙 = 𝒉(𝑻 βˆ’ π‘»βˆž) 𝒂𝒕 𝒙 = 𝒍 𝑻 = π‘»βˆž 𝒂𝒕 𝒕 = 𝟎 Let us go about solving for the above boundary conditions but let us deal with set A boundary conditions and then we can deal with set B later. We start with a temperature profile below: 𝑇 βˆ’ π‘‡βˆž = (𝑇𝑠 βˆ’ π‘‡βˆž)π‘’βˆ’ π‘₯ 𝛿 (1βˆ’ π‘₯ 𝑙 ) [ π‘₯ 𝑙 (𝑇1 βˆ’ π‘‡βˆž) (𝑇𝑠 βˆ’ π‘‡βˆž) + (1 βˆ’ π‘₯ 𝑙 )] we take the derivative 𝒅𝑻 𝒅𝒙 𝒂𝒕 𝒙 = 𝒍 and equate it to 0 and get: 𝑑𝑇 𝑑π‘₯ |π‘₯=𝑙 = ( (𝑇1 βˆ’ π‘‡βˆž) 𝑙 βˆ’ (𝑇𝑠 βˆ’ π‘‡βˆž) 𝑙 + (𝑇1 βˆ’ π‘‡βˆž) 𝛿 ) 𝑑𝑇 𝑑π‘₯ |π‘₯=𝑙 = ( (𝑇1 βˆ’ π‘‡βˆž) 𝑙 βˆ’ (𝑇𝑠 βˆ’ π‘‡βˆž) 𝑙 + (𝑇1 βˆ’ π‘‡βˆž) 𝛿 ) = 0 We finally get (𝑇1 βˆ’ π‘‡βˆž) = (𝑇𝑠 βˆ’ π‘‡βˆž)( 𝛿 𝑙 + 𝛿 ) We substitute 𝑇1 βˆ’ π‘‡βˆž into the temperature profile and get (𝑻 βˆ’ π‘»βˆž) = (𝑻𝒔 βˆ’ π‘»βˆž)π’†βˆ’ 𝒙 𝜹 (𝟏 βˆ’ 𝒙 𝒍 ) [ 𝒙 𝒍 ( 𝜹 𝜹 + 𝒍 ) + (𝟏 βˆ’ 𝒙 𝒍 )]
  • 22. So, the temperature profile above satisfies the set A) boundary and initial conditions and we can go ahead and solve the governing equation using the temperature profile above. For set B) boundary conditions, we again start with the temperature profile below: 𝑇 βˆ’ π‘‡βˆž = (𝑇𝑠 βˆ’ π‘‡βˆž)π‘’βˆ’ π‘₯ 𝛿 (1 βˆ’ π‘₯ 𝑙 ) [ π‘₯ 𝑙 (𝑇1 βˆ’ π‘‡βˆž) (𝑇𝑠 βˆ’ π‘‡βˆž) + (1 βˆ’ π‘₯ 𝑙 )] we take the derivative 𝒅𝑻 𝒅𝒙 𝒂𝒕 𝒙 = 𝒍 and equate it to: 𝑑𝑇 𝑑π‘₯ |π‘₯=𝑙 = ( (𝑇1 βˆ’ π‘‡βˆž) 𝑙 βˆ’ (𝑇𝑠 βˆ’ π‘‡βˆž) 𝑙 + (𝑇1 βˆ’ π‘‡βˆž) 𝛿 ) 𝒅𝑻 𝒅𝒙 |𝒙=𝒍 = βˆ’ 𝒉 π’Œ (π‘»πŸ βˆ’ π‘»βˆž) We then find the required temperature profile which we can use to solve the governing equation.
  • 23. HOW DO WE DEAL WITH CONVECTION AT THE SURFACE AREA OF THE METAL ROD FOR FIXED END TEMPERATURE 𝛼 πœ•2 𝑇 πœ•π‘₯2 βˆ’ β„Žπ‘ƒ 𝐴𝜌𝐢 (𝑇 βˆ’ π‘‡βˆž) = πœ•π‘‡ πœ•π‘‘ We shall use the integral approach. The boundary and initial conditions are 𝑻 = 𝑻𝒔 𝒂𝒕 𝒙 = 𝟎 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒕 𝑻 = π‘»βˆž 𝒂𝒕 𝒙 = ∞ 𝑻 = π‘»βˆž 𝒂𝒕 𝒕 = 𝟎 Where: π‘»βˆž = π’“π’π’π’Ž π’•π’†π’Žπ’‘π’†π’“π’‚π’•π’–π’“π’† First, we assume a temperature profile that satisfies the boundary conditions as: 𝑇 βˆ’ π‘‡βˆž 𝑇𝑠 βˆ’ π‘‡βˆž = 𝑒 βˆ’π‘₯ 𝛿 where 𝛿 is to be determined and is a function of time t. The governing equation is 𝛼 πœ•2 𝑇 πœ•π‘₯2 βˆ’ β„Žπ‘ƒ 𝐴𝜌𝐢 (𝑇 βˆ’ π‘‡βˆž) = πœ•π‘‡ πœ•π‘‘ Let us change this equation into an integral as below: 𝛼 ∫ ( πœ•2 𝑇 πœ•π‘₯2 ) 𝑑π‘₯ 𝑙 0 βˆ’ β„Žπ‘ƒ 𝐴𝜌𝐢 ∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯ 𝑙 0 = πœ• πœ•π‘‘ ∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯ 𝑙 0 … … . . 𝑏) πœ•2 𝑇 πœ•π‘₯2 = (𝑇𝑠 βˆ’ π‘‡βˆž) 𝛿2 𝑒 βˆ’π‘₯ 𝛿 ∫ ( πœ•2 𝑇 πœ•π‘₯2 ) 𝑑π‘₯ 𝑙 0 = βˆ’(𝑇𝑠 βˆ’ π‘‡βˆž) 𝛿 (𝑒 βˆ’π‘₯ 𝑙 βˆ’ 1) ∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯ 𝑙 0 = βˆ’π›Ώ(𝑇𝑠 βˆ’ π‘‡βˆž)(𝑒 βˆ’π‘₯ 𝑙 βˆ’ 1)
  • 24. Substituting the above expressions in equation b) above, we get 𝛼 βˆ’ β„Žπ‘ƒ 𝐴𝜌𝐢 𝛿2 = 𝛿 𝑑𝛿 𝑑𝑑 We solve the equation above assuming that 𝛿 = 0 π‘Žπ‘‘ 𝑑 = 0 And get 𝛿 = √ π›Όπ΄πœŒπΆ β„Žπ‘ƒ (1 βˆ’ 𝑒 βˆ’2β„Žπ‘ƒ 𝐴𝜌𝐢 𝑑 ) 𝛿 = √ 𝐾𝐴 β„Žπ‘ƒ (1 βˆ’ 𝑒 βˆ’2β„Žπ‘ƒ 𝐴𝜌𝐢 𝑑 ) Substituting for 𝛿 in the temperature profile, we get 𝑻 βˆ’ π‘»βˆž 𝑻𝒔 βˆ’ π‘»βˆž = 𝒆 βˆ’π’™ βˆšπ‘²π‘¨ 𝒉𝑷 (πŸβˆ’π’† βˆ’πŸπ’‰π‘· 𝑨𝝆π‘ͺ 𝒕 ) From the equation above, we notice that the initial condition is satisfied i.e., 𝑻 = π‘»βˆž 𝒂𝒕 𝒕 = 𝟎 The equation above predicts the transient state and in steady state (𝑑 = ∞) it reduces to 𝑻 βˆ’ π‘»βˆž 𝑻𝒔 βˆ’ π‘»βˆž = 𝒆 βˆ’βˆš( 𝒉𝑷 𝑲𝑨 )𝒙 What are the predictions of the transient state? Let us make π‘₯ the subject of the equation of transient state and get: π‘₯2 = [ln ( 𝑇𝑠 βˆ’ π‘‡βˆž 𝑇 βˆ’ π‘‡βˆž )]2 Γ— 𝐾𝐴 β„Žπ‘ƒ (1 βˆ’ 𝑒 βˆ’2β„Žπ‘ƒ 𝐴𝜌𝐢 𝑑 ) When the time duration is small and 2β„Žπ‘ƒ 𝐴𝜌𝐢 𝑑 β‰ͺ 1
  • 25. We use the binomial expansion approximation 𝑒 βˆ’2β„Žπ‘ƒ 𝐴𝜌𝐢 𝑑 = 1 βˆ’ 2β„Žπ‘ƒ 𝐴𝜌𝐢 𝑑 Substituting in the equation of π‘₯2 as the subject, we get π‘₯2 = 2𝛼[ln ( 𝑇𝑠 βˆ’ π‘‡βˆž 𝑇 βˆ’ π‘‡βˆž )]2 Γ— 𝑑 Where: 𝛼 = 𝐾 𝜌𝐢 What that equation says is that when you stick wax particles on a long metal rod (𝑙 = ∞) at distances x from the hot end of the rod and note the time t it takes the wax particles to melt, then a graph of π‘₯2 against 𝑑 is a straight-line graph through the origin as stated by the equation above when the times are small. The equation is true because that is what is observed experimentally. How do we measure the heat transfer coefficient? From, π‘₯2 = [ln ( 𝑇𝑠 βˆ’ π‘‡βˆž 𝑇 βˆ’ π‘‡βˆž )]2 Γ— 𝐾𝐴 β„Žπ‘ƒ (1 βˆ’ 𝑒 βˆ’2β„Žπ‘ƒ 𝐴𝜌𝐢 𝑑 ) When the times concerned are big, we shall observe the above equation. Let us call 𝐡 = [ln ( 𝑇𝑠 βˆ’ π‘‡βˆž 𝑇 βˆ’ π‘‡βˆž )]2 Γ— 𝐾𝐴 β„Žπ‘ƒ So, the equation above becomes π‘₯2 = 𝐡 (1 βˆ’ 𝑒 βˆ’2β„Žπ‘ƒ 𝐴𝜌𝐢 𝑑 ) Let’s take the derivative of x against time t and get π‘₯ 𝑑π‘₯ 𝑑𝑑 = 𝐡 2β„Ž π‘ŸπœŒπΆ 𝑒 βˆ’2β„Žπ‘ƒ 𝐴𝜌𝐢 𝑑
  • 26. 𝑒 βˆ’2β„Žπ‘ƒ 𝐴𝜌𝐢 𝑑 = (𝐡 βˆ’ π‘₯2 ) 𝐡 Substitute and get π‘₯ 𝑑π‘₯ 𝑑𝑑 = 2β„Ž π‘ŸπœŒπΆ (𝐡 βˆ’ π‘₯2 ) 𝒙 𝒅𝒙 𝒅𝒕 = πŸπ’‰ 𝒓𝝆π‘ͺ 𝑩 βˆ’ πŸπ’‰ 𝒓𝝆π‘ͺ π’™πŸ A graph of π‘₯ 𝑑π‘₯ 𝑑𝑑 against π‘₯2 when the time is big has a negative gradient of β„Ž π‘ŸπœŒπΆ from which h can be measured experimentally. From experiments using aluminium rod, h was found to be β„Ž = 5.7712π‘Šπ‘šβˆ’2 πΎβˆ’1 h can also be got from Stefan’s law of cooling that reduces to the Newton’s law of cooling. Stefan’s law of cooling in natural convection states 𝒅𝑸 𝒅𝒕 = (𝟏 + 𝜷)π‘¨πˆπœΊ[π‘»πŸ’ βˆ’ π‘»βˆž πŸ’ ] From tables 𝜺 = 𝟎. πŸ‘ 𝒇𝒐𝒓 π’‚π’π’–π’Žπ’Šπ’π’Šπ’–π’Ž Where: 𝜷 = πŸ’. πŸ“πŸ•πŸ—πŸ• = π’Œπ‘·π’“π’ Considering 𝑇 = π‘‡βˆž + βˆ†π‘‡ 𝑑𝑄 𝑑𝑑 = (1 + 𝛽)π΄πœŽπœ€[(π‘‡βˆž + βˆ†π‘‡)4 βˆ’ π‘‡βˆž 4 ] Factorizing out 𝑇1, we get 𝑑𝑄 𝑑𝑑 = (1 + 𝛽)π΄πœŽπœ€[π‘‡βˆž 4 (1 + (𝑇 βˆ’ π‘‡βˆž) π‘‡βˆž )4 βˆ’ π‘‡βˆž 4 ] It is known from Binomial expansion that: (1 + π‘₯)𝑛 β‰ˆ 1 + 𝑛π‘₯ π‘“π‘œπ‘Ÿ π‘₯ β‰ͺ 1 So:
  • 27. (1 + (𝑇 βˆ’ π‘‡βˆž) π‘‡βˆž )4 β‰ˆ 1 + 4 (𝑇 βˆ’ π‘‡βˆž) π‘‡βˆž = 1 + 4 βˆ†π‘‡ π‘‡βˆž = π‘“π‘œπ‘Ÿ βˆ†π‘‡ π‘‡βˆž β‰ͺ 1 Simplifying, we get Newton’s law of cooling i.e. 𝒅𝑸 𝒅𝒕 = πŸ’(𝟏 + 𝜷)π‘¨πˆπœΊπ‘»βˆž πŸ‘ (𝑻 βˆ’ π‘»βˆž) 𝒅𝑸 𝒅𝒕 = 𝒉𝑨(𝑻 βˆ’ π‘»βˆž) Where: 𝒉 = πŸ’(𝟏 + 𝜷)πˆπœΊπ‘»βˆž πŸ‘ Substitute for the above parameters of aluminium and get h theoretically and compare as got experimentally. How do we deal with metal rods of finite length 𝒍 ? The boundary and initial conditions are 𝑻 = 𝑻𝒔 𝒂𝒕 𝒙 = 𝟎
  • 28. βˆ’π’Œ 𝒅𝑻 𝒅𝒙 = 𝒉(𝑻 βˆ’ π‘»βˆž) 𝒂𝒕 𝒙 = 𝒍 𝑻 = π‘»βˆž 𝒂𝒕 𝒕 = 𝟎 Let us go about solving for the above boundary conditions We start with a temperature profile below: 𝑇 βˆ’ π‘‡βˆž = (𝑇𝑠 βˆ’ π‘‡βˆž)π‘’βˆ’ π‘₯ 𝛿 (1βˆ’ π‘₯ 𝑙 ) [ π‘₯ 𝑙 (𝑇1 βˆ’ π‘‡βˆž) (𝑇𝑠 βˆ’ π‘‡βˆž) + (1 βˆ’ π‘₯ 𝑙 )] Which says 𝑇 = 𝑇𝑠 π‘Žπ‘‘ π‘₯ = 0 𝑇 = 𝑇1 π‘Žπ‘‘ π‘₯ = 𝑙 𝑇 = π‘‡βˆž π‘Žπ‘‘ 𝑑 = 0 Provided 𝛿 = 0 π‘Žπ‘‘ 𝑑 = 0 , then the initial condition above is satisfied we take the derivative 𝒅𝑻 𝒅𝒙 𝒂𝒕 𝒙 = 𝒍 and equate it to βˆ’ β„Ž π‘˜ (𝑇1 βˆ’ π‘‡βˆž) and get: 𝑑𝑇 𝑑π‘₯ |π‘₯=𝑙 = ( (𝑇1 βˆ’ π‘‡βˆž) 𝑙 βˆ’ (𝑇𝑠 βˆ’ π‘‡βˆž) 𝑙 + (𝑇1 βˆ’ π‘‡βˆž) 𝛿 ) 𝑑𝑇 𝑑π‘₯ |π‘₯=𝑙 = βˆ’ β„Ž π‘˜ (𝑇1 βˆ’ π‘‡βˆž) We equate the two and get ( (𝑇1 βˆ’ π‘‡βˆž) 𝑙 βˆ’ (𝑇𝑠 βˆ’ π‘‡βˆž) 𝑙 + (𝑇1 βˆ’ π‘‡βˆž) 𝛿 ) = βˆ’ β„Ž π‘˜ (𝑇1 βˆ’ π‘‡βˆž) We finally get (𝑇1 βˆ’ π‘‡βˆž) = (𝑇𝑠 βˆ’ π‘‡βˆž)( π›Ώπ‘˜ π›Ώπ‘˜ + π‘™π‘˜ + β„Žπ‘™π›Ώ ) We substitute 𝑇1 βˆ’ π‘‡βˆž into the temperature profile and get (𝑻 βˆ’ π‘»βˆž) = (𝑻𝒔 βˆ’ π‘»βˆž)π’†βˆ’ 𝒙 𝜹 (𝟏 βˆ’ 𝒙 𝒍 ) [ 𝒙 𝒍 ( πœΉπ’Œ πœΉπ’Œ + π’π’Œ + π’‰π’πœΉ ) + (𝟏 βˆ’ 𝒙 𝒍 )] This the temperature profile that satisfies the boundary and initial conditions below
  • 29. 𝑻 = 𝑻𝒔 𝒂𝒕 𝒙 = 𝟎 βˆ’π’Œ 𝒅𝑻 𝒅𝒙 = 𝒉(𝑻 βˆ’ π‘»βˆž) 𝒂𝒕 𝒙 = 𝒍 𝑻 = π‘»βˆž 𝒂𝒕 𝒕 = 𝟎 Let us go ahead and solve for 𝛿 The governing equation is 𝛼 πœ•2 𝑇 πœ•π‘₯2 βˆ’ β„Žπ‘ƒ 𝐴𝜌𝐢 (𝑇 βˆ’ π‘‡βˆž) = πœ•π‘‡ πœ•π‘‘ Let us change this equation into an integral as below: 𝛼 ∫ ( πœ•2 𝑇 πœ•π‘₯2 ) 𝑑π‘₯ 𝑙 0 βˆ’ β„Žπ‘ƒ 𝐴𝜌𝐢 ∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯ 𝑙 0 = πœ• πœ•π‘‘ ∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯ 𝑙 0 … … . . 𝑏) 𝛼 ∫ ( πœ•2 𝑇 πœ•π‘₯2 ) 𝑑π‘₯ 𝑙 0 βˆ’ 2β„Ž π‘ŸπœŒπΆ ∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯ 𝑙 0 = πœ• πœ•π‘‘ ∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯ 𝑙 0 ∫ ( πœ•2 𝑇 πœ•π‘₯2 ) 𝑑π‘₯ 𝑙 0 = [ πœ•π‘‡ πœ•π‘₯ ] 𝑙 0 πœ•π‘‡ πœ•π‘₯ = (𝑇𝑠 βˆ’ π‘‡βˆž)π‘’βˆ’ π‘₯ 𝛿 (1βˆ’ π‘₯ 𝑙 ) [ 1 𝑙 (𝑇1 βˆ’ π‘‡βˆž) (𝑇𝑠 βˆ’ π‘‡βˆž) βˆ’ 1 𝑙 ] + (𝑇𝑠 βˆ’ π‘‡βˆž)π‘’βˆ’ π‘₯ 𝛿 (1βˆ’ π‘₯ 𝑙 ) [ π‘₯ 𝑙 (𝑇1 βˆ’ π‘‡βˆž) (𝑇𝑠 βˆ’ π‘‡βˆž) βˆ’ (1 βˆ’ π‘₯ 𝑙 )] ( βˆ’π‘™ + 2π‘₯ 𝛿𝑙 ) ∫ ( πœ•2 𝑇 πœ•π‘₯2 ) 𝑑π‘₯ 𝑙 0 = [ πœ•π‘‡ πœ•π‘₯ ] 𝑙 0 = (𝑇𝑠 βˆ’ π‘‡βˆž) 𝛿 + (𝑇1 βˆ’ π‘‡βˆž) 𝛿 Substitute for (𝑇1 βˆ’ π‘‡βˆž) = (𝑇𝑠 βˆ’ π‘‡βˆž)( π›Ώπ‘˜ π›Ώπ‘˜ + π‘™π‘˜ + β„Žπ‘™π›Ώ ) ∫ ( πœ•2 𝑇 πœ•π‘₯2 ) 𝑑π‘₯ 𝑙 0 = [ πœ•π‘‡ πœ•π‘₯ ] 𝑙 0 = (𝑇𝑠 βˆ’ π‘‡βˆž)( 2π›Ώπ‘˜ + π‘™π‘˜ + β„Žπ‘™π›Ώ 𝛿(π›Ώπ‘˜ + π‘™π‘˜ + β„Žπ‘™π›Ώ) ) 2β„Ž π‘ŸπœŒπΆ ∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯ 𝑙 0 = β„Ž2πœ‹π‘Ÿ ∫ ((𝑇𝑠 βˆ’ π‘‡βˆž)π‘’βˆ’ π‘₯ 𝛿 (1βˆ’ π‘₯ 𝑙 ) [ π‘₯ 𝑙 (𝑇1 βˆ’ π‘‡βˆž) (𝑇𝑠 βˆ’ π‘‡βˆž) + (1 βˆ’ π‘₯ 𝑙 )])𝑑π‘₯ 𝑙 0 2β„Ž π‘ŸπœŒπΆ ∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯ 𝑙 0 = β„Ž2πœ‹π‘Ÿ[ (𝑇1 βˆ’ π‘‡βˆž) 𝑙 ∫ π‘₯π‘’βˆ’ π‘₯ 𝛿 (1βˆ’ π‘₯ 𝑙 ) 𝑑π‘₯ 𝑙 0 + (𝑇𝑠 βˆ’ π‘‡βˆž) ∫ π‘’βˆ’ π‘₯ 𝛿 (1βˆ’ π‘₯ 𝑙 ) 𝑑π‘₯ 𝑙 0 βˆ’ (𝑇𝑠 βˆ’ π‘‡βˆž) 𝑙 ∫ π‘₯π‘’βˆ’ π‘₯ 𝛿 (1βˆ’ π‘₯ 𝑙 ) 𝑑π‘₯ 𝑙 0 ]
  • 30. Integrating by parts shows that ∫ 𝑒 βˆ’ π‘₯ 𝛿 (1βˆ’ π‘₯ 𝑙 ) 𝑑π‘₯ 𝑙 0 = [( 𝑙𝛿 βˆ’π‘™ + 2π‘₯ )𝑒 βˆ’ π‘₯ 𝛿 (1βˆ’ π‘₯ 𝑙 ) ] 𝑙 0 = 2𝛿 ∫ π‘₯𝑒 βˆ’ π‘₯ 𝛿 (1βˆ’ π‘₯ 𝑙 ) 𝑑π‘₯ 𝑙 0 = [( π‘₯𝑙𝛿 βˆ’π‘™ + 2π‘₯ βˆ’ 𝑙2 𝛿2 (βˆ’π‘™ + 2π‘₯)2[1 βˆ’ 2𝑙𝛿 (βˆ’π‘™ + 2π‘₯)2] ) 𝑒 βˆ’ π‘₯ 𝛿 (1βˆ’ π‘₯ 𝑙 ) ] 𝑙 0 = 𝑙𝛿 Substituting back into the heat loss equation we get 2β„Ž π‘ŸπœŒπΆ ∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯ 𝑙 0 = 2β„Ž π‘ŸπœŒπΆ [(𝑇1 βˆ’ π‘‡βˆž) + (𝑇𝑠 βˆ’ π‘‡βˆž)]𝛿 substitute for (𝑇1 βˆ’ π‘‡βˆž) and get 2β„Ž π‘ŸπœŒπΆ ∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯ 𝑙 0 = 2β„Ž π‘ŸπœŒπΆ (𝑇𝑠 βˆ’ π‘‡βˆž)( 2π›Ώπ‘˜ + π‘™π‘˜ + β„Žπ‘™π›Ώ (π›Ώπ‘˜ + π‘™π‘˜ + β„Žπ‘™π›Ώ) )𝛿 πœ• πœ•π‘‘ ∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯ 𝑙 0 = (𝑇𝑠 βˆ’ π‘‡βˆž)( 2π›Ώπ‘˜ + π‘™π‘˜ + β„Žπ‘™π›Ώ (π›Ώπ‘˜ + π‘™π‘˜ + β„Žπ‘™π›Ώ) ) 𝑑𝛿 𝑑𝑑 Substituting into the integral equation we get 𝛼(𝑇𝑠 βˆ’ π‘‡βˆž) ( 2π›Ώπ‘˜ + π‘™π‘˜ + β„Žπ‘™π›Ώ 𝛿(π›Ώπ‘˜ + π‘™π‘˜ + β„Žπ‘™π›Ώ) ) βˆ’ 2β„Ž π‘ŸπœŒπΆ (𝑇𝑠 βˆ’ π‘‡βˆž) ( 2π›Ώπ‘˜ + π‘™π‘˜ + β„Žπ‘™π›Ώ (π›Ώπ‘˜ + π‘™π‘˜ + β„Žπ‘™π›Ώ) ) 𝛿 = (𝑇𝑠 βˆ’ π‘‡βˆž)( 2π›Ώπ‘˜ + π‘™π‘˜ + β„Žπ‘™π›Ώ (π›Ώπ‘˜ + π‘™π‘˜ + β„Žπ‘™π›Ώ) ) 𝑑𝛿 𝑑𝑑 𝛼 βˆ’ β„Žπ‘ƒ 𝐴𝜌𝐢 𝛿2 = 𝛿 𝑑𝛿 𝑑𝑑 We solve the equation above assuming that 𝛿 = 0 π‘Žπ‘‘ 𝑑 = 0 And get 𝛿 = √ π›Όπ΄πœŒπΆ β„Žπ‘ƒ (1 βˆ’ 𝑒 βˆ’2β„Žπ‘ƒ 𝐴𝜌𝐢 𝑑 )
  • 31. 𝛿 = √ 𝐾𝐴 β„Žπ‘ƒ (1 βˆ’ 𝑒 βˆ’2β„Žπ‘ƒ 𝐴𝜌𝐢 𝑑 ) We go ahead and substitute for 𝛿 in the temperature profile below (𝑻 βˆ’ π‘»βˆž) = (𝑻𝒔 βˆ’ π‘»βˆž)π’†βˆ’ 𝒙 𝜹 (𝟏 βˆ’ 𝒙 𝒍 ) [ 𝒙 𝒍 ( πœΉπ’Œ πœΉπ’Œ + π’π’Œ + π’‰π’πœΉ ) + (𝟏 βˆ’ 𝒙 𝒍 )] When the time is small, 𝛿 using binomial approximation becomes 𝛿 = √ 𝐾𝐴 β„Žπ‘ƒ (1 βˆ’ 𝑒 βˆ’2β„Žπ‘ƒ 𝐴𝜌𝐢 𝑑 ) 2β„Žπ‘ƒ 𝐴𝜌𝐢 𝑑 β‰ͺ 1 𝑒 βˆ’β„Žπ‘ƒ 𝐴𝜌𝐢 𝑑 = 1 βˆ’ 2β„Žπ‘ƒ 𝐴𝜌𝐢 𝑑 1 βˆ’ 𝑒 βˆ’2β„Žπ‘ƒ 𝐴𝜌𝐢 𝑑 = 2β„Žπ‘ƒ 𝐴𝜌𝐢 𝑑 𝛿 = √2𝛼𝑑 We substitute for 𝛿 in the temperature profile. What happens when the length is big or tends to infinity? (𝑻 βˆ’ π‘»βˆž) = (𝑻𝒔 βˆ’ π‘»βˆž)π’†βˆ’ 𝒙 𝜹 (𝟏 βˆ’ 𝒙 𝒍 ) [ 𝒙 𝒍 ( πœΉπ’Œ πœΉπ’Œ + π’π’Œ + π’‰π‘³π’πœΉ ) + (𝟏 βˆ’ 𝒙 𝒍 )] Becomes (𝑻 βˆ’ π‘»βˆž) = (𝑻𝒔 βˆ’ π‘»βˆž)π’†βˆ’ 𝒙 𝜹 (𝑻 βˆ’ π‘»βˆž) = (𝑻𝒔 βˆ’ π‘»βˆž)𝒆 βˆ’ 𝒙 βˆšπ‘²π‘¨ 𝒉𝑷 (πŸβˆ’π’† βˆ’πŸπ’‰π‘· 𝑨𝝆π‘ͺ 𝒕 ) Which is what we got before.
  • 32. WHAT HAPPENS WHEN THE INITIAL TEMPERATURE IS A FUNCTION OF X? The governing equation is 𝛼 πœ•2 𝑇 πœ•π‘₯2 = πœ•π‘‡ πœ•π‘‘ BCs 𝑻 = 𝑻𝒔 𝒂𝒕 𝒙 = 𝟎 𝟎 < 𝒕 < ∞ 𝑻 = 𝑻𝒔 𝒂𝒕 𝒙 = 𝒍 𝟎 < 𝒕 < ∞ IC 𝑻 = βˆ…(𝒙) 𝒂𝒕 𝒕 = 𝟎 𝟎 ≀ 𝒙 ≀ 𝒍 We assume an exponential temperature profile that satisfies the boundary conditions: 𝑇 βˆ’ βˆ… 𝑇𝑠 βˆ’ βˆ… = 𝑒 βˆ’π‘₯ 𝛿 𝑇 = βˆ… + 𝑇𝑠𝑒 βˆ’π‘₯ 𝛿 βˆ’ βˆ…π‘’ βˆ’π‘₯ 𝛿 The PDE becomes an integral equation given by: 𝛼 ∫ ( πœ•2 𝑇 πœ•π‘₯2 ) 𝑑π‘₯ 𝛿 0 = πœ• πœ•π‘‘ ∫ 𝑇𝑑π‘₯ 𝛿 0 You notice the limits of the integral become from 0 π‘‘π‘œ 𝛿 as this eliminate exponentials which are functions of 𝛿 and this will make the integration simpler. Let us give an example say βˆ… = π‘₯ We make T the subject of the formula and get 𝑇 = βˆ… + 𝑇𝑠𝑒 βˆ’π‘₯ 𝛿 βˆ’ βˆ…π‘’ βˆ’π‘₯ 𝛿 βˆ… = π‘₯ 𝑇 = π‘₯ + 𝑇𝑠𝑒 βˆ’π‘₯ 𝛿 βˆ’ π‘₯𝑒 βˆ’π‘₯ 𝛿
  • 33. ∫ ( πœ•2 𝑇 πœ•π‘₯2 ) 𝑑π‘₯ 𝛿 0 = [ πœ•π‘‡ πœ•π‘₯ ] 𝛿 0 πœ•π‘‡ πœ•π‘₯ = 1 βˆ’ 𝑇𝑠 𝛿 𝑒 βˆ’π‘₯ 𝛿 βˆ’ π‘₯ 𝛿 𝑒 βˆ’π‘₯ 𝛿 + 𝑒 βˆ’π‘₯ 𝛿 ∫ ( πœ•2 𝑇 πœ•π‘₯2 ) 𝑑π‘₯ 𝛿 0 = [1 βˆ’ 𝑇𝑠 𝛿 𝑒 βˆ’π‘₯ 𝛿 βˆ’ π‘₯ 𝛿 𝑒 βˆ’π‘₯ 𝛿 + 𝑒 βˆ’π‘₯ 𝛿 ] 𝛿 0 = 𝑇𝑠 𝛿 (1 βˆ’ 𝑒 βˆ’1 ) ∫ 𝑇𝑑π‘₯ 𝛿 0 = ∫ [π‘₯ + 𝑇𝑠𝑒 βˆ’π‘₯ 𝛿 βˆ’ π‘₯𝑒 βˆ’π‘₯ 𝛿 ]𝑑π‘₯ 𝛿 0 = [ π‘₯2 2 βˆ’ 𝛿𝑇𝑠𝑒 βˆ’π‘₯ 𝛿 + π‘₯𝛿𝑒 βˆ’π‘₯ 𝛿 + 𝛿2 𝑒 βˆ’π‘₯ 𝛿 ] 𝛿 0 = [βˆ’ 𝛿2 2 + 𝛿𝑇𝑠(1 βˆ’ π‘’βˆ’1) + 2𝛿2 π‘’βˆ’1 ] πœ• πœ•π‘‘ ∫ 𝑇𝑑π‘₯ 𝛿 0 = βˆ’2𝛿 𝑑𝛿 𝑑𝑑 + 𝑇𝑠(1 βˆ’ π‘’βˆ’1) 𝑑𝛿 𝑑𝑑 + 4π›Ώπ‘’βˆ’1 𝑑𝛿 𝑑𝑑 Substituting ∫ ( πœ•2𝑇 πœ•π‘₯2 ) 𝑑π‘₯ 𝛿 0 and πœ• πœ•π‘‘ ∫ 𝑇𝑑π‘₯ 𝛿 0 into the integral equation, we get 𝑇𝑠 𝛿 (1 βˆ’ 𝑒 βˆ’1 ) = [βˆ’2𝛿 + 𝑇𝑠(1 βˆ’ π‘’βˆ’1) + 4π›Ώπ‘’βˆ’1 ] 𝑑𝛿 𝑑𝑑 The boundary conditions are 𝛿 = 0 π‘Žπ‘‘ 𝑑 = 0 𝑇𝑠(1 βˆ’ π‘’βˆ’1 ) ∫ 𝑑𝑑 𝑑 0 = [βˆ’2 ∫ 𝛿2 𝑑𝛿 𝛿 0 + 𝑇𝑠(1 βˆ’ π‘’βˆ’1 ) ∫ 𝛿𝑑𝛿 𝛿 0 + 4π‘’βˆ’1 ∫ 𝛿2 𝛿 0 𝑑𝛿] We end up with 6𝑇𝑠(1 βˆ’ 𝑒 βˆ’1 )𝑑 = (8π‘’βˆ’1 βˆ’ 4)𝛿 3 + 3𝑇𝑠(1 βˆ’ π‘’βˆ’1 )𝛿2 From which we can get 𝛿 Where 𝛿 is in the form π‘Žπ›Ώ3 + 𝑏𝛿2 + 𝑑 = 0 The above is a cubic equation whose solutions exist. Where: π‘Ž = (8π‘’βˆ’1 βˆ’ 4) 𝑏 = 3𝑇𝑠(1 βˆ’ π‘’βˆ’1 ) 𝑑 = βˆ’6𝑇𝑠(1 βˆ’ 𝑒 βˆ’1 )𝑑
  • 34. There are three roots of 𝛿 but we choose those which reduce to zero when time is zero. The two roots that satisfy the above condition are 𝛿1 = βˆ’ 𝑏 3π‘Ž + 1 + π‘–βˆš3 6π‘Ž √( 1 2 ) [2𝑏3 + 27π‘Ž2𝑑 + √(2𝑏3 + 27π‘Ž2𝑑)2 βˆ’ 4𝑏6)] 3 + 1 βˆ’ π‘–βˆš3 6π‘Ž √( 1 2 ) [2𝑏3 + 27π‘Ž2𝑑 βˆ’ √(2𝑏3 + 27π‘Ž2𝑑)2 βˆ’ 4𝑏6)] 3 Or 𝛿2 = βˆ’ 𝑏 3π‘Ž + 1 βˆ’ π‘–βˆš3 6π‘Ž √( 1 2 ) [2𝑏3 + 27π‘Ž2𝑑 + √(2𝑏3 + 27π‘Ž2𝑑)2 βˆ’ 4𝑏6)] 3 + 1 + π‘–βˆš3 6π‘Ž √( 1 2 ) [2𝑏3 + 27π‘Ž2𝑑 βˆ’ √(2𝑏3 + 27π‘Ž2𝑑)2 βˆ’ 4𝑏6)] 3 After getting the solution of 𝛿 ,we go ahead and substitute it into the exponential temperature profile. We shall be faced with more scenarios where 𝛿 is a cubic equation with time but the root or solution of 𝛿 to choose is the one for which 𝛿 = 0 π‘Žπ‘‘ 𝑑 = 0. Using this analytical method, we can also go ahead and solve PDES like πœ•π‘‡ πœ•π‘‘ = 𝛼 πœ•2 𝑇 πœ•π‘₯2 + 𝑓(π‘₯) Again, we take limits from 0 π‘‘π‘œ 𝛿 when solving the integral equation to eliminate exponentials with a function of 𝛿 in order to make solving for the solution easy.
  • 35. HOW DO WE DEAL WITH CYLINDRICAL CO- ORDINATES? We know that for an insulated cylinder where there is no heat loss by convection from the sides, the governing PDE equation is 𝛼 [ πœ•2 𝑇 πœ•π‘Ÿ2 + 1 π‘Ÿ πœ•π‘‡ πœ•π‘Ÿ ] = πœ•π‘‡ πœ•π‘‘ The boundary conditions are 𝑇 = 𝑇𝑠 π‘Žπ‘‘ π‘Ÿ = 0 𝑇 = π‘‡βˆž π‘Žπ‘‘ π‘Ÿ = ∞ The initial condition is: 𝑇 = π‘‡βˆž π‘Žπ‘‘ 𝑑 = 0 The temperature profile that satisfies the conditions above is 𝑇 βˆ’ π‘‡βˆž 𝑇𝑠 βˆ’ π‘‡βˆž = 𝑒 βˆ’(π‘Ÿβˆ’π‘Ÿ1) 𝛿 We transform the PDE into an integral equation 𝛼 [ πœ•2 𝑇 πœ•π‘Ÿ2 + 1 π‘Ÿ πœ•π‘‡ πœ•π‘Ÿ ] = πœ•π‘‡ πœ•π‘‘ 𝛼 ∫ ( πœ•2 𝑇 πœ•π‘Ÿ2 ) π‘‘π‘Ÿ 𝛿+π‘Ÿ1 π‘Ÿ1 + 𝛼 ∫ [ 1 π‘Ÿ ( πœ•π‘‡ πœ•π‘Ÿ )]π‘‘π‘Ÿ 𝛿+π‘Ÿ1 π‘Ÿ1 = πœ• πœ•π‘‘ ∫ π‘‡π‘‘π‘Ÿ 𝛿+π‘Ÿ1 π‘Ÿ1 We then go ahead to solve and find 𝛿 as before. ∫ ( πœ•2 𝑇 πœ•π‘Ÿ2 ) π‘‘π‘Ÿ 𝛿+π‘Ÿ1 π‘Ÿ1 = [ πœ•π‘‡ πœ•π‘Ÿ ] 𝛿 + π‘Ÿ1 π‘Ÿ1 = βˆ’ 𝑇𝑠 βˆ’ π‘‡βˆž 𝛿 [𝑒 βˆ’(π‘Ÿβˆ’π‘Ÿ1) 𝛿 ] 𝛿 + π‘Ÿ1 π‘Ÿ1 = 𝑇𝑠 βˆ’ π‘‡βˆž 𝛿 (1 βˆ’ π‘’βˆ’1 ) πœ•π‘‡ πœ•π‘Ÿ = βˆ’ 𝑇𝑠 βˆ’ π‘‡βˆž 𝛿 𝑒 βˆ’(π‘Ÿβˆ’π‘Ÿ1) 𝛿 ∫ [ 1 π‘Ÿ ( πœ•π‘‡ πœ•π‘Ÿ )] π‘‘π‘Ÿ 𝛿+π‘Ÿ1 π‘Ÿ1 = βˆ’ (𝑇𝑠 βˆ’ π‘‡βˆž) 𝛿 ∫ 1 π‘Ÿ 𝑒 βˆ’(π‘Ÿβˆ’π‘Ÿ1) 𝛿 π‘‘π‘Ÿ 𝛿+π‘Ÿ1 π‘Ÿ1 ∫ 1 π‘Ÿ 𝑒 βˆ’(π‘Ÿβˆ’π‘Ÿ1) 𝛿 π‘‘π‘Ÿ 𝛿+π‘Ÿ1 π‘Ÿ1 = 𝑒𝑣 βˆ’ ∫ 𝑣 𝑑𝑒 π‘‘π‘Ÿ π‘‘π‘Ÿ
  • 36. 𝑒 = 1 π‘Ÿ 𝑑𝑣 π‘‘π‘Ÿ = 𝑒 βˆ’(π‘Ÿβˆ’π‘Ÿ1) 𝛿 𝑣 = βˆ’π›Ώπ‘’ βˆ’(π‘Ÿβˆ’π‘Ÿ1) 𝛿 ∫ 1 π‘Ÿ 𝑒 βˆ’(π‘Ÿβˆ’π‘Ÿ1) 𝛿 π‘‘π‘Ÿ 𝛿+π‘Ÿ1 π‘Ÿ1 = βˆ’π›Ώπ‘’ βˆ’(π‘Ÿβˆ’π‘Ÿ1) 𝛿 π‘Ÿ βˆ’ 𝛿 π‘Ÿ ∫ 1 π‘Ÿ 𝑒 βˆ’(π‘Ÿβˆ’π‘Ÿ1) 𝛿 π‘‘π‘Ÿ 𝛿+ π‘Ÿ1 [1 + 𝛿 π‘Ÿ ] ∫ 1 π‘Ÿ 𝑒 βˆ’(π‘Ÿβˆ’π‘Ÿ1) 𝛿 π‘‘π‘Ÿ 𝛿+π‘Ÿ1 π‘Ÿ1 = βˆ’π›Ώπ‘’ βˆ’(π‘Ÿβˆ’π‘Ÿ1) 𝛿 π‘Ÿ ∫ 1 π‘Ÿ 𝑒 βˆ’(π‘Ÿβˆ’π‘Ÿ1) 𝛿 π‘‘π‘Ÿ 𝛿+π‘Ÿ1 π‘Ÿ1 = [ βˆ’π›Ώ π‘Ÿ + 𝛿 𝑒 βˆ’(π‘Ÿβˆ’π‘Ÿ1) 𝛿 ] 𝛿 + π‘Ÿ1 π‘Ÿ1 = 𝛿 𝛿 + π‘Ÿ1 βˆ’ π›Ώπ‘’βˆ’1 2𝛿 + π‘Ÿ1 Substituting in ∫ [ 1 π‘Ÿ ( πœ•π‘‡ πœ•π‘Ÿ )]π‘‘π‘Ÿ 𝛿+π‘Ÿ1 π‘Ÿ1 = βˆ’ (𝑇𝑠 βˆ’ π‘‡βˆž) 𝛿 ∫ 1 π‘Ÿ 𝑒 βˆ’(π‘Ÿβˆ’π‘Ÿ1) 𝛿 π‘‘π‘Ÿ 𝛿+π‘Ÿ1 π‘Ÿ1 = βˆ’ (𝑇𝑠 βˆ’ π‘‡βˆž) 𝛿 ( 𝛿 𝛿 + π‘Ÿ1 βˆ’ π›Ώπ‘’βˆ’1 2𝛿 + π‘Ÿ1 ) We get ∫ [ 1 π‘Ÿ ( πœ•π‘‡ πœ•π‘Ÿ )]π‘‘π‘Ÿ 𝛿+π‘Ÿ1 π‘Ÿ1 = (𝑇𝑠 βˆ’ π‘‡βˆž) 𝛿 ( π›Ώπ‘’βˆ’1 2𝛿 + π‘Ÿ1 βˆ’ 𝛿 𝛿 + π‘Ÿ1 ) πœ• πœ•π‘‘ ∫ π‘‡π‘‘π‘Ÿ 𝛿+π‘Ÿ1 π‘Ÿ1 𝑇 = (𝑇𝑠 βˆ’ π‘‡βˆž)𝑒 βˆ’(π‘Ÿβˆ’π‘Ÿ1) 𝛿 + π‘‡βˆž ∫ π‘‡π‘‘π‘Ÿ 𝛿+π‘Ÿ1 π‘Ÿ1 = ∫ ((𝑇𝑠 βˆ’ π‘‡βˆž)𝑒 βˆ’(π‘Ÿβˆ’π‘Ÿ1) 𝛿 + π‘‡βˆž)π‘‘π‘Ÿ 𝛿+π‘Ÿ1 π‘Ÿ1 = 𝛿((𝑇𝑠 βˆ’ π‘‡βˆž)(1 βˆ’ π‘’βˆ’1) + π‘‡βˆž) πœ• πœ•π‘‘ ∫ π‘‡π‘‘π‘Ÿ 𝛿+π‘Ÿ1 π‘Ÿ1 = 𝑑𝛿 𝑑𝑑 ((𝑇𝑠 βˆ’ π‘‡βˆž)(1 βˆ’ π‘’βˆ’1) + π‘‡βˆž) substituting all the above in the integral equation, we get 𝛼 ∫ ( πœ•2 𝑇 πœ•π‘Ÿ2 ) π‘‘π‘Ÿ 𝛿+π‘Ÿ1 π‘Ÿ1 + 𝛼 ∫ [ 1 π‘Ÿ ( πœ•π‘‡ πœ•π‘Ÿ )]π‘‘π‘Ÿ 𝛿+π‘Ÿ1 π‘Ÿ1 = πœ• πœ•π‘‘ ∫ π‘‡π‘‘π‘Ÿ 𝛿+π‘Ÿ1 π‘Ÿ1
  • 37. 𝛼 (𝑇𝑠 βˆ’ π‘‡βˆž) 𝛿 (1 βˆ’ π‘’βˆ’1 ) + 𝛼(𝑇𝑠 βˆ’ π‘‡βˆž)( π‘’βˆ’1 2𝛿 + π‘Ÿ1 βˆ’ 1 𝛿 + π‘Ÿ1 ) = 𝑑𝛿 𝑑𝑑 ((𝑇𝑠 βˆ’ π‘‡βˆž)(1 βˆ’ π‘’βˆ’1) + π‘‡βˆž) We go ahead and solve for 𝛿 We can also go ahead and look at situations where there is natural convection and other situations where the radius r is finite and not infinite.