SlideShare a Scribd company logo
1 of 59
Download to read offline
Wasswa Derrick 3/4/24 Heat Conduction
TABLE OF CONTENTS
PREFACE ............................................................................................................................................3
WHAT DO WE OBSERVE EXPERIMENTALLY WHEN HEATING A CYLINDRICAL
METAL ROD AT ONE END WITH WAX PARTICLES ALONG ITS SURFACE AREA? ..4
HOW DO WE DEAL WITH NATURAL CONVECTION AT THE SURFACE AREA OF A
SEMI-INFINITE METAL ROD FOR FIXED WALL TEMPERATURE...................................6
SO HOW DO WE PRODUCE THE SEMI-INFINITE OBSERVED ROD SOLUTION?.16
HOW DOES HEAT FLOW MANIFEST ITSELF FOR FINITE METAL RODS? ...............26
CASE 1: CONVECTION AT THE END OF A FINITE METAL ROD...............................26
HOW DO WE INVESTIGATE THE NATURE OF 𝒉𝑳 EASILY?.....................................31
DERIVATION OF THE GENERAL EXPRESSION FOR HEAT TRANSFER
COEFFICIENT 𝒉𝑳........................................................................................................................39
CASE 2: ZERO FLUX AT THE END OF THE METAL ROD?..........................................44
HOW DO WE DEAL WITH CYLINDRICAL COORDINATES? .............................................50
HOW DO WE DEAL WITH CYLINDRICAL CO-ORDINATES FOR A SEMI-INFINITE
RADIUS CYLINDER? .....................................................................................................................51
HOW DO WE DEAL WITH NATURAL CONVECTION AT THE SURFACE AREA OF A
SEMI-INFINITE CYLINDER FOR FIXED END TEMPERATURE.......................................54
REFERENCES..................................................................................................................................58
PREFACE
In this book we go ahead and investigate the nature of heat conduction in a
metal rod heated at one end while the other end is free. We do this by sticking
wax particles along the surface area of the metal rod at known distances x from
the hot end and then record the time taken for each wax to melt since the
introduction of the flame at the hot end. We first of all look at the case of heat
conduction in a semi-infinite metal rod and solve the heat equation analytically
using the integral transform approach and compare the solution got in the
transient state to experimental observations. We make deductions and
conclusions from both the solution and the experimental values.
We then look at the case of a finite length metal rod heat conduction with
convection at the free end. We use the hyperbolic function solutions known in
literature to interpret experimental data. One fact that we get to learn from the
experimental values is that the heat transfer coefficient β„ŽπΏ at the end of the
metal rod is not a constant but varies with length L as shall be shown later. We
note that in deriving the solution for the convection boundary condition, the
solution derived should reduce to the semi-infinite rod solution as the length
tends to infinity.
We then look at the case of zero flux at the end of a finite metal rod and also
derive the governing equation.
Finally, we use the integral approach to solve the heat equation in cylindrical
co-ordinates for radial heat conduction and use the same techniques we used
before to solve for observed phenomena.
WHAT DO WE OBSERVE EXPERIMENTALLY WHEN
HEATING A CYLINDRICAL METAL ROD AT ONE END
WITH WAX PARTICLES ALONG ITS SURFACE AREA?
The situation we are talking about looks as below:
First of all, let us call the distance π‘₯ to be the distance of the wax particle from the hot
end and 𝑑 to be the time taken for the wax to melt since the introduction of the flame
at the hot end.
For a semi-infinite rod(𝑙 = ∞), it is observed that a graph of π‘₯ against time 𝑑 is a curve
as shown below for an aluminium rod of radius 2mm:
A semi-infinite cylindrical rod means that the length of the metal rod extends to
infinity but the radius is finite.
The graph below is for an aluminium rod of length 75cm and radius 2mm and it can
be treated as a semi-infinite metal rod.
0
0.05
0.1
0.15
0.2
0.25
0.3
0 100 200 300 400 500
x(metres)
t(seconds)
A Graph of x against time t
HOW DO WE DEAL WITH NATURAL CONVECTION AT
THE SURFACE AREA OF A SEMI-INFINITE METAL ROD
FOR FIXED WALL TEMPERATURE
A semi-infinite cylindrical rod means that the length of the metal rod extends to
infinity but the radius of the metal rod is finite. The governing heat equation is:
𝛼
πœ•2
𝑇
πœ•π‘₯2
βˆ’
β„Žπ‘ƒ
𝐴𝜌𝐢
(𝑇 βˆ’ π‘‡βˆž) =
πœ•π‘‡
πœ•π‘‘
We shall use the integral transform approach to solve the heat equation above.
The boundary and initial conditions are
𝑻 = 𝑻𝒔 𝒂𝒕 𝒙 = 𝟎 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒕
𝑻 = π‘»βˆž 𝒂𝒕 𝒙 = ∞
𝑻 = π‘»βˆž 𝒂𝒕 𝒕 = 𝟎
Where: π‘»βˆž = π’“π’π’π’Ž π’•π’†π’Žπ’‘π’†π’“π’‚π’•π’–π’“π’†
First, we assume a temperature profile that satisfies the boundary conditions as:
𝑇 βˆ’ π‘‡βˆž
𝑇𝑠 βˆ’ π‘‡βˆž
= 𝑒
βˆ’π‘₯
𝛿
where 𝛿 is to be determined and is a function of time t and not x.
for the initial condition, we assume 𝛿 = 0 at 𝑑 = 0 seconds so that the initial
condition is satisfied i.e.,
Since at 𝑑 = 0, 𝛿 = 0 we get
𝑇 βˆ’ π‘‡βˆž
𝑇𝑠 βˆ’ π‘‡βˆž
= 𝑒
βˆ’π‘₯
0 = π‘’βˆ’βˆž
= 0
Hence
𝑇 = π‘‡βˆž
Which is the initial condition.
The governing partial differential equation is:
𝛼
πœ•2
𝑇
πœ•π‘₯2
βˆ’
β„Žπ‘ƒ
𝐴𝜌𝐢
(𝑇 βˆ’ π‘‡βˆž) =
πœ•π‘‡
πœ•π‘‘
Let us change transform the heat equation into an integral equation as below:
𝛼 ∫ (
πœ•2
𝑇
πœ•π‘₯2
) 𝑑π‘₯
𝑙
0
βˆ’
β„Žπ‘ƒ
𝐴𝜌𝐢
∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯
𝑙
0
=
πœ•
πœ•π‘‘
∫ (𝑇)𝑑π‘₯
𝑙
0
… … . . 𝑏)
πœ•2
𝑇
πœ•π‘₯2
=
(𝑇𝑠 βˆ’ π‘‡βˆž)
𝛿2
𝑒
βˆ’π‘₯
𝛿
∫ (
πœ•2
𝑇
πœ•π‘₯2
) 𝑑π‘₯
𝑙
0
=
βˆ’(𝑇𝑠 βˆ’ π‘‡βˆž)
𝛿
(𝑒
βˆ’π‘™
𝛿 βˆ’ 1)
But for a semi-infinite cylindrical rod, 𝑙 = ∞, upon substitution, we get
∫ (
πœ•2
𝑇
πœ•π‘₯2
) 𝑑π‘₯
𝑙
0
=
(𝑇𝑠 βˆ’ π‘‡βˆž)
𝛿
∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯
𝑙
0
= βˆ’π›Ώ(𝑇𝑠 βˆ’ π‘‡βˆž)(𝑒
βˆ’π‘™
𝛿 βˆ’ 1)
But 𝑙 = ∞, upon substitution, we get
∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯
𝑙
0
= 𝛿(𝑇𝑠 βˆ’ π‘‡βˆž)
𝑇 = (𝑇𝑠 βˆ’ π‘‡βˆž)𝑒
βˆ’π‘₯
𝛿 + π‘‡βˆž
∫ (𝑇)𝑑π‘₯
𝑙
0
= βˆ’π›Ώ(𝑇𝑠 βˆ’ π‘‡βˆž)(𝑒
βˆ’π‘™
𝛿 βˆ’ 1) + π‘‡βˆžπ‘™
Substitute 𝑙 = ∞ and get
πœ•
πœ•π‘‘
∫ (𝑇)𝑑π‘₯
𝑙
0
=
𝑑𝛿
𝑑𝑑
(𝑇𝑠 βˆ’ π‘‡βˆž) +
πœ•
πœ•π‘‘
(π‘‡βˆžπ‘™)
Since π‘‡βˆž π‘Žπ‘›π‘‘ 𝑙 are constants
πœ•
πœ•π‘‘
(π‘‡βˆžπ‘™) = 0
πœ•
πœ•π‘‘
∫ (𝑇)𝑑π‘₯
𝑙
0
=
𝑑𝛿
𝑑𝑑
(𝑇𝑠 βˆ’ π‘‡βˆž)
Substituting the above expressions in equation b) above, we get
𝛼 βˆ’
β„Žπ‘ƒ
𝐴𝜌𝐢
𝛿2
= 𝛿
𝑑𝛿
𝑑𝑑
We solve the equation above with initial condition
𝛿 = 0 π‘Žπ‘‘ 𝑑 = 0
And get
𝛿 = √
π›Όπ΄πœŒπΆ
β„Žπ‘ƒ
(1 βˆ’ 𝑒
βˆ’2β„Žπ‘ƒ
𝐴𝜌𝐢
𝑑
)
𝛿 = √
𝐾𝐴
β„Žπ‘ƒ
(1 βˆ’ 𝑒
βˆ’2β„Žπ‘ƒ
𝐴𝜌𝐢
𝑑
)
Substituting for 𝛿 in the temperature profile, we get
𝑻 βˆ’ π‘»βˆž
𝑻𝒔 βˆ’ π‘»βˆž
= 𝒆
βˆ’π’™
√
𝑲𝑨
𝒉𝑷
(πŸβˆ’π’†
βˆ’πŸπ’‰π‘·
𝑨𝝆π‘ͺ
𝒕
)
From the equation above, we notice that the initial condition is satisfied i.e.,
𝑻 = π‘»βˆž 𝒂𝒕 𝒕 = 𝟎
The equation above predicts the transient state and in steady state (𝑑 = ∞) it
reduces to
𝑻 βˆ’ π‘»βˆž
𝑻𝒔 βˆ’ π‘»βˆž
= 𝒆
βˆ’βˆš(
𝒉𝑷
𝑲𝑨
)𝒙
What are the predictions of the transient state?
For transient state the governing solution is:
𝑇 βˆ’ π‘‡βˆž
𝑇𝑠 βˆ’ π‘‡βˆž
= 𝑒
βˆ’π‘₯
√
𝐾𝐴
β„Žπ‘ƒ
(1βˆ’π‘’
βˆ’2β„Žπ‘ƒ
𝐴𝜌𝐢
𝑑
)
Let us make π‘₯ the subject of the equation of transient state and get:
π‘₯ = [ln (
𝑇𝑠 βˆ’ π‘‡βˆž
𝑇 βˆ’ π‘‡βˆž
)] Γ— √
𝐾𝐴
β„Žπ‘ƒ
(1 βˆ’ 𝑒
βˆ’2β„Žπ‘ƒ
𝐴𝜌𝐢
𝑑
)
To measure the value of h, we use trial and error method in Microsoft excel and
choosing (
2β„Žπ‘ƒ
𝐴𝜌𝐢
= 0.005) , plotting a graph of π‘₯ against √(1 βˆ’ π‘’βˆ’0.005𝑑) for a semi-
infinite aluminium metal rod of radius 2mm gave a straight-line graph with a
negative intercept as shown below for all times contrary to the equation
above i.e.,
π‘₯ = βˆ’π‘ + [ln(
𝑇𝑠 βˆ’ π‘‡βˆž
𝑇 βˆ’ π‘‡βˆž
)] Γ— √
𝐾𝐴
β„Žπ‘ƒ
(1 βˆ’ 𝑒
βˆ’2β„Žπ‘ƒ
𝐴𝜌𝐢
𝑑
)
Let:
π‘Œ = √(1 βˆ’ π‘’βˆ’0.005𝑑) = √(1 βˆ’ 𝑒
βˆ’2β„Žπ‘ƒ
𝐴𝜌𝐢
𝑑
)
𝒙 = βˆ’π’„ + [π₯𝐧 (
𝑻𝒔 βˆ’ π‘»βˆž
𝑻 βˆ’ π‘»βˆž
)(√
𝑲𝑨
𝒉𝑷
)] Γ— 𝒀
Varying the radius of the aluminium metal rod to π‘Ÿ = 1π‘šπ‘š the graph looked as
below:
From the graph above, it is observed that the intercept c is directly proportional
to radius squared.
i.e.
𝒄 = πŸπŸ‘πŸ—πŸŽπŸŽπ’“πŸ
The heat transfer coefficient is calculated from
y = 1.515x - 0.0528
RΒ² = 0.9967
0
0.05
0.1
0.15
0.2
0.25
0.3
0 0.05 0.1 0.15 0.2
X
Y
A Graph of X against Y for radius 2mm semi-
infinite aluminium rod
Series1
Linear (Series1)
y = 1.3556x - 0.0139
RΒ² = 0.987
0
0.02
0.04
0.06
0.08
0.1
0.12
0.14
0.16
0.18
0 0.05 0.1 0.15
X
Y
A Graph of X against Y for radius 1mm semi-
infinite aluminium rod
Series1
Linear (Series1)
π‘Œ = √(1 βˆ’ π‘’βˆ’0.005𝑑) = √(1 βˆ’ 𝑒
βˆ’2β„Žπ‘ƒ
𝐴𝜌𝐢
𝑑
)
2β„Žπ‘ƒ
𝐴𝜌𝐢
= 0.005
h for aluminium was found to be
β„Ž =
6.075π‘Š
π‘š2𝐾
Using the graph and the equation below:
π‘₯ = [ln (
𝑇𝑓 βˆ’ π‘‡βˆž
𝑇 βˆ’ π‘‡βˆž
)] Γ— √
𝐾𝐴
β„Žπ‘ƒ
(1 βˆ’ 𝑒
βˆ’2β„Žπ‘ƒ
𝐴𝜌𝐢
𝑑
) βˆ’ π›½π‘Ÿ2
From the gradient of the graph of x against √(1 βˆ’ 𝑒
βˆ’2β„Žπ‘ƒ
𝐴𝜌𝐢
𝑑
)above the ratio (
π‘‡π‘“βˆ’π‘‡βˆž
π‘‡βˆ’π‘‡βˆž
)
was measured and was found to be:
(
𝑻 βˆ’ π‘»βˆž
𝑻𝒇 βˆ’ π‘»βˆž
) β‰ˆ 𝟎. πŸπŸπŸ—πŸ–πŸ
From the graph above it is deduced that 𝑇𝑓 is a constant temperature
independent of time.
To account for the intercept in the graph above for a semi-infinite rod, we have
to postulate that there’s convection at the hot end of the metal rod as below
i.e.,
βˆ’π’Œ
𝝏𝑻
𝝏𝒙
|𝒙=𝟎 = π’‰πŸŽ(𝑻𝒇 βˆ’ 𝑻𝒔)
Recall:
𝑇 βˆ’ π‘‡βˆž
𝑇𝑠 βˆ’ π‘‡βˆž
= 𝑒
βˆ’π‘₯
𝛿
πœ•π‘‡
πœ•π‘₯
=
βˆ’(𝑇𝑠 βˆ’ π‘‡βˆž)
𝛿
𝑒
βˆ’π‘₯
𝛿
πœ•π‘‡
πœ•π‘₯
|π‘₯=0 =
βˆ’(𝑇𝑠 βˆ’ π‘‡βˆž)
𝛿
Upon substitution, we get:
π‘˜
(𝑇𝑠 βˆ’ π‘‡βˆž)
𝛿
= β„Ž0(𝑇𝑓 βˆ’ 𝑇𝑠)
(𝑇𝑠 βˆ’ π‘‡βˆž) =
β„Ž0𝛿
π‘˜
(𝑇𝑓 βˆ’ 𝑇𝑠)
𝑇𝑠 (1 +
β„Ž0𝛿
π‘˜
) = (
β„Ž0𝛿
π‘˜
) 𝑇𝑓 + π‘‡βˆž
𝑇𝑠 =
(
β„Ž0𝛿
π‘˜
) 𝑇𝑓 + π‘‡βˆž
(1 +
β„Ž0𝛿
π‘˜
)
Subtracting π‘‡βˆž from both sides, we get:
𝑇𝑠 βˆ’ π‘‡βˆž =
(
β„Ž0𝛿
π‘˜
) 𝑇𝑓 + π‘‡βˆž
(1 +
β„Ž0𝛿
π‘˜
)
βˆ’ π‘‡βˆž
We finally get:
𝑇𝑠 βˆ’ π‘‡βˆž
𝑇𝑓 βˆ’ π‘‡βˆž
=
β„Ž0𝛿
π‘˜
1 +
β„Ž0𝛿
π‘˜
Upon simplifying, we get:
𝑇𝑠 βˆ’ π‘‡βˆž
𝑇𝑓 βˆ’ π‘‡βˆž
=
𝛿
𝛿 +
π‘˜
β„Ž0
To explain the nature of β„Ž0 we postulate that the candle dissipates power
independent of area. i.e.,
π‘‘π‘š
𝑑𝑑
𝐻𝐢 = π›Ύβ„Ž0𝐴(𝑇𝑓 βˆ’ 𝑇𝑠)
Where:
𝛾 = π‘π‘Ÿπ‘œπ‘π‘œπ‘Ÿπ‘‘π‘–π‘œπ‘›π‘Žπ‘™π‘–π‘‘π‘¦ π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘ π‘Žπ‘›π‘‘ π‘π‘Žπ‘› 𝑏𝑒 π‘‘π‘Žπ‘˜π‘’π‘› π‘‘π‘œ 𝑏𝑒 π‘’π‘žπ‘’π‘Žπ‘™ π‘‘π‘œ 1
And get
π’…π’Ž
𝒅𝒕
𝑯π‘ͺ = π’‰πŸŽπ‘¨(𝑻𝒇 βˆ’ 𝑻𝒔)
Where:
𝐻𝐢 = π‘’π‘›π‘‘β„Žπ‘Žπ‘™π‘π‘¦ π‘œπ‘“ π‘π‘œπ‘šπ‘π‘’π‘ π‘‘π‘–π‘œπ‘›
From experiment:
π‘‘π‘š
𝑑𝑑
= π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘
To explain the heat conduction phenomenon, we postulate that
𝐻𝐢 = πΆπ‘œ(𝑇𝑓 βˆ’ 𝑇𝑠)
Where:
πΆπ‘œ = 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 β„Žπ‘’π‘Žπ‘‘ π‘π‘Žπ‘π‘Žπ‘π‘–π‘‘π‘¦
Upon substitution, we have:
π‘‘π‘š
𝑑𝑑
πΆπ‘œ(𝑇𝑓 βˆ’ 𝑇𝑠) = β„Ž0𝐴(𝑇𝑓 βˆ’ 𝑇𝑠)
Upon simplifying, we get:
π’‰πŸŽ =
π’…π’Ž
𝒅𝒕
Γ—
π‘ͺ𝒐
𝑨
Using the above result, we get
π‘˜
β„Ž0
=
π‘˜π΄
π‘‘π‘š
𝑑𝑑
πΆπ‘œ
Upon substitution, we get:
𝑇𝑠 βˆ’ π‘‡βˆž
𝑇𝑓 βˆ’ π‘‡βˆž
=
𝛿
𝛿 +
π‘˜
β„Ž0
𝑇𝑠 βˆ’ π‘‡βˆž
𝑇𝑓 βˆ’ π‘‡βˆž
=
𝛿
𝛿 +
π‘˜π΄
π‘‘π‘š
𝑑𝑑
πΆπ‘œ
OR
𝑇𝑠 βˆ’ π‘‡βˆž
𝑇𝑓 βˆ’ π‘‡βˆž
=
𝛿
𝛿 +
π‘˜πœ‹
π‘‘π‘š
𝑑𝑑
πΆπ‘œ
π‘Ÿ2
Comparing with:
𝑻𝒔 βˆ’ π‘»βˆž
𝑻𝒇 βˆ’ π‘»βˆž
=
𝜹
𝜹 + πœ·π’“πŸ
Where:
𝛽 =
π‘˜πœ‹
π‘‘π‘š
𝑑𝑑
πΆπ‘œ
We notice that 𝛽 is directly proportional to the thermal conductivity k.
The above expression shows that the temperature at π‘₯ = 0 varies with time also
and is not fixed until steady state is achieved
π’Œ
π’‰πŸŽ
= πœ·π’“πŸ
And we finally get:
𝑇𝑠 βˆ’ π‘‡βˆž
𝑇𝑓 βˆ’ π‘‡βˆž
=
𝛿
𝛿 + π›½π‘Ÿ2
For a semi-infinite rod,
𝑻 βˆ’ π‘»βˆž
𝑻𝒔 βˆ’ π‘»βˆž
= π’†βˆ’
𝒙
𝜹
Substituting the expression of (𝑇𝑠 βˆ’ π‘‡βˆž) we get:
𝑻 βˆ’ π‘»βˆž
𝑻𝒇 βˆ’ π‘»βˆž
= (
𝜹
𝜹 + πœ·π’“πŸ
)π’†βˆ’
𝒙
𝜹
As the general solution.
SO HOW DO WE PRODUCE THE SEMI-INFINITE OBSERVED ROD
SOLUTION?
As got before:
𝑇𝑠 βˆ’ π‘‡βˆž
𝑇𝑓 βˆ’ π‘‡βˆž
= (
𝛿
𝛿 + π›½π‘Ÿ2
)
From
(
𝑻 βˆ’ π‘»βˆž
𝑻𝒔 βˆ’ π‘»βˆž
) = π’†βˆ’
𝒙
𝜹
Substituting the expression of (𝑇𝑠 βˆ’ π‘‡βˆž) we get:
𝑻 βˆ’ π‘»βˆž
𝑻𝒇 βˆ’ π‘»βˆž
= (
𝜹
𝜹 + πœ·π’“πŸ
)π’†βˆ’
𝒙
𝜹
Continuing with
𝑻 βˆ’ π‘»βˆž
𝑻𝒔 βˆ’ π‘»βˆž
= π’†βˆ’
𝒙
𝜹
Let us make π‘₯ the subject of the formula:
π‘₯ = [ln(
𝑇𝑠 βˆ’ π‘‡βˆž
𝑇 βˆ’ π‘‡βˆž
)] Γ— 𝛿
Where:
𝛿 = √2𝛼𝑑
For small time.
Or generally
𝛿 = √
𝐾𝐴
β„Žπ‘ƒ
(1 βˆ’ 𝑒
βˆ’2β„Žπ‘ƒ
𝐴𝜌𝐢
𝑑
)
But we know from the above that:
(𝑇𝑠 βˆ’ π‘‡βˆž) = (𝑇𝑓 βˆ’ π‘‡βˆž)(
𝛿
𝛿 + π›½π‘Ÿ2
)
π‘₯ = [ln(𝑇𝑠 βˆ’ π‘‡βˆž) βˆ’ ln(𝑇 βˆ’ π‘‡βˆž)] Γ— 𝛿
𝑙𝑛(𝑇𝑠 βˆ’ π‘‡βˆž) = 𝑙𝑛(𝑇𝑓 βˆ’ π‘‡βˆž) + 𝑙𝑛(
𝛿
𝛿 + π›½π‘Ÿ2
)
Upon substitution of 𝑙𝑛(𝑇𝑠 βˆ’ π‘‡βˆž) in the equation of π‘₯ above, we get
π‘₯ = [𝑙𝑛(𝑇𝑓 βˆ’ π‘‡βˆž) + 𝑙𝑛(
𝛿
𝛿 + π›½π‘Ÿ2
) βˆ’ln(𝑇 βˆ’ π‘‡βˆž)] Γ— 𝛿
We get
𝒙 = 𝜹[𝒍𝒏 (
𝑻𝒇 βˆ’ π‘»βˆž
𝑻 βˆ’ π‘»βˆž
) + 𝒍𝒏(
𝜹
𝜹 + πœ·π’“πŸ
)]
Let us manipulate the equation above and get:
𝒙 = πœΉπ’π’ (
𝑻𝒇 βˆ’ π‘»βˆž
𝑻 βˆ’ π‘»βˆž
) + πœΉπ’π’(
𝜹
𝜹 + πœ·π’“πŸ
)
Factorizing out 𝛿 in the denominator we get:
π‘₯ = 𝛿𝑙𝑛 (
𝑇𝑓 βˆ’ π‘‡βˆž
𝑇 βˆ’ π‘‡βˆž
) + 𝛿𝑙𝑛[
𝛿
𝛿
(
1
1 +
π›½π‘Ÿ2
𝛿
)]
π‘₯ = 𝛿𝑙𝑛 (
𝑇𝑓 βˆ’ π‘‡βˆž
𝑇 βˆ’ π‘‡βˆž
) + 𝛿𝑙𝑛[(1 +
π›½π‘Ÿ2
𝛿
)βˆ’1
]
Since
π›½π‘Ÿ2
𝛿
β‰ͺ 1 π‘“π‘œπ‘Ÿ 𝑑
We can use the binomial first order approximation
(1 + π‘₯)𝑛
β‰ˆ 1 + 𝑛π‘₯ π‘“π‘œπ‘Ÿ π‘₯ β‰ͺ 1
(1 +
π›½π‘Ÿ2
𝛿
)βˆ’1
= 1 βˆ’
π›½π‘Ÿ2
𝛿
π‘“π‘œπ‘Ÿ
π›½π‘Ÿ2
𝛿
β‰ͺ 1
And we get:
π‘₯ = 𝛿𝑙𝑛 (
𝑇𝑓 βˆ’ π‘‡βˆž
𝑇 βˆ’ π‘‡βˆž
) + 𝛿𝑙𝑛[(1 βˆ’
π›½π‘Ÿ2
𝛿
)]
Again, we can expand the natural log as below:
ln(1 βˆ’ π‘₯) β‰ˆ βˆ’π‘₯ π‘“π‘œπ‘Ÿ π‘₯ β‰ͺ 1
𝑙𝑛 [(1 βˆ’
π›½π‘Ÿ2
𝛿
)] = βˆ’
π›½π‘Ÿ2
𝛿
π‘“π‘œπ‘Ÿ
π›½π‘Ÿ2
𝛿
β‰ͺ 1
Upon substitution we finally get
𝒙 = πœΉπ’π’ (
𝑻𝒇 βˆ’ π‘»βˆž
𝑻 βˆ’ π‘»βˆž
) βˆ’ πœ·π’“πŸ
Which is what we got before.
𝒙 = πœΉπ’π’ (
𝑻𝒇 βˆ’ π‘»βˆž
𝑻 βˆ’ π‘»βˆž
) βˆ’ πœ·π’“πŸ
Where:
𝛽 =
π‘˜πœ‹
π‘‘π‘š
𝑑𝑑
πΆπ‘œ
We notice that the intercept above is proportional to the square of the radius as
demonstrated from experiment.
Looking at the general solution:
𝒙 = πœΉπ’π’ (
𝑻𝒇 βˆ’ π‘»βˆž
𝑻 βˆ’ π‘»βˆž
) + πœΉπ’π’(
𝜹
𝜹 + πœ·π’“πŸ
)
Plotting a graph of 𝒙 against 𝜹[𝒍𝒏 (
π‘»π’‡βˆ’π‘»βˆž
π‘»βˆ’π‘»βˆž
) + 𝒍𝒏(
𝜹
𝜹+πœ·π’“πŸ
)] was found to give a
straight-line graph through the origin as stated by the equation above.
Let us call 𝒑 = 𝜹[𝒍𝒏 (
π‘»π’‡βˆ’π‘»βˆž
π‘»βˆ’π‘»βˆž
) + 𝒍𝒏(
𝜹
𝜹+πœ·π’“πŸ
)]
Where:
πœ·π’“πŸ
= 𝟎. πŸŽπŸ“πŸπŸ– for an aluminium rod of radius 2mm and 𝐾 = 238
π‘Š
π‘šπΎ
, β„Ž = 6
π‘Š
π‘š2𝐾
𝜌 =
2700
π‘˜π‘”
π‘š3, 𝐢 = 900
𝐽
π‘˜π‘”πΎ
and
π‘‡βˆ’π‘‡βˆž
π‘‡π‘“βˆ’π‘‡βˆž
= 0.21981
And
𝛿 = √
𝐾𝐴
β„Žπ‘ƒ
(1 βˆ’ 𝑒
βˆ’2β„Žπ‘ƒ
𝐴𝜌𝐢
𝑑
)
Then a graph of x against p is a straight-line graph through the origin for a
semi-infinite rod as shown below for a semi-infinite aluminium rod of radius
2mm
Calling the solution below the approximated solution:
𝒙 = πœΉπ’π’ (
𝑻𝒇 βˆ’ π‘»βˆž
𝑻 βˆ’ π‘»βˆž
) βˆ’ πœ·π’“πŸ
Or
π‘₯ = [ln (
𝑇𝑓 βˆ’ π‘‡βˆž
𝑇 βˆ’ π‘‡βˆž
)] Γ— √
𝐾𝐴
β„Žπ‘ƒ
(1 βˆ’ 𝑒
βˆ’2β„Žπ‘ƒ
𝐴𝜌𝐢
𝑑
) βˆ’ π›½π‘Ÿ2
What are the lessons we have learnt?
ο‚· We have learnt that in the approximated solution, we can measure off h
in the transient state.
ο‚· We have learnt that knowing the thermo-conductivity and other physical
parameters of the metal rod, in the approximated solution, we can
measure off the ratio
π‘»βˆ’π‘»βˆž
π‘»π’‡βˆ’π‘»βˆž
ο‚· The intercept in the approximated solution can help us learn how its
nature varies with the radius of the rod. We can use the intercept to
measure the value of 𝜷.
y = 1.0768x
0
0.05
0.1
0.15
0.2
0.25
0.3
0 0.05 0.1 0.15 0.2 0.25
x
p
A Graph of x against p
The general solution is given by:
𝒙 = πœΉπ’π’ (
𝑻𝒇 βˆ’ π‘»βˆž
𝑻 βˆ’ π‘»βˆž
) + πœΉπ’π’(
𝜹
𝜹 + πœ·π’“πŸ
)
You notice that the initial condition is still satisfied.
From the general solution, we get:
𝑻 βˆ’ π‘»βˆž
𝑻𝒇 βˆ’ π‘»βˆž
= (
𝜹
𝜹 + πœ·π’“πŸ
)𝒆
βˆ’
𝒙
𝜹
For the initial condition; At 𝑑 = 0, you get
𝑻 βˆ’ π‘»βˆž
𝑻𝒇 βˆ’ π‘»βˆž
= 𝟎 Γ— 𝒆
βˆ’π’™
𝟎 = 𝟎
Hence
𝑻 = π‘»βˆž
Considering the approximated equation below:
𝒙 = [π₯𝐧 (
𝑻𝒇 βˆ’ π‘»βˆž
𝑻 βˆ’ π‘»βˆž
)] Γ— βˆšπŸπœΆπ’• βˆ’ πœ·π’“πŸ
What that equation says is that when you stick wax particles on a long metal
rod (𝑙 = ∞) at distances x from the hot end of the rod and note the time t it
takes the wax particles to melt, then a graph of π‘₯ against βˆšπ‘‘ is a straight-line
graph with an intercept as stated by the equation above when the times are
small. The equation is true because that is what is observed experimentally.
Looking at the approximate solution for a semi-infinite metal rod:
π‘₯ = βˆ’π›½π‘Ÿ2
+ [ln(
𝑇𝑓 βˆ’ π‘‡βˆž
𝑇 βˆ’ π‘‡βˆž
)] Γ— √
𝐾𝐴
β„Žπ‘ƒ
(1 βˆ’ 𝑒
βˆ’2β„Žπ‘ƒ
𝐴𝜌𝐢
𝑑
)
Let:
π‘Œ = √(1 βˆ’ π‘’βˆ’0.005𝑑)
A graph of x against Y looked as below:
Since the graph above is a straight-line graph, it shows that 𝑇𝑓 IS NOT a
function of time as stated by the equation above of π‘₯ against Y.
Another point to note is that from experiment 𝑇𝑓 was found to be independent
of radius of the metal rod.
For aluminium
𝐾 = 238
π‘Š
π‘šπΎ
, β„Ž = 6
π‘Š
π‘š2𝐾
Another way to measure 𝑇𝑠1 is to consider the steady state equation and plot
the graph of
𝑇 βˆ’ π‘‡βˆž
𝑇𝑓 βˆ’ π‘‡βˆž
= (
𝛿
𝛿 + π›½π‘Ÿ2
)𝑒
βˆ’βˆš(
β„Žπ‘ƒ
𝐾𝐴)π‘₯
π₯𝐧(𝑻 βˆ’ π‘»βˆž) = 𝒍𝒏(𝑻𝒇 βˆ’ π‘»βˆž) + 𝒍𝒏(
𝜹
𝜹 + πœ·π’“πŸ
) βˆ’ √(
𝒉𝑷
𝑲𝑨
)𝒙
And
𝛿 = √
𝐾𝐴
β„Žπ‘ƒ
Upon substitution
y = 1.515x - 0.0528
RΒ² = 0.9967
0
0.05
0.1
0.15
0.2
0.25
0.3
0 0.05 0.1 0.15 0.2
X
Y
A Graph of X against Y
Series1
Linear (Series1)
π₯𝐧(𝑻 βˆ’ π‘»βˆž) = 𝒍𝒏(𝑻𝒇 βˆ’ π‘»βˆž) + 𝒍𝒏(
βˆšπ‘²π‘¨
𝒉𝑷
βˆšπ‘²π‘¨
𝒉𝑷
+ πœ·π’“πŸ
) βˆ’ √(
𝒉𝑷
𝑲𝑨
)𝒙
A graph of ln(𝑇 βˆ’ π‘‡βˆž) against x gives an intercept [𝒍𝒏(𝑻𝒇 βˆ’ π‘»βˆž) + 𝒍𝒏(
√
𝑲𝑨
𝒉𝑷
√
𝑲𝑨
𝒉𝑷
+πœ·π’“πŸ
)] from
which 𝑇𝑓 can be measured.
Also knowing the thermo-conductivity, from the gradient of the above graph the
heat transfer coefficient can be measured off.
From experiment, using an aluminium rod of radius 2mm and using a
thermoconductivity value of πŸπŸ‘πŸ– 𝑾
π’Žπ‘²
⁄ , The heat transfer coefficient h of
aluminium was found to be πŸ” 𝑾
π’ŽπŸπ‘²
⁄ .
Therefore, for a semi-infinite rod, the equation obeyed for small times is:
𝒙 = [π₯𝐧 (
𝑻𝒇 βˆ’ π‘»βˆž
𝑻 βˆ’ π‘»βˆž
)] Γ— βˆšπŸπœΆπ’• βˆ’ πœ·π’“πŸ
Looking at the steady state solution below:
𝑇 βˆ’ π‘‡βˆž
𝑇𝑓 βˆ’ π‘‡βˆž
= (
𝛿
𝛿 + π›½π‘Ÿ2
)𝑒
βˆ’βˆš(
β„Žπ‘ƒ
𝐾𝐴
)π‘₯
OR
𝑻 βˆ’ π‘»βˆž
𝑻𝒇 βˆ’ π‘»βˆž
= (
βˆšπ‘²π‘¨
𝒉𝑷
βˆšπ‘²π‘¨
𝒉𝑷
+ πœ·π’“πŸ
)𝒆
βˆ’βˆš(
𝒉𝑷
𝑲𝑨
)𝒙
In most cases
√
𝑲𝑨
𝒉𝑷
≫ πœ·π’“πŸ
So, we observe:
𝑻 βˆ’ π‘»βˆž
𝑻𝒇 βˆ’ π‘»βˆž
= 𝒆
βˆ’βˆš(
𝒉𝑷
𝑲𝑨
)𝒙
Which is the usual solution we know.
From experiment, using a flame and candle wax on the aluminium rod, the
ratio below was found to be
(
𝑻 βˆ’ π‘»βˆž
𝑻𝒇 βˆ’ π‘»βˆž
) β‰ˆ 𝟎. πŸπŸπŸ—πŸ–πŸ
So, when can we apply the semi-infinite rod solution?
Using the steady state equation of heat conduction
𝑇 βˆ’ π‘‡βˆž
𝑇𝑠 βˆ’ π‘‡βˆž
= 𝑒
βˆ’βˆš(
β„Žπ‘ƒ
𝐾𝐴
)𝐿
= π‘’βˆ’π‘šπΏ
Where:
π‘š = √(
β„Žπ‘ƒ
𝐾𝐴
)
And
From literature [1] the limiting length for use of semi-infinite model is got when
𝑇 βˆ’ π‘‡βˆž
𝑇𝑠 βˆ’ π‘‡βˆž
= 0.01
The corresponding value of π‘šπΏ = 4.6
Hence as long as 𝑳 =
πŸ’.πŸ”
π’Ž
= πŸ’. πŸ”βˆš(
𝑲𝑨
𝒉𝑷
) the equation can be applied accurately.
NB
A particular method we can use to predict which temperature profile to use in
solving the heat equation is by looking at the steady state equation below:
From
𝛼
πœ•2
𝑇
πœ•π‘₯2
βˆ’
β„Žπ‘ƒ
𝐴𝜌𝐢
(𝑇 βˆ’ π‘‡βˆž) =
πœ•π‘‡
πœ•π‘‘
In steady state
πœ•π‘‡
πœ•π‘‘
= 0
So, the governing equation becomes:
𝛼
πœ•2
𝑇
πœ•π‘₯2
βˆ’
β„Žπ‘ƒ
𝐴𝜌𝐢
(𝑇 βˆ’ π‘‡βˆž) = 0
The general solution of the equation above is
(𝑇 βˆ’ π‘‡βˆž) = 𝐢1π‘’βˆ’π‘šπ‘₯
+ 𝐢2π‘’π‘šπ‘₯
Where:
π‘š = √
β„Žπ‘ƒ
𝐾𝐴
For the semi-infinite case: The boundary conditions are:
𝑻 = 𝑻𝒔 𝒂𝒕 𝒙 = 𝟎
𝑻 = π‘»βˆž 𝒂𝒕 𝒙 = ∞
The second boundary condition makes 𝐢2 = 0
And the other boundary condition:
𝑻 = 𝑻𝒔 𝒂𝒕 𝒙 = 𝟎
Leads to
𝑇 βˆ’ π‘‡βˆž
𝑇𝑠 βˆ’ π‘‡βˆž
= π‘’βˆ’π‘šπ‘₯
From what we learned earlier is that
π‘š =
1
𝛿
From now onwards we are going to use the fact that the temperature profile
below satisfies the heat equation
(𝑇 βˆ’ π‘‡βˆž) = 𝐢1π‘’βˆ’π‘šπ‘₯
+ 𝐢2π‘’π‘šπ‘₯
Or
(𝑻 βˆ’ π‘»βˆž) = π‘ͺπŸπ’†
βˆ’π’™
𝜹 + π‘ͺπŸπ’†
𝒙
𝜹
HOW DOES HEAT FLOW MANIFEST ITSELF FOR FINITE
METAL RODS?
CASE 1: CONVECTION AT THE END OF A FINITE METAL ROD
The boundary and initial conditions are:
𝑻 = 𝑻𝒔 𝒂𝒕 𝒙 = 𝟎
βˆ’π’Œ
𝒅𝑻
𝒅𝒙
= 𝒉𝑳(𝑻 βˆ’ π‘»βˆž) 𝒂𝒕 𝒙 = 𝒍
𝑻 = π‘»βˆž 𝒂𝒕 𝒕 = 𝟎
This same analysis can be extended to a metal rod with convection at the other
end of the metal rod where the temperature profile is given by: [2]
𝑇 βˆ’ π‘‡βˆž
𝑇𝑠 βˆ’ π‘‡βˆž
=
cosh[π‘š(𝐿 βˆ’ π‘₯)] + (
β„ŽπΏ
π‘šπ‘˜
) sinh[π‘š(𝐿 βˆ’ π‘₯)]
cosh π‘šπΏ + (
β„ŽπΏ
π‘šπ‘˜
) π‘ π‘–π‘›β„Žπ‘šπΏ
Or
𝑇 βˆ’ π‘‡βˆž
𝑇𝑠 βˆ’ π‘‡βˆž
=
cosh [
(𝐿 βˆ’ π‘₯)
𝛿
] + (
β„ŽπΏπ›Ώ
π‘˜
) sinh[(
𝐿 βˆ’ π‘₯
𝛿
)]
cosh
𝐿
𝛿
+ (
β„ŽπΏπ›Ώ
π‘˜
) π‘ π‘–π‘›β„Ž
𝐿
𝛿
To show that the initial condition is satisfied we see from the above that π‘Žπ‘‘ 𝑑 =
0, 𝛿 = 0.
𝑇 βˆ’ π‘‡βˆž
𝑇𝑠 βˆ’ π‘‡βˆž
=
cosh [
(𝐿 βˆ’ π‘₯)
𝛿 ] + (
β„ŽπΏπ›Ώ
π‘˜ ) sinh[(
𝐿 βˆ’ π‘₯
𝛿 )]
cosh
𝐿
𝛿
+ (
β„Žπ›Ώ
π‘˜
)π‘ π‘–π‘›β„Ž
𝐿
𝛿
Becomes:
𝑇 βˆ’ π‘‡βˆž
𝑇𝑠 βˆ’ π‘‡βˆž
=
cosh [
(𝐿 βˆ’ π‘₯)
𝛿
]
cosh
𝐿
𝛿
=
𝑒
(πΏβˆ’π‘₯)
𝛿 + 𝑒
βˆ’(πΏβˆ’π‘₯)
𝛿
𝑒
𝐿
𝛿 + 𝑒
βˆ’πΏ
𝛿
𝑒
βˆ’(πΏβˆ’π‘₯)
𝛿 = π‘’βˆ’
(πΏβˆ’π‘₯)
0 = π‘’βˆ’βˆž(πΏβˆ’π‘₯)
= 0
Similarly
𝑒
βˆ’πΏ
𝛿 = 𝑒
βˆ’πΏ
0 = π‘’βˆ’βˆžπΏ
= 0
So, we are left with
𝑇 βˆ’ π‘‡βˆž
𝑇𝑠 βˆ’ π‘‡βˆž
=
𝑒
(πΏβˆ’π‘₯)
𝛿
𝑒
𝐿
𝛿
= 𝑒
βˆ’π‘₯
𝛿 = 𝑒
βˆ’π‘₯
0 = π‘’βˆ’βˆžπ‘₯
= 0
Hence at 𝑑 = 0, 𝑇 = π‘‡βˆž and hence the initial condition.
To explain the transient state provide we have to get the expression for
(𝑇𝑠 βˆ’ π‘‡βˆž) from:
As we learned earlier in the semi-infinite case, we use
βˆ’π’Œ
𝝏𝑻
𝝏𝒙
|𝒙=𝟎 = π’‰πŸŽ(𝑻𝒇 βˆ’ 𝑻𝒔)
Recall the compact temperature profile is:
𝑇 βˆ’ π‘‡βˆž
𝑇𝑠 βˆ’ π‘‡βˆž
=
cosh[π‘š(𝐿 βˆ’ π‘₯)] + (
β„ŽπΏ
π‘šπ‘˜
) sinh[π‘š(𝐿 βˆ’ π‘₯)]
cosh π‘šπΏ + (
β„ŽπΏ
π‘šπ‘˜
) π‘ π‘–π‘›β„Žπ‘šπΏ
Where:
π‘š =
1
𝛿
𝛿 = √
𝐾𝐴
β„Žπ‘ƒ
(1 βˆ’ 𝑒
βˆ’2β„Žπ‘ƒ
𝐴𝜌𝐢
𝑑
)
As shall be shown later
πœ•π‘‡
πœ•π‘₯
|π‘₯=0 = βˆ’(𝑇𝑠 βˆ’ π‘‡βˆž)(
π‘šπ‘‘π‘Žπ‘›β„Žπ‘šπΏ +
β„ŽπΏ
π‘˜
1 +
β„ŽπΏ
π‘šπ‘˜
π‘‘π‘Žπ‘›β„Žπ‘šπΏ
)
βˆ’π‘˜
πœ•π‘‡
πœ•π‘₯
|π‘₯=0 = π‘˜(𝑇𝑠 βˆ’ π‘‡βˆž) (
π‘šπ‘‘π‘Žπ‘›β„Žπ‘šπΏ +
β„ŽπΏ
π‘˜
1 +
β„ŽπΏ
π‘šπ‘˜
π‘‘π‘Žπ‘›β„Žπ‘šπΏ
)
β„Ž0(𝑇𝑓 βˆ’ 𝑇𝑠) = π‘˜(𝑇𝑠 βˆ’ π‘‡βˆž) (
π‘šπ‘‘π‘Žπ‘›β„Žπ‘šπΏ +
β„ŽπΏ
π‘˜
1 +
β„ŽπΏ
π‘šπ‘˜
π‘‘π‘Žπ‘›β„Žπ‘šπΏ
)
β„Ž0(𝑇𝑓) βˆ’ β„Ž0(𝑇𝑠) = π‘˜(𝑇𝑠) (
π‘šπ‘‘π‘Žπ‘›β„Žπ‘šπΏ +
β„ŽπΏ
π‘˜
1 +
β„ŽπΏ
π‘šπ‘˜
π‘‘π‘Žπ‘›β„Žπ‘šπΏ
) βˆ’ π‘˜(π‘‡βˆž) (
π‘šπ‘‘π‘Žπ‘›β„Žπ‘šπΏ +
β„ŽπΏ
π‘˜
1 +
β„ŽπΏ
π‘šπ‘˜
π‘‘π‘Žπ‘›β„Žπ‘šπΏ
)
Collecting like terms we get:
𝑇𝑠 (π‘˜ (
π‘šπ‘‘π‘Žπ‘›β„Žπ‘šπΏ +
β„ŽπΏ
π‘˜
1 +
β„ŽπΏ
π‘šπ‘˜
π‘‘π‘Žπ‘›β„Žπ‘šπΏ
) + β„Ž0) = β„Ž0(𝑇𝑓) + π‘˜(π‘‡βˆž) (
π‘šπ‘‘π‘Žπ‘›β„Žπ‘šπΏ +
β„ŽπΏ
π‘˜
1 +
β„ŽπΏ
π‘šπ‘˜
π‘‘π‘Žπ‘›β„Žπ‘šπΏ
)
𝑇𝑠 =
β„Ž0(𝑇𝑓) + π‘˜(π‘‡βˆž) (
π‘šπ‘‘π‘Žπ‘›β„Žπ‘šπΏ +
β„ŽπΏ
π‘˜
1 +
β„ŽπΏ
π‘šπ‘˜
π‘‘π‘Žπ‘›β„Žπ‘šπΏ
)
(π‘˜ (
π‘šπ‘‘π‘Žπ‘›β„Žπ‘šπΏ +
β„ŽπΏ
π‘˜
1 +
β„ŽπΏ
π‘šπ‘˜
π‘‘π‘Žπ‘›β„Žπ‘šπΏ
) + β„Ž0)
Subtracting π‘‡βˆž from both sides we get:
𝑇𝑠 βˆ’ π‘‡βˆž =
β„Ž0(𝑇𝑓) + π‘˜(π‘‡βˆž) (
π‘šπ‘‘π‘Žπ‘›β„Žπ‘šπΏ +
β„ŽπΏ
π‘˜
1 +
β„ŽπΏ
π‘šπ‘˜
π‘‘π‘Žπ‘›β„Žπ‘šπΏ
)
(π‘˜ (
π‘šπ‘‘π‘Žπ‘›β„Žπ‘šπΏ +
β„ŽπΏ
π‘˜
1 +
β„ŽπΏ
π‘šπ‘˜ π‘‘π‘Žπ‘›β„Žπ‘šπΏ
) + β„Ž0)
βˆ’ π‘‡βˆž
Upon simplification, we get:
𝑇𝑠 βˆ’ π‘‡βˆž
𝑇𝑓 βˆ’ π‘‡βˆž
=
β„Ž0
(π‘˜ (
π‘šπ‘‘π‘Žπ‘›β„Žπ‘šπΏ +
β„ŽπΏ
π‘˜
1 +
β„ŽπΏ
π‘šπ‘˜
π‘‘π‘Žπ‘›β„Žπ‘šπΏ
) + β„Ž0)
Dividing through by β„Ž0 we get:
𝑇𝑠 βˆ’ π‘‡βˆž
𝑇𝑓 βˆ’ π‘‡βˆž
=
1
(
π‘˜
β„Ž0
(
π‘šπ‘‘π‘Žπ‘›β„Žπ‘šπΏ +
β„ŽπΏ
π‘˜
1 +
β„ŽπΏ
π‘šπ‘˜
π‘‘π‘Žπ‘›β„Žπ‘šπΏ
) + 1)
But
π‘š =
1
𝛿
Upon substitution and simplification, we get
𝑇𝑠 βˆ’ π‘‡βˆž
𝑇𝑓 βˆ’ π‘‡βˆž
=
1
(
π‘˜
β„Ž0
(
π‘‘π‘Žπ‘›β„Ž
𝐿
𝛿
𝛿
+
β„ŽπΏ
π‘˜
1 +
β„ŽπΏπ›Ώ
π‘˜
π‘‘π‘Žπ‘›β„Ž
𝐿
𝛿
)
+ 1
)
Multiplying through by 𝛿 we get:
𝑇𝑠 βˆ’ π‘‡βˆž
𝑇𝑓 βˆ’ π‘‡βˆž
=
𝛿
(
π‘˜
β„Ž0
(
π‘‘π‘Žπ‘›β„Ž
𝐿
𝛿
+
β„ŽπΏπ›Ώ
π‘˜
1 +
β„ŽπΏπ›Ώ
π‘˜
π‘‘π‘Žπ‘›β„Ž
𝐿
𝛿
) + 𝛿)
But from the semi-infinite rod solution, we have
π‘˜
β„Ž0
= π›½π‘Ÿ2
Upon substitution, we get:
𝑇𝑠 βˆ’ π‘‡βˆž
𝑇𝑓 βˆ’ π‘‡βˆž
=
𝛿
(π›½π‘Ÿ2 (
π‘‘π‘Žπ‘›β„Ž
𝐿
𝛿
+
β„ŽπΏπ›Ώ
π‘˜
1 +
β„ŽπΏπ›Ώ
π‘˜
π‘‘π‘Žπ‘›β„Ž
𝐿
𝛿
) + 𝛿)
(𝑇𝑠 βˆ’ π‘‡βˆž) = (𝑇𝑓 βˆ’ π‘‡βˆž)
(
𝛿
(π›½π‘Ÿ2 (
π‘‘π‘Žπ‘›β„Ž
𝐿
𝛿
+
β„ŽπΏπ›Ώ
π‘˜
1 +
β„ŽπΏπ›Ώ
π‘˜
π‘‘π‘Žπ‘›β„Ž
𝐿
𝛿
) + 𝛿)
)
Upon substitution of (𝑇𝑠 βˆ’ π‘‡βˆž) in:
𝑇 βˆ’ π‘‡βˆž
𝑇𝑠 βˆ’ π‘‡βˆž
=
cosh [
(𝐿 βˆ’ π‘₯)
𝛿
] + (
β„ŽπΏπ›Ώ
π‘˜
) sinh[(
𝐿 βˆ’ π‘₯
𝛿
)]
cosh
𝐿
𝛿
+ (
β„ŽπΏπ›Ώ
π‘˜
) π‘ π‘–π‘›β„Ž
𝐿
𝛿
We get:
𝑻 βˆ’ π‘»βˆž
𝑻𝒇 βˆ’ π‘»βˆž
=
(
𝜹
(πœ·π’“πŸ (
𝒕𝒂𝒏𝒉
𝑳
𝜹
+
π’‰π‘³πœΉ
π’Œ
𝟏 +
π’‰π‘³πœΉ
π’Œ
𝒕𝒂𝒏𝒉
𝑳
𝜹
) + 𝜹)
)
(
𝐜𝐨𝐬𝐑 [
(𝑳 βˆ’ 𝒙)
𝜹
] + (
π’‰π‘³πœΉ
π’Œ
)𝐬𝐒𝐧𝐑 [(
𝑳 βˆ’ 𝒙
𝜹
)]
𝐜𝐨𝐬𝐑
𝑳
𝜹
+ (
π’‰π‘³πœΉ
π’Œ
)π’”π’Šπ’π’‰
𝑳
𝜹
)
HOW DO WE INVESTIGATE THE NATURE OF 𝒉𝑳 EASILY?
For convection boundary condition, the temperature profile obeyed is:
𝑇 βˆ’ π‘‡βˆž
𝑇𝑓 βˆ’ π‘‡βˆž
=
(
𝛿
(π›½π‘Ÿ2 (
π‘‘π‘Žπ‘›β„Ž
𝐿
𝛿
+
β„ŽπΏπ›Ώ
π‘˜
1 +
β„ŽπΏπ›Ώ
π‘˜
π‘‘π‘Žπ‘›β„Ž
𝐿
𝛿
) + 𝛿)
)
(
cosh [
(𝐿 βˆ’ π‘₯)
𝛿
] + (
β„ŽπΏπ›Ώ
π‘˜
) sinh [(
𝐿 βˆ’ π‘₯
𝛿
)]
cosh
𝐿
𝛿
+ (
β„ŽπΏπ›Ώ
π‘˜
)π‘ π‘–π‘›β„Ž
𝐿
𝛿
)
To investigate 𝒉𝑳 easily, we use this simple experiment:
Where:
𝛿 = √
𝐾𝐴
β„Žπ‘ƒ
(1 βˆ’ 𝑒
βˆ’2β„Žπ‘ƒ
𝐴𝜌𝐢
𝑑
)
As shall be shown later when we solve the heat equation analytically using the
integral transform to get 𝛿.
For a wax particle at
π‘₯ = 𝐿
As shown in the diagram above with convection allowed:
The temperature profile obeyed is:
𝑇 βˆ’ π‘‡βˆž
𝑇𝑓 βˆ’ π‘‡βˆž
=
(
𝛿
(π›½π‘Ÿ2 (
π‘‘π‘Žπ‘›β„Ž
𝐿
𝛿
+
β„ŽπΏπ›Ώ
π‘˜
1 +
β„ŽπΏπ›Ώ
π‘˜
π‘‘π‘Žπ‘›β„Ž
𝐿
𝛿
) + 𝛿)
)
(
1
cosh
𝐿
𝛿
+ (
β„ŽπΏπ›Ώ
π‘˜
)π‘ π‘–π‘›β„Ž
𝐿
𝛿
)
Mathematically, what form should the equation of β„ŽπΏ against length L take on?
First of all, we know that when the length L becomes zero(i.e., there is no metal
rod), the flux is due to only the flame and is given by
π‘ž = β„Žπ‘œ(𝑇𝑓 βˆ’ π‘‡βˆž)
The power then is
β„Žπ‘œπ΄(𝑇𝑓 βˆ’ π‘‡βˆž) =
π‘‘π‘š
𝑑𝑑
𝐻𝐢
The above is the condition to be satisfied.
The flux at x=L, is given by:
π‘ž = β„ŽπΏ(𝑇𝐿 βˆ’ π‘‡βˆž)
Upon substituting for (𝑇𝐿 βˆ’ π‘‡βˆž), we get
𝒒 = 𝒉𝑳
(
𝜹
(πœ·π’“πŸ (
𝒕𝒂𝒏𝒉
𝑳
𝜹
+
π’‰π‘³πœΉ
π’Œ
𝟏 +
π’‰π‘³πœΉ
π’Œ
𝒕𝒂𝒏𝒉
𝑳
𝜹
) + 𝜹)
)
(
𝟏
𝐜𝐨𝐬𝐑
𝑳
𝜹
+ (
π’‰π‘³πœΉ
π’Œ
)π’”π’Šπ’π’‰
𝑳
𝜹
) (𝑻𝒇 βˆ’ π‘»βˆž)
We know that when L=0, the flux should reduce to
𝒒 = 𝒉𝒐(𝑻𝒇 βˆ’ π‘»βˆž)
Making the first guess that
β„ŽπΏ = β„Žπ‘œπ‘’βˆ’π‘šπΏ
Where:
π‘š = √
β„Žπ‘ƒ
𝐾𝐴
𝒒 = 𝒉𝑳
(
𝜹
(πœ·π’“πŸ (
𝒕𝒂𝒏𝒉
𝑳
𝜹
+
π’‰π‘³πœΉ
π’Œ
𝟏 +
π’‰π‘³πœΉ
π’Œ
𝒕𝒂𝒏𝒉
𝑳
𝜹
) + 𝜹)
)
(
𝟏
𝐜𝐨𝐬𝐑
𝑳
𝜹
+ (
π’‰π‘³πœΉ
π’Œ
)π’”π’Šπ’π’‰
𝑳
𝜹
) (𝑻𝒇 βˆ’ π‘»βˆž)
β„ŽπΏ = β„Žπ‘œπ‘’βˆ’π‘šπΏ
Substituting for L=0 in the flux equation we get
β„ŽπΏ = β„Žπ‘œ
So
𝒒 = π’‰πŸŽ
(
𝜹
(πœ·π’“πŸ (
𝒕𝒂𝒏𝒉
𝟎
𝜹
+
π’‰πŸŽπœΉ
π’Œ
𝟏 +
π’‰πŸŽπœΉ
π’Œ
𝒕𝒂𝒏𝒉
𝟎
𝜹
) + 𝜹)
)
(
𝟏
𝐜𝐨𝐬𝐑
𝟎
𝜹
+ (
π’‰πŸŽπœΉ
π’Œ
)π’”π’Šπ’π’‰
𝟎
𝜹
) (𝑻𝒇 βˆ’ π‘»βˆž)
We get:
π‘ž = β„Ž0 (
𝛿
(π›½π‘Ÿ2 (
β„Ž0𝛿
π‘˜
) + 𝛿)
)(𝑇𝑓 βˆ’ π‘‡βˆž)
π‘ž = β„Ž0 (
1
(π›½π‘Ÿ2 (
β„Ž0
π‘˜
) + 1)
)(𝑇𝑓 βˆ’ π‘‡βˆž)
But
β„Ž0
π‘˜
=
1
π›½π‘Ÿ2
π‘ž = β„Ž0 (
1
(1 + 1)
) (𝑇𝑓 βˆ’ π‘‡βˆž)
We finally get:
𝒒 =
𝟏
𝟐
𝒉𝒐(𝑻𝒇 βˆ’ π‘»βˆž)
Which doesn’t satisfy the condition above.
Now choosing
β„ŽπΏ =
𝛾
𝐿𝑛
Which means that β„ŽπΏ is inversely proportional to length L to power n.
As length 𝐿 β†’ 0, β„ŽπΏ β†’ ∞
Upon substituting in the flux equation for L=0, we end up with:
π‘ž = β„ŽπΏ
(
𝛿
(π›½π‘Ÿ2 (
π‘‘π‘Žπ‘›β„Ž
0
𝛿
+
β„ŽπΏπ›Ώ
π‘˜
1 +
β„ŽπΏπ›Ώ
π‘˜
π‘‘π‘Žπ‘›β„Ž
0
𝛿
) + 𝛿)
)
(
1
cosh
0
𝛿
+ (
β„ŽπΏπ›Ώ
π‘˜
) π‘ π‘–π‘›β„Ž
0
𝛿
) (𝑇𝑓 βˆ’ π‘‡βˆž)
π‘ž = β„ŽπΏ (
𝛿
(π›½π‘Ÿ2 (
β„ŽπΏπ›Ώ
π‘˜
) + 𝛿)
) (𝑇𝑓 βˆ’ π‘‡βˆž)
π‘ž = β„ŽπΏ (
1
(π›½π‘Ÿ2 (
β„ŽπΏ
π‘˜
) + 1)
)(𝑇𝑓 βˆ’ π‘‡βˆž)
But π‘Žπ‘  𝐿 β†’ ∞, β„ŽπΏ β†’ ∞, π‘ π‘œ π›½π‘Ÿ2
(
β„ŽπΏ
π‘˜
) + 1 β‰ˆ π›½π‘Ÿ2
(
β„ŽπΏ
π‘˜
)
We get:
π‘ž = β„ŽπΏ
(
1
(π›½π‘Ÿ2 (
β„ŽπΏ
π‘˜
))
)
(𝑇𝑓 βˆ’ π‘‡βˆž)
We get
π‘ž =
π‘˜
π›½π‘Ÿ2
(𝑇𝑓 βˆ’ π‘‡βˆž)
But
π‘˜
π›½π‘Ÿ2
= β„Žπ‘œ
So, we end up with:
π‘ž = β„Žπ‘œ(𝑇𝑓 βˆ’ π‘‡βˆž)
Which is the required equation hence β„ŽπΏ takes on the form
β„ŽπΏ =
𝛾
𝐿𝑛
From experiment, it was found that 𝑛 = 1.
Going back to
𝑇 βˆ’ π‘‡βˆž
𝑇𝑓 βˆ’ π‘‡βˆž
=
(
𝛿
(π›½π‘Ÿ2 (
π‘‘π‘Žπ‘›β„Ž
𝐿
𝛿
+
β„ŽπΏπ›Ώ
π‘˜
1 +
β„ŽπΏπ›Ώ
π‘˜
π‘‘π‘Žπ‘›β„Ž
𝐿
𝛿
) + 𝛿)
)
(
1
cosh
𝐿
𝛿
+ (
β„ŽπΏπ›Ώ
π‘˜
)π‘ π‘–π‘›β„Ž
𝐿
𝛿
)
We go ahead and rearrange the equation above to get a quadratic equation in
β„ŽπΏ and investigate the nature of β„ŽπΏ by varying the length of the metal rod and
noting the time taken for the wax to melt.
Calling,
𝑇 βˆ’ π‘‡βˆž
𝑇𝑓 βˆ’ π‘‡βˆž
=
1
𝐡
And
π›½π‘Ÿ2
= 𝑐
Upon rearranging, we get:
𝒉𝑳
𝟐
[
𝛿2
𝑐
π‘˜2
π‘ π‘–π‘›β„Ž (
𝐿
𝛿
) +
𝛿3
π‘˜2
π‘ π‘–π‘›β„Ž (
𝐿
𝛿
) π‘‘π‘Žπ‘›β„Ž (
𝐿
𝛿
)] + 𝒉𝑳 [
𝛿𝑐
π‘˜
π‘π‘œπ‘ β„Ž (
𝐿
𝛿
) +
𝛿𝑐
π‘˜
π‘ π‘–π‘›β„Ž (
𝐿
𝛿
) π‘‘π‘Žπ‘›β„Ž (
𝐿
𝛿
) +
2𝛿2
π‘˜
π‘ π‘–π‘›β„Ž (
𝐿
𝛿
) βˆ’
𝐡𝛿2
π‘˜
π‘‘π‘Žπ‘›β„Ž (
𝐿
𝛿
)] + [π‘π‘ π‘–π‘›β„Ž (
𝐿
𝛿
) + π›Ώπ‘π‘œπ‘ β„Ž (
𝐿
𝛿
) βˆ’ 𝐡𝛿]
From experimental values, it was found that β„ŽπΏ varies inversely with length
taking on the form below:
𝒉𝑳 =
π’‰π‘³πŸŽ
π’Žπ’
Where:
π‘š = √
β„Žπ‘ƒ
𝐾𝐴
Taking natural logs, we get:
𝑙𝑛(β„ŽπΏ) = ln(
β„ŽπΏ0
π‘š
) βˆ’ ln(𝐿)
For aluminium rods of radius 2mm, the graph looked as below:
π’‰π‘³πŸŽ = 𝜺 Γ—
𝑲
𝒓
Where:
πœ€ = π‘’π‘šπ‘–π‘ π‘ π‘–π‘£π‘–π‘‘π‘¦
πœ€ = 0.006671
β„ŽπΏ =
β„ŽπΏ0
π‘šπ‘™
y = -1.001x + 5.1071
RΒ² = 0.9781
0
1
2
3
4
5
6
7
8
9
10
-4 -3 -2 -1 0
Ln(hL)
Ln(L)
A graph of Ln(hL) against Ln(L) for AL rods radius
2mm
Series1
Linear (Series1)
𝒉𝑳 = 𝜺 Γ—
𝑲
𝑳
Γ— √
𝑲
πŸπ’‰π’“
The emissivity πœ€ can be taken to be independent of nature of metal.
For aluminium rods of radius 1mm, the graph looked as below:
Looking at the solution at π‘₯ = 𝐿
𝑇 βˆ’ π‘‡βˆž
𝑇𝑓 βˆ’ π‘‡βˆž
=
(
𝛿
(π›½π‘Ÿ2 (
π‘‘π‘Žπ‘›β„Ž
𝐿
𝛿
+
β„ŽπΏπ›Ώ
π‘˜
1 +
β„ŽπΏπ›Ώ
π‘˜
π‘‘π‘Žπ‘›β„Ž
𝐿
𝛿
) + 𝛿)
)
(
1
cosh
𝐿
𝛿
+ (
β„ŽπΏπ›Ώ
π‘˜
)π‘ π‘–π‘›β„Ž
𝐿
𝛿
)
Rearranging the equation above, we get
(π›½π‘Ÿ2 (
π‘‘π‘Žπ‘›β„Ž
𝐿
𝛿
+
β„ŽπΏπ›Ώ
π‘˜
1 +
β„ŽπΏπ›Ώ
π‘˜
π‘‘π‘Žπ‘›β„Ž
𝐿
𝛿
) + 𝛿) = (
𝑇𝑓 βˆ’ π‘‡βˆž
𝑇 βˆ’ π‘‡βˆž
) Γ— (
𝛿
cosh
𝐿
𝛿
+ (
β„ŽπΏπ›Ώ
π‘˜
) π‘ π‘–π‘›β„Ž
𝐿
𝛿
)
Calling
𝑦 = (π›½π‘Ÿ2 (
π‘‘π‘Žπ‘›β„Ž
𝐿
𝛿
+
β„ŽπΏπ›Ώ
π‘˜
1 +
β„ŽπΏπ›Ώ
π‘˜
π‘‘π‘Žπ‘›β„Ž
𝐿
𝛿
) + 𝛿)
y = -1.078x + 5.364
RΒ² = 0.9919
0
1
2
3
4
5
6
7
8
9
10
-4 -3 -2 -1 0
Ln(hL)
Ln(L)
A graph of Ln(hL) against Ln(L) for AL rods radius
1mm
Series1
Linear (Series1)
And
π‘₯ = (
𝛿
cosh
𝐿
𝛿
+ (
β„ŽπΏπ›Ώ
π‘˜
)π‘ π‘–π‘›β„Ž
𝐿
𝛿
)
Plotting a graph of y against x for aluminium rods of radius 1mm looked as
below with:
β„ŽπΏ = πœ€ Γ—
𝐾
𝐿
Γ— √
𝐾
2β„Žπ‘Ÿ
𝒉𝑳 = 𝟎. πŸŽπŸŽπŸ”πŸ”πŸ•πŸ Γ—
𝑲
𝑳
Γ— √
𝑲
πŸπ’‰π’“
The flux at π‘₯ = 𝐿 is given by:
𝒒 = 𝒉𝑳(𝑻 βˆ’ π‘»βˆž)
It can be shown that after substituting for temperature (𝑻 βˆ’ π‘»βˆž) and 𝒉𝑳, the
maximum possible flux got is when length L tends to zero and is given by
π’’π’Žπ’‚π’™ = π’‰πŸŽ(𝑻𝒇 βˆ’ π‘»βˆž)
Which is the flux of the hot flame.
y = 4.3301x
0
0.02
0.04
0.06
0.08
0.1
0.12
0.14
0.16
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
y
x
A graph of y against x
DERIVATION OF THE GENERAL EXPRESSION FOR HEAT TRANSFER
COEFFICIENT 𝒉𝑳.
Recall for cylindrical rods the expression was:
β„ŽπΏ = πœ€ Γ—
𝐾
𝐿
Γ— √
𝐾
2β„Žπ‘Ÿ
OR
β„ŽπΏ = 0.006671 Γ—
𝐾
𝐿
Γ— √
𝐾
2β„Žπ‘Ÿ
How could we arrive to that expression from a general expression?
The general expression is given by:
𝒉𝑳𝑨𝑳(𝑻𝑳 βˆ’ π‘»βˆž) = 𝜺 Γ—
π’Žπ‘²
πŸπ’‰
Γ— 𝑸
OR
𝒉𝑳𝑨𝑳(𝑻𝑳 βˆ’ π‘»βˆž) = 𝟎. πŸŽπŸŽπŸ”πŸ”πŸ•πŸ Γ—
π’Žπ‘²
πŸπ’‰
Γ— 𝑸
Where:
𝑄 =
𝑇𝐿 βˆ’ π‘‡βˆž
𝑅
𝑅 = π‘π‘œπ‘›π‘‘π‘’π‘π‘‘π‘–π‘£π‘’ π‘Ÿπ‘’π‘ π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’
𝐴𝐿 = π‘π‘œπ‘›π‘‘π‘’π‘π‘‘π‘–π‘œπ‘› π‘Žπ‘Ÿπ‘’π‘Ž π‘Žπ‘‘ π‘™π‘’π‘›π‘”π‘‘β„Ž 𝐿
π‘š = √
β„Žπ‘ƒ
𝐾𝐴
π‘“π‘œπ‘Ÿ π‘π‘¦π‘™π‘–π‘›π‘‘π‘Ÿπ‘–π‘π‘Žπ‘™ π‘Ÿπ‘œπ‘‘ π‘š = √
2β„Ž
πΎπ‘Ÿ
For cylindrical rod
𝑅 =
𝐿
𝐾𝐴
For cylindrical metal rods,
𝐴𝐿 = 𝐴
So, we have
β„ŽπΏπ΄(𝑇𝐿 βˆ’ π‘‡βˆž) = 0.006671 Γ—
𝐾
2β„Ž
√
2β„Ž
πΎπ‘Ÿ
Γ— 𝐾𝐴(
𝑇𝐿 βˆ’ π‘‡βˆž
𝐿
)
Upon simplification, we get the expected expression:
β„ŽπΏ = 0.006671 Γ—
𝐾
𝐿
Γ— √
𝐾
2β„Žπ‘Ÿ
OR
𝒉𝑳 = 𝜺 Γ—
𝑲
𝑳
Γ— √
𝑲
πŸπ’‰π’“
We can extend the above analysis to cylindrical co-ordinates heat conduction
knowing their conductive resistance.
Let us solve the heat equation to get the expression for 𝛿.
We use this temperature profile which satisfies the initial condition to solve the
heat equation and get 𝛿 as shown below:
Boundary and initial conditions are:
𝑻 = 𝑻𝒔 𝒂𝒕 𝒙 = 𝟎
βˆ’π’Œ
𝒅𝑻
𝒅𝒙
= 𝒉𝑳(𝑻 βˆ’ π‘»βˆž) 𝒂𝒕 𝒙 = 𝒍
𝑻 = π‘»βˆž 𝒂𝒕 𝒕 = 𝟎
The governing temperature profile is:
𝑇 βˆ’ π‘‡βˆž
𝑇𝑠 βˆ’ π‘‡βˆž
=
cosh [
(𝐿 βˆ’ π‘₯)
𝛿
] + (
β„ŽπΏπ›Ώ
π‘˜
) sinh[(
𝐿 βˆ’ π‘₯
𝛿
)]
cosh
𝐿
𝛿
+ (
β„ŽπΏπ›Ώ
π‘˜
) π‘ π‘–π‘›β„Ž
𝐿
𝛿
The governing equation is
𝛼
πœ•2
𝑇
πœ•π‘₯2
βˆ’
β„Žπ‘ƒ
𝐴𝜌𝐢
(𝑇 βˆ’ π‘‡βˆž) =
πœ•π‘‡
πœ•π‘‘
Let us change this equation into an integral equation as below:
𝛼 ∫ (
πœ•2
𝑇
πœ•π‘₯2
) 𝑑π‘₯
𝑙
0
βˆ’
β„Žπ‘ƒ
𝐴𝜌𝐢
∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯
𝑙
0
=
πœ•
πœ•π‘‘
∫ (𝑇)𝑑π‘₯
𝑙
0
… … . . 𝑏)
𝛼 ∫ (
πœ•2
𝑇
πœ•π‘₯2
) 𝑑π‘₯
𝑙
0
βˆ’
2β„Ž
π‘ŸπœŒπΆ
∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯
𝑙
0
=
πœ•
πœ•π‘‘
∫ (𝑇)𝑑π‘₯
𝑙
0
∫ (
πœ•2
𝑇
πœ•π‘₯2
)𝑑π‘₯
𝑙
0
= [
πœ•π‘‡
πœ•π‘₯
]
𝑙
0
=
(𝑇𝑠 βˆ’ π‘‡βˆž)
𝛿
(
βˆ’
β„ŽπΏπ›Ώ
π‘˜
+ (π‘ π‘–π‘›β„Ž
𝐿
𝛿
+
β„ŽπΏπ›Ώ
π‘˜
π‘π‘œπ‘ β„Ž
𝐿
𝛿
)
π‘π‘œπ‘ β„Ž
𝐿
𝛿
+
β„ŽπΏπ›Ώ
π‘˜
π‘ π‘–π‘›β„Ž
𝐿
𝛿
)
∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯
𝑙
0
= |βˆ’π›Ώ(𝑇𝑠 βˆ’ π‘‡βˆž) (
sinh [
(𝐿 βˆ’ π‘₯)
𝛿
] +
β„ŽπΏπ›Ώ
π‘˜
cosh [
(𝐿 βˆ’ π‘₯)
𝛿
]
π‘π‘œπ‘ β„Ž
𝐿
𝛿
+
β„ŽπΏπ›Ώ
π‘˜
π‘ π‘–π‘›β„Ž
𝐿
𝛿
)|
𝑙
0
∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯
𝑙
0
= 𝛿(𝑇𝑠 βˆ’ π‘‡βˆž) (
βˆ’
β„ŽπΏπ›Ώ
π‘˜
+ (π‘ π‘–π‘›β„Ž
𝐿
𝛿
+
β„ŽπΏπ›Ώ
π‘˜
π‘π‘œπ‘ β„Ž
𝐿
𝛿
)
π‘π‘œπ‘ β„Ž
𝐿
𝛿
+
β„ŽπΏπ›Ώ
π‘˜
π‘ π‘–π‘›β„Ž
𝐿
𝛿
)
𝑇 βˆ’ π‘‡βˆž
𝑇𝑠 βˆ’ π‘‡βˆž
=
cosh [
(𝐿 βˆ’ π‘₯)
𝛿
] + (
β„ŽπΏπ›Ώ
π‘˜
) sinh[(
𝐿 βˆ’ π‘₯
𝛿
)]
cosh
𝐿
𝛿
+ (
β„ŽπΏπ›Ώ
π‘˜
) π‘ π‘–π‘›β„Ž
𝐿
𝛿
𝑇 =
cosh [
(𝐿 βˆ’ π‘₯)
𝛿
] + (
β„ŽπΏπ›Ώ
π‘˜
)sinh[(
𝐿 βˆ’ π‘₯
𝛿
)]
cosh
𝐿
𝛿
+ (
β„ŽπΏπ›Ώ
π‘˜
)π‘ π‘–π‘›β„Ž
𝐿
𝛿
(𝑇𝑠 βˆ’ π‘‡βˆž) + π‘‡βˆž
πœ•
πœ•π‘‘
∫ (𝑇)𝑑π‘₯
𝑙
0
=
πœ•
πœ•π‘‘
[𝛿(𝑇𝑠 βˆ’ π‘‡βˆž) (
βˆ’
β„ŽπΏπ›Ώ
π‘˜
+ (π‘ π‘–π‘›β„Ž
𝐿
𝛿
+
β„ŽπΏπ›Ώ
π‘˜
π‘π‘œπ‘ β„Ž
𝐿
𝛿
)
π‘π‘œπ‘ β„Ž
𝐿
𝛿
+
β„ŽπΏπ›Ώ
π‘˜
π‘ π‘–π‘›β„Ž
𝐿
𝛿
)] +
πœ•(π‘™π‘‡βˆž)
πœ•π‘‘
πœ•(π‘™π‘‡βˆž)
πœ•π‘‘
= 0
Upon substitution of all the above in the heat equation, we get:
𝛼
(𝑇𝑠 βˆ’ π‘‡βˆž)
𝛿
(
βˆ’
β„ŽπΏπ›Ώ
π‘˜
+ (π‘ π‘–π‘›β„Ž
𝐿
𝛿
+
β„ŽπΏπ›Ώ
π‘˜
π‘π‘œπ‘ β„Ž
𝐿
𝛿
)
π‘π‘œπ‘ β„Ž
𝐿
𝛿
+
β„ŽπΏπ›Ώ
π‘˜
π‘ π‘–π‘›β„Ž
𝐿
𝛿
) βˆ’
2β„Ž
π‘ŸπœŒπΆ
𝛿(𝑇𝑠 βˆ’ π‘‡βˆž)(
βˆ’
β„ŽπΏπ›Ώ
π‘˜
+ (π‘ π‘–π‘›β„Ž
𝐿
𝛿
+
β„ŽπΏπ›Ώ
π‘˜
π‘π‘œπ‘ β„Ž
𝐿
𝛿
)
π‘π‘œπ‘ β„Ž
𝐿
𝛿
+
β„ŽπΏπ›Ώ
π‘˜
π‘ π‘–π‘›β„Ž
𝐿
𝛿
) =
πœ•
πœ•π‘‘
[𝛿(𝑇𝑠 βˆ’ π‘‡βˆž)(
βˆ’
β„ŽπΏπ›Ώ
π‘˜
+ (π‘ π‘–π‘›β„Ž
𝐿
𝛿
+
β„ŽπΏπ›Ώ
π‘˜
π‘π‘œπ‘ β„Ž
𝐿
𝛿
)
π‘π‘œπ‘ β„Ž
𝐿
𝛿
+
β„ŽπΏπ›Ώ
π‘˜
π‘ π‘–π‘›β„Ž
𝐿
𝛿
)]
We notice that the term(𝑇𝑠 βˆ’ π‘‡βˆž) (
βˆ’
β„ŽπΏπ›Ώ
π‘˜
+(π‘ π‘–π‘›β„Ž
𝐿
𝛿
+
β„ŽπΏπ›Ώ
π‘˜
π‘π‘œπ‘ β„Ž
𝐿
𝛿
)
π‘π‘œπ‘ β„Ž
𝐿
𝛿
+
β„ŽπΏπ›Ώ
π‘˜
π‘ π‘–π‘›β„Ž
𝐿
𝛿
) is common and can be
eliminated and what this signifies is that the nature of (𝑇𝑠 βˆ’ π‘‡βˆž) doesn’t matter
and so we get:
𝛼
𝛿
βˆ’
2β„Ž
π‘ŸπœŒπΆ
𝛿 =
𝑑𝛿
𝑑𝑑
We go ahead and solve for 𝛿 provided 𝛿 = 0π‘Žπ‘‘ 𝑑 = 0 and get the expression
𝛿 = √
𝐾𝐴
β„Žπ‘ƒ
(1 βˆ’ 𝑒
βˆ’2β„Žπ‘ƒ
𝐴𝜌𝐢
𝑑
)
So, the final solution for the finite metal rod with convective flux at the end of
the metal rod is:
𝑻 βˆ’ π‘»βˆž
𝑻𝒇 βˆ’ π‘»βˆž
=
(
𝜹
(πœ·π’“πŸ (
𝒕𝒂𝒏𝒉
𝑳
𝜹
+
π’‰π‘³πœΉ
π’Œ
𝟏 +
π’‰π‘³πœΉ
π’Œ
𝒕𝒂𝒏𝒉
𝑳
𝜹
) + 𝜹)
)
(
𝐜𝐨𝐬𝐑 [
(𝑳 βˆ’ 𝒙)
𝜹
] + (
π’‰π‘³πœΉ
π’Œ
)𝐬𝐒𝐧𝐑 [(
𝑳 βˆ’ 𝒙
𝜹
)]
𝐜𝐨𝐬𝐑
𝑳
𝜹
+ (
π’‰π‘³πœΉ
π’Œ
)π’”π’Šπ’π’‰
𝑳
𝜹
)
The solution reduces to the semi-infinite rod solution when the length L of the
metal rod tends to infinity.
Using the above solution, it was shown experimentally that the ratio
𝑻 βˆ’ π‘»βˆž
𝑻𝒇 βˆ’ π‘»βˆž
= 𝟎. πŸπŸ‘πŸŽπŸ—πŸ’
As for the semi-infinite metal rod.
The above completes our analysis.
CASE 2: ZERO FLUX AT THE END OF THE METAL ROD?
In reality, it is hard to achieve zero flux.
The boundary and initial conditions are:
𝑻 = 𝑻𝒔 𝒂𝒕 𝒙 = 𝟎
𝒅𝑻
𝒅𝒙
= 𝟎 𝒂𝒕 𝒙 = 𝒍
𝑻 = π‘»βˆž 𝒂𝒕 𝒕 = 𝟎
The governing equation is
𝛼
πœ•2
𝑇
πœ•π‘₯2
βˆ’
β„Žπ‘ƒ
𝐴𝜌𝐢
(𝑇 βˆ’ π‘‡βˆž) =
πœ•π‘‡
πœ•π‘‘
Recall that the temperature profile we are going to use is:
(𝑇 βˆ’ π‘‡βˆž) = 𝐢1π‘’βˆ’π‘šπ‘₯
+ 𝐢2π‘’π‘šπ‘₯
Or
(𝑻 βˆ’ π‘»βˆž) = π‘ͺπŸπ’†
βˆ’π’™
𝜹 + π‘ͺπŸπ’†
𝒙
𝜹
First of all, to satisfy the boundary conditions above, the temperature profile
becomes [2]:
𝑇 βˆ’ π‘‡βˆž
𝑇𝑠 βˆ’ π‘‡βˆž
=
π‘’π‘šπ‘₯
1 + 𝑒2π‘šπΏ
+
π‘’βˆ’π‘šπ‘₯
1 + π‘’βˆ’2π‘šπΏ
Or
The equation above can be rearranged to get [3]
𝑇 βˆ’ π‘‡βˆž
𝑇𝑠 βˆ’ π‘‡βˆž
=
cosh[π‘š(𝐿 βˆ’ π‘₯)]
cosh π‘šπΏ
In terms of 𝜹 we get
𝑇 βˆ’ π‘‡βˆž
𝑇𝑠 βˆ’ π‘‡βˆž
=
cosh[
(𝐿 βˆ’ π‘₯)
𝛿
]
cosh
𝐿
𝛿
Or using the first equation, we get:
𝑇 βˆ’ π‘‡βˆž
𝑇𝑠 βˆ’ π‘‡βˆž
=
𝑒
π‘₯
𝛿
1 + 𝑒
2𝐿
𝛿
+
𝑒
βˆ’π‘₯
𝛿
1 + 𝑒
βˆ’2𝐿
𝛿
Let us examine the initial condition,
It can be shown that after solving the heat equation 𝛿 will take on the form:
𝛿 = √
𝐾𝐴
β„Žπ‘ƒ
(1 βˆ’ 𝑒
βˆ’2β„Žπ‘ƒ
𝐴𝜌𝐢
𝑑
)
At
𝑑 = 0, 𝛿 = 0 π‘Žπ‘›π‘‘ π‘š =
1
𝛿
= ∞
Upon substitution in
𝑇 βˆ’ π‘‡βˆž
𝑇𝑠 βˆ’ π‘‡βˆž
=
π‘’π‘šπ‘₯
1 + 𝑒2π‘šπΏ
+
π‘’βˆ’π‘šπ‘₯
1 + π‘’βˆ’2π‘šπΏ
We get
𝑇 βˆ’ π‘‡βˆž
𝑇𝑠 βˆ’ π‘‡βˆž
=
π‘’βˆžπ‘₯
1 + 𝑒2∞𝐿
+
π‘’βˆ’βˆžπ‘₯
1 + π‘’βˆ’2∞𝐿
For a given π‘₯
We get:
𝑇 βˆ’ π‘‡βˆž
𝑇𝑠 βˆ’ π‘‡βˆž
=
π‘’π‘šπ‘₯
1 + 𝑒2∞𝐿
β‰ˆ
π‘’π‘šπ‘₯
𝑒2π‘šπΏ
= π‘’βˆ’π‘š(πΏβˆ’π‘₯)
= π‘’βˆ’βˆž(πΏβˆ’π‘₯)
= 0
Since
(𝐿 βˆ’ π‘₯) > 0
Hence the initial condition is satisfied.
Getting back to business, we noticed that in the semi-infinite rod solution there
was convection at the hot end of the rod. So, to solve for what is observed in
the finite metal rod solution with zero flux at the end of the rod, we have to use
that fact as stated below:
βˆ’π’Œ
𝝏𝑻
𝝏𝒙
|𝒙=𝟎 = π’‰πŸŽ(𝑻𝒇 βˆ’ 𝑻𝒔)
Recall the compact temperature profile for zero flux at the end of a finite metal
rod is:
𝑇 βˆ’ π‘‡βˆž
𝑇𝑠 βˆ’ π‘‡βˆž
=
cosh[π‘š(𝐿 βˆ’ π‘₯)]
cosh π‘šπΏ
Where:
π‘š =
1
𝛿
πœ•π‘‡
πœ•π‘₯
|π‘₯=0 = βˆ’(𝑇𝑠 βˆ’ π‘‡βˆž)π‘šπ‘‘π‘Žπ‘›β„Žπ‘šπΏ
βˆ’π‘˜
πœ•π‘‡
πœ•π‘₯
|π‘₯=0 = π‘˜(𝑇𝑠 βˆ’ π‘‡βˆž)π‘šπ‘‘π‘Žπ‘›β„Žπ‘šπΏ
β„Ž0(𝑇𝑓 βˆ’ 𝑇𝑠) = π‘˜(𝑇𝑠 βˆ’ π‘‡βˆž)π‘šπ‘‘π‘Žπ‘›β„Žπ‘šπΏ
β„Ž0(𝑇𝑓) βˆ’ β„Ž0(𝑇𝑠) = π‘˜(𝑇𝑠)π‘šπ‘‘π‘Žπ‘›β„Žπ‘šπΏ βˆ’ π‘˜(π‘‡βˆž)π‘šπ‘‘π‘Žπ‘›β„Žπ‘šπΏ
Collecting like terms we get:
𝑇𝑠(π‘˜π‘šπ‘‘π‘Žπ‘›β„Žπ‘šπΏ + β„Ž0) = β„Ž0(𝑇𝑓) + π‘˜(π‘‡βˆž)π‘šπ‘‘π‘Žπ‘›β„Žπ‘šπΏ
𝑇𝑠 =
β„Ž0(𝑇𝑓) + π‘˜(π‘‡βˆž)π‘šπ‘‘π‘Žπ‘›β„Žπ‘šπΏ
(π‘˜π‘šπ‘‘π‘Žπ‘›β„Žπ‘šπΏ + β„Ž0)
Subtracting π‘‡βˆž from both sides we get:
𝑇𝑠 βˆ’ π‘‡βˆž =
β„Ž0(𝑇𝑓) + π‘˜(π‘‡βˆž)π‘šπ‘‘π‘Žπ‘›β„Žπ‘šπΏ
(π‘˜π‘šπ‘‘π‘Žπ‘›β„Žπ‘šπΏ + β„Ž0)
βˆ’ π‘‡βˆž
Upon simplification, we get:
𝑇𝑠 βˆ’ π‘‡βˆž
𝑇𝑓 βˆ’ π‘‡βˆž
=
β„Ž0
π‘˜π‘šπ‘‘π‘Žπ‘›β„Žπ‘šπΏ + β„Ž0
But
π‘š =
1
𝛿
Upon substitution and simplification, we get
𝑇𝑠 βˆ’ π‘‡βˆž
𝑇𝑓 βˆ’ π‘‡βˆž
=
𝛿
π‘˜
β„Ž0
π‘‘π‘Žπ‘›β„Ž
𝐿
𝛿
+ 𝛿
But from the semi-infinite rod solution, we have
π‘˜
β„Ž0
= π›½π‘Ÿ2
Upon substitution, we get:
𝑇𝑠 βˆ’ π‘‡βˆž
𝑇𝑓 βˆ’ π‘‡βˆž
=
𝛿
π›½π‘Ÿ2π‘‘π‘Žπ‘›β„Ž
𝐿
𝛿
+ 𝛿
(𝑇𝑠 βˆ’ π‘‡βˆž) = (𝑇𝑓 βˆ’ π‘‡βˆž)(
𝛿
π›½π‘Ÿ2π‘‘π‘Žπ‘›β„Ž
𝐿
𝛿
+ 𝛿
)
Upon substitution in the temperature profile
𝑇 βˆ’ π‘‡βˆž
𝑇𝑠 βˆ’ π‘‡βˆž
=
cosh[
(𝐿 βˆ’ π‘₯)
𝛿
]
cosh
𝐿
𝛿
We get:
(𝑻 βˆ’ π‘»βˆž) = (𝑻𝒇 βˆ’ π‘»βˆž)(
𝜹
πœ·π’“πŸπ’•π’‚π’π’‰
𝑳
𝜹
+ 𝜹
)(
𝐜𝐨𝐬𝐑[
(𝑳 βˆ’ 𝒙)
𝜹
]
𝐜𝐨𝐬𝐑
𝑳
𝜹
)
The above temperature profile satisfies the initial condition and the boundary
conditions provided the temperature at the hot end varies with time.
Let us now solve the heat equation using the above temperature profile:
Recall the compact temperature profile is:
𝑇 βˆ’ π‘‡βˆž
𝑇𝑠 βˆ’ π‘‡βˆž
=
cosh[
(𝐿 βˆ’ π‘₯)
𝛿
]
cosh
𝐿
𝛿
The boundary and initial conditions are:
𝑻 = 𝑻𝒔 𝒂𝒕 𝒙 = 𝟎
𝒅𝑻
𝒅𝒙
= 𝟎 𝒂𝒕 𝒙 = 𝒍
𝑻 = π‘»βˆž 𝒂𝒕 𝒕 = 𝟎
The governing equation is
𝛼
πœ•2
𝑇
πœ•π‘₯2
βˆ’
β„Žπ‘ƒ
𝐴𝜌𝐢
(𝑇 βˆ’ π‘‡βˆž) =
πœ•π‘‡
πœ•π‘‘
Let us change this equation into an integral equation as below:
𝛼 ∫ (
πœ•2
𝑇
πœ•π‘₯2
) 𝑑π‘₯
𝑙
0
βˆ’
β„Žπ‘ƒ
𝐴𝜌𝐢
∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯
𝑙
0
=
πœ•
πœ•π‘‘
∫ (𝑇)𝑑π‘₯
𝑙
0
… … . . 𝑏)
𝛼 ∫ (
πœ•2
𝑇
πœ•π‘₯2
) 𝑑π‘₯
𝑙
0
βˆ’
2β„Ž
π‘ŸπœŒπΆ
∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯
𝑙
0
=
πœ•
πœ•π‘‘
∫ (𝑇)𝑑π‘₯
𝑙
0
∫ (
πœ•2
𝑇
πœ•π‘₯2
) 𝑑π‘₯
𝑙
0
= [
πœ•π‘‡
πœ•π‘₯
]
𝑙
0
= (𝑇𝑠 βˆ’ π‘‡βˆž)
tanh(
𝐿
𝛿
)
𝛿
∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯
𝑙
0
= (𝑇𝑠 βˆ’ π‘‡βˆž)𝛿tanh(
𝐿
𝛿
)
𝑇 =
cosh [
(𝐿 βˆ’ π‘₯)
𝛿
]
cosh
𝐿
𝛿
(𝑇𝑠 βˆ’ π‘‡βˆž) + π‘‡βˆž
πœ•
πœ•π‘‘
∫ (𝑇)𝑑π‘₯
𝑙
0
=
πœ•
πœ•π‘‘
[𝛿(𝑇𝑠 βˆ’ π‘‡βˆž) tanh (
𝐿
𝛿
)] +
πœ•(π‘™π‘‡βˆž)
πœ•π‘‘
πœ•(π‘™π‘‡βˆž)
πœ•π‘‘
= 0
Upon substitution of all the above in the heat equation, we get:
𝛼(𝑇𝑠 βˆ’ π‘‡βˆž)
tanh (
𝐿
𝛿
)
𝛿
βˆ’
2β„Ž
π‘ŸπœŒπΆ
(𝑇𝑠 βˆ’ π‘‡βˆž)𝛿 tanh (
𝐿
𝛿
) =
πœ•
πœ•π‘‘
[𝛿(𝑇𝑠 βˆ’ π‘‡βˆž) tanh (
𝐿
𝛿
)]
We notice that the term (𝑇𝑠 βˆ’ π‘‡βˆž)tanh(
𝐿
𝛿
) is common and can be eliminated and
what this signifies is that the nature of (𝑇𝑠 βˆ’ π‘‡βˆž) doesn’t matter and so we get:
𝛼
𝛿
βˆ’
2β„Ž
π‘ŸπœŒπΆ
𝛿 =
𝑑𝛿
𝑑𝑑
We go ahead and solve for 𝛿 provided 𝛿 = 0π‘Žπ‘‘ 𝑑 = 0 and get the expression
𝛿 = √
𝐾𝐴
β„Žπ‘ƒ
(1 βˆ’ 𝑒
βˆ’2β„Žπ‘ƒ
𝐴𝜌𝐢
𝑑
)
So, the final solution for the finite metal rod with zero flux at the end of the
metal rod is:
(𝑻 βˆ’ π‘»βˆž) = (𝑻𝒇 βˆ’ π‘»βˆž)(
𝜹
πœ·π’“πŸπ’•π’‚π’π’‰
𝑳
𝜹
+ 𝜹
)(
𝐜𝐨𝐬𝐑[
(𝑳 βˆ’ 𝒙)
𝜹
]
𝐜𝐨𝐬𝐑
𝑳
𝜹
)
The solution reduces to the semi-infinite rod solution when the length L of the
metal rod tends to infinity.
Using the above solution, it was shown experimentally that the ratio
𝑻 βˆ’ π‘»βˆž
𝑻𝒇 βˆ’ π‘»βˆž
= 𝟎. πŸπŸπŸ—πŸ–πŸ
As for the semi-infinite rod.
HOW DO WE DEAL WITH CYLINDRICAL
COORDINATES?
We know that for an insulated cylinder where there is no heat loss by
convection from the sides, the governing PDE equation is
𝜢
𝒓
𝝏
𝝏𝒓
(𝒓
𝝏𝑻
𝝏𝒓
) =
𝝏𝑻
𝝏𝒕
In steady state
πœ•π‘‡
πœ•π‘‘
= 0
We end up with
πœ•
πœ•π‘Ÿ
(π‘Ÿ
πœ•π‘‡
πœ•π‘Ÿ
) = 0
We can then integrate once to get
∫ (
πœ•
πœ•π‘Ÿ
(π‘Ÿ
πœ•π‘‡
πœ•π‘Ÿ
)) π‘‘π‘Ÿ = ∫(0)π‘‘π‘Ÿ
And get
π‘Ÿ
πœ•π‘‡
πœ•π‘Ÿ
= 𝐢1
Therefore
πœ•π‘‡
πœ•π‘Ÿ
=
𝐢1
π‘Ÿ
We can go ahead and find the temperature profile as a function of radius r.
HOW DO WE DEAL WITH CYLINDRICAL CO-ORDINATES
FOR A SEMI-INFINITE RADIUS CYLINDER?
The governing PDE is:
𝜢
𝒓
𝝏
𝝏𝒓
(𝒓
𝝏𝑻
𝝏𝒓
) =
𝝏𝑻
𝝏𝒕
The boundary conditions are
𝑇 = 𝑇𝑠 π‘Žπ‘‘ π‘Ÿ = π‘Ÿ1
𝑇 = π‘‡βˆž π‘Žπ‘‘ π‘Ÿ = ∞
The initial condition is:
𝑇 = π‘‡βˆž π‘Žπ‘‘ 𝑑 = 0
The temperature profile that satisfies the conditions above is
𝑇 βˆ’ π‘‡βˆž
𝑇𝑠 βˆ’ π‘‡βˆž
= 𝑒
βˆ’(π‘Ÿβˆ’π‘Ÿ1)
𝛿
We transform the equation above into an integral equation and take integrals
with limits from π‘Ÿ = π‘Ÿ1 to π‘Ÿ = 𝑅 = ∞.
𝛼
π‘Ÿ
πœ•
πœ•π‘Ÿ
(π‘Ÿ
πœ•π‘‡
πœ•π‘Ÿ
) =
πœ•π‘‡
πœ•π‘‘
We take integrals and get
∫ [
𝛼
π‘Ÿ
πœ•
πœ•π‘Ÿ
(π‘Ÿ
πœ•π‘‡
πœ•π‘Ÿ
)]π‘‘π‘Ÿ
𝑅
π‘Ÿ1
=
πœ•
πœ•π‘‘
∫ (𝑇)π‘‘π‘Ÿ
𝑅
π‘Ÿ1
∫ [
𝛼
π‘Ÿ
πœ•
βˆ‚r
/
(π‘Ÿ
πœ•π‘‡
πœ•π‘Ÿ
)]βˆ‚r
/
𝑅
π‘Ÿ1
=
πœ•
πœ•π‘‘
∫ (𝑇)π‘‘π‘Ÿ
𝑅
π‘Ÿ1
You notice that
𝝏
𝝏𝒓
cancels out with 𝒅𝒓 and we get:
𝛼
πœ•π‘‡
πœ•π‘Ÿ
=
πœ•
πœ•π‘‘
∫ (𝑇)π‘‘π‘Ÿ
𝑅
π‘Ÿ1
But
πœ•π‘‡
πœ•π‘Ÿ
= ∫ (
πœ•2
𝑇
πœ•π‘Ÿ2
)π‘‘π‘Ÿ
𝑅
π‘Ÿ1
So, the PDE becomes:
𝜢 ∫ (
𝝏𝟐
𝑻
ππ’“πŸ
)𝒅𝒓
𝑹
π’“πŸ
=
𝝏
𝝏𝒕
∫ (𝑻)𝒅𝒓
𝑹
π’“πŸ
We then go ahead to solve and find 𝛿 as before.
πœ•π‘‡
πœ•π‘Ÿ
= βˆ’
𝑇𝑠 βˆ’ π‘‡βˆž
𝛿
𝑒
βˆ’(π‘Ÿβˆ’π‘Ÿ1)
𝛿
∫ (
πœ•2
𝑇
πœ•π‘Ÿ2
) π‘‘π‘Ÿ
𝑅
π‘Ÿ1
= [
πœ•π‘‡
πœ•π‘Ÿ
]
𝑅
π‘Ÿ1
= βˆ’
(𝑇𝑠 βˆ’ π‘‡βˆž)
𝛿
[𝑒
βˆ’(π‘Ÿβˆ’π‘Ÿ1)
𝛿 ]
𝑅 = ∞
π‘Ÿ1
=
(𝑇𝑠 βˆ’ π‘‡βˆž)
𝛿
𝑇 = (𝑇𝑠 βˆ’ π‘‡βˆž)𝑒
βˆ’(π‘Ÿβˆ’π‘Ÿ1)
𝛿 + π‘‡βˆž
∫ π‘‡π‘‘π‘Ÿ
𝑅=∞
π‘Ÿ1
= ∫ ((𝑇𝑠 βˆ’ π‘‡βˆž)𝑒
βˆ’(π‘Ÿβˆ’π‘Ÿ1)
𝛿 )π‘‘π‘Ÿ
𝑅=∞
π‘Ÿ1
+ ∫ π‘‡βˆžπ‘‘π‘Ÿ
𝑅=∞
π‘Ÿ1
= 𝛿(𝑇𝑠 βˆ’ π‘‡βˆž) + π‘‡βˆž(𝑅 βˆ’ π‘Ÿ1)
πœ•
πœ•π‘‘
∫ π‘‡π‘‘π‘Ÿ
𝑅
𝛿
=
𝑑𝛿
𝑑𝑑
(𝑇𝑠 βˆ’ π‘‡βˆž) +
𝑑(π‘‡βˆž(𝑅 βˆ’ π‘Ÿ1))
𝑑𝑑
But
𝑑(π‘‡βˆž(𝑅 βˆ’ π‘Ÿ1))
𝑑𝑑
= 0
Since π‘‡βˆž, 𝑅, π‘Ÿ1 are constants independent of time.
So
πœ•
πœ•π‘‘
∫ π‘‡π‘‘π‘Ÿ
𝑅
𝛿
=
𝑑𝛿
𝑑𝑑
(𝑇𝑠 βˆ’ π‘‡βˆž)
substituting all the above in the integral equation, we get
𝛼 ∫ (
πœ•2
𝑇
πœ•π‘Ÿ2
)π‘‘π‘Ÿ
𝑅
π‘Ÿ1
=
πœ•
πœ•π‘‘
∫ (𝑇)π‘‘π‘Ÿ
𝑅
π‘Ÿ1
𝛼
𝛿
(𝑇𝑠 βˆ’ π‘‡βˆž) =
𝑑𝛿
𝑑𝑑
(𝑇𝑠 βˆ’ π‘‡βˆž)
Divide through by (𝑇𝑠 βˆ’ π‘‡βˆž) and get
𝛼
𝛿
=
𝑑𝛿
𝑑𝑑
𝛼
𝛿
=
𝑑𝛿
𝑑𝑑
The boundary conditions are:
𝛿 = 0 π‘Žπ‘‘ 𝑑 = 0
𝛿 = √2𝛼𝑑
We substitute 𝛿 in the temperature profile and get:
𝑇 βˆ’ π‘‡βˆž
𝑇𝑠 βˆ’ π‘‡βˆž
= 𝑒
βˆ’(π‘Ÿβˆ’π‘Ÿ1)
𝛿
𝑻 βˆ’ π‘»βˆž
𝑻𝒔 βˆ’ π‘»βˆž
= 𝒆
βˆ’(π’“βˆ’π’“πŸ)
βˆšπŸπœΆπ’•
You notice that the initial condition is satisfied for the above temperature
profile.
We can also go ahead and look at situations where there is natural convection
and other situations where the radius r is finite and not infinite.
HOW DO WE DEAL WITH NATURAL CONVECTION AT
THE SURFACE AREA OF A SEMI-INFINITE CYLINDER
FOR FIXED END TEMPERATURE
The governing equation is:
𝜢
𝒓
𝝏
𝝏𝒓
(𝒓
𝝏𝑻
𝝏𝒓
) βˆ’
𝒉𝑷
𝑨𝝆π‘ͺ
(𝑻 βˆ’ π‘»βˆž) =
𝝏𝑻
𝝏𝒕
𝑃 = 2πœ‹π‘Ÿ
𝐴 = 2πœ‹π‘Ÿπ‘‘
Where:
𝑑 = β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘π‘¦π‘™π‘–π‘›π‘‘π‘’π‘Ÿ
The boundary conditions are:
𝑇 = 𝑇𝑠 π‘Žπ‘‘ π‘Ÿ = π‘Ÿ1
𝑇 = π‘‡βˆž π‘Žπ‘‘ π‘Ÿ = 𝑅 = ∞
The initial condition is:
𝑇 = π‘‡βˆž π‘Žπ‘‘ 𝑑 = 0
The temperature profile that satisfies the boundary conditions above is:
𝑇 βˆ’ π‘‡βˆž
𝑇𝑠 βˆ’ π‘‡βˆž
= 𝑒
βˆ’(π‘Ÿβˆ’π‘Ÿ1)
𝛿
𝛼
π‘Ÿ
πœ•
πœ•π‘Ÿ
(π‘Ÿ
πœ•π‘‡
πœ•π‘Ÿ
) βˆ’
β„Žπ‘ƒ
𝐴𝜌𝐢
(𝑇 βˆ’ π‘‡βˆž) =
πœ•π‘‡
πœ•π‘‘
We transform the PDE into an integral equation and take the limits to be from
π‘Ÿ = π‘Ÿ1 to π‘Ÿ = 𝑅 = ∞
𝛼 ∫ [
𝛼
π‘Ÿ
πœ•
πœ•π‘Ÿ
(π‘Ÿ
πœ•π‘‡
πœ•π‘Ÿ
)]π‘‘π‘Ÿ
𝑅=∞
π‘Ÿ1
βˆ’
β„Ž
π‘‘πœŒπΆ
∫ (𝑇 βˆ’ π‘‡βˆž)π‘‘π‘Ÿ
𝑅=∞
π‘Ÿ1
=
πœ•
πœ•π‘‘
∫ (𝑇)π‘‘π‘Ÿ
𝑅=∞
π‘Ÿ1
∫ [
𝛼
π‘Ÿ
πœ•
βˆ‚r
/
(π‘Ÿ
πœ•π‘‡
πœ•π‘Ÿ
)]βˆ‚r
/
𝑅=∞
π‘Ÿ1
βˆ’
β„Ž
π‘‘πœŒπΆ
∫ (𝑇 βˆ’ π‘‡βˆž)π‘‘π‘Ÿ
𝑅=∞
π‘Ÿ1
=
πœ•
πœ•π‘‘
∫ (𝑇)π‘‘π‘Ÿ
𝑅=∞
π‘Ÿ1
You notice that
𝝏
𝝏𝒓
cancels out with 𝒅𝒓 and we get:
𝛼
πœ•π‘‡
πœ•π‘Ÿ
βˆ’
β„Ž
π‘‘πœŒπΆ
∫ (𝑇 βˆ’ π‘‡βˆž)
𝑅=∞
π‘Ÿ1
π‘‘π‘Ÿ =
πœ•
πœ•π‘‘
∫ (𝑇)π‘‘π‘Ÿ
𝑅=∞
π‘Ÿ1
But
πœ•π‘‡
πœ•π‘Ÿ
= ∫ (
πœ•2
𝑇
πœ•π‘Ÿ2
)π‘‘π‘Ÿ
𝑅
π‘Ÿ1
So, the PDE becomes:
𝜢 ∫ (
𝝏𝟐
𝑻
ππ’“πŸ
)𝒅𝒓
𝑹
π’“πŸ
βˆ’
𝒉
𝒅𝝆π‘ͺ
∫ (𝑻 βˆ’ π‘»βˆž)
𝑹=∞
π’“πŸ
𝒅𝒓 =
𝝏
𝝏𝒕
∫ (𝑻)𝒅𝒓
𝑹
π’“πŸ
β„Ž
π‘‘πœŒπΆ
∫ (𝑇 βˆ’ π‘‡βˆž)π‘‘π‘Ÿ
𝑅=∞
π‘Ÿ1
=
π›Ώβ„Ž
π‘‘πœŒπΆ
(𝑇𝑠 βˆ’ π‘‡βˆž)
From the derivations above, we get:
∫ (
πœ•2
𝑇
πœ•π‘Ÿ2
) π‘‘π‘Ÿ
𝑅
π‘Ÿ1
=
(𝑇𝑠 βˆ’ π‘‡βˆž)
𝛿
πœ•
πœ•π‘‘
∫ π‘‡π‘‘π‘Ÿ
𝑅
π‘Ÿ1
=
𝑑𝛿
𝑑𝑑
(𝑇𝑠 βˆ’ π‘‡βˆž)
Upon substitution of the above expressions in the integral equation, we get:
𝛼
𝛿
βˆ’
β„Ž
π‘‘πœŒπΆ
𝛿 =
𝑑𝛿
𝑑𝑑
𝛼
𝛿
βˆ’
β„Ž
π‘‘πœŒπΆ
𝛿 =
𝑑𝛿
𝑑𝑑
𝛼 βˆ’
β„Ž
π‘‘πœŒπΆ
𝛿2
= 𝛿
𝑑𝛿
𝑑𝑑
The boundary conditions are:
𝛿 = 0 π‘Žπ‘‘ 𝑑 = 0
The solution of the equation above is
𝛿 = √
π›Όπ‘‘πœŒπΆ
β„Ž
(1 βˆ’ 𝑒
βˆ’
2β„Žπ‘‘
π‘‘πœŒπΆ)
𝛼 =
𝐾
𝜌𝐢
And get
𝛿 = √
𝐾𝑑
β„Ž
(1 βˆ’ 𝑒
βˆ’
2β„Žπ‘‘
π‘‘πœŒπΆ)
The temperature profile becomes:
𝑇 βˆ’ π‘‡βˆž
𝑇𝑠 βˆ’ π‘‡βˆž
= 𝑒
βˆ’(
π‘Ÿβˆ’π‘Ÿ1
𝛿
)
Substitute for 𝛿 and get
𝑻 βˆ’ π‘»βˆž
𝑻𝒔 βˆ’ π‘»βˆž
= 𝒆
βˆ’(
π’“βˆ’π’“πŸ
βˆšπ‘²π’…
𝒉
(πŸβˆ’π’†
βˆ’
πŸπ’‰π’•
𝒅𝝆π‘ͺ)
)
You notice that the initial condition is satisfied by the above temperature
profile.
What do we observe for short time in transient state?
For short time, the exponential is small and it becomes:
𝑒
βˆ’
2β„Žπ‘‘
π‘‘πœŒπΆ = 1 βˆ’
2β„Žπ‘‘
π‘‘πœŒπΆ
After using binomial expansion of the exponential in the above
And
(1 βˆ’ 𝑒
βˆ’
2β„Žπ‘‘
π‘‘πœŒπΆ) =
2β„Žπ‘‘
π‘‘πœŒπΆ
𝛿 = √
𝐾𝑑
β„Ž
(1 βˆ’ 𝑒
βˆ’
2β„Žπ‘‘
π‘‘πœŒπΆ)
Becomes
𝛿 = √2𝛼𝑑
Where:
𝛼 =
𝐾
𝜌𝐢
Let us make r the subject of the temperature profile above:
𝑇 βˆ’ π‘‡βˆž
𝑇𝑠 βˆ’ π‘‡βˆž
= 𝑒
βˆ’(
π‘Ÿβˆ’π‘Ÿ1
𝛿
)
π‘Ÿ βˆ’ π‘Ÿ1
𝛿
= [ln(
𝑇𝑠 βˆ’ π‘‡βˆž
𝑇 βˆ’ π‘‡βˆž
)]
(π‘Ÿ βˆ’ π‘Ÿ1) = 𝛿 [ln (
𝑇𝑠 βˆ’ π‘‡βˆž
𝑇 βˆ’ π‘‡βˆž
)]
Where:
𝛿 = √2𝛼𝑑
For small time.
We can get an expression for 𝑇𝑠 as we did before.
We can extend the above analysis to finite radius metal rods and even to
rectangular metal rods.
REFERENCES
[1] C.P.Kothandaraman, "HEAT TRANSFER WITH EXTENDED SURFACES(FINS)," in Fundamentals of Heat
and Mass Transfer, New Delhi, NEW AGE INTERNATIONAL PUBLISHERS, 2006, p. 131.
[2] C. E. W. R. E. W. G. L. R. James R. Welty, "HEAT TRANSFER FROM EXTENDED SURFACES," in
Fundamentals of Momentum, Heat, and Mass Transfer 5th Edition, Corvallis, Oregon, John Wiley &
Sons, Inc., 2000, pp. 236-237.
[3] C. E. W. R. E. W. G. L. R. James R. Welty, "HEAT TRANSFER FROM EXTENDED SURFACES," in
Fundamentals of Momentum, Heat and Mass Transfer 5th Edition, Oregon, John Wiley & Sons, Inc.,
2008, p. 237.

More Related Content

More from Wasswaderrick3

THE RATE OF COOLING IN NATURAL CONVECTION EXPLAINED AND SOLVED.pdf
THE RATE OF COOLING IN NATURAL CONVECTION EXPLAINED AND SOLVED.pdfTHE RATE OF COOLING IN NATURAL CONVECTION EXPLAINED AND SOLVED.pdf
THE RATE OF COOLING IN NATURAL CONVECTION EXPLAINED AND SOLVED.pdfWasswaderrick3
Β 
FLUID MECHANICS DEMYSTIFIED 2nd Edition.pdf
FLUID MECHANICS DEMYSTIFIED 2nd Edition.pdfFLUID MECHANICS DEMYSTIFIED 2nd Edition.pdf
FLUID MECHANICS DEMYSTIFIED 2nd Edition.pdfWasswaderrick3
Β 
FUNDAMENTALS OF FLUID FLOW 2nd Edition.pdf
FUNDAMENTALS OF FLUID FLOW 2nd Edition.pdfFUNDAMENTALS OF FLUID FLOW 2nd Edition.pdf
FUNDAMENTALS OF FLUID FLOW 2nd Edition.pdfWasswaderrick3
Β 
2nd Edition FLUID MECHANICS DEMYSTIFIED.pdf
2nd Edition FLUID MECHANICS DEMYSTIFIED.pdf2nd Edition FLUID MECHANICS DEMYSTIFIED.pdf
2nd Edition FLUID MECHANICS DEMYSTIFIED.pdfWasswaderrick3
Β 
DERIVATION OF THE MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMIN...
DERIVATION OF THE MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMIN...DERIVATION OF THE MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMIN...
DERIVATION OF THE MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMIN...Wasswaderrick3
Β 
FUNDAMENTALS OF FLUID FLOW.pdf
FUNDAMENTALS OF FLUID FLOW.pdfFUNDAMENTALS OF FLUID FLOW.pdf
FUNDAMENTALS OF FLUID FLOW.pdfWasswaderrick3
Β 
FLUID MECHANICS DEMYSTIFIED.pdf
FLUID MECHANICS DEMYSTIFIED.pdfFLUID MECHANICS DEMYSTIFIED.pdf
FLUID MECHANICS DEMYSTIFIED.pdfWasswaderrick3
Β 
Integral method of the Analytic solutions to the heat equation With Experimen...
Integral method of the Analytic solutions to the heat equation With Experimen...Integral method of the Analytic solutions to the heat equation With Experimen...
Integral method of the Analytic solutions to the heat equation With Experimen...Wasswaderrick3
Β 
ANALTICAL SOLUTIONS TO THE HEAT EQUATION USING THE INTEGRAL METHODS.pdf
ANALTICAL SOLUTIONS TO THE HEAT EQUATION USING THE INTEGRAL METHODS.pdfANALTICAL SOLUTIONS TO THE HEAT EQUATION USING THE INTEGRAL METHODS.pdf
ANALTICAL SOLUTIONS TO THE HEAT EQUATION USING THE INTEGRAL METHODS.pdfWasswaderrick3
Β 
Integral methods for the analytic solutions to the heat equation.pdf
Integral methods for the analytic solutions to the heat equation.pdfIntegral methods for the analytic solutions to the heat equation.pdf
Integral methods for the analytic solutions to the heat equation.pdfWasswaderrick3
Β 

More from Wasswaderrick3 (10)

THE RATE OF COOLING IN NATURAL CONVECTION EXPLAINED AND SOLVED.pdf
THE RATE OF COOLING IN NATURAL CONVECTION EXPLAINED AND SOLVED.pdfTHE RATE OF COOLING IN NATURAL CONVECTION EXPLAINED AND SOLVED.pdf
THE RATE OF COOLING IN NATURAL CONVECTION EXPLAINED AND SOLVED.pdf
Β 
FLUID MECHANICS DEMYSTIFIED 2nd Edition.pdf
FLUID MECHANICS DEMYSTIFIED 2nd Edition.pdfFLUID MECHANICS DEMYSTIFIED 2nd Edition.pdf
FLUID MECHANICS DEMYSTIFIED 2nd Edition.pdf
Β 
FUNDAMENTALS OF FLUID FLOW 2nd Edition.pdf
FUNDAMENTALS OF FLUID FLOW 2nd Edition.pdfFUNDAMENTALS OF FLUID FLOW 2nd Edition.pdf
FUNDAMENTALS OF FLUID FLOW 2nd Edition.pdf
Β 
2nd Edition FLUID MECHANICS DEMYSTIFIED.pdf
2nd Edition FLUID MECHANICS DEMYSTIFIED.pdf2nd Edition FLUID MECHANICS DEMYSTIFIED.pdf
2nd Edition FLUID MECHANICS DEMYSTIFIED.pdf
Β 
DERIVATION OF THE MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMIN...
DERIVATION OF THE MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMIN...DERIVATION OF THE MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMIN...
DERIVATION OF THE MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMIN...
Β 
FUNDAMENTALS OF FLUID FLOW.pdf
FUNDAMENTALS OF FLUID FLOW.pdfFUNDAMENTALS OF FLUID FLOW.pdf
FUNDAMENTALS OF FLUID FLOW.pdf
Β 
FLUID MECHANICS DEMYSTIFIED.pdf
FLUID MECHANICS DEMYSTIFIED.pdfFLUID MECHANICS DEMYSTIFIED.pdf
FLUID MECHANICS DEMYSTIFIED.pdf
Β 
Integral method of the Analytic solutions to the heat equation With Experimen...
Integral method of the Analytic solutions to the heat equation With Experimen...Integral method of the Analytic solutions to the heat equation With Experimen...
Integral method of the Analytic solutions to the heat equation With Experimen...
Β 
ANALTICAL SOLUTIONS TO THE HEAT EQUATION USING THE INTEGRAL METHODS.pdf
ANALTICAL SOLUTIONS TO THE HEAT EQUATION USING THE INTEGRAL METHODS.pdfANALTICAL SOLUTIONS TO THE HEAT EQUATION USING THE INTEGRAL METHODS.pdf
ANALTICAL SOLUTIONS TO THE HEAT EQUATION USING THE INTEGRAL METHODS.pdf
Β 
Integral methods for the analytic solutions to the heat equation.pdf
Integral methods for the analytic solutions to the heat equation.pdfIntegral methods for the analytic solutions to the heat equation.pdf
Integral methods for the analytic solutions to the heat equation.pdf
Β 

Recently uploaded

(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
Β 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
Β 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSISrknatarajan
Β 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
Β 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...ranjana rawat
Β 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
Β 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
Β 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEslot gacor bisa pakai pulsa
Β 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
Β 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
Β 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
Β 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations120cr0395
Β 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Christo Ananth
Β 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
Β 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
Β 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSRajkumarAkumalla
Β 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
Β 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
Β 

Recently uploaded (20)

(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
Β 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
Β 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
Β 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
Β 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
Β 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Β 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
Β 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
Β 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
Β 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
Β 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Β 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
Β 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
Β 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Β 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
Β 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
Β 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
Β 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
Β 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
Β 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Β 

TRANSIENT STATE HEAT CONDUCTION SOLVED.pdf

  • 1. Wasswa Derrick 3/4/24 Heat Conduction
  • 2.
  • 3. TABLE OF CONTENTS PREFACE ............................................................................................................................................3 WHAT DO WE OBSERVE EXPERIMENTALLY WHEN HEATING A CYLINDRICAL METAL ROD AT ONE END WITH WAX PARTICLES ALONG ITS SURFACE AREA? ..4 HOW DO WE DEAL WITH NATURAL CONVECTION AT THE SURFACE AREA OF A SEMI-INFINITE METAL ROD FOR FIXED WALL TEMPERATURE...................................6 SO HOW DO WE PRODUCE THE SEMI-INFINITE OBSERVED ROD SOLUTION?.16 HOW DOES HEAT FLOW MANIFEST ITSELF FOR FINITE METAL RODS? ...............26 CASE 1: CONVECTION AT THE END OF A FINITE METAL ROD...............................26 HOW DO WE INVESTIGATE THE NATURE OF 𝒉𝑳 EASILY?.....................................31 DERIVATION OF THE GENERAL EXPRESSION FOR HEAT TRANSFER COEFFICIENT 𝒉𝑳........................................................................................................................39 CASE 2: ZERO FLUX AT THE END OF THE METAL ROD?..........................................44 HOW DO WE DEAL WITH CYLINDRICAL COORDINATES? .............................................50 HOW DO WE DEAL WITH CYLINDRICAL CO-ORDINATES FOR A SEMI-INFINITE RADIUS CYLINDER? .....................................................................................................................51 HOW DO WE DEAL WITH NATURAL CONVECTION AT THE SURFACE AREA OF A SEMI-INFINITE CYLINDER FOR FIXED END TEMPERATURE.......................................54 REFERENCES..................................................................................................................................58
  • 4. PREFACE In this book we go ahead and investigate the nature of heat conduction in a metal rod heated at one end while the other end is free. We do this by sticking wax particles along the surface area of the metal rod at known distances x from the hot end and then record the time taken for each wax to melt since the introduction of the flame at the hot end. We first of all look at the case of heat conduction in a semi-infinite metal rod and solve the heat equation analytically using the integral transform approach and compare the solution got in the transient state to experimental observations. We make deductions and conclusions from both the solution and the experimental values. We then look at the case of a finite length metal rod heat conduction with convection at the free end. We use the hyperbolic function solutions known in literature to interpret experimental data. One fact that we get to learn from the experimental values is that the heat transfer coefficient β„ŽπΏ at the end of the metal rod is not a constant but varies with length L as shall be shown later. We note that in deriving the solution for the convection boundary condition, the solution derived should reduce to the semi-infinite rod solution as the length tends to infinity. We then look at the case of zero flux at the end of a finite metal rod and also derive the governing equation. Finally, we use the integral approach to solve the heat equation in cylindrical co-ordinates for radial heat conduction and use the same techniques we used before to solve for observed phenomena.
  • 5. WHAT DO WE OBSERVE EXPERIMENTALLY WHEN HEATING A CYLINDRICAL METAL ROD AT ONE END WITH WAX PARTICLES ALONG ITS SURFACE AREA? The situation we are talking about looks as below: First of all, let us call the distance π‘₯ to be the distance of the wax particle from the hot end and 𝑑 to be the time taken for the wax to melt since the introduction of the flame at the hot end. For a semi-infinite rod(𝑙 = ∞), it is observed that a graph of π‘₯ against time 𝑑 is a curve as shown below for an aluminium rod of radius 2mm: A semi-infinite cylindrical rod means that the length of the metal rod extends to infinity but the radius is finite. The graph below is for an aluminium rod of length 75cm and radius 2mm and it can be treated as a semi-infinite metal rod.
  • 6. 0 0.05 0.1 0.15 0.2 0.25 0.3 0 100 200 300 400 500 x(metres) t(seconds) A Graph of x against time t
  • 7. HOW DO WE DEAL WITH NATURAL CONVECTION AT THE SURFACE AREA OF A SEMI-INFINITE METAL ROD FOR FIXED WALL TEMPERATURE A semi-infinite cylindrical rod means that the length of the metal rod extends to infinity but the radius of the metal rod is finite. The governing heat equation is: 𝛼 πœ•2 𝑇 πœ•π‘₯2 βˆ’ β„Žπ‘ƒ 𝐴𝜌𝐢 (𝑇 βˆ’ π‘‡βˆž) = πœ•π‘‡ πœ•π‘‘ We shall use the integral transform approach to solve the heat equation above. The boundary and initial conditions are 𝑻 = 𝑻𝒔 𝒂𝒕 𝒙 = 𝟎 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒕 𝑻 = π‘»βˆž 𝒂𝒕 𝒙 = ∞ 𝑻 = π‘»βˆž 𝒂𝒕 𝒕 = 𝟎 Where: π‘»βˆž = π’“π’π’π’Ž π’•π’†π’Žπ’‘π’†π’“π’‚π’•π’–π’“π’† First, we assume a temperature profile that satisfies the boundary conditions as: 𝑇 βˆ’ π‘‡βˆž 𝑇𝑠 βˆ’ π‘‡βˆž = 𝑒 βˆ’π‘₯ 𝛿 where 𝛿 is to be determined and is a function of time t and not x. for the initial condition, we assume 𝛿 = 0 at 𝑑 = 0 seconds so that the initial condition is satisfied i.e., Since at 𝑑 = 0, 𝛿 = 0 we get 𝑇 βˆ’ π‘‡βˆž 𝑇𝑠 βˆ’ π‘‡βˆž = 𝑒 βˆ’π‘₯ 0 = π‘’βˆ’βˆž = 0 Hence 𝑇 = π‘‡βˆž Which is the initial condition. The governing partial differential equation is: 𝛼 πœ•2 𝑇 πœ•π‘₯2 βˆ’ β„Žπ‘ƒ 𝐴𝜌𝐢 (𝑇 βˆ’ π‘‡βˆž) = πœ•π‘‡ πœ•π‘‘
  • 8. Let us change transform the heat equation into an integral equation as below: 𝛼 ∫ ( πœ•2 𝑇 πœ•π‘₯2 ) 𝑑π‘₯ 𝑙 0 βˆ’ β„Žπ‘ƒ 𝐴𝜌𝐢 ∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯ 𝑙 0 = πœ• πœ•π‘‘ ∫ (𝑇)𝑑π‘₯ 𝑙 0 … … . . 𝑏) πœ•2 𝑇 πœ•π‘₯2 = (𝑇𝑠 βˆ’ π‘‡βˆž) 𝛿2 𝑒 βˆ’π‘₯ 𝛿 ∫ ( πœ•2 𝑇 πœ•π‘₯2 ) 𝑑π‘₯ 𝑙 0 = βˆ’(𝑇𝑠 βˆ’ π‘‡βˆž) 𝛿 (𝑒 βˆ’π‘™ 𝛿 βˆ’ 1) But for a semi-infinite cylindrical rod, 𝑙 = ∞, upon substitution, we get ∫ ( πœ•2 𝑇 πœ•π‘₯2 ) 𝑑π‘₯ 𝑙 0 = (𝑇𝑠 βˆ’ π‘‡βˆž) 𝛿 ∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯ 𝑙 0 = βˆ’π›Ώ(𝑇𝑠 βˆ’ π‘‡βˆž)(𝑒 βˆ’π‘™ 𝛿 βˆ’ 1) But 𝑙 = ∞, upon substitution, we get ∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯ 𝑙 0 = 𝛿(𝑇𝑠 βˆ’ π‘‡βˆž) 𝑇 = (𝑇𝑠 βˆ’ π‘‡βˆž)𝑒 βˆ’π‘₯ 𝛿 + π‘‡βˆž ∫ (𝑇)𝑑π‘₯ 𝑙 0 = βˆ’π›Ώ(𝑇𝑠 βˆ’ π‘‡βˆž)(𝑒 βˆ’π‘™ 𝛿 βˆ’ 1) + π‘‡βˆžπ‘™ Substitute 𝑙 = ∞ and get πœ• πœ•π‘‘ ∫ (𝑇)𝑑π‘₯ 𝑙 0 = 𝑑𝛿 𝑑𝑑 (𝑇𝑠 βˆ’ π‘‡βˆž) + πœ• πœ•π‘‘ (π‘‡βˆžπ‘™) Since π‘‡βˆž π‘Žπ‘›π‘‘ 𝑙 are constants πœ• πœ•π‘‘ (π‘‡βˆžπ‘™) = 0 πœ• πœ•π‘‘ ∫ (𝑇)𝑑π‘₯ 𝑙 0 = 𝑑𝛿 𝑑𝑑 (𝑇𝑠 βˆ’ π‘‡βˆž) Substituting the above expressions in equation b) above, we get
  • 9. 𝛼 βˆ’ β„Žπ‘ƒ 𝐴𝜌𝐢 𝛿2 = 𝛿 𝑑𝛿 𝑑𝑑 We solve the equation above with initial condition 𝛿 = 0 π‘Žπ‘‘ 𝑑 = 0 And get 𝛿 = √ π›Όπ΄πœŒπΆ β„Žπ‘ƒ (1 βˆ’ 𝑒 βˆ’2β„Žπ‘ƒ 𝐴𝜌𝐢 𝑑 ) 𝛿 = √ 𝐾𝐴 β„Žπ‘ƒ (1 βˆ’ 𝑒 βˆ’2β„Žπ‘ƒ 𝐴𝜌𝐢 𝑑 ) Substituting for 𝛿 in the temperature profile, we get 𝑻 βˆ’ π‘»βˆž 𝑻𝒔 βˆ’ π‘»βˆž = 𝒆 βˆ’π’™ √ 𝑲𝑨 𝒉𝑷 (πŸβˆ’π’† βˆ’πŸπ’‰π‘· 𝑨𝝆π‘ͺ 𝒕 ) From the equation above, we notice that the initial condition is satisfied i.e., 𝑻 = π‘»βˆž 𝒂𝒕 𝒕 = 𝟎 The equation above predicts the transient state and in steady state (𝑑 = ∞) it reduces to 𝑻 βˆ’ π‘»βˆž 𝑻𝒔 βˆ’ π‘»βˆž = 𝒆 βˆ’βˆš( 𝒉𝑷 𝑲𝑨 )𝒙 What are the predictions of the transient state? For transient state the governing solution is: 𝑇 βˆ’ π‘‡βˆž 𝑇𝑠 βˆ’ π‘‡βˆž = 𝑒 βˆ’π‘₯ √ 𝐾𝐴 β„Žπ‘ƒ (1βˆ’π‘’ βˆ’2β„Žπ‘ƒ 𝐴𝜌𝐢 𝑑 )
  • 10. Let us make π‘₯ the subject of the equation of transient state and get: π‘₯ = [ln ( 𝑇𝑠 βˆ’ π‘‡βˆž 𝑇 βˆ’ π‘‡βˆž )] Γ— √ 𝐾𝐴 β„Žπ‘ƒ (1 βˆ’ 𝑒 βˆ’2β„Žπ‘ƒ 𝐴𝜌𝐢 𝑑 ) To measure the value of h, we use trial and error method in Microsoft excel and choosing ( 2β„Žπ‘ƒ 𝐴𝜌𝐢 = 0.005) , plotting a graph of π‘₯ against √(1 βˆ’ π‘’βˆ’0.005𝑑) for a semi- infinite aluminium metal rod of radius 2mm gave a straight-line graph with a negative intercept as shown below for all times contrary to the equation above i.e., π‘₯ = βˆ’π‘ + [ln( 𝑇𝑠 βˆ’ π‘‡βˆž 𝑇 βˆ’ π‘‡βˆž )] Γ— √ 𝐾𝐴 β„Žπ‘ƒ (1 βˆ’ 𝑒 βˆ’2β„Žπ‘ƒ 𝐴𝜌𝐢 𝑑 ) Let: π‘Œ = √(1 βˆ’ π‘’βˆ’0.005𝑑) = √(1 βˆ’ 𝑒 βˆ’2β„Žπ‘ƒ 𝐴𝜌𝐢 𝑑 ) 𝒙 = βˆ’π’„ + [π₯𝐧 ( 𝑻𝒔 βˆ’ π‘»βˆž 𝑻 βˆ’ π‘»βˆž )(√ 𝑲𝑨 𝒉𝑷 )] Γ— 𝒀
  • 11. Varying the radius of the aluminium metal rod to π‘Ÿ = 1π‘šπ‘š the graph looked as below: From the graph above, it is observed that the intercept c is directly proportional to radius squared. i.e. 𝒄 = πŸπŸ‘πŸ—πŸŽπŸŽπ’“πŸ The heat transfer coefficient is calculated from y = 1.515x - 0.0528 RΒ² = 0.9967 0 0.05 0.1 0.15 0.2 0.25 0.3 0 0.05 0.1 0.15 0.2 X Y A Graph of X against Y for radius 2mm semi- infinite aluminium rod Series1 Linear (Series1) y = 1.3556x - 0.0139 RΒ² = 0.987 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0 0.05 0.1 0.15 X Y A Graph of X against Y for radius 1mm semi- infinite aluminium rod Series1 Linear (Series1)
  • 12. π‘Œ = √(1 βˆ’ π‘’βˆ’0.005𝑑) = √(1 βˆ’ 𝑒 βˆ’2β„Žπ‘ƒ 𝐴𝜌𝐢 𝑑 ) 2β„Žπ‘ƒ 𝐴𝜌𝐢 = 0.005 h for aluminium was found to be β„Ž = 6.075π‘Š π‘š2𝐾 Using the graph and the equation below: π‘₯ = [ln ( 𝑇𝑓 βˆ’ π‘‡βˆž 𝑇 βˆ’ π‘‡βˆž )] Γ— √ 𝐾𝐴 β„Žπ‘ƒ (1 βˆ’ 𝑒 βˆ’2β„Žπ‘ƒ 𝐴𝜌𝐢 𝑑 ) βˆ’ π›½π‘Ÿ2 From the gradient of the graph of x against √(1 βˆ’ 𝑒 βˆ’2β„Žπ‘ƒ 𝐴𝜌𝐢 𝑑 )above the ratio ( π‘‡π‘“βˆ’π‘‡βˆž π‘‡βˆ’π‘‡βˆž ) was measured and was found to be: ( 𝑻 βˆ’ π‘»βˆž 𝑻𝒇 βˆ’ π‘»βˆž ) β‰ˆ 𝟎. πŸπŸπŸ—πŸ–πŸ From the graph above it is deduced that 𝑇𝑓 is a constant temperature independent of time. To account for the intercept in the graph above for a semi-infinite rod, we have to postulate that there’s convection at the hot end of the metal rod as below i.e.,
  • 13. βˆ’π’Œ 𝝏𝑻 𝝏𝒙 |𝒙=𝟎 = π’‰πŸŽ(𝑻𝒇 βˆ’ 𝑻𝒔) Recall: 𝑇 βˆ’ π‘‡βˆž 𝑇𝑠 βˆ’ π‘‡βˆž = 𝑒 βˆ’π‘₯ 𝛿 πœ•π‘‡ πœ•π‘₯ = βˆ’(𝑇𝑠 βˆ’ π‘‡βˆž) 𝛿 𝑒 βˆ’π‘₯ 𝛿 πœ•π‘‡ πœ•π‘₯ |π‘₯=0 = βˆ’(𝑇𝑠 βˆ’ π‘‡βˆž) 𝛿 Upon substitution, we get: π‘˜ (𝑇𝑠 βˆ’ π‘‡βˆž) 𝛿 = β„Ž0(𝑇𝑓 βˆ’ 𝑇𝑠) (𝑇𝑠 βˆ’ π‘‡βˆž) = β„Ž0𝛿 π‘˜ (𝑇𝑓 βˆ’ 𝑇𝑠) 𝑇𝑠 (1 + β„Ž0𝛿 π‘˜ ) = ( β„Ž0𝛿 π‘˜ ) 𝑇𝑓 + π‘‡βˆž 𝑇𝑠 = ( β„Ž0𝛿 π‘˜ ) 𝑇𝑓 + π‘‡βˆž (1 + β„Ž0𝛿 π‘˜ ) Subtracting π‘‡βˆž from both sides, we get:
  • 14. 𝑇𝑠 βˆ’ π‘‡βˆž = ( β„Ž0𝛿 π‘˜ ) 𝑇𝑓 + π‘‡βˆž (1 + β„Ž0𝛿 π‘˜ ) βˆ’ π‘‡βˆž We finally get: 𝑇𝑠 βˆ’ π‘‡βˆž 𝑇𝑓 βˆ’ π‘‡βˆž = β„Ž0𝛿 π‘˜ 1 + β„Ž0𝛿 π‘˜ Upon simplifying, we get: 𝑇𝑠 βˆ’ π‘‡βˆž 𝑇𝑓 βˆ’ π‘‡βˆž = 𝛿 𝛿 + π‘˜ β„Ž0 To explain the nature of β„Ž0 we postulate that the candle dissipates power independent of area. i.e., π‘‘π‘š 𝑑𝑑 𝐻𝐢 = π›Ύβ„Ž0𝐴(𝑇𝑓 βˆ’ 𝑇𝑠) Where: 𝛾 = π‘π‘Ÿπ‘œπ‘π‘œπ‘Ÿπ‘‘π‘–π‘œπ‘›π‘Žπ‘™π‘–π‘‘π‘¦ π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘ π‘Žπ‘›π‘‘ π‘π‘Žπ‘› 𝑏𝑒 π‘‘π‘Žπ‘˜π‘’π‘› π‘‘π‘œ 𝑏𝑒 π‘’π‘žπ‘’π‘Žπ‘™ π‘‘π‘œ 1 And get π’…π’Ž 𝒅𝒕 𝑯π‘ͺ = π’‰πŸŽπ‘¨(𝑻𝒇 βˆ’ 𝑻𝒔) Where: 𝐻𝐢 = π‘’π‘›π‘‘β„Žπ‘Žπ‘™π‘π‘¦ π‘œπ‘“ π‘π‘œπ‘šπ‘π‘’π‘ π‘‘π‘–π‘œπ‘› From experiment: π‘‘π‘š 𝑑𝑑 = π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘ To explain the heat conduction phenomenon, we postulate that 𝐻𝐢 = πΆπ‘œ(𝑇𝑓 βˆ’ 𝑇𝑠) Where:
  • 15. πΆπ‘œ = 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 β„Žπ‘’π‘Žπ‘‘ π‘π‘Žπ‘π‘Žπ‘π‘–π‘‘π‘¦ Upon substitution, we have: π‘‘π‘š 𝑑𝑑 πΆπ‘œ(𝑇𝑓 βˆ’ 𝑇𝑠) = β„Ž0𝐴(𝑇𝑓 βˆ’ 𝑇𝑠) Upon simplifying, we get: π’‰πŸŽ = π’…π’Ž 𝒅𝒕 Γ— π‘ͺ𝒐 𝑨 Using the above result, we get π‘˜ β„Ž0 = π‘˜π΄ π‘‘π‘š 𝑑𝑑 πΆπ‘œ Upon substitution, we get: 𝑇𝑠 βˆ’ π‘‡βˆž 𝑇𝑓 βˆ’ π‘‡βˆž = 𝛿 𝛿 + π‘˜ β„Ž0 𝑇𝑠 βˆ’ π‘‡βˆž 𝑇𝑓 βˆ’ π‘‡βˆž = 𝛿 𝛿 + π‘˜π΄ π‘‘π‘š 𝑑𝑑 πΆπ‘œ OR 𝑇𝑠 βˆ’ π‘‡βˆž 𝑇𝑓 βˆ’ π‘‡βˆž = 𝛿 𝛿 + π‘˜πœ‹ π‘‘π‘š 𝑑𝑑 πΆπ‘œ π‘Ÿ2 Comparing with: 𝑻𝒔 βˆ’ π‘»βˆž 𝑻𝒇 βˆ’ π‘»βˆž = 𝜹 𝜹 + πœ·π’“πŸ Where: 𝛽 = π‘˜πœ‹ π‘‘π‘š 𝑑𝑑 πΆπ‘œ
  • 16. We notice that 𝛽 is directly proportional to the thermal conductivity k. The above expression shows that the temperature at π‘₯ = 0 varies with time also and is not fixed until steady state is achieved π’Œ π’‰πŸŽ = πœ·π’“πŸ And we finally get: 𝑇𝑠 βˆ’ π‘‡βˆž 𝑇𝑓 βˆ’ π‘‡βˆž = 𝛿 𝛿 + π›½π‘Ÿ2 For a semi-infinite rod, 𝑻 βˆ’ π‘»βˆž 𝑻𝒔 βˆ’ π‘»βˆž = π’†βˆ’ 𝒙 𝜹 Substituting the expression of (𝑇𝑠 βˆ’ π‘‡βˆž) we get: 𝑻 βˆ’ π‘»βˆž 𝑻𝒇 βˆ’ π‘»βˆž = ( 𝜹 𝜹 + πœ·π’“πŸ )π’†βˆ’ 𝒙 𝜹 As the general solution.
  • 17. SO HOW DO WE PRODUCE THE SEMI-INFINITE OBSERVED ROD SOLUTION? As got before: 𝑇𝑠 βˆ’ π‘‡βˆž 𝑇𝑓 βˆ’ π‘‡βˆž = ( 𝛿 𝛿 + π›½π‘Ÿ2 ) From ( 𝑻 βˆ’ π‘»βˆž 𝑻𝒔 βˆ’ π‘»βˆž ) = π’†βˆ’ 𝒙 𝜹 Substituting the expression of (𝑇𝑠 βˆ’ π‘‡βˆž) we get: 𝑻 βˆ’ π‘»βˆž 𝑻𝒇 βˆ’ π‘»βˆž = ( 𝜹 𝜹 + πœ·π’“πŸ )π’†βˆ’ 𝒙 𝜹 Continuing with 𝑻 βˆ’ π‘»βˆž 𝑻𝒔 βˆ’ π‘»βˆž = π’†βˆ’ 𝒙 𝜹 Let us make π‘₯ the subject of the formula: π‘₯ = [ln( 𝑇𝑠 βˆ’ π‘‡βˆž 𝑇 βˆ’ π‘‡βˆž )] Γ— 𝛿 Where: 𝛿 = √2𝛼𝑑 For small time. Or generally 𝛿 = √ 𝐾𝐴 β„Žπ‘ƒ (1 βˆ’ 𝑒 βˆ’2β„Žπ‘ƒ 𝐴𝜌𝐢 𝑑 ) But we know from the above that: (𝑇𝑠 βˆ’ π‘‡βˆž) = (𝑇𝑓 βˆ’ π‘‡βˆž)( 𝛿 𝛿 + π›½π‘Ÿ2 ) π‘₯ = [ln(𝑇𝑠 βˆ’ π‘‡βˆž) βˆ’ ln(𝑇 βˆ’ π‘‡βˆž)] Γ— 𝛿 𝑙𝑛(𝑇𝑠 βˆ’ π‘‡βˆž) = 𝑙𝑛(𝑇𝑓 βˆ’ π‘‡βˆž) + 𝑙𝑛( 𝛿 𝛿 + π›½π‘Ÿ2 )
  • 18. Upon substitution of 𝑙𝑛(𝑇𝑠 βˆ’ π‘‡βˆž) in the equation of π‘₯ above, we get π‘₯ = [𝑙𝑛(𝑇𝑓 βˆ’ π‘‡βˆž) + 𝑙𝑛( 𝛿 𝛿 + π›½π‘Ÿ2 ) βˆ’ln(𝑇 βˆ’ π‘‡βˆž)] Γ— 𝛿 We get 𝒙 = 𝜹[𝒍𝒏 ( 𝑻𝒇 βˆ’ π‘»βˆž 𝑻 βˆ’ π‘»βˆž ) + 𝒍𝒏( 𝜹 𝜹 + πœ·π’“πŸ )] Let us manipulate the equation above and get: 𝒙 = πœΉπ’π’ ( 𝑻𝒇 βˆ’ π‘»βˆž 𝑻 βˆ’ π‘»βˆž ) + πœΉπ’π’( 𝜹 𝜹 + πœ·π’“πŸ ) Factorizing out 𝛿 in the denominator we get: π‘₯ = 𝛿𝑙𝑛 ( 𝑇𝑓 βˆ’ π‘‡βˆž 𝑇 βˆ’ π‘‡βˆž ) + 𝛿𝑙𝑛[ 𝛿 𝛿 ( 1 1 + π›½π‘Ÿ2 𝛿 )] π‘₯ = 𝛿𝑙𝑛 ( 𝑇𝑓 βˆ’ π‘‡βˆž 𝑇 βˆ’ π‘‡βˆž ) + 𝛿𝑙𝑛[(1 + π›½π‘Ÿ2 𝛿 )βˆ’1 ] Since π›½π‘Ÿ2 𝛿 β‰ͺ 1 π‘“π‘œπ‘Ÿ 𝑑 We can use the binomial first order approximation (1 + π‘₯)𝑛 β‰ˆ 1 + 𝑛π‘₯ π‘“π‘œπ‘Ÿ π‘₯ β‰ͺ 1 (1 + π›½π‘Ÿ2 𝛿 )βˆ’1 = 1 βˆ’ π›½π‘Ÿ2 𝛿 π‘“π‘œπ‘Ÿ π›½π‘Ÿ2 𝛿 β‰ͺ 1 And we get: π‘₯ = 𝛿𝑙𝑛 ( 𝑇𝑓 βˆ’ π‘‡βˆž 𝑇 βˆ’ π‘‡βˆž ) + 𝛿𝑙𝑛[(1 βˆ’ π›½π‘Ÿ2 𝛿 )] Again, we can expand the natural log as below: ln(1 βˆ’ π‘₯) β‰ˆ βˆ’π‘₯ π‘“π‘œπ‘Ÿ π‘₯ β‰ͺ 1 𝑙𝑛 [(1 βˆ’ π›½π‘Ÿ2 𝛿 )] = βˆ’ π›½π‘Ÿ2 𝛿 π‘“π‘œπ‘Ÿ π›½π‘Ÿ2 𝛿 β‰ͺ 1
  • 19. Upon substitution we finally get 𝒙 = πœΉπ’π’ ( 𝑻𝒇 βˆ’ π‘»βˆž 𝑻 βˆ’ π‘»βˆž ) βˆ’ πœ·π’“πŸ Which is what we got before. 𝒙 = πœΉπ’π’ ( 𝑻𝒇 βˆ’ π‘»βˆž 𝑻 βˆ’ π‘»βˆž ) βˆ’ πœ·π’“πŸ Where: 𝛽 = π‘˜πœ‹ π‘‘π‘š 𝑑𝑑 πΆπ‘œ We notice that the intercept above is proportional to the square of the radius as demonstrated from experiment. Looking at the general solution: 𝒙 = πœΉπ’π’ ( 𝑻𝒇 βˆ’ π‘»βˆž 𝑻 βˆ’ π‘»βˆž ) + πœΉπ’π’( 𝜹 𝜹 + πœ·π’“πŸ ) Plotting a graph of 𝒙 against 𝜹[𝒍𝒏 ( π‘»π’‡βˆ’π‘»βˆž π‘»βˆ’π‘»βˆž ) + 𝒍𝒏( 𝜹 𝜹+πœ·π’“πŸ )] was found to give a straight-line graph through the origin as stated by the equation above. Let us call 𝒑 = 𝜹[𝒍𝒏 ( π‘»π’‡βˆ’π‘»βˆž π‘»βˆ’π‘»βˆž ) + 𝒍𝒏( 𝜹 𝜹+πœ·π’“πŸ )] Where: πœ·π’“πŸ = 𝟎. πŸŽπŸ“πŸπŸ– for an aluminium rod of radius 2mm and 𝐾 = 238 π‘Š π‘šπΎ , β„Ž = 6 π‘Š π‘š2𝐾 𝜌 = 2700 π‘˜π‘” π‘š3, 𝐢 = 900 𝐽 π‘˜π‘”πΎ and π‘‡βˆ’π‘‡βˆž π‘‡π‘“βˆ’π‘‡βˆž = 0.21981 And 𝛿 = √ 𝐾𝐴 β„Žπ‘ƒ (1 βˆ’ 𝑒 βˆ’2β„Žπ‘ƒ 𝐴𝜌𝐢 𝑑 ) Then a graph of x against p is a straight-line graph through the origin for a semi-infinite rod as shown below for a semi-infinite aluminium rod of radius 2mm
  • 20. Calling the solution below the approximated solution: 𝒙 = πœΉπ’π’ ( 𝑻𝒇 βˆ’ π‘»βˆž 𝑻 βˆ’ π‘»βˆž ) βˆ’ πœ·π’“πŸ Or π‘₯ = [ln ( 𝑇𝑓 βˆ’ π‘‡βˆž 𝑇 βˆ’ π‘‡βˆž )] Γ— √ 𝐾𝐴 β„Žπ‘ƒ (1 βˆ’ 𝑒 βˆ’2β„Žπ‘ƒ 𝐴𝜌𝐢 𝑑 ) βˆ’ π›½π‘Ÿ2 What are the lessons we have learnt? ο‚· We have learnt that in the approximated solution, we can measure off h in the transient state. ο‚· We have learnt that knowing the thermo-conductivity and other physical parameters of the metal rod, in the approximated solution, we can measure off the ratio π‘»βˆ’π‘»βˆž π‘»π’‡βˆ’π‘»βˆž ο‚· The intercept in the approximated solution can help us learn how its nature varies with the radius of the rod. We can use the intercept to measure the value of 𝜷. y = 1.0768x 0 0.05 0.1 0.15 0.2 0.25 0.3 0 0.05 0.1 0.15 0.2 0.25 x p A Graph of x against p
  • 21. The general solution is given by: 𝒙 = πœΉπ’π’ ( 𝑻𝒇 βˆ’ π‘»βˆž 𝑻 βˆ’ π‘»βˆž ) + πœΉπ’π’( 𝜹 𝜹 + πœ·π’“πŸ ) You notice that the initial condition is still satisfied. From the general solution, we get: 𝑻 βˆ’ π‘»βˆž 𝑻𝒇 βˆ’ π‘»βˆž = ( 𝜹 𝜹 + πœ·π’“πŸ )𝒆 βˆ’ 𝒙 𝜹 For the initial condition; At 𝑑 = 0, you get 𝑻 βˆ’ π‘»βˆž 𝑻𝒇 βˆ’ π‘»βˆž = 𝟎 Γ— 𝒆 βˆ’π’™ 𝟎 = 𝟎 Hence 𝑻 = π‘»βˆž Considering the approximated equation below: 𝒙 = [π₯𝐧 ( 𝑻𝒇 βˆ’ π‘»βˆž 𝑻 βˆ’ π‘»βˆž )] Γ— βˆšπŸπœΆπ’• βˆ’ πœ·π’“πŸ What that equation says is that when you stick wax particles on a long metal rod (𝑙 = ∞) at distances x from the hot end of the rod and note the time t it takes the wax particles to melt, then a graph of π‘₯ against βˆšπ‘‘ is a straight-line graph with an intercept as stated by the equation above when the times are small. The equation is true because that is what is observed experimentally. Looking at the approximate solution for a semi-infinite metal rod: π‘₯ = βˆ’π›½π‘Ÿ2 + [ln( 𝑇𝑓 βˆ’ π‘‡βˆž 𝑇 βˆ’ π‘‡βˆž )] Γ— √ 𝐾𝐴 β„Žπ‘ƒ (1 βˆ’ 𝑒 βˆ’2β„Žπ‘ƒ 𝐴𝜌𝐢 𝑑 ) Let: π‘Œ = √(1 βˆ’ π‘’βˆ’0.005𝑑) A graph of x against Y looked as below:
  • 22. Since the graph above is a straight-line graph, it shows that 𝑇𝑓 IS NOT a function of time as stated by the equation above of π‘₯ against Y. Another point to note is that from experiment 𝑇𝑓 was found to be independent of radius of the metal rod. For aluminium 𝐾 = 238 π‘Š π‘šπΎ , β„Ž = 6 π‘Š π‘š2𝐾 Another way to measure 𝑇𝑠1 is to consider the steady state equation and plot the graph of 𝑇 βˆ’ π‘‡βˆž 𝑇𝑓 βˆ’ π‘‡βˆž = ( 𝛿 𝛿 + π›½π‘Ÿ2 )𝑒 βˆ’βˆš( β„Žπ‘ƒ 𝐾𝐴)π‘₯ π₯𝐧(𝑻 βˆ’ π‘»βˆž) = 𝒍𝒏(𝑻𝒇 βˆ’ π‘»βˆž) + 𝒍𝒏( 𝜹 𝜹 + πœ·π’“πŸ ) βˆ’ √( 𝒉𝑷 𝑲𝑨 )𝒙 And 𝛿 = √ 𝐾𝐴 β„Žπ‘ƒ Upon substitution y = 1.515x - 0.0528 RΒ² = 0.9967 0 0.05 0.1 0.15 0.2 0.25 0.3 0 0.05 0.1 0.15 0.2 X Y A Graph of X against Y Series1 Linear (Series1)
  • 23. π₯𝐧(𝑻 βˆ’ π‘»βˆž) = 𝒍𝒏(𝑻𝒇 βˆ’ π‘»βˆž) + 𝒍𝒏( βˆšπ‘²π‘¨ 𝒉𝑷 βˆšπ‘²π‘¨ 𝒉𝑷 + πœ·π’“πŸ ) βˆ’ √( 𝒉𝑷 𝑲𝑨 )𝒙 A graph of ln(𝑇 βˆ’ π‘‡βˆž) against x gives an intercept [𝒍𝒏(𝑻𝒇 βˆ’ π‘»βˆž) + 𝒍𝒏( √ 𝑲𝑨 𝒉𝑷 √ 𝑲𝑨 𝒉𝑷 +πœ·π’“πŸ )] from which 𝑇𝑓 can be measured. Also knowing the thermo-conductivity, from the gradient of the above graph the heat transfer coefficient can be measured off. From experiment, using an aluminium rod of radius 2mm and using a thermoconductivity value of πŸπŸ‘πŸ– 𝑾 π’Žπ‘² ⁄ , The heat transfer coefficient h of aluminium was found to be πŸ” 𝑾 π’ŽπŸπ‘² ⁄ . Therefore, for a semi-infinite rod, the equation obeyed for small times is: 𝒙 = [π₯𝐧 ( 𝑻𝒇 βˆ’ π‘»βˆž 𝑻 βˆ’ π‘»βˆž )] Γ— βˆšπŸπœΆπ’• βˆ’ πœ·π’“πŸ Looking at the steady state solution below: 𝑇 βˆ’ π‘‡βˆž 𝑇𝑓 βˆ’ π‘‡βˆž = ( 𝛿 𝛿 + π›½π‘Ÿ2 )𝑒 βˆ’βˆš( β„Žπ‘ƒ 𝐾𝐴 )π‘₯ OR 𝑻 βˆ’ π‘»βˆž 𝑻𝒇 βˆ’ π‘»βˆž = ( βˆšπ‘²π‘¨ 𝒉𝑷 βˆšπ‘²π‘¨ 𝒉𝑷 + πœ·π’“πŸ )𝒆 βˆ’βˆš( 𝒉𝑷 𝑲𝑨 )𝒙 In most cases √ 𝑲𝑨 𝒉𝑷 ≫ πœ·π’“πŸ So, we observe:
  • 24. 𝑻 βˆ’ π‘»βˆž 𝑻𝒇 βˆ’ π‘»βˆž = 𝒆 βˆ’βˆš( 𝒉𝑷 𝑲𝑨 )𝒙 Which is the usual solution we know. From experiment, using a flame and candle wax on the aluminium rod, the ratio below was found to be ( 𝑻 βˆ’ π‘»βˆž 𝑻𝒇 βˆ’ π‘»βˆž ) β‰ˆ 𝟎. πŸπŸπŸ—πŸ–πŸ So, when can we apply the semi-infinite rod solution? Using the steady state equation of heat conduction 𝑇 βˆ’ π‘‡βˆž 𝑇𝑠 βˆ’ π‘‡βˆž = 𝑒 βˆ’βˆš( β„Žπ‘ƒ 𝐾𝐴 )𝐿 = π‘’βˆ’π‘šπΏ Where: π‘š = √( β„Žπ‘ƒ 𝐾𝐴 ) And From literature [1] the limiting length for use of semi-infinite model is got when 𝑇 βˆ’ π‘‡βˆž 𝑇𝑠 βˆ’ π‘‡βˆž = 0.01 The corresponding value of π‘šπΏ = 4.6 Hence as long as 𝑳 = πŸ’.πŸ” π’Ž = πŸ’. πŸ”βˆš( 𝑲𝑨 𝒉𝑷 ) the equation can be applied accurately.
  • 25. NB A particular method we can use to predict which temperature profile to use in solving the heat equation is by looking at the steady state equation below: From 𝛼 πœ•2 𝑇 πœ•π‘₯2 βˆ’ β„Žπ‘ƒ 𝐴𝜌𝐢 (𝑇 βˆ’ π‘‡βˆž) = πœ•π‘‡ πœ•π‘‘ In steady state πœ•π‘‡ πœ•π‘‘ = 0 So, the governing equation becomes: 𝛼 πœ•2 𝑇 πœ•π‘₯2 βˆ’ β„Žπ‘ƒ 𝐴𝜌𝐢 (𝑇 βˆ’ π‘‡βˆž) = 0 The general solution of the equation above is (𝑇 βˆ’ π‘‡βˆž) = 𝐢1π‘’βˆ’π‘šπ‘₯ + 𝐢2π‘’π‘šπ‘₯ Where: π‘š = √ β„Žπ‘ƒ 𝐾𝐴 For the semi-infinite case: The boundary conditions are: 𝑻 = 𝑻𝒔 𝒂𝒕 𝒙 = 𝟎 𝑻 = π‘»βˆž 𝒂𝒕 𝒙 = ∞ The second boundary condition makes 𝐢2 = 0 And the other boundary condition: 𝑻 = 𝑻𝒔 𝒂𝒕 𝒙 = 𝟎 Leads to 𝑇 βˆ’ π‘‡βˆž 𝑇𝑠 βˆ’ π‘‡βˆž = π‘’βˆ’π‘šπ‘₯ From what we learned earlier is that π‘š = 1 𝛿
  • 26. From now onwards we are going to use the fact that the temperature profile below satisfies the heat equation (𝑇 βˆ’ π‘‡βˆž) = 𝐢1π‘’βˆ’π‘šπ‘₯ + 𝐢2π‘’π‘šπ‘₯ Or (𝑻 βˆ’ π‘»βˆž) = π‘ͺπŸπ’† βˆ’π’™ 𝜹 + π‘ͺπŸπ’† 𝒙 𝜹
  • 27. HOW DOES HEAT FLOW MANIFEST ITSELF FOR FINITE METAL RODS? CASE 1: CONVECTION AT THE END OF A FINITE METAL ROD The boundary and initial conditions are: 𝑻 = 𝑻𝒔 𝒂𝒕 𝒙 = 𝟎 βˆ’π’Œ 𝒅𝑻 𝒅𝒙 = 𝒉𝑳(𝑻 βˆ’ π‘»βˆž) 𝒂𝒕 𝒙 = 𝒍 𝑻 = π‘»βˆž 𝒂𝒕 𝒕 = 𝟎 This same analysis can be extended to a metal rod with convection at the other end of the metal rod where the temperature profile is given by: [2] 𝑇 βˆ’ π‘‡βˆž 𝑇𝑠 βˆ’ π‘‡βˆž = cosh[π‘š(𝐿 βˆ’ π‘₯)] + ( β„ŽπΏ π‘šπ‘˜ ) sinh[π‘š(𝐿 βˆ’ π‘₯)] cosh π‘šπΏ + ( β„ŽπΏ π‘šπ‘˜ ) π‘ π‘–π‘›β„Žπ‘šπΏ Or 𝑇 βˆ’ π‘‡βˆž 𝑇𝑠 βˆ’ π‘‡βˆž = cosh [ (𝐿 βˆ’ π‘₯) 𝛿 ] + ( β„ŽπΏπ›Ώ π‘˜ ) sinh[( 𝐿 βˆ’ π‘₯ 𝛿 )] cosh 𝐿 𝛿 + ( β„ŽπΏπ›Ώ π‘˜ ) π‘ π‘–π‘›β„Ž 𝐿 𝛿 To show that the initial condition is satisfied we see from the above that π‘Žπ‘‘ 𝑑 = 0, 𝛿 = 0. 𝑇 βˆ’ π‘‡βˆž 𝑇𝑠 βˆ’ π‘‡βˆž = cosh [ (𝐿 βˆ’ π‘₯) 𝛿 ] + ( β„ŽπΏπ›Ώ π‘˜ ) sinh[( 𝐿 βˆ’ π‘₯ 𝛿 )] cosh 𝐿 𝛿 + ( β„Žπ›Ώ π‘˜ )π‘ π‘–π‘›β„Ž 𝐿 𝛿 Becomes: 𝑇 βˆ’ π‘‡βˆž 𝑇𝑠 βˆ’ π‘‡βˆž = cosh [ (𝐿 βˆ’ π‘₯) 𝛿 ] cosh 𝐿 𝛿 = 𝑒 (πΏβˆ’π‘₯) 𝛿 + 𝑒 βˆ’(πΏβˆ’π‘₯) 𝛿 𝑒 𝐿 𝛿 + 𝑒 βˆ’πΏ 𝛿 𝑒 βˆ’(πΏβˆ’π‘₯) 𝛿 = π‘’βˆ’ (πΏβˆ’π‘₯) 0 = π‘’βˆ’βˆž(πΏβˆ’π‘₯) = 0 Similarly
  • 28. 𝑒 βˆ’πΏ 𝛿 = 𝑒 βˆ’πΏ 0 = π‘’βˆ’βˆžπΏ = 0 So, we are left with 𝑇 βˆ’ π‘‡βˆž 𝑇𝑠 βˆ’ π‘‡βˆž = 𝑒 (πΏβˆ’π‘₯) 𝛿 𝑒 𝐿 𝛿 = 𝑒 βˆ’π‘₯ 𝛿 = 𝑒 βˆ’π‘₯ 0 = π‘’βˆ’βˆžπ‘₯ = 0 Hence at 𝑑 = 0, 𝑇 = π‘‡βˆž and hence the initial condition. To explain the transient state provide we have to get the expression for (𝑇𝑠 βˆ’ π‘‡βˆž) from: As we learned earlier in the semi-infinite case, we use βˆ’π’Œ 𝝏𝑻 𝝏𝒙 |𝒙=𝟎 = π’‰πŸŽ(𝑻𝒇 βˆ’ 𝑻𝒔) Recall the compact temperature profile is: 𝑇 βˆ’ π‘‡βˆž 𝑇𝑠 βˆ’ π‘‡βˆž = cosh[π‘š(𝐿 βˆ’ π‘₯)] + ( β„ŽπΏ π‘šπ‘˜ ) sinh[π‘š(𝐿 βˆ’ π‘₯)] cosh π‘šπΏ + ( β„ŽπΏ π‘šπ‘˜ ) π‘ π‘–π‘›β„Žπ‘šπΏ Where: π‘š = 1 𝛿 𝛿 = √ 𝐾𝐴 β„Žπ‘ƒ (1 βˆ’ 𝑒 βˆ’2β„Žπ‘ƒ 𝐴𝜌𝐢 𝑑 ) As shall be shown later πœ•π‘‡ πœ•π‘₯ |π‘₯=0 = βˆ’(𝑇𝑠 βˆ’ π‘‡βˆž)( π‘šπ‘‘π‘Žπ‘›β„Žπ‘šπΏ + β„ŽπΏ π‘˜ 1 + β„ŽπΏ π‘šπ‘˜ π‘‘π‘Žπ‘›β„Žπ‘šπΏ ) βˆ’π‘˜ πœ•π‘‡ πœ•π‘₯ |π‘₯=0 = π‘˜(𝑇𝑠 βˆ’ π‘‡βˆž) ( π‘šπ‘‘π‘Žπ‘›β„Žπ‘šπΏ + β„ŽπΏ π‘˜ 1 + β„ŽπΏ π‘šπ‘˜ π‘‘π‘Žπ‘›β„Žπ‘šπΏ )
  • 29. β„Ž0(𝑇𝑓 βˆ’ 𝑇𝑠) = π‘˜(𝑇𝑠 βˆ’ π‘‡βˆž) ( π‘šπ‘‘π‘Žπ‘›β„Žπ‘šπΏ + β„ŽπΏ π‘˜ 1 + β„ŽπΏ π‘šπ‘˜ π‘‘π‘Žπ‘›β„Žπ‘šπΏ ) β„Ž0(𝑇𝑓) βˆ’ β„Ž0(𝑇𝑠) = π‘˜(𝑇𝑠) ( π‘šπ‘‘π‘Žπ‘›β„Žπ‘šπΏ + β„ŽπΏ π‘˜ 1 + β„ŽπΏ π‘šπ‘˜ π‘‘π‘Žπ‘›β„Žπ‘šπΏ ) βˆ’ π‘˜(π‘‡βˆž) ( π‘šπ‘‘π‘Žπ‘›β„Žπ‘šπΏ + β„ŽπΏ π‘˜ 1 + β„ŽπΏ π‘šπ‘˜ π‘‘π‘Žπ‘›β„Žπ‘šπΏ ) Collecting like terms we get: 𝑇𝑠 (π‘˜ ( π‘šπ‘‘π‘Žπ‘›β„Žπ‘šπΏ + β„ŽπΏ π‘˜ 1 + β„ŽπΏ π‘šπ‘˜ π‘‘π‘Žπ‘›β„Žπ‘šπΏ ) + β„Ž0) = β„Ž0(𝑇𝑓) + π‘˜(π‘‡βˆž) ( π‘šπ‘‘π‘Žπ‘›β„Žπ‘šπΏ + β„ŽπΏ π‘˜ 1 + β„ŽπΏ π‘šπ‘˜ π‘‘π‘Žπ‘›β„Žπ‘šπΏ ) 𝑇𝑠 = β„Ž0(𝑇𝑓) + π‘˜(π‘‡βˆž) ( π‘šπ‘‘π‘Žπ‘›β„Žπ‘šπΏ + β„ŽπΏ π‘˜ 1 + β„ŽπΏ π‘šπ‘˜ π‘‘π‘Žπ‘›β„Žπ‘šπΏ ) (π‘˜ ( π‘šπ‘‘π‘Žπ‘›β„Žπ‘šπΏ + β„ŽπΏ π‘˜ 1 + β„ŽπΏ π‘šπ‘˜ π‘‘π‘Žπ‘›β„Žπ‘šπΏ ) + β„Ž0) Subtracting π‘‡βˆž from both sides we get: 𝑇𝑠 βˆ’ π‘‡βˆž = β„Ž0(𝑇𝑓) + π‘˜(π‘‡βˆž) ( π‘šπ‘‘π‘Žπ‘›β„Žπ‘šπΏ + β„ŽπΏ π‘˜ 1 + β„ŽπΏ π‘šπ‘˜ π‘‘π‘Žπ‘›β„Žπ‘šπΏ ) (π‘˜ ( π‘šπ‘‘π‘Žπ‘›β„Žπ‘šπΏ + β„ŽπΏ π‘˜ 1 + β„ŽπΏ π‘šπ‘˜ π‘‘π‘Žπ‘›β„Žπ‘šπΏ ) + β„Ž0) βˆ’ π‘‡βˆž Upon simplification, we get: 𝑇𝑠 βˆ’ π‘‡βˆž 𝑇𝑓 βˆ’ π‘‡βˆž = β„Ž0 (π‘˜ ( π‘šπ‘‘π‘Žπ‘›β„Žπ‘šπΏ + β„ŽπΏ π‘˜ 1 + β„ŽπΏ π‘šπ‘˜ π‘‘π‘Žπ‘›β„Žπ‘šπΏ ) + β„Ž0) Dividing through by β„Ž0 we get: 𝑇𝑠 βˆ’ π‘‡βˆž 𝑇𝑓 βˆ’ π‘‡βˆž = 1 ( π‘˜ β„Ž0 ( π‘šπ‘‘π‘Žπ‘›β„Žπ‘šπΏ + β„ŽπΏ π‘˜ 1 + β„ŽπΏ π‘šπ‘˜ π‘‘π‘Žπ‘›β„Žπ‘šπΏ ) + 1)
  • 30. But π‘š = 1 𝛿 Upon substitution and simplification, we get 𝑇𝑠 βˆ’ π‘‡βˆž 𝑇𝑓 βˆ’ π‘‡βˆž = 1 ( π‘˜ β„Ž0 ( π‘‘π‘Žπ‘›β„Ž 𝐿 𝛿 𝛿 + β„ŽπΏ π‘˜ 1 + β„ŽπΏπ›Ώ π‘˜ π‘‘π‘Žπ‘›β„Ž 𝐿 𝛿 ) + 1 ) Multiplying through by 𝛿 we get: 𝑇𝑠 βˆ’ π‘‡βˆž 𝑇𝑓 βˆ’ π‘‡βˆž = 𝛿 ( π‘˜ β„Ž0 ( π‘‘π‘Žπ‘›β„Ž 𝐿 𝛿 + β„ŽπΏπ›Ώ π‘˜ 1 + β„ŽπΏπ›Ώ π‘˜ π‘‘π‘Žπ‘›β„Ž 𝐿 𝛿 ) + 𝛿) But from the semi-infinite rod solution, we have π‘˜ β„Ž0 = π›½π‘Ÿ2 Upon substitution, we get: 𝑇𝑠 βˆ’ π‘‡βˆž 𝑇𝑓 βˆ’ π‘‡βˆž = 𝛿 (π›½π‘Ÿ2 ( π‘‘π‘Žπ‘›β„Ž 𝐿 𝛿 + β„ŽπΏπ›Ώ π‘˜ 1 + β„ŽπΏπ›Ώ π‘˜ π‘‘π‘Žπ‘›β„Ž 𝐿 𝛿 ) + 𝛿) (𝑇𝑠 βˆ’ π‘‡βˆž) = (𝑇𝑓 βˆ’ π‘‡βˆž) ( 𝛿 (π›½π‘Ÿ2 ( π‘‘π‘Žπ‘›β„Ž 𝐿 𝛿 + β„ŽπΏπ›Ώ π‘˜ 1 + β„ŽπΏπ›Ώ π‘˜ π‘‘π‘Žπ‘›β„Ž 𝐿 𝛿 ) + 𝛿) ) Upon substitution of (𝑇𝑠 βˆ’ π‘‡βˆž) in:
  • 31. 𝑇 βˆ’ π‘‡βˆž 𝑇𝑠 βˆ’ π‘‡βˆž = cosh [ (𝐿 βˆ’ π‘₯) 𝛿 ] + ( β„ŽπΏπ›Ώ π‘˜ ) sinh[( 𝐿 βˆ’ π‘₯ 𝛿 )] cosh 𝐿 𝛿 + ( β„ŽπΏπ›Ώ π‘˜ ) π‘ π‘–π‘›β„Ž 𝐿 𝛿 We get: 𝑻 βˆ’ π‘»βˆž 𝑻𝒇 βˆ’ π‘»βˆž = ( 𝜹 (πœ·π’“πŸ ( 𝒕𝒂𝒏𝒉 𝑳 𝜹 + π’‰π‘³πœΉ π’Œ 𝟏 + π’‰π‘³πœΉ π’Œ 𝒕𝒂𝒏𝒉 𝑳 𝜹 ) + 𝜹) ) ( 𝐜𝐨𝐬𝐑 [ (𝑳 βˆ’ 𝒙) 𝜹 ] + ( π’‰π‘³πœΉ π’Œ )𝐬𝐒𝐧𝐑 [( 𝑳 βˆ’ 𝒙 𝜹 )] 𝐜𝐨𝐬𝐑 𝑳 𝜹 + ( π’‰π‘³πœΉ π’Œ )π’”π’Šπ’π’‰ 𝑳 𝜹 )
  • 32. HOW DO WE INVESTIGATE THE NATURE OF 𝒉𝑳 EASILY? For convection boundary condition, the temperature profile obeyed is: 𝑇 βˆ’ π‘‡βˆž 𝑇𝑓 βˆ’ π‘‡βˆž = ( 𝛿 (π›½π‘Ÿ2 ( π‘‘π‘Žπ‘›β„Ž 𝐿 𝛿 + β„ŽπΏπ›Ώ π‘˜ 1 + β„ŽπΏπ›Ώ π‘˜ π‘‘π‘Žπ‘›β„Ž 𝐿 𝛿 ) + 𝛿) ) ( cosh [ (𝐿 βˆ’ π‘₯) 𝛿 ] + ( β„ŽπΏπ›Ώ π‘˜ ) sinh [( 𝐿 βˆ’ π‘₯ 𝛿 )] cosh 𝐿 𝛿 + ( β„ŽπΏπ›Ώ π‘˜ )π‘ π‘–π‘›β„Ž 𝐿 𝛿 ) To investigate 𝒉𝑳 easily, we use this simple experiment: Where: 𝛿 = √ 𝐾𝐴 β„Žπ‘ƒ (1 βˆ’ 𝑒 βˆ’2β„Žπ‘ƒ 𝐴𝜌𝐢 𝑑 ) As shall be shown later when we solve the heat equation analytically using the integral transform to get 𝛿. For a wax particle at π‘₯ = 𝐿 As shown in the diagram above with convection allowed: The temperature profile obeyed is:
  • 33. 𝑇 βˆ’ π‘‡βˆž 𝑇𝑓 βˆ’ π‘‡βˆž = ( 𝛿 (π›½π‘Ÿ2 ( π‘‘π‘Žπ‘›β„Ž 𝐿 𝛿 + β„ŽπΏπ›Ώ π‘˜ 1 + β„ŽπΏπ›Ώ π‘˜ π‘‘π‘Žπ‘›β„Ž 𝐿 𝛿 ) + 𝛿) ) ( 1 cosh 𝐿 𝛿 + ( β„ŽπΏπ›Ώ π‘˜ )π‘ π‘–π‘›β„Ž 𝐿 𝛿 ) Mathematically, what form should the equation of β„ŽπΏ against length L take on? First of all, we know that when the length L becomes zero(i.e., there is no metal rod), the flux is due to only the flame and is given by π‘ž = β„Žπ‘œ(𝑇𝑓 βˆ’ π‘‡βˆž) The power then is β„Žπ‘œπ΄(𝑇𝑓 βˆ’ π‘‡βˆž) = π‘‘π‘š 𝑑𝑑 𝐻𝐢 The above is the condition to be satisfied. The flux at x=L, is given by: π‘ž = β„ŽπΏ(𝑇𝐿 βˆ’ π‘‡βˆž) Upon substituting for (𝑇𝐿 βˆ’ π‘‡βˆž), we get 𝒒 = 𝒉𝑳 ( 𝜹 (πœ·π’“πŸ ( 𝒕𝒂𝒏𝒉 𝑳 𝜹 + π’‰π‘³πœΉ π’Œ 𝟏 + π’‰π‘³πœΉ π’Œ 𝒕𝒂𝒏𝒉 𝑳 𝜹 ) + 𝜹) ) ( 𝟏 𝐜𝐨𝐬𝐑 𝑳 𝜹 + ( π’‰π‘³πœΉ π’Œ )π’”π’Šπ’π’‰ 𝑳 𝜹 ) (𝑻𝒇 βˆ’ π‘»βˆž) We know that when L=0, the flux should reduce to 𝒒 = 𝒉𝒐(𝑻𝒇 βˆ’ π‘»βˆž) Making the first guess that β„ŽπΏ = β„Žπ‘œπ‘’βˆ’π‘šπΏ Where:
  • 34. π‘š = √ β„Žπ‘ƒ 𝐾𝐴 𝒒 = 𝒉𝑳 ( 𝜹 (πœ·π’“πŸ ( 𝒕𝒂𝒏𝒉 𝑳 𝜹 + π’‰π‘³πœΉ π’Œ 𝟏 + π’‰π‘³πœΉ π’Œ 𝒕𝒂𝒏𝒉 𝑳 𝜹 ) + 𝜹) ) ( 𝟏 𝐜𝐨𝐬𝐑 𝑳 𝜹 + ( π’‰π‘³πœΉ π’Œ )π’”π’Šπ’π’‰ 𝑳 𝜹 ) (𝑻𝒇 βˆ’ π‘»βˆž) β„ŽπΏ = β„Žπ‘œπ‘’βˆ’π‘šπΏ Substituting for L=0 in the flux equation we get β„ŽπΏ = β„Žπ‘œ So 𝒒 = π’‰πŸŽ ( 𝜹 (πœ·π’“πŸ ( 𝒕𝒂𝒏𝒉 𝟎 𝜹 + π’‰πŸŽπœΉ π’Œ 𝟏 + π’‰πŸŽπœΉ π’Œ 𝒕𝒂𝒏𝒉 𝟎 𝜹 ) + 𝜹) ) ( 𝟏 𝐜𝐨𝐬𝐑 𝟎 𝜹 + ( π’‰πŸŽπœΉ π’Œ )π’”π’Šπ’π’‰ 𝟎 𝜹 ) (𝑻𝒇 βˆ’ π‘»βˆž) We get: π‘ž = β„Ž0 ( 𝛿 (π›½π‘Ÿ2 ( β„Ž0𝛿 π‘˜ ) + 𝛿) )(𝑇𝑓 βˆ’ π‘‡βˆž) π‘ž = β„Ž0 ( 1 (π›½π‘Ÿ2 ( β„Ž0 π‘˜ ) + 1) )(𝑇𝑓 βˆ’ π‘‡βˆž) But β„Ž0 π‘˜ = 1 π›½π‘Ÿ2
  • 35. π‘ž = β„Ž0 ( 1 (1 + 1) ) (𝑇𝑓 βˆ’ π‘‡βˆž) We finally get: 𝒒 = 𝟏 𝟐 𝒉𝒐(𝑻𝒇 βˆ’ π‘»βˆž) Which doesn’t satisfy the condition above. Now choosing β„ŽπΏ = 𝛾 𝐿𝑛 Which means that β„ŽπΏ is inversely proportional to length L to power n. As length 𝐿 β†’ 0, β„ŽπΏ β†’ ∞ Upon substituting in the flux equation for L=0, we end up with: π‘ž = β„ŽπΏ ( 𝛿 (π›½π‘Ÿ2 ( π‘‘π‘Žπ‘›β„Ž 0 𝛿 + β„ŽπΏπ›Ώ π‘˜ 1 + β„ŽπΏπ›Ώ π‘˜ π‘‘π‘Žπ‘›β„Ž 0 𝛿 ) + 𝛿) ) ( 1 cosh 0 𝛿 + ( β„ŽπΏπ›Ώ π‘˜ ) π‘ π‘–π‘›β„Ž 0 𝛿 ) (𝑇𝑓 βˆ’ π‘‡βˆž) π‘ž = β„ŽπΏ ( 𝛿 (π›½π‘Ÿ2 ( β„ŽπΏπ›Ώ π‘˜ ) + 𝛿) ) (𝑇𝑓 βˆ’ π‘‡βˆž) π‘ž = β„ŽπΏ ( 1 (π›½π‘Ÿ2 ( β„ŽπΏ π‘˜ ) + 1) )(𝑇𝑓 βˆ’ π‘‡βˆž) But π‘Žπ‘  𝐿 β†’ ∞, β„ŽπΏ β†’ ∞, π‘ π‘œ π›½π‘Ÿ2 ( β„ŽπΏ π‘˜ ) + 1 β‰ˆ π›½π‘Ÿ2 ( β„ŽπΏ π‘˜ ) We get: π‘ž = β„ŽπΏ ( 1 (π›½π‘Ÿ2 ( β„ŽπΏ π‘˜ )) ) (𝑇𝑓 βˆ’ π‘‡βˆž)
  • 36. We get π‘ž = π‘˜ π›½π‘Ÿ2 (𝑇𝑓 βˆ’ π‘‡βˆž) But π‘˜ π›½π‘Ÿ2 = β„Žπ‘œ So, we end up with: π‘ž = β„Žπ‘œ(𝑇𝑓 βˆ’ π‘‡βˆž) Which is the required equation hence β„ŽπΏ takes on the form β„ŽπΏ = 𝛾 𝐿𝑛 From experiment, it was found that 𝑛 = 1. Going back to 𝑇 βˆ’ π‘‡βˆž 𝑇𝑓 βˆ’ π‘‡βˆž = ( 𝛿 (π›½π‘Ÿ2 ( π‘‘π‘Žπ‘›β„Ž 𝐿 𝛿 + β„ŽπΏπ›Ώ π‘˜ 1 + β„ŽπΏπ›Ώ π‘˜ π‘‘π‘Žπ‘›β„Ž 𝐿 𝛿 ) + 𝛿) ) ( 1 cosh 𝐿 𝛿 + ( β„ŽπΏπ›Ώ π‘˜ )π‘ π‘–π‘›β„Ž 𝐿 𝛿 ) We go ahead and rearrange the equation above to get a quadratic equation in β„ŽπΏ and investigate the nature of β„ŽπΏ by varying the length of the metal rod and noting the time taken for the wax to melt. Calling, 𝑇 βˆ’ π‘‡βˆž 𝑇𝑓 βˆ’ π‘‡βˆž = 1 𝐡 And π›½π‘Ÿ2 = 𝑐 Upon rearranging, we get: 𝒉𝑳 𝟐 [ 𝛿2 𝑐 π‘˜2 π‘ π‘–π‘›β„Ž ( 𝐿 𝛿 ) + 𝛿3 π‘˜2 π‘ π‘–π‘›β„Ž ( 𝐿 𝛿 ) π‘‘π‘Žπ‘›β„Ž ( 𝐿 𝛿 )] + 𝒉𝑳 [ 𝛿𝑐 π‘˜ π‘π‘œπ‘ β„Ž ( 𝐿 𝛿 ) + 𝛿𝑐 π‘˜ π‘ π‘–π‘›β„Ž ( 𝐿 𝛿 ) π‘‘π‘Žπ‘›β„Ž ( 𝐿 𝛿 ) + 2𝛿2 π‘˜ π‘ π‘–π‘›β„Ž ( 𝐿 𝛿 ) βˆ’ 𝐡𝛿2 π‘˜ π‘‘π‘Žπ‘›β„Ž ( 𝐿 𝛿 )] + [π‘π‘ π‘–π‘›β„Ž ( 𝐿 𝛿 ) + π›Ώπ‘π‘œπ‘ β„Ž ( 𝐿 𝛿 ) βˆ’ 𝐡𝛿]
  • 37. From experimental values, it was found that β„ŽπΏ varies inversely with length taking on the form below: 𝒉𝑳 = π’‰π‘³πŸŽ π’Žπ’ Where: π‘š = √ β„Žπ‘ƒ 𝐾𝐴 Taking natural logs, we get: 𝑙𝑛(β„ŽπΏ) = ln( β„ŽπΏ0 π‘š ) βˆ’ ln(𝐿) For aluminium rods of radius 2mm, the graph looked as below: π’‰π‘³πŸŽ = 𝜺 Γ— 𝑲 𝒓 Where: πœ€ = π‘’π‘šπ‘–π‘ π‘ π‘–π‘£π‘–π‘‘π‘¦ πœ€ = 0.006671 β„ŽπΏ = β„ŽπΏ0 π‘šπ‘™ y = -1.001x + 5.1071 RΒ² = 0.9781 0 1 2 3 4 5 6 7 8 9 10 -4 -3 -2 -1 0 Ln(hL) Ln(L) A graph of Ln(hL) against Ln(L) for AL rods radius 2mm Series1 Linear (Series1)
  • 38. 𝒉𝑳 = 𝜺 Γ— 𝑲 𝑳 Γ— √ 𝑲 πŸπ’‰π’“ The emissivity πœ€ can be taken to be independent of nature of metal. For aluminium rods of radius 1mm, the graph looked as below: Looking at the solution at π‘₯ = 𝐿 𝑇 βˆ’ π‘‡βˆž 𝑇𝑓 βˆ’ π‘‡βˆž = ( 𝛿 (π›½π‘Ÿ2 ( π‘‘π‘Žπ‘›β„Ž 𝐿 𝛿 + β„ŽπΏπ›Ώ π‘˜ 1 + β„ŽπΏπ›Ώ π‘˜ π‘‘π‘Žπ‘›β„Ž 𝐿 𝛿 ) + 𝛿) ) ( 1 cosh 𝐿 𝛿 + ( β„ŽπΏπ›Ώ π‘˜ )π‘ π‘–π‘›β„Ž 𝐿 𝛿 ) Rearranging the equation above, we get (π›½π‘Ÿ2 ( π‘‘π‘Žπ‘›β„Ž 𝐿 𝛿 + β„ŽπΏπ›Ώ π‘˜ 1 + β„ŽπΏπ›Ώ π‘˜ π‘‘π‘Žπ‘›β„Ž 𝐿 𝛿 ) + 𝛿) = ( 𝑇𝑓 βˆ’ π‘‡βˆž 𝑇 βˆ’ π‘‡βˆž ) Γ— ( 𝛿 cosh 𝐿 𝛿 + ( β„ŽπΏπ›Ώ π‘˜ ) π‘ π‘–π‘›β„Ž 𝐿 𝛿 ) Calling 𝑦 = (π›½π‘Ÿ2 ( π‘‘π‘Žπ‘›β„Ž 𝐿 𝛿 + β„ŽπΏπ›Ώ π‘˜ 1 + β„ŽπΏπ›Ώ π‘˜ π‘‘π‘Žπ‘›β„Ž 𝐿 𝛿 ) + 𝛿) y = -1.078x + 5.364 RΒ² = 0.9919 0 1 2 3 4 5 6 7 8 9 10 -4 -3 -2 -1 0 Ln(hL) Ln(L) A graph of Ln(hL) against Ln(L) for AL rods radius 1mm Series1 Linear (Series1)
  • 39. And π‘₯ = ( 𝛿 cosh 𝐿 𝛿 + ( β„ŽπΏπ›Ώ π‘˜ )π‘ π‘–π‘›β„Ž 𝐿 𝛿 ) Plotting a graph of y against x for aluminium rods of radius 1mm looked as below with: β„ŽπΏ = πœ€ Γ— 𝐾 𝐿 Γ— √ 𝐾 2β„Žπ‘Ÿ 𝒉𝑳 = 𝟎. πŸŽπŸŽπŸ”πŸ”πŸ•πŸ Γ— 𝑲 𝑳 Γ— √ 𝑲 πŸπ’‰π’“ The flux at π‘₯ = 𝐿 is given by: 𝒒 = 𝒉𝑳(𝑻 βˆ’ π‘»βˆž) It can be shown that after substituting for temperature (𝑻 βˆ’ π‘»βˆž) and 𝒉𝑳, the maximum possible flux got is when length L tends to zero and is given by π’’π’Žπ’‚π’™ = π’‰πŸŽ(𝑻𝒇 βˆ’ π‘»βˆž) Which is the flux of the hot flame. y = 4.3301x 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 y x A graph of y against x
  • 40. DERIVATION OF THE GENERAL EXPRESSION FOR HEAT TRANSFER COEFFICIENT 𝒉𝑳. Recall for cylindrical rods the expression was: β„ŽπΏ = πœ€ Γ— 𝐾 𝐿 Γ— √ 𝐾 2β„Žπ‘Ÿ OR β„ŽπΏ = 0.006671 Γ— 𝐾 𝐿 Γ— √ 𝐾 2β„Žπ‘Ÿ How could we arrive to that expression from a general expression? The general expression is given by: 𝒉𝑳𝑨𝑳(𝑻𝑳 βˆ’ π‘»βˆž) = 𝜺 Γ— π’Žπ‘² πŸπ’‰ Γ— 𝑸 OR 𝒉𝑳𝑨𝑳(𝑻𝑳 βˆ’ π‘»βˆž) = 𝟎. πŸŽπŸŽπŸ”πŸ”πŸ•πŸ Γ— π’Žπ‘² πŸπ’‰ Γ— 𝑸 Where: 𝑄 = 𝑇𝐿 βˆ’ π‘‡βˆž 𝑅 𝑅 = π‘π‘œπ‘›π‘‘π‘’π‘π‘‘π‘–π‘£π‘’ π‘Ÿπ‘’π‘ π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’ 𝐴𝐿 = π‘π‘œπ‘›π‘‘π‘’π‘π‘‘π‘–π‘œπ‘› π‘Žπ‘Ÿπ‘’π‘Ž π‘Žπ‘‘ π‘™π‘’π‘›π‘”π‘‘β„Ž 𝐿 π‘š = √ β„Žπ‘ƒ 𝐾𝐴 π‘“π‘œπ‘Ÿ π‘π‘¦π‘™π‘–π‘›π‘‘π‘Ÿπ‘–π‘π‘Žπ‘™ π‘Ÿπ‘œπ‘‘ π‘š = √ 2β„Ž πΎπ‘Ÿ For cylindrical rod 𝑅 = 𝐿 𝐾𝐴
  • 41. For cylindrical metal rods, 𝐴𝐿 = 𝐴 So, we have β„ŽπΏπ΄(𝑇𝐿 βˆ’ π‘‡βˆž) = 0.006671 Γ— 𝐾 2β„Ž √ 2β„Ž πΎπ‘Ÿ Γ— 𝐾𝐴( 𝑇𝐿 βˆ’ π‘‡βˆž 𝐿 ) Upon simplification, we get the expected expression: β„ŽπΏ = 0.006671 Γ— 𝐾 𝐿 Γ— √ 𝐾 2β„Žπ‘Ÿ OR 𝒉𝑳 = 𝜺 Γ— 𝑲 𝑳 Γ— √ 𝑲 πŸπ’‰π’“ We can extend the above analysis to cylindrical co-ordinates heat conduction knowing their conductive resistance.
  • 42. Let us solve the heat equation to get the expression for 𝛿. We use this temperature profile which satisfies the initial condition to solve the heat equation and get 𝛿 as shown below: Boundary and initial conditions are: 𝑻 = 𝑻𝒔 𝒂𝒕 𝒙 = 𝟎 βˆ’π’Œ 𝒅𝑻 𝒅𝒙 = 𝒉𝑳(𝑻 βˆ’ π‘»βˆž) 𝒂𝒕 𝒙 = 𝒍 𝑻 = π‘»βˆž 𝒂𝒕 𝒕 = 𝟎 The governing temperature profile is: 𝑇 βˆ’ π‘‡βˆž 𝑇𝑠 βˆ’ π‘‡βˆž = cosh [ (𝐿 βˆ’ π‘₯) 𝛿 ] + ( β„ŽπΏπ›Ώ π‘˜ ) sinh[( 𝐿 βˆ’ π‘₯ 𝛿 )] cosh 𝐿 𝛿 + ( β„ŽπΏπ›Ώ π‘˜ ) π‘ π‘–π‘›β„Ž 𝐿 𝛿 The governing equation is 𝛼 πœ•2 𝑇 πœ•π‘₯2 βˆ’ β„Žπ‘ƒ 𝐴𝜌𝐢 (𝑇 βˆ’ π‘‡βˆž) = πœ•π‘‡ πœ•π‘‘ Let us change this equation into an integral equation as below: 𝛼 ∫ ( πœ•2 𝑇 πœ•π‘₯2 ) 𝑑π‘₯ 𝑙 0 βˆ’ β„Žπ‘ƒ 𝐴𝜌𝐢 ∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯ 𝑙 0 = πœ• πœ•π‘‘ ∫ (𝑇)𝑑π‘₯ 𝑙 0 … … . . 𝑏) 𝛼 ∫ ( πœ•2 𝑇 πœ•π‘₯2 ) 𝑑π‘₯ 𝑙 0 βˆ’ 2β„Ž π‘ŸπœŒπΆ ∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯ 𝑙 0 = πœ• πœ•π‘‘ ∫ (𝑇)𝑑π‘₯ 𝑙 0 ∫ ( πœ•2 𝑇 πœ•π‘₯2 )𝑑π‘₯ 𝑙 0 = [ πœ•π‘‡ πœ•π‘₯ ] 𝑙 0 = (𝑇𝑠 βˆ’ π‘‡βˆž) 𝛿 ( βˆ’ β„ŽπΏπ›Ώ π‘˜ + (π‘ π‘–π‘›β„Ž 𝐿 𝛿 + β„ŽπΏπ›Ώ π‘˜ π‘π‘œπ‘ β„Ž 𝐿 𝛿 ) π‘π‘œπ‘ β„Ž 𝐿 𝛿 + β„ŽπΏπ›Ώ π‘˜ π‘ π‘–π‘›β„Ž 𝐿 𝛿 ) ∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯ 𝑙 0 = |βˆ’π›Ώ(𝑇𝑠 βˆ’ π‘‡βˆž) ( sinh [ (𝐿 βˆ’ π‘₯) 𝛿 ] + β„ŽπΏπ›Ώ π‘˜ cosh [ (𝐿 βˆ’ π‘₯) 𝛿 ] π‘π‘œπ‘ β„Ž 𝐿 𝛿 + β„ŽπΏπ›Ώ π‘˜ π‘ π‘–π‘›β„Ž 𝐿 𝛿 )| 𝑙 0
  • 43. ∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯ 𝑙 0 = 𝛿(𝑇𝑠 βˆ’ π‘‡βˆž) ( βˆ’ β„ŽπΏπ›Ώ π‘˜ + (π‘ π‘–π‘›β„Ž 𝐿 𝛿 + β„ŽπΏπ›Ώ π‘˜ π‘π‘œπ‘ β„Ž 𝐿 𝛿 ) π‘π‘œπ‘ β„Ž 𝐿 𝛿 + β„ŽπΏπ›Ώ π‘˜ π‘ π‘–π‘›β„Ž 𝐿 𝛿 ) 𝑇 βˆ’ π‘‡βˆž 𝑇𝑠 βˆ’ π‘‡βˆž = cosh [ (𝐿 βˆ’ π‘₯) 𝛿 ] + ( β„ŽπΏπ›Ώ π‘˜ ) sinh[( 𝐿 βˆ’ π‘₯ 𝛿 )] cosh 𝐿 𝛿 + ( β„ŽπΏπ›Ώ π‘˜ ) π‘ π‘–π‘›β„Ž 𝐿 𝛿 𝑇 = cosh [ (𝐿 βˆ’ π‘₯) 𝛿 ] + ( β„ŽπΏπ›Ώ π‘˜ )sinh[( 𝐿 βˆ’ π‘₯ 𝛿 )] cosh 𝐿 𝛿 + ( β„ŽπΏπ›Ώ π‘˜ )π‘ π‘–π‘›β„Ž 𝐿 𝛿 (𝑇𝑠 βˆ’ π‘‡βˆž) + π‘‡βˆž πœ• πœ•π‘‘ ∫ (𝑇)𝑑π‘₯ 𝑙 0 = πœ• πœ•π‘‘ [𝛿(𝑇𝑠 βˆ’ π‘‡βˆž) ( βˆ’ β„ŽπΏπ›Ώ π‘˜ + (π‘ π‘–π‘›β„Ž 𝐿 𝛿 + β„ŽπΏπ›Ώ π‘˜ π‘π‘œπ‘ β„Ž 𝐿 𝛿 ) π‘π‘œπ‘ β„Ž 𝐿 𝛿 + β„ŽπΏπ›Ώ π‘˜ π‘ π‘–π‘›β„Ž 𝐿 𝛿 )] + πœ•(π‘™π‘‡βˆž) πœ•π‘‘ πœ•(π‘™π‘‡βˆž) πœ•π‘‘ = 0 Upon substitution of all the above in the heat equation, we get: 𝛼 (𝑇𝑠 βˆ’ π‘‡βˆž) 𝛿 ( βˆ’ β„ŽπΏπ›Ώ π‘˜ + (π‘ π‘–π‘›β„Ž 𝐿 𝛿 + β„ŽπΏπ›Ώ π‘˜ π‘π‘œπ‘ β„Ž 𝐿 𝛿 ) π‘π‘œπ‘ β„Ž 𝐿 𝛿 + β„ŽπΏπ›Ώ π‘˜ π‘ π‘–π‘›β„Ž 𝐿 𝛿 ) βˆ’ 2β„Ž π‘ŸπœŒπΆ 𝛿(𝑇𝑠 βˆ’ π‘‡βˆž)( βˆ’ β„ŽπΏπ›Ώ π‘˜ + (π‘ π‘–π‘›β„Ž 𝐿 𝛿 + β„ŽπΏπ›Ώ π‘˜ π‘π‘œπ‘ β„Ž 𝐿 𝛿 ) π‘π‘œπ‘ β„Ž 𝐿 𝛿 + β„ŽπΏπ›Ώ π‘˜ π‘ π‘–π‘›β„Ž 𝐿 𝛿 ) = πœ• πœ•π‘‘ [𝛿(𝑇𝑠 βˆ’ π‘‡βˆž)( βˆ’ β„ŽπΏπ›Ώ π‘˜ + (π‘ π‘–π‘›β„Ž 𝐿 𝛿 + β„ŽπΏπ›Ώ π‘˜ π‘π‘œπ‘ β„Ž 𝐿 𝛿 ) π‘π‘œπ‘ β„Ž 𝐿 𝛿 + β„ŽπΏπ›Ώ π‘˜ π‘ π‘–π‘›β„Ž 𝐿 𝛿 )] We notice that the term(𝑇𝑠 βˆ’ π‘‡βˆž) ( βˆ’ β„ŽπΏπ›Ώ π‘˜ +(π‘ π‘–π‘›β„Ž 𝐿 𝛿 + β„ŽπΏπ›Ώ π‘˜ π‘π‘œπ‘ β„Ž 𝐿 𝛿 ) π‘π‘œπ‘ β„Ž 𝐿 𝛿 + β„ŽπΏπ›Ώ π‘˜ π‘ π‘–π‘›β„Ž 𝐿 𝛿 ) is common and can be eliminated and what this signifies is that the nature of (𝑇𝑠 βˆ’ π‘‡βˆž) doesn’t matter and so we get: 𝛼 𝛿 βˆ’ 2β„Ž π‘ŸπœŒπΆ 𝛿 = 𝑑𝛿 𝑑𝑑 We go ahead and solve for 𝛿 provided 𝛿 = 0π‘Žπ‘‘ 𝑑 = 0 and get the expression 𝛿 = √ 𝐾𝐴 β„Žπ‘ƒ (1 βˆ’ 𝑒 βˆ’2β„Žπ‘ƒ 𝐴𝜌𝐢 𝑑 ) So, the final solution for the finite metal rod with convective flux at the end of the metal rod is:
  • 44. 𝑻 βˆ’ π‘»βˆž 𝑻𝒇 βˆ’ π‘»βˆž = ( 𝜹 (πœ·π’“πŸ ( 𝒕𝒂𝒏𝒉 𝑳 𝜹 + π’‰π‘³πœΉ π’Œ 𝟏 + π’‰π‘³πœΉ π’Œ 𝒕𝒂𝒏𝒉 𝑳 𝜹 ) + 𝜹) ) ( 𝐜𝐨𝐬𝐑 [ (𝑳 βˆ’ 𝒙) 𝜹 ] + ( π’‰π‘³πœΉ π’Œ )𝐬𝐒𝐧𝐑 [( 𝑳 βˆ’ 𝒙 𝜹 )] 𝐜𝐨𝐬𝐑 𝑳 𝜹 + ( π’‰π‘³πœΉ π’Œ )π’”π’Šπ’π’‰ 𝑳 𝜹 ) The solution reduces to the semi-infinite rod solution when the length L of the metal rod tends to infinity. Using the above solution, it was shown experimentally that the ratio 𝑻 βˆ’ π‘»βˆž 𝑻𝒇 βˆ’ π‘»βˆž = 𝟎. πŸπŸ‘πŸŽπŸ—πŸ’ As for the semi-infinite metal rod. The above completes our analysis.
  • 45. CASE 2: ZERO FLUX AT THE END OF THE METAL ROD? In reality, it is hard to achieve zero flux. The boundary and initial conditions are: 𝑻 = 𝑻𝒔 𝒂𝒕 𝒙 = 𝟎 𝒅𝑻 𝒅𝒙 = 𝟎 𝒂𝒕 𝒙 = 𝒍 𝑻 = π‘»βˆž 𝒂𝒕 𝒕 = 𝟎 The governing equation is 𝛼 πœ•2 𝑇 πœ•π‘₯2 βˆ’ β„Žπ‘ƒ 𝐴𝜌𝐢 (𝑇 βˆ’ π‘‡βˆž) = πœ•π‘‡ πœ•π‘‘ Recall that the temperature profile we are going to use is: (𝑇 βˆ’ π‘‡βˆž) = 𝐢1π‘’βˆ’π‘šπ‘₯ + 𝐢2π‘’π‘šπ‘₯ Or (𝑻 βˆ’ π‘»βˆž) = π‘ͺπŸπ’† βˆ’π’™ 𝜹 + π‘ͺπŸπ’† 𝒙 𝜹 First of all, to satisfy the boundary conditions above, the temperature profile becomes [2]: 𝑇 βˆ’ π‘‡βˆž 𝑇𝑠 βˆ’ π‘‡βˆž = π‘’π‘šπ‘₯ 1 + 𝑒2π‘šπΏ + π‘’βˆ’π‘šπ‘₯ 1 + π‘’βˆ’2π‘šπΏ
  • 46. Or The equation above can be rearranged to get [3] 𝑇 βˆ’ π‘‡βˆž 𝑇𝑠 βˆ’ π‘‡βˆž = cosh[π‘š(𝐿 βˆ’ π‘₯)] cosh π‘šπΏ In terms of 𝜹 we get 𝑇 βˆ’ π‘‡βˆž 𝑇𝑠 βˆ’ π‘‡βˆž = cosh[ (𝐿 βˆ’ π‘₯) 𝛿 ] cosh 𝐿 𝛿 Or using the first equation, we get: 𝑇 βˆ’ π‘‡βˆž 𝑇𝑠 βˆ’ π‘‡βˆž = 𝑒 π‘₯ 𝛿 1 + 𝑒 2𝐿 𝛿 + 𝑒 βˆ’π‘₯ 𝛿 1 + 𝑒 βˆ’2𝐿 𝛿 Let us examine the initial condition, It can be shown that after solving the heat equation 𝛿 will take on the form: 𝛿 = √ 𝐾𝐴 β„Žπ‘ƒ (1 βˆ’ 𝑒 βˆ’2β„Žπ‘ƒ 𝐴𝜌𝐢 𝑑 ) At 𝑑 = 0, 𝛿 = 0 π‘Žπ‘›π‘‘ π‘š = 1 𝛿 = ∞ Upon substitution in 𝑇 βˆ’ π‘‡βˆž 𝑇𝑠 βˆ’ π‘‡βˆž = π‘’π‘šπ‘₯ 1 + 𝑒2π‘šπΏ + π‘’βˆ’π‘šπ‘₯ 1 + π‘’βˆ’2π‘šπΏ We get 𝑇 βˆ’ π‘‡βˆž 𝑇𝑠 βˆ’ π‘‡βˆž = π‘’βˆžπ‘₯ 1 + 𝑒2∞𝐿 + π‘’βˆ’βˆžπ‘₯ 1 + π‘’βˆ’2∞𝐿 For a given π‘₯ We get:
  • 47. 𝑇 βˆ’ π‘‡βˆž 𝑇𝑠 βˆ’ π‘‡βˆž = π‘’π‘šπ‘₯ 1 + 𝑒2∞𝐿 β‰ˆ π‘’π‘šπ‘₯ 𝑒2π‘šπΏ = π‘’βˆ’π‘š(πΏβˆ’π‘₯) = π‘’βˆ’βˆž(πΏβˆ’π‘₯) = 0 Since (𝐿 βˆ’ π‘₯) > 0 Hence the initial condition is satisfied. Getting back to business, we noticed that in the semi-infinite rod solution there was convection at the hot end of the rod. So, to solve for what is observed in the finite metal rod solution with zero flux at the end of the rod, we have to use that fact as stated below: βˆ’π’Œ 𝝏𝑻 𝝏𝒙 |𝒙=𝟎 = π’‰πŸŽ(𝑻𝒇 βˆ’ 𝑻𝒔) Recall the compact temperature profile for zero flux at the end of a finite metal rod is: 𝑇 βˆ’ π‘‡βˆž 𝑇𝑠 βˆ’ π‘‡βˆž = cosh[π‘š(𝐿 βˆ’ π‘₯)] cosh π‘šπΏ Where: π‘š = 1 𝛿 πœ•π‘‡ πœ•π‘₯ |π‘₯=0 = βˆ’(𝑇𝑠 βˆ’ π‘‡βˆž)π‘šπ‘‘π‘Žπ‘›β„Žπ‘šπΏ βˆ’π‘˜ πœ•π‘‡ πœ•π‘₯ |π‘₯=0 = π‘˜(𝑇𝑠 βˆ’ π‘‡βˆž)π‘šπ‘‘π‘Žπ‘›β„Žπ‘šπΏ β„Ž0(𝑇𝑓 βˆ’ 𝑇𝑠) = π‘˜(𝑇𝑠 βˆ’ π‘‡βˆž)π‘šπ‘‘π‘Žπ‘›β„Žπ‘šπΏ β„Ž0(𝑇𝑓) βˆ’ β„Ž0(𝑇𝑠) = π‘˜(𝑇𝑠)π‘šπ‘‘π‘Žπ‘›β„Žπ‘šπΏ βˆ’ π‘˜(π‘‡βˆž)π‘šπ‘‘π‘Žπ‘›β„Žπ‘šπΏ Collecting like terms we get: 𝑇𝑠(π‘˜π‘šπ‘‘π‘Žπ‘›β„Žπ‘šπΏ + β„Ž0) = β„Ž0(𝑇𝑓) + π‘˜(π‘‡βˆž)π‘šπ‘‘π‘Žπ‘›β„Žπ‘šπΏ 𝑇𝑠 = β„Ž0(𝑇𝑓) + π‘˜(π‘‡βˆž)π‘šπ‘‘π‘Žπ‘›β„Žπ‘šπΏ (π‘˜π‘šπ‘‘π‘Žπ‘›β„Žπ‘šπΏ + β„Ž0) Subtracting π‘‡βˆž from both sides we get:
  • 48. 𝑇𝑠 βˆ’ π‘‡βˆž = β„Ž0(𝑇𝑓) + π‘˜(π‘‡βˆž)π‘šπ‘‘π‘Žπ‘›β„Žπ‘šπΏ (π‘˜π‘šπ‘‘π‘Žπ‘›β„Žπ‘šπΏ + β„Ž0) βˆ’ π‘‡βˆž Upon simplification, we get: 𝑇𝑠 βˆ’ π‘‡βˆž 𝑇𝑓 βˆ’ π‘‡βˆž = β„Ž0 π‘˜π‘šπ‘‘π‘Žπ‘›β„Žπ‘šπΏ + β„Ž0 But π‘š = 1 𝛿 Upon substitution and simplification, we get 𝑇𝑠 βˆ’ π‘‡βˆž 𝑇𝑓 βˆ’ π‘‡βˆž = 𝛿 π‘˜ β„Ž0 π‘‘π‘Žπ‘›β„Ž 𝐿 𝛿 + 𝛿 But from the semi-infinite rod solution, we have π‘˜ β„Ž0 = π›½π‘Ÿ2 Upon substitution, we get: 𝑇𝑠 βˆ’ π‘‡βˆž 𝑇𝑓 βˆ’ π‘‡βˆž = 𝛿 π›½π‘Ÿ2π‘‘π‘Žπ‘›β„Ž 𝐿 𝛿 + 𝛿 (𝑇𝑠 βˆ’ π‘‡βˆž) = (𝑇𝑓 βˆ’ π‘‡βˆž)( 𝛿 π›½π‘Ÿ2π‘‘π‘Žπ‘›β„Ž 𝐿 𝛿 + 𝛿 ) Upon substitution in the temperature profile 𝑇 βˆ’ π‘‡βˆž 𝑇𝑠 βˆ’ π‘‡βˆž = cosh[ (𝐿 βˆ’ π‘₯) 𝛿 ] cosh 𝐿 𝛿 We get: (𝑻 βˆ’ π‘»βˆž) = (𝑻𝒇 βˆ’ π‘»βˆž)( 𝜹 πœ·π’“πŸπ’•π’‚π’π’‰ 𝑳 𝜹 + 𝜹 )( 𝐜𝐨𝐬𝐑[ (𝑳 βˆ’ 𝒙) 𝜹 ] 𝐜𝐨𝐬𝐑 𝑳 𝜹 )
  • 49. The above temperature profile satisfies the initial condition and the boundary conditions provided the temperature at the hot end varies with time. Let us now solve the heat equation using the above temperature profile: Recall the compact temperature profile is: 𝑇 βˆ’ π‘‡βˆž 𝑇𝑠 βˆ’ π‘‡βˆž = cosh[ (𝐿 βˆ’ π‘₯) 𝛿 ] cosh 𝐿 𝛿 The boundary and initial conditions are: 𝑻 = 𝑻𝒔 𝒂𝒕 𝒙 = 𝟎 𝒅𝑻 𝒅𝒙 = 𝟎 𝒂𝒕 𝒙 = 𝒍 𝑻 = π‘»βˆž 𝒂𝒕 𝒕 = 𝟎 The governing equation is 𝛼 πœ•2 𝑇 πœ•π‘₯2 βˆ’ β„Žπ‘ƒ 𝐴𝜌𝐢 (𝑇 βˆ’ π‘‡βˆž) = πœ•π‘‡ πœ•π‘‘ Let us change this equation into an integral equation as below: 𝛼 ∫ ( πœ•2 𝑇 πœ•π‘₯2 ) 𝑑π‘₯ 𝑙 0 βˆ’ β„Žπ‘ƒ 𝐴𝜌𝐢 ∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯ 𝑙 0 = πœ• πœ•π‘‘ ∫ (𝑇)𝑑π‘₯ 𝑙 0 … … . . 𝑏) 𝛼 ∫ ( πœ•2 𝑇 πœ•π‘₯2 ) 𝑑π‘₯ 𝑙 0 βˆ’ 2β„Ž π‘ŸπœŒπΆ ∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯ 𝑙 0 = πœ• πœ•π‘‘ ∫ (𝑇)𝑑π‘₯ 𝑙 0 ∫ ( πœ•2 𝑇 πœ•π‘₯2 ) 𝑑π‘₯ 𝑙 0 = [ πœ•π‘‡ πœ•π‘₯ ] 𝑙 0 = (𝑇𝑠 βˆ’ π‘‡βˆž) tanh( 𝐿 𝛿 ) 𝛿 ∫ (𝑇 βˆ’ π‘‡βˆž)𝑑π‘₯ 𝑙 0 = (𝑇𝑠 βˆ’ π‘‡βˆž)𝛿tanh( 𝐿 𝛿 ) 𝑇 = cosh [ (𝐿 βˆ’ π‘₯) 𝛿 ] cosh 𝐿 𝛿 (𝑇𝑠 βˆ’ π‘‡βˆž) + π‘‡βˆž
  • 50. πœ• πœ•π‘‘ ∫ (𝑇)𝑑π‘₯ 𝑙 0 = πœ• πœ•π‘‘ [𝛿(𝑇𝑠 βˆ’ π‘‡βˆž) tanh ( 𝐿 𝛿 )] + πœ•(π‘™π‘‡βˆž) πœ•π‘‘ πœ•(π‘™π‘‡βˆž) πœ•π‘‘ = 0 Upon substitution of all the above in the heat equation, we get: 𝛼(𝑇𝑠 βˆ’ π‘‡βˆž) tanh ( 𝐿 𝛿 ) 𝛿 βˆ’ 2β„Ž π‘ŸπœŒπΆ (𝑇𝑠 βˆ’ π‘‡βˆž)𝛿 tanh ( 𝐿 𝛿 ) = πœ• πœ•π‘‘ [𝛿(𝑇𝑠 βˆ’ π‘‡βˆž) tanh ( 𝐿 𝛿 )] We notice that the term (𝑇𝑠 βˆ’ π‘‡βˆž)tanh( 𝐿 𝛿 ) is common and can be eliminated and what this signifies is that the nature of (𝑇𝑠 βˆ’ π‘‡βˆž) doesn’t matter and so we get: 𝛼 𝛿 βˆ’ 2β„Ž π‘ŸπœŒπΆ 𝛿 = 𝑑𝛿 𝑑𝑑 We go ahead and solve for 𝛿 provided 𝛿 = 0π‘Žπ‘‘ 𝑑 = 0 and get the expression 𝛿 = √ 𝐾𝐴 β„Žπ‘ƒ (1 βˆ’ 𝑒 βˆ’2β„Žπ‘ƒ 𝐴𝜌𝐢 𝑑 ) So, the final solution for the finite metal rod with zero flux at the end of the metal rod is: (𝑻 βˆ’ π‘»βˆž) = (𝑻𝒇 βˆ’ π‘»βˆž)( 𝜹 πœ·π’“πŸπ’•π’‚π’π’‰ 𝑳 𝜹 + 𝜹 )( 𝐜𝐨𝐬𝐑[ (𝑳 βˆ’ 𝒙) 𝜹 ] 𝐜𝐨𝐬𝐑 𝑳 𝜹 ) The solution reduces to the semi-infinite rod solution when the length L of the metal rod tends to infinity. Using the above solution, it was shown experimentally that the ratio 𝑻 βˆ’ π‘»βˆž 𝑻𝒇 βˆ’ π‘»βˆž = 𝟎. πŸπŸπŸ—πŸ–πŸ As for the semi-infinite rod.
  • 51. HOW DO WE DEAL WITH CYLINDRICAL COORDINATES? We know that for an insulated cylinder where there is no heat loss by convection from the sides, the governing PDE equation is 𝜢 𝒓 𝝏 𝝏𝒓 (𝒓 𝝏𝑻 𝝏𝒓 ) = 𝝏𝑻 𝝏𝒕 In steady state πœ•π‘‡ πœ•π‘‘ = 0 We end up with πœ• πœ•π‘Ÿ (π‘Ÿ πœ•π‘‡ πœ•π‘Ÿ ) = 0 We can then integrate once to get ∫ ( πœ• πœ•π‘Ÿ (π‘Ÿ πœ•π‘‡ πœ•π‘Ÿ )) π‘‘π‘Ÿ = ∫(0)π‘‘π‘Ÿ And get π‘Ÿ πœ•π‘‡ πœ•π‘Ÿ = 𝐢1 Therefore πœ•π‘‡ πœ•π‘Ÿ = 𝐢1 π‘Ÿ We can go ahead and find the temperature profile as a function of radius r.
  • 52. HOW DO WE DEAL WITH CYLINDRICAL CO-ORDINATES FOR A SEMI-INFINITE RADIUS CYLINDER? The governing PDE is: 𝜢 𝒓 𝝏 𝝏𝒓 (𝒓 𝝏𝑻 𝝏𝒓 ) = 𝝏𝑻 𝝏𝒕 The boundary conditions are 𝑇 = 𝑇𝑠 π‘Žπ‘‘ π‘Ÿ = π‘Ÿ1 𝑇 = π‘‡βˆž π‘Žπ‘‘ π‘Ÿ = ∞ The initial condition is: 𝑇 = π‘‡βˆž π‘Žπ‘‘ 𝑑 = 0 The temperature profile that satisfies the conditions above is 𝑇 βˆ’ π‘‡βˆž 𝑇𝑠 βˆ’ π‘‡βˆž = 𝑒 βˆ’(π‘Ÿβˆ’π‘Ÿ1) 𝛿 We transform the equation above into an integral equation and take integrals with limits from π‘Ÿ = π‘Ÿ1 to π‘Ÿ = 𝑅 = ∞. 𝛼 π‘Ÿ πœ• πœ•π‘Ÿ (π‘Ÿ πœ•π‘‡ πœ•π‘Ÿ ) = πœ•π‘‡ πœ•π‘‘ We take integrals and get ∫ [ 𝛼 π‘Ÿ πœ• πœ•π‘Ÿ (π‘Ÿ πœ•π‘‡ πœ•π‘Ÿ )]π‘‘π‘Ÿ 𝑅 π‘Ÿ1 = πœ• πœ•π‘‘ ∫ (𝑇)π‘‘π‘Ÿ 𝑅 π‘Ÿ1 ∫ [ 𝛼 π‘Ÿ πœ• βˆ‚r / (π‘Ÿ πœ•π‘‡ πœ•π‘Ÿ )]βˆ‚r / 𝑅 π‘Ÿ1 = πœ• πœ•π‘‘ ∫ (𝑇)π‘‘π‘Ÿ 𝑅 π‘Ÿ1 You notice that 𝝏 𝝏𝒓 cancels out with 𝒅𝒓 and we get: 𝛼 πœ•π‘‡ πœ•π‘Ÿ = πœ• πœ•π‘‘ ∫ (𝑇)π‘‘π‘Ÿ 𝑅 π‘Ÿ1 But πœ•π‘‡ πœ•π‘Ÿ = ∫ ( πœ•2 𝑇 πœ•π‘Ÿ2 )π‘‘π‘Ÿ 𝑅 π‘Ÿ1 So, the PDE becomes:
  • 53. 𝜢 ∫ ( 𝝏𝟐 𝑻 ππ’“πŸ )𝒅𝒓 𝑹 π’“πŸ = 𝝏 𝝏𝒕 ∫ (𝑻)𝒅𝒓 𝑹 π’“πŸ We then go ahead to solve and find 𝛿 as before. πœ•π‘‡ πœ•π‘Ÿ = βˆ’ 𝑇𝑠 βˆ’ π‘‡βˆž 𝛿 𝑒 βˆ’(π‘Ÿβˆ’π‘Ÿ1) 𝛿 ∫ ( πœ•2 𝑇 πœ•π‘Ÿ2 ) π‘‘π‘Ÿ 𝑅 π‘Ÿ1 = [ πœ•π‘‡ πœ•π‘Ÿ ] 𝑅 π‘Ÿ1 = βˆ’ (𝑇𝑠 βˆ’ π‘‡βˆž) 𝛿 [𝑒 βˆ’(π‘Ÿβˆ’π‘Ÿ1) 𝛿 ] 𝑅 = ∞ π‘Ÿ1 = (𝑇𝑠 βˆ’ π‘‡βˆž) 𝛿 𝑇 = (𝑇𝑠 βˆ’ π‘‡βˆž)𝑒 βˆ’(π‘Ÿβˆ’π‘Ÿ1) 𝛿 + π‘‡βˆž ∫ π‘‡π‘‘π‘Ÿ 𝑅=∞ π‘Ÿ1 = ∫ ((𝑇𝑠 βˆ’ π‘‡βˆž)𝑒 βˆ’(π‘Ÿβˆ’π‘Ÿ1) 𝛿 )π‘‘π‘Ÿ 𝑅=∞ π‘Ÿ1 + ∫ π‘‡βˆžπ‘‘π‘Ÿ 𝑅=∞ π‘Ÿ1 = 𝛿(𝑇𝑠 βˆ’ π‘‡βˆž) + π‘‡βˆž(𝑅 βˆ’ π‘Ÿ1) πœ• πœ•π‘‘ ∫ π‘‡π‘‘π‘Ÿ 𝑅 𝛿 = 𝑑𝛿 𝑑𝑑 (𝑇𝑠 βˆ’ π‘‡βˆž) + 𝑑(π‘‡βˆž(𝑅 βˆ’ π‘Ÿ1)) 𝑑𝑑 But 𝑑(π‘‡βˆž(𝑅 βˆ’ π‘Ÿ1)) 𝑑𝑑 = 0 Since π‘‡βˆž, 𝑅, π‘Ÿ1 are constants independent of time. So πœ• πœ•π‘‘ ∫ π‘‡π‘‘π‘Ÿ 𝑅 𝛿 = 𝑑𝛿 𝑑𝑑 (𝑇𝑠 βˆ’ π‘‡βˆž) substituting all the above in the integral equation, we get 𝛼 ∫ ( πœ•2 𝑇 πœ•π‘Ÿ2 )π‘‘π‘Ÿ 𝑅 π‘Ÿ1 = πœ• πœ•π‘‘ ∫ (𝑇)π‘‘π‘Ÿ 𝑅 π‘Ÿ1 𝛼 𝛿 (𝑇𝑠 βˆ’ π‘‡βˆž) = 𝑑𝛿 𝑑𝑑 (𝑇𝑠 βˆ’ π‘‡βˆž) Divide through by (𝑇𝑠 βˆ’ π‘‡βˆž) and get 𝛼 𝛿 = 𝑑𝛿 𝑑𝑑 𝛼 𝛿 = 𝑑𝛿 𝑑𝑑 The boundary conditions are: 𝛿 = 0 π‘Žπ‘‘ 𝑑 = 0
  • 54. 𝛿 = √2𝛼𝑑 We substitute 𝛿 in the temperature profile and get: 𝑇 βˆ’ π‘‡βˆž 𝑇𝑠 βˆ’ π‘‡βˆž = 𝑒 βˆ’(π‘Ÿβˆ’π‘Ÿ1) 𝛿 𝑻 βˆ’ π‘»βˆž 𝑻𝒔 βˆ’ π‘»βˆž = 𝒆 βˆ’(π’“βˆ’π’“πŸ) βˆšπŸπœΆπ’• You notice that the initial condition is satisfied for the above temperature profile. We can also go ahead and look at situations where there is natural convection and other situations where the radius r is finite and not infinite.
  • 55. HOW DO WE DEAL WITH NATURAL CONVECTION AT THE SURFACE AREA OF A SEMI-INFINITE CYLINDER FOR FIXED END TEMPERATURE The governing equation is: 𝜢 𝒓 𝝏 𝝏𝒓 (𝒓 𝝏𝑻 𝝏𝒓 ) βˆ’ 𝒉𝑷 𝑨𝝆π‘ͺ (𝑻 βˆ’ π‘»βˆž) = 𝝏𝑻 𝝏𝒕 𝑃 = 2πœ‹π‘Ÿ 𝐴 = 2πœ‹π‘Ÿπ‘‘ Where: 𝑑 = β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘π‘¦π‘™π‘–π‘›π‘‘π‘’π‘Ÿ The boundary conditions are: 𝑇 = 𝑇𝑠 π‘Žπ‘‘ π‘Ÿ = π‘Ÿ1 𝑇 = π‘‡βˆž π‘Žπ‘‘ π‘Ÿ = 𝑅 = ∞ The initial condition is: 𝑇 = π‘‡βˆž π‘Žπ‘‘ 𝑑 = 0 The temperature profile that satisfies the boundary conditions above is: 𝑇 βˆ’ π‘‡βˆž 𝑇𝑠 βˆ’ π‘‡βˆž = 𝑒 βˆ’(π‘Ÿβˆ’π‘Ÿ1) 𝛿 𝛼 π‘Ÿ πœ• πœ•π‘Ÿ (π‘Ÿ πœ•π‘‡ πœ•π‘Ÿ ) βˆ’ β„Žπ‘ƒ 𝐴𝜌𝐢 (𝑇 βˆ’ π‘‡βˆž) = πœ•π‘‡ πœ•π‘‘
  • 56. We transform the PDE into an integral equation and take the limits to be from π‘Ÿ = π‘Ÿ1 to π‘Ÿ = 𝑅 = ∞ 𝛼 ∫ [ 𝛼 π‘Ÿ πœ• πœ•π‘Ÿ (π‘Ÿ πœ•π‘‡ πœ•π‘Ÿ )]π‘‘π‘Ÿ 𝑅=∞ π‘Ÿ1 βˆ’ β„Ž π‘‘πœŒπΆ ∫ (𝑇 βˆ’ π‘‡βˆž)π‘‘π‘Ÿ 𝑅=∞ π‘Ÿ1 = πœ• πœ•π‘‘ ∫ (𝑇)π‘‘π‘Ÿ 𝑅=∞ π‘Ÿ1 ∫ [ 𝛼 π‘Ÿ πœ• βˆ‚r / (π‘Ÿ πœ•π‘‡ πœ•π‘Ÿ )]βˆ‚r / 𝑅=∞ π‘Ÿ1 βˆ’ β„Ž π‘‘πœŒπΆ ∫ (𝑇 βˆ’ π‘‡βˆž)π‘‘π‘Ÿ 𝑅=∞ π‘Ÿ1 = πœ• πœ•π‘‘ ∫ (𝑇)π‘‘π‘Ÿ 𝑅=∞ π‘Ÿ1 You notice that 𝝏 𝝏𝒓 cancels out with 𝒅𝒓 and we get: 𝛼 πœ•π‘‡ πœ•π‘Ÿ βˆ’ β„Ž π‘‘πœŒπΆ ∫ (𝑇 βˆ’ π‘‡βˆž) 𝑅=∞ π‘Ÿ1 π‘‘π‘Ÿ = πœ• πœ•π‘‘ ∫ (𝑇)π‘‘π‘Ÿ 𝑅=∞ π‘Ÿ1 But πœ•π‘‡ πœ•π‘Ÿ = ∫ ( πœ•2 𝑇 πœ•π‘Ÿ2 )π‘‘π‘Ÿ 𝑅 π‘Ÿ1 So, the PDE becomes: 𝜢 ∫ ( 𝝏𝟐 𝑻 ππ’“πŸ )𝒅𝒓 𝑹 π’“πŸ βˆ’ 𝒉 𝒅𝝆π‘ͺ ∫ (𝑻 βˆ’ π‘»βˆž) 𝑹=∞ π’“πŸ 𝒅𝒓 = 𝝏 𝝏𝒕 ∫ (𝑻)𝒅𝒓 𝑹 π’“πŸ β„Ž π‘‘πœŒπΆ ∫ (𝑇 βˆ’ π‘‡βˆž)π‘‘π‘Ÿ 𝑅=∞ π‘Ÿ1 = π›Ώβ„Ž π‘‘πœŒπΆ (𝑇𝑠 βˆ’ π‘‡βˆž) From the derivations above, we get: ∫ ( πœ•2 𝑇 πœ•π‘Ÿ2 ) π‘‘π‘Ÿ 𝑅 π‘Ÿ1 = (𝑇𝑠 βˆ’ π‘‡βˆž) 𝛿 πœ• πœ•π‘‘ ∫ π‘‡π‘‘π‘Ÿ 𝑅 π‘Ÿ1 = 𝑑𝛿 𝑑𝑑 (𝑇𝑠 βˆ’ π‘‡βˆž) Upon substitution of the above expressions in the integral equation, we get: 𝛼 𝛿 βˆ’ β„Ž π‘‘πœŒπΆ 𝛿 = 𝑑𝛿 𝑑𝑑 𝛼 𝛿 βˆ’ β„Ž π‘‘πœŒπΆ 𝛿 = 𝑑𝛿 𝑑𝑑
  • 57. 𝛼 βˆ’ β„Ž π‘‘πœŒπΆ 𝛿2 = 𝛿 𝑑𝛿 𝑑𝑑 The boundary conditions are: 𝛿 = 0 π‘Žπ‘‘ 𝑑 = 0 The solution of the equation above is 𝛿 = √ π›Όπ‘‘πœŒπΆ β„Ž (1 βˆ’ 𝑒 βˆ’ 2β„Žπ‘‘ π‘‘πœŒπΆ) 𝛼 = 𝐾 𝜌𝐢 And get 𝛿 = √ 𝐾𝑑 β„Ž (1 βˆ’ 𝑒 βˆ’ 2β„Žπ‘‘ π‘‘πœŒπΆ) The temperature profile becomes: 𝑇 βˆ’ π‘‡βˆž 𝑇𝑠 βˆ’ π‘‡βˆž = 𝑒 βˆ’( π‘Ÿβˆ’π‘Ÿ1 𝛿 ) Substitute for 𝛿 and get 𝑻 βˆ’ π‘»βˆž 𝑻𝒔 βˆ’ π‘»βˆž = 𝒆 βˆ’( π’“βˆ’π’“πŸ βˆšπ‘²π’… 𝒉 (πŸβˆ’π’† βˆ’ πŸπ’‰π’• 𝒅𝝆π‘ͺ) ) You notice that the initial condition is satisfied by the above temperature profile. What do we observe for short time in transient state? For short time, the exponential is small and it becomes: 𝑒 βˆ’ 2β„Žπ‘‘ π‘‘πœŒπΆ = 1 βˆ’ 2β„Žπ‘‘ π‘‘πœŒπΆ After using binomial expansion of the exponential in the above And (1 βˆ’ 𝑒 βˆ’ 2β„Žπ‘‘ π‘‘πœŒπΆ) = 2β„Žπ‘‘ π‘‘πœŒπΆ
  • 58. 𝛿 = √ 𝐾𝑑 β„Ž (1 βˆ’ 𝑒 βˆ’ 2β„Žπ‘‘ π‘‘πœŒπΆ) Becomes 𝛿 = √2𝛼𝑑 Where: 𝛼 = 𝐾 𝜌𝐢 Let us make r the subject of the temperature profile above: 𝑇 βˆ’ π‘‡βˆž 𝑇𝑠 βˆ’ π‘‡βˆž = 𝑒 βˆ’( π‘Ÿβˆ’π‘Ÿ1 𝛿 ) π‘Ÿ βˆ’ π‘Ÿ1 𝛿 = [ln( 𝑇𝑠 βˆ’ π‘‡βˆž 𝑇 βˆ’ π‘‡βˆž )] (π‘Ÿ βˆ’ π‘Ÿ1) = 𝛿 [ln ( 𝑇𝑠 βˆ’ π‘‡βˆž 𝑇 βˆ’ π‘‡βˆž )] Where: 𝛿 = √2𝛼𝑑 For small time. We can get an expression for 𝑇𝑠 as we did before. We can extend the above analysis to finite radius metal rods and even to rectangular metal rods.
  • 59. REFERENCES [1] C.P.Kothandaraman, "HEAT TRANSFER WITH EXTENDED SURFACES(FINS)," in Fundamentals of Heat and Mass Transfer, New Delhi, NEW AGE INTERNATIONAL PUBLISHERS, 2006, p. 131. [2] C. E. W. R. E. W. G. L. R. James R. Welty, "HEAT TRANSFER FROM EXTENDED SURFACES," in Fundamentals of Momentum, Heat, and Mass Transfer 5th Edition, Corvallis, Oregon, John Wiley & Sons, Inc., 2000, pp. 236-237. [3] C. E. W. R. E. W. G. L. R. James R. Welty, "HEAT TRANSFER FROM EXTENDED SURFACES," in Fundamentals of Momentum, Heat and Mass Transfer 5th Edition, Oregon, John Wiley & Sons, Inc., 2008, p. 237.