Video Conferencing Experiences with UltraGrid:
Upcoming SlideShare
Loading in...5
×

Like this? Share it with your network

Share

Video Conferencing Experiences with UltraGrid:

  • 856 views
Uploaded on

 

  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
856
On Slideshare
856
From Embeds
0
Number of Embeds
0

Actions

Shares
Downloads
3
Comments
0
Likes
0

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. Video Conferencing Experiences with UltraGrid: A High Definition Video Conferencing and Distribution System Ladan Gharai ....……University of Southern California/ISI Colin Perkins .........................…….. University of Glasgow
  • 2. Outline
    • Overview
    • System Design
      • Architectural Overview
      • AccessGrid Integration
    • Nuts and bolts
      • UltraGrid Nodes
      • Cameras and Displays
    • Performance Testing
      • Lab Experiments
      • Network Experiments
    • Technology Transfer
    • Summary
  • 3. The UltraGrid System
    • UltraGrid is ultra-high quality video conferencing tool
      • Supports uncompressed High Definition TV video formats
        • Operates in two modes:
          • Under 1Gbps, for environments limited to 1 Gbps transport
          • Over 1.2 Gbps, for full rate uncompressed HDTV
      • Standard definition video codecs:
        • Digital Video (DV)
        • Motion JPEG
      • Incurs minimum latency
    • Not solely a video conferencing tool:
      • HDTV distribution system for editing purposes
      • A general purpose SMPTE292M-over-IP system
      • High-definition visualization and remote steering applications
  • 4. The UltraGrid System
    • HD video conferencing
    • Remote Visualization
    • SPMTE 292M over IP transport
    LDK-6000 SONY HDC-X300 IP Network SMPTE 292M RTP/UDP/IP 1.485 Gbps RTP/UDP/IP UltraGrid node UltraGrid node UltraGrid node UltraGrid node
  • 5. Outline
    • Overview
    • System Design
      • Architectural Overview
      • AccessGrid Integration
    • Nuts and bolts
      • UltraGrid Nodes
      • Cameras and Displays
    • Performance Testing
      • Lab Experiments
      • Network Experiments
    • Technology Transfer
    • Summary
  • 6. UltraGrid: Architectural Overview
    • An open and flexible architecture with “plug-in” support for codecs and transport protocols:
    • Codec Support:
      • DV, R FC 3189
      • M-JPEG, RFC 2435
      • H.261, RFC 2032
    • Transport protocols:
      • RTP/RTCP
      • RFC 3550
    • Congestion Control:
      • TCP Friendly Rate Control (TFRC), RFC 3448
    decoder encoder display grabber Playout buffer Packetization Transport + Congestion Control rat UltraGrid Node
  • 7. UltraGrid: Architectural Overview Display HDTV/DV camera Frame Grabber Grabber thread Transmit thread Video Codec RTP Framing Congestion Control RTP Sender Send buffer Network RTP Receiver RTCP Playout buffer RTP Framing Video Codec Colour Conversion Display Receive thread Display thread
  • 8. AccessGrid Integration
    • UltraGrid’s video transmission mechanisms can be added to AccessGrid:
      • Use the Node Manager to add the services:
        • UltraGrid Receiver
        • UltraGrid Sender
      • Created as part of UltraGrid:
        • uvReceiverService.zip
        • uvSenderService.zip
  • 9. AccessGrid Integration
  • 10. Video Packetization and IP Transport
    • UltraGrid RTP packetization is based on:
      • ``RTP Payload Format for Uncompressed Video’’, RFC 4175
      • Ladan Gharai and Colin Perkins
    • RFC 4175 covers packetization of various video formats:
      • Supports range of formats including standard & high definition video
      • Interlaced and progressive
      • RGB, RGBA, BGR, BGRA, YUV
      • Various color sub-sampling: 4:4:4, 4:2:2, 4:2:0, 4:1:1
  • 11. Outline
    • Overview
    • System Design
      • Architectural Overview
      • AccessGrid Integration
    • Nuts and bolts
      • UltraGrid Nodes
      • Cameras and Displays
    • Performance Testing
      • Lab Experiments
      • Network Experiments
    • Technology Transfer
    • Summary
  • 12. UltraGrid Nodes
    • UltraGrid nodes are built from commercially available hardware. Key elements are:
    • Network interface card :
      • For nodes sending at over 1 Gbps rate, a 10 Gigabit Ethernet NIC:
          • T110 10GbE from Chelsio : http://www.chelsio.com/
          • 133Mhz/PCI-X
      • Otherwise standard 1 Gbps NICs suffice
    • HDTV capture card:
      • For nodes sending and receiving uncompressed HDTV:
        • Centaurus or HDstation HDTV capture card from www. dvs .de
      • For nodes only receiving uncompressed HDTV, software display is an option. This requires:
        • xvideo extensions support by OS and video card; or
        • The Simple DirectMedia Layer library, SDL
  • 13. The Centaurus vs. HDstation Card
    • Centaurus HDTV capture Card: www. dvs .de
      • Linux 2.4, 2.6 Kernels
      • 100Mhz/PCI-X card
      • DVI connector
      • Supports common SD, HD and 2K format:
        • HSDL: 2048x1556@ 15psF,18psF
        • 2K: 2048x1556@ 24p,24psF,48i
      • Price: $9000K
    • Hdstation HDTV capture card: www. dvs .de
      • Linux 2.4 Kernel
      • 64 bit PCI card
      • Supports common SD and HD formats
      • Price: $15000k
  • 14. Total Cost
    • UltraGrid node sending full-rate uncompressed HDTV:
    • Dual Xeon EM64T Power Station
      • SuperMicro mother board
      • 5 programmable PCI-X slots
      • 32bit Fedora Core3 - Linux 2.6 Kernel
    PC system …………………………….……………… $5500 Centaurus Card……………………………………………… $ 9,000 Single-link HD/SD PCI-X board Centaurus-Audio08 …………………………………………. $ 1,000 10 GigE NIC ….………………………………………….$2500 Total cost $18000
  • 15. Cameras and Displays
    • A variety of HDTV cameras are now available :
      • Broadcast cameras:
        • Generally expensive, at least over $20000. For SC2005:
          • Panasonic AJ-HDC27F
          • Thomson LDK 6000
        • Have SMPTE 292M output and can be directly connected to an UltraGrid node.
      • Consumer grade cameras:
        • Price is in the $3000 to $5000 range, examples:
            • Sony HVR-Z1E, HDR-FX1
            • JVC GY-HD-100U HDV Pro
        • Do not have a SMPTE 292M output, an AD converter is needed to generate an HD-SDI signal. (Ex: AJA HD10A)
    • Displays need to be able to accommodate:
      • HDTV 16:9 aspect ratio
      • In the case of progressive HDTV, support progressive scanning
  • 16. Outline
    • Overview
    • System Design
      • Architectural Overview
      • AccessGrid Integration
    • Nuts and bolts
      • UltraGrid Nodes
      • Cameras and Displays
    • Performance Testing
      • Lab Experiments
      • Network Experiments
    • Technology Transfer
    • Summary
  • 17. Performance Testing
    • Back to back lab test
    • Local area tests
      • DRAGON ring in the DC metropolitan area
    • Wide area tests
      • Conducted during SuperComputing 2005 over Internet2:
          • Best effort IP path
          • Hybrid/Optical Packet Infrastructure (HOPI)
    • Measured:
      • Throughput
      • Packet loss and reordering
      • Frame inter-display times
      • Packet interarrival times at sender and receiver
  • 18. Lab Tests Centaurus 10 GigE UltraGrid Sender UltraGrid Receiver LDK-6000 PDP-502MX 1.485 Gbps RTP/UDP/IP SMPTE 292M SMPTE 292M
    • Back-2-back tests:
      • Video: 720p
      • Duration: 10 min
      • RTT: 70 µs
      • MTU: 8800 bytes
    • Results:
      • No loss or reordering
      • 1198.03 Mbps throughput
      • Total 10,178,098 packets sent and received
    Centaurus 10 GigE
  • 19. Local Area Tests
    • Our local area tests were conducted over a metropolitan network in the Washington D.C. area, known as the DRAGON network.
    • DRAGON is a GMPLS based multiservice WDM network and provides transport at multiple network layers including layer3, layer2 and below.
    • DRAGON allows the dynamic creation of “Application Specific Topologies” in direct response to application requirements.
    • Our Ultragrid testing was conducted over the DRAGON metropolitan ethernet service connecting:
      • University of Southern California Information Sciences Institute (USC/ISI) East (Arlington, Virginia); and
      • University of Maryland (UMD) Mid-Atlantic Crossroads (MAX) in College Park, Maryland.
  • 20. UltraGrid over DRAGON Network
    • Network tests:
      • 720p video
      • Duration: 10 min
      • RTT: 570 µs
      • MTU: 8800 bytes
    • Results:
      • No loss or reordering
      • 1198.03 Mbps throughput
      • Total 10,178,119 packets sent and received
    HOPI / NLR CLPK ARLG MCLN MIT Haystack Observatory (HAYS) UMD MAX Goddard Space Flight Center GSFC) National Computational Science Alliance (NCSA) ACCESS USC/ISI East DCNE DCNE ATDNet Optical switching element Optical edge device DRAGON
  • 21. Wide Area Tests
    • Our wide area tests were conducted over Internet2 during Super Computing 2005
    • Set up a video conferencing session between ISI-east and the Super Computing exhibit floor
    • Tests were conducted over Internet2’s:
      • Best effort IP paths; and
      • Hybrid Optical Packet Infrastructure (HOPI)
    • Each UltraGrid node was connected:
      • via a 1 Gbps interface to best effort IP path; and
      • via a 10 Gbps interface to HOPI
  • 22. Wide Area Tests UG sender UG receiver UG sender UG receiver Los Angeles 10 Gbs Ethernet SC 2005 Seattle, WA Chicago Houston ISI-East Arlington, VA OC192 SONET/SDH LDK 6000 AJ-HDC27F
  • 23.  
  • 24.  
  • 25.  
  • 26.  
  • 27. Wide Area Tests: Performance Results
    • HOPI:
      • As expected we did not record any packet loss for test runs over the HOPI provisioned paths.
    • Best effort IP:
      • We recorded between 0 to 0.04% packet loss
      • Clearly, 0 to 0.04% only indicates the level of congestion for each particular test run
    • At 0.04% loss the video quality did suffer:
      • However this is with no error correction or concealment at work
  • 28. Inter-packet Intervals: HOPI
    • Packets traversing HOPI paths maintain similar distribution and inter-arrival times as at the sender
    Sender IPI - 10 Gbps NIC Receiver IPI - Internet2 HOPI path
  • 29. Inter-packet Intervals: Best effort IP
    • Packets traversing the best effort IP path experience a long tail and more dispersion
    Sender IPI - 1 Gbps NIC Receiver IPI - Internet2 best effort path
  • 30. Outline
    • Overview
    • System Design
      • Architectural Overview
      • AccessGrid Integration
    • Nuts and bolts
      • UltraGrid Nodes
      • Cameras and Displays
    • Performance Testing
      • Lab Experiments
      • Network Experiments
    • Technology Transfer
    • Summary
  • 31. Groups using UltraGrid
    • HDTV group at KAIST:
      • Added features to UltraGrid:
        • Playback from disk
        • Bonded NIC support
      • http://cosmos.kaist.ac.kr/hdtv/
    • Networked Media Lab at GIST, in collaboration with KISTI:
      • Added features to UltraGrid:
        • Support for AJA XENA capture card
        • Embedded audio support
    • Masaryk University in Brno with CESNET (Czech NREN operator):
      • Conducted multipoint HD demos with UltraGird at :
        • iGrid 2005
        • SuperComputing in 2005
      • https://sitola.fi.muni.cz:443/igrid/
  • 32. Summary
    • Full rate uncompressed HDTV video conferencing is available today, with current network and end-system technologies.
    • Approximate cost UltraGrid nodes are:
        • Hardware: ~$18000
        • Software: open source code
        • Camera’s and display are extra
    • It is paramount to be able to adapt to differing network technologies and conditions:
      • Full rate 1.2Gbps flows on dedicated networks
      • Network friendly flows on IP best effort networks
  • 33. Further Information…
    • UltraGrid project web-site: http: //ultragrid .east. isi . edu/
      • Latest UltraGrid release available for download
      • UltraGrid-users mailing list subscription information
    • DRAGON project web-site : http://dragon.east. isi . edu/
    DRAGON