SlideShare a Scribd company logo
1 of 22
Download to read offline
Microelectronics & VLSI
Department Of Electrical Engineering
IIT Hyderabad
Research Overview and M.Tech Student Profile
Advanced Embedded System and IC Design L
Research Overview
Research activity involves designing and implementation of low complexity and low power VLSI circuits for personalized health
development of CAD tool for IC design to reduce time to market,
traditional transistors for next generation electronics, design for testability of 3D IC,
signal processing and hardware development for stereovision useful in survey lines and ro
Research Area:
· Electronic Design Automation for next generation IC Design.
· Cyber Physical Systems for remote healthcare applications: VLSI fo
· Internet of Things for smarter healthcare: VLSI fo
perspective.
· Next Generation Electronics: Exploration into a new paradigm.
dvanced Embedded System and IC Design Lab
Research activity involves designing and implementation of low complexity and low power VLSI circuits for personalized health
development of CAD tool for IC design to reduce time to market, energy harvesting from trees, magnetic logic circuits to replace
traditional transistors for next generation electronics, design for testability of 3D IC, methodology to detect diseases using proteomics
hardware development for stereovision useful in survey lines and robots.
Electronic Design Automation for next generation IC Design.
Cyber Physical Systems for remote healthcare applications: VLSI for signal processing, VLSI Design and Verification perspective.
SI for signal processing, VLSI Design and Verification, SOC Design and Verification
Next Generation Electronics: Exploration into a new paradigm.
Research activity involves designing and implementation of low complexity and low power VLSI circuits for personalized healthcare,
ic logic circuits to replace
methodology to detect diseases using proteomics
VLSI Design and Verification perspective.
SOC Design and Verification
Related Courses:
• Embedded System.
• Embedded Programming.
• Digital IC Design & Verification.
• Microprocessors and Computer Organization.
• Biomedical IC Design.
Faculty Profile
Dr. Amit Acharyya
(Assistant Professor)
Phone: +91-40-2301 6106 (Office)
Fax: +91-40-2301 6032
Email:amit_acharyya [at] iith.ac.in
Homepage:http://www.iith.ac.in/~amit_acharyya/index.html
Areas of Interest:Signal Processing Algorithm and VLSI Architectures, VLSI systems for next generation healthcare systems,
Low Power Design Techniques, Electronic Aspects of Pervasive Computing, Bio-informatics, Digital Arithmetic, Linear Algebra,
Numerical Analysis, Computer-aided designs, VLSI for Communication systems, Genomic and Proteomic Signal Processing, VLSI in
Proteomics.
Projects
· Department of Electronics and Information Technology (DEITY), Ministry of Communications and Information Technology,
Government of India funded research project entitled "IOT for Smarter Healthcare".
· Advanced Research and Analysis Group, (ANURAG), Defense Research and Development Organization (DRDO), Government
of India funded research project on "Healthcare Technology".
· Science and Engineering Research Board, (SERB), Department of Science and Technology (DST), Government of India funded
research project on "Shear flow estimation and damage assessment of reinforced concrete columns under combined
loading including torsion".
Tape Out
SoC Real-time Automated Non-invasive Cardiac Remote Health Monitoring System in TSMC 130nm operating at 2MHz.
Analog/Mixed-Signal, RF, Microwaves
Research Overview
This research cluster emphasizes synergistic cooperation and innovation amongst faculty members whose research focuses on various
aspects of electrical systems. The faculty in this research cluster are involved in biomedical system and circuits, RF transceivers, harvesting
circuits and Data convertors.
An effective top-down simulation and modeling methodology of systems is being emphasized. Our research forms the basis for personal
portable, self-sustainable healthcare devices of today and of the future.
Research Thrust
Ø Analog integrated circuits
Ø Data Converters
Ø RF Circuit design
Ø System-on-a-chip design
Ø Energy Harvesting circuits
Ø Radiation Hardened Circuits
Related courses
Ø Analog IC design
Ø Advanced memory design
Ø Digital IC design
Ø Biomedical IC design
Ø Analog & digital circuit simulation lab
Ø Embedded Circuit design
Faculty
Selected Projects
"IOT for Smarter Healthcare"funded by Department of Electronics and Information Technology (DEITY), Ministry of Communications
and Information Technology, Government of India.
"Cyber Physical Systems for remote healthcare applications"funded by Department of Electronics and Information
Technology (DEITY), Ministry of Communications and Information Technology, Government of India.
"Self-powered wireless chipset for building to building communication" funded by Department of Electronics and
Information Technology (DEITY), Ministry of Communications and Information Technology, Government of India.
Dr.Ashudeb Dutta
(Assistant Professor)
Email : asudeb_dutta [at] iith.ac.in
Phone : +91 (40) 2301 6051
Areas of Interest: Analog circuit design, biomedical circuit design,
data Converters, energy harvesting circuits, RF circuit design.
Tapeout
2.4GHz direct conversion QLMVF
mode ZigBee/BLE Receiver including integer N
PLL
A 6µW Biomedical Frontend with
powered U
A 6µW Biomedical Frontend with ∑∆ ADC forSelf-
powered U-Healthcare Devices in 0.18µmCMOS
2.4GHz direct conversion QLMVF mode
including integer N PLL
2.4GHz direct conversion QLMVF mode ZigBee Receiver
including integer N PLL
Nano-X Lab
Research Overview
Research activities in the Microelectronics Group span a wide range of areas: physics, technology, characterization,
modeling, simulation and design. Labs where research is conducted are Fabrication Clean Room, Electrochemistry
laboratory, device characterization laboratory and simulation laboratory.
Faculty Profile
Areas of Interest:3-D ICs technology Development (Interconnects, electro-migration, Electrical and Thermal Modeling of 3-D ICs,
Thermal and power aware placement of TSV (both signal and thermal) RF MEMS device design simulation fabrication and
Characterization Micro/Nano fluidics, Electronics cooling, Lab on chip 3D solar cell, Ultra low power solar cell based energy
harvesting ckt. Milk Net, Synthetic tree, Water adulterant, Mechanical to Electrical Energy Conversion.
Dr.Shiv Govind Singh
(Associate Professor)
Email : sgsingh [at] iith.ac.in
Phone : +91 (40) 2301 6079
Related Courses:
• Semiconductor Device and Modeling
• VLSI Technology
• CMOS Sensors
• More than Moore Electronics
• Nanotechnology and Principles.
Research Area:
· Nano Devices and Sensors.
· MEMS
· Micro fluidics
· 3D IC Technology Development
· Lab On Chip Applications
· Antennas
· Silicon Based Sensors
Areas of Interest:Biosensors, Lab on Chip applications, VLSI Technology, Semiconductor device physics, MEMS
Areas of Interest:Nanomaterials, devices and circuits.
Areas of Interest:Physics of semiconductor devices and electronic transport, Micro/Nano-electronics, Modeling and simulation of
electron devices, Quantum phenomena in nanostructures, Physical and wave electronics.
Dr.Kaushik Nayak
(Assistant Professor)
Email : :knayak [at] iith.ac.in
Phone : +91 (40) 2301 8440
Dr.Sushmee Badhulika
(Assistant Professor)
Email : :sbadh [at] iith.ac.in
Siva Rama Krishna
(Assistant Professor)
Email : svanjari [at] iith.ac.in
Labs & Tools
VLSI Design Lab:
Cadence (UMC 180nm)
Pspice
Agilent ADS
MATLAB
Silvaco TCAD
COMSOL
Advanced Digital design:
Synopsis,
Mentor Graphics
Xilinx ISE,
Xilinx Vivado
Keil µVision
Xilinx FPGA: Spartan 6, Virtex 7,
Kintex 7, ZedBoard
ARM Versatile Express Cortex
M Prototyping System
ARM lab
Advanced Digital design:
Synopsis,
Mentor Graphics
Xilinx ISE,
Xilinx Vivado
Keil µVision
Xilinx FPGA: Spartan 6, Virtex 7,
Kintex 7, ZedBoard
ARM Versatile Express Cortex-
M Prototyping System
ARM lab-in-a-box.
Nano-X Lab:
RF sputtering
Lithography system
Wafer Bonder
Cascade Probshield and
Keithley 4200 SCS with switch
matrix
Vector network analyzer
Sonoscan Acoustic Microscope
Electrochemical spectroscopy
Cascade Probshield and
Keithley 4200 SCS with switch
Vector network analyzer
Sonoscan Acoustic Microscope
Electrochemical spectroscopy
Research Partners
Areas of Interest:Low power and complexity
VLSI Architectures, Digital Design, Signal
processing algorithms and Analog Design.
Description of Masters Project:
Title: Algorithms and architectures for CORDIC based low complexity
reconfigurable n-D FastICA (Independent Component Analysis)
Description: FastICA separates the independent signals from mixed
signals. To reduce the complexity, CORDIC has been used to
compute costly arithmetic operations involved in the FastICA.
reconfigurable nature of the proposed n-dimensional architecture
makes it possible to use for any number of inputs (≤n). So, it can be
used in signal processing and biomedical applications (ECG, EEG
signal extraction) without any changes. Apart from this, I am also
working on designing of low complexity architecture for unsupervised
K-means clustering as part of the post processing of FastICA, wh
will be used in the health monitoring systems.
Other Projects:
• Implementation of low complexity ECG Feature extraction
algorithm on TMS320C6713DSK and FPGA prototyping.
• Design of Incremental Delta Sigma ADC.
• Design of 256x64 6T SRAM cell and Read/Wri
modelling
• Fast algorithm for Dynamic Supply and Threshold Voltage
Scaling for CMOS circuits.
Publications:
2 - IEEE international conference papers
Adapa Bhagyaraja
M.Tech (Microelectronics & VLSI)
Link: http://in.linkedin.com/in/adapabhagyaraja
Student Profile
Bollam Nandini
M.Tech (Microelectronics & VLSI)
Link:https://in.linkedin.com/pub/bollam
Description of Masters Project:
Title: Implementation of 10 bit 50MSPS Pipeline ADC for CMOS
along with design of readout circuit for single pixel using CDS amplifier.
Pipeline ADC is best to implement high-speed, medium
ADCs with minimum power consumption. Pipelined adc is designed by using
optimized number of bits per stage which significantly reduces the
requirements of amplifier therefore power and also area of each stage. In order
to decrease the total power stage scaling is included. Now the next step is to
design Correlated double sampling (CDS) amplifier to
noise in image sensor and 4T pixel circuit. Final target is to do layout of the
entire system.
Other Projects:
• Design of 1MSPS 4bit first order noise shaped two step pipeline
for incorporating itas a quantizer in sigma delta ADC .
• Implementation of controller algorithm for an Adaptive artificial
pancreas system in Verilog.
• Implementation of ECG feature extraction algorithm in Verilog
• Design of 256 x 64 6T SRAM array
• Implementation of low complexity Foetal ECG Extraction algorithm for
Mobile Health Monitoring Applications using TMS320C6713 DSK.
Low power and complexity
VLSI Architectures, Digital Design, Signal
nalog Design.
Algorithms and architectures for CORDIC based low complexity
D FastICA (Independent Component Analysis)
FastICA separates the independent signals from mixed
reduce the complexity, CORDIC has been used to
arithmetic operations involved in the FastICA. The
dimensional architecture
≤n). So, it can be
signal processing and biomedical applications (ECG, EEG
signal extraction) without any changes. Apart from this, I am also
working on designing of low complexity architecture for unsupervised
means clustering as part of the post processing of FastICA, which
Implementation of low complexity ECG Feature extraction
algorithm on TMS320C6713DSK and FPGA prototyping.
Design of 256x64 6T SRAM cell and Read/Write Delay
Fast algorithm for Dynamic Supply and Threshold Voltage
://in.linkedin.com/in/adapabhagyaraja
Areas of Interest: Low power and complexity
VLSI Architectures, Digital Design, Signal
processing algorithms and Analog Design.
in.linkedin.com/pub/bollam-nandini/93/8a4/a16
for CMOS image sensor
circuit for single pixel using CDS amplifier.
medium-to-high resolution
ADCs with minimum power consumption. Pipelined adc is designed by using
optimized number of bits per stage which significantly reduces the
requirements of amplifier therefore power and also area of each stage. In order
to decrease the total power stage scaling is included. Now the next step is to
reduce fixed pattern
target is to do layout of the
Design of 1MSPS 4bit first order noise shaped two step pipeline adc
incorporating itas a quantizer in sigma delta ADC .
an Adaptive artificial
Implementation of ECG feature extraction algorithm in Verilog
Implementation of low complexity Foetal ECG Extraction algorithm for
ng TMS320C6713 DSK.
Low power and complexity
VLSI Architectures, Digital Design, Signal
processing algorithms and Analog Design.
Pranit Namdeorao Jadhav
M.Tech (Microelectronics & VLSI)
Link: http://www.iith.ac.in/~amit_acharyya/
Homepages/Jadhav_Pranit_Namdeorao.html
https://in.linkedin.com/in/jadhavpranit
Area of Interest:Digital Circuits, Digital System Design, Low complexity
architecture for EEG processor, Embedded System Design, VLSI for Signal
Processing, Analog circuits.
Description of Master’s Project:
The main objective of the project is to remove blink and muscle artefact from
the EEG recording for proper diagnosis and treatment of various
neurodevelopmental disorders in children. FastICA based on CORDIC,
separates the independent EEG signal from the mixed EEG signals.
Discrete Wavelet Transform is applied to each of the independent signal
and further processing is carried out to detect and remove the artefacts
based on the characteristics feature without the use of reference electrode.
This system is prototyped and tested on FPGA platform and further work on
Silicon implementation is going on. Currently working on designing of low
complexity architecture for Single Channel ICA (SCICA) which will extract
frequency disjoint signals from single source to reduce EEG electrodes.
Other Projects:
• RF energy harvesting
• Designing of 6T SRAM cell and Read/Write delay model of 256*64
SRAM memory.
• Power control using microcontroller for efficient moulding of plastic.
amit_acharyya/
Homepages/Jadhav_Pranit_Namdeorao.html
Digital Circuits, Digital System Design, Low complexity
System Design, VLSI for Signal
The main objective of the project is to remove blink and muscle artefact from
the EEG recording for proper diagnosis and treatment of various
isorders in children. FastICA based on CORDIC,
separates the independent EEG signal from the mixed EEG signals.
Discrete Wavelet Transform is applied to each of the independent signal
and further processing is carried out to detect and remove the artefacts
based on the characteristics feature without the use of reference electrode.
This system is prototyped and tested on FPGA platform and further work on
Silicon implementation is going on. Currently working on designing of low
ingle Channel ICA (SCICA) which will extract
frequency disjoint signals from single source to reduce EEG electrodes.
Designing of 6T SRAM cell and Read/Write delay model of 256*64
controller for efficient moulding of plastic.
Aniket Ramesh Ghole
M.Tech (Microelectronics & VLSI)
Link:https://in.linkedin.com/pub/aniket
Areas of Interest: Analog & Mixed Signal Design,
cost Sensors design and Modelling.
Description of Master’s Project: Milk adulteration detection.
Commercially available milk is found to be adulterated with number of
chemicals such as hydrated lime, sodium hydroxide, sodium carbonate,
sodium bicarbonate, hydrogen peroxide, etc. which may cause
hazardous and irreversible damage to the organs of the consumers. We
work on development of the single hand-held sensor platform (with single
sensor) for the all adulterants. The fabrication of the sensor and
requiredcircuitry for the same on single chip forms the major objective of
the project.
Other Projects:
• Remove blink and muscle artefact from the EEG recording for
proper diagnosis and treatment of various neuro
disorders in children and its implementation on FPGA.
• Designing of 6T SRAM cell and Read/Write delay model of
256*64 SRAM memory.
• RF energy harvesting system.
• Development nanofiber composite using electrospinning
technique for bio-sensing applications.
• Development of sensor for early cancer detect
anomalies in DNA strands.
•
Publications:1 IEEE Conference Paper.
Aniket Ramesh Ghole
M.Tech (Microelectronics & VLSI)
in.linkedin.com/pub/aniket-ghole/17/10b/939
Design, Digital IC Design, Low
Milk adulteration detection.
Commercially available milk is found to be adulterated with number of
chemicals such as hydrated lime, sodium hydroxide, sodium carbonate,
ide, etc. which may cause
hazardous and irreversible damage to the organs of the consumers. We
held sensor platform (with single
the all adulterants. The fabrication of the sensor and designof
the same on single chip forms the major objective of
Remove blink and muscle artefact from the EEG recording for
proper diagnosis and treatment of various neuro-developmental
on on FPGA.
Designing of 6T SRAM cell and Read/Write delay model of
Development nanofiber composite using electrospinning
Development of sensor for early cancer detection by sensing
Area of Interest: Data Converters, ultra-low power analog circuit
design, biomedical signal processing circuits, mixed signal design, Digital
IC Design, electronic design automation, embedded system design.
Other Projects:
• A low power analog front-end for ECG signals
• Designing of 6T SRAM cell and Read/Write delay model of
256*64 SRAM memory.
• ECG signal denoising and the system implementation on
Virtex-7 FPGA board.
Work experience: One and half year experience in Tata consultancy
services as Assistant System engineer. Worked in SAP EDI domain in
B2B integration & deployment.
Description of Master’s Project: An ultra-low power successive
approximationregisterADC for biomedical application is the focus of my
research. An energy efficient Charge recycling approach such as split
capacitor, merged capacitor are targeted in UMC 180nm process. An
Ultra-low power (<50nW) SAR ADC chip is expected to be taped out and
tested at the end of my project.
Kunal Yadav
M.Tech(Microelectronics & VLSI)
Link: https://in.linkedin.com/in/kunalyadav2
low power analog circuit
n, biomedical signal processing circuits, mixed signal design, Digital
IC Design, electronic design automation, embedded system design.
Designing of 6T SRAM cell and Read/Write delay model of
stem implementation on
ta consultancy
System engineer. Worked in SAP EDI domain in
low power successive
biomedical application is the focus of my
research. An energy efficient Charge recycling approach such as split
capacitor, merged capacitor are targeted in UMC 180nm process. An
low power (<50nW) SAR ADC chip is expected to be taped out and
://in.linkedin.com/in/kunalyadav2
Areas of Interest:mm wave antenna Design, UWB antenna
Design, Analog circuit Design.
Description of Masters Project:
Title: Body worn millimeter wave antenna design on fabric.
Description: The goal is to design a wearable antenna at mm wave
which can be stitched on to the fabric. The various issues which need
to be considered at mm wave include interaction of mm w
human body at 60 GHz and change in the antenna performance in the
close vicinity of human body. A detailed study of human skin dielectric
constant is needed since at 60 GHz or in V-band properties of skin
differ from properties at other frequency.
Other Projects:
• Magnetic quantum cellular automata (MQCA) for Digital logic
• Multilayer nanoparticle arrays for efficiency enhancement in
thin film photovoltaic
• Design of 256x64 6T SRAM cell and Read/Write Delay
modelling
• Modified-Dickson Charge pump design
• CMOS RF Biosensor using Nuclear Magnetic Resonance
(NMR)
Publications:
2 - IEEE international conference papers
Lakhan
M.Tech (Microelectronics & VLSI)
Link: https://in.linkedin.com/pub/lakhan
mm wave antenna Design, UWB antenna
Body worn millimeter wave antenna design on fabric.
wearable antenna at mm wave
which can be stitched on to the fabric. The various issues which need
to be considered at mm wave include interaction of mm waves with
and change in the antenna performance in the
human body. A detailed study of human skin dielectric
band properties of skin
Magnetic quantum cellular automata (MQCA) for Digital logic
Multilayer nanoparticle arrays for efficiency enhancement in
Design of 256x64 6T SRAM cell and Read/Write Delay
CMOS RF Biosensor using Nuclear Magnetic Resonance
M.Tech (Microelectronics & VLSI)
in.linkedin.com/pub/lakhan-panwar/81/baa/108
R.Aishwarya
M.Tech (Microelectronics and VLSI)
Link:https://in.linkedin.com/pub/raishwarya/9a/555/a02a
Description of Masters Project:
Fabricating and characterizing a T microchannel device for Lab
(LoC) applications. The applications of this device is detection of occurrence
of heart attack and detection of cancer and other diseases. This device
used to separate the plasma from blood by using a passive method called
hydrodynamic separation technique in microchannels with size of the order
of mm which leads to cost reduction and low maintenance of the device.
This separated plasma can be post processed for the detection of proteins
like Cardiac troponin I or cardiac troponin T which indicates occurrence of
heart attack and then WBC s are separated for detecting cancer.
Other Projects
•FPGA based design and implementation of an adaptive Artificial Pancreas
System.
•Design of 256x64 6T SRAM array with 65nm node.
•Gm-C filter design with 180nm node.
•Implementation of voice Scrambler using TMS320C6713 DSK.
• ECG lead reconstruction.
•TCAD Simulation of Ion Sensitive field effect transistor (ISFET).
Areas of Interest:Digital and Analog Circuitdesign, Embedded system
design,Memory design, Microsensors for Lab-on
Systems,Cooling system for 3D IC.
in.linkedin.com/pub/raishwarya/9a/555/a02a
e for Lab-on-Chip
(LoC) applications. The applications of this device is detection of occurrence
of heart attack and detection of cancer and other diseases. This device is
from blood by using a passive method called
c separation technique in microchannels with size of the order
of mm which leads to cost reduction and low maintenance of the device.
This separated plasma can be post processed for the detection of proteins
which indicates occurrence of
heart attack and then WBC s are separated for detecting cancer.
•FPGA based design and implementation of an adaptive Artificial Pancreas
TMS320C6713 DSK.
ield effect transistor (ISFET).
Digital and Analog Circuitdesign, Embedded system
on-Chip (LoC)
ThalladaSandeep
M.Tech (Microelectronics and VLSI)
Link:https://in.linkedin.com/pub/thallada
Areas of Interest:Digital IC design, Low power VLSI
Design Automation, Embedded Systems, Analog Circuits, Semiconductor
Device Modelling, VLSI Technology, Programming and Software
Development.
Description of Master’s Thesis:
Title: Hardware Software co-design of Protein Sequencing in Bioinformatics:
Design of bit split implementation of Aho-Corasick algorithm
Description: Aho-Corasick algorithm is a string based pattern matching
algorithm and it is used in analysis of protein sequences. The proposed
algorithm is written in C language and subsequently implemented on FPGA
using the Xilinx Tools. The proposed algorithm accelerates string matching
process, improves the speed of peptide identification and consumes less
memory as compared to the existing algorithms.
Other projects:
• Fast and reliable protein profile extraction using Fast ICA
in Matlab.
• Low complexity hardware based feature extractio
• Design of 256x64 6T SRAM cell and its analysis for critical path
timing for read and write operations.
• Metal assisted chemical etching for the formation of TSV used in 3D
IC integration.
• Characterization of Junctionless transistor using
Microelectronics and VLSI)
in.linkedin.com/pub/thallada-sandeep/56/aba/943
Low power VLSI design, Electronic
Design Automation, Embedded Systems, Analog Circuits, Semiconductor
nology, Programming and Software
design of Protein Sequencing in Bioinformatics:
Corasick algorithm
string based pattern matching
algorithm and it is used in analysis of protein sequences. The proposed
algorithm is written in C language and subsequently implemented on FPGA
using the Xilinx Tools. The proposed algorithm accelerates string matching
, improves the speed of peptide identification and consumes less
file extraction using Fast ICA algorithm
Low complexity hardware based feature extraction of ECG signal.
Design of 256x64 6T SRAM cell and its analysis for critical path
Metal assisted chemical etching for the formation of TSV used in 3D
Characterization of Junctionless transistor using Silvaco TCAD.
Harsha S
M.Tech (Microelectronics & VLSI)
Link: https://in.linkedin.com/pub/harsha-s/44/59/a16
Areas of Interest:Digital and Analog system design,
ASIC/FPGAImplementation, Semiconductor Devices
Description of Master’s Project:
Fabrication Of Hybrid Photo Detector(HPD)
The project involves detection of single photon within a range of
wavelengths using a combination of photo cathode and an electron
multiplier. III-V semiconductor based photo cathode and a Silicon based
avalanche diode in reverse biased mode as electron multiplier form the
basic structure of the device.Material used for III-V semiconductor wil
determine the range of wavelengths that can be detected by the system.
High gain by avalanche multiplication helps in detection of current using
normal read out circuits.HPD finds application in various fields in
medical field,LIDAR(communication), nuclear reactors(detect leakage)
etc.,
Other Projects:
• CORDIC based Householder Reflection with ASIC process flow
implementation
• FPGA Implementation of Hamming Code
• FPGA Implementation of Lapped Orthogonal Transform
• ADPCM Encoder
• SILVACO/TCAD Simulation of Dual-Material Gate Junctionless
Transistor
s/44/59/a16
Digital and Analog system design,
The project involves detection of single photon within a range of
bination of photo cathode and an electron
V semiconductor based photo cathode and a Silicon based
avalanche diode in reverse biased mode as electron multiplier form the
V semiconductor will
determine the range of wavelengths that can be detected by the system.
High gain by avalanche multiplication helps in detection of current using
normal read out circuits.HPD finds application in various fields in
ar reactors(detect leakage)
CORDIC based Householder Reflection with ASIC process flow
FPGA Implementation of Lapped Orthogonal Transform
Material Gate Junctionless
Link:https://in.linkedin.com/pub/himanshu
bansal/a0/357/861
Areas of Interest: Analog and Digital circuit design, ASIC/FPGA
Implementation, Semiconductor Devices
Description of Master’s Project:
Simulation and Fabrication of Solar Cells:
Embedding different kind of nanoparticles with-in and above the surface of
Amorphous Si to improve solar cell efficiency.
Other Projects:
● CORDIC Based Householder Reflection
● FPGA Implementation of Hamming code
● Front-end and back-end implementation of CORDIC algorithms
using synopsis EDA tools
Himanshu
M.Tech(Microelectronics & VLSI
https://in.linkedin.com/pub/himanshu-
Analog and Digital circuit design, ASIC/FPGA
in and above the surface of
end implementation of CORDIC algorithms
M.Tech(Microelectronics & VLSI)
K.DEEP
M.Tech (Microelectronics & VLSI)
Link:https://in.linkedin.com/pub/khandavallideep
/b0/8ba/43a
Areas of Interest: Semiconductor Devices, Analog and Digital circuit
design.
Description of Masters Project
The project involves designing a chip for Medical diagnosis(LAB O
which includes simulation and fabrication of devices. Project mainly deals
with the concept of Electro-wetting on dielectric(EWOD)
Other Projects
• Band gap reference, Two stage op-amp design
• Front-end and Back-end implementation of CORDIC algorithm
using synopsis EDA tools.
• FPGA Implementation of sequence detector.
• 32 point FFT implementation in Xilinx.
khandavallideep
Semiconductor Devices, Analog and Digital circuit
The project involves designing a chip for Medical diagnosis(LAB ON CHIP)
which includes simulation and fabrication of devices. Project mainly deals
ion of CORDIC algorithms
Areas of Interest: ASIC Design, Physical Design Flow, EDA
Tools, FRONT END Design
Projects:
• Design of High speed Adders, Multiplier and Square Root
Modules
• 32 point FFT implementation using verilog
• Cordic implementation
• Booth Algorithm implementation on FPGA
P Udaya Teja
M.Tech (Microelectronics & VLSI)
Link:https://in.linkedin.com/pub/uday
a/26/9ab
hysical Design Flow, EDA
Design of High speed Adders, Multiplier and Square Root
32 point FFT implementation using verilog
Booth Algorithm implementation on FPGA
(Microelectronics & VLSI)
https://in.linkedin.com/pub/uday-teja/1
Shikhar Jain
M.Tech (Microelectronics & VLSI)
Link:https://in.linkedin.com/pub/shikhar
jain/a2/800/ab4
Areas ofInterest: Analog and Digital system design,
ASIC/FPGAimplementation, Semiconductor Devices
Description of Masters Project:
The project involves 3D IC fine chip Cu-Cu bonding using Nickel as
passivation layer within Industrial limits of Temperature and
Pressure. This technology can be used for more fine pitch with more
stable bondseven at higher temperature and smaller footprint.
Other Projects:
• Band gap reference, Two stage op-amp design
• 32 point fft in Xilinx.
• Booth Algorithm implementation on FPGA
• Front-end and Back-end implementation of CORDIC
algorithms using synopsys EDA tools.
://in.linkedin.com/pub/shikhar-
Digital system design,
using Nickel as
passivation layer within Industrial limits of Temperature and
pitch with more
footprint.
ion of CORDIC
Description of Masters Project:
A bolometer is an IR sensor used in thermal imaging having wide range
of applications. This project is targeted at making a low cost micro
bolometer on Silicon only with front-end bulk micro-machin
simple fabrication steps and then integrate vertically (3D integration)
with the Read Out IC (ROIC) designed for it. A micro bolometer is
realized on a Silicon wafer by under etching Si and creating a hanging
structure of it. We use only wet chemical etching of Silicon and the
mask geometry that we used exposes planes at an angle of 450 with
the wafer flat which etches the Silicon vertically(also horizontally) unlike
Areas of Interest: Digital Design, Analog
Design, Device Modelling,
Link:https://in.linkedin.com/pub/ranga
reddy/a0/34b/976
Other Project:
• Implementation of CORDIC based Householder reflection.
• TSV noise coupling in 3D IC using guard Ring
Publications:
1- IEEE International conference Paper
the 54.70 planes exposed when etched on (100) wafer .
R Ranga Reddy
M.Tech (Microelectronics & VLSI)
A bolometer is an IR sensor used in thermal imaging having wide range
of applications. This project is targeted at making a low cost micro
machining using
simple fabrication steps and then integrate vertically (3D integration)
with the Read Out IC (ROIC) designed for it. A micro bolometer is
realized on a Silicon wafer by under etching Si and creating a hanging
ical etching of Silicon and the
mask geometry that we used exposes planes at an angle of 450 with
the wafer flat which etches the Silicon vertically(also horizontally) unlike
Digital Design, Analog
://in.linkedin.com/pub/ranga-
Implementation of CORDIC based Householder reflection.
VLSI)
Srinivasulu Kanaparthi
M.Tech(Microelectronics & VLSI)
Link:https://www.linkedin.com/pub/srinivasulu
-kanaparthi/a7/792/879
Areas of Interest:Semiconductor Devices, Nanoelectronics
Design of Analog and Digital circuits
Description of Master’s Project:
Fabrication, Characterization and Applications of Carbon electronics
Other Project:
• RF data concentrator Unit
• Solar String Monitoring Unit
• Rectifier for Piezoelectric Energy Harvesting
• Implementation of LMS filter on DSP and ARM cortex
boards
• FPGA implementation of sequence detector
• Front-end and Back-end implementation of CORDIC
Algorithm using Synopsis EDA
Experience:
Two years of work experience as Embedded Engineer at Ami Te
(India) Pvt. Ltd
Raja U
M.Tech (Microelectronics & VLSI)
Areas of Interest: Analog and Digital circuit design,
ASIC/FPGAimplementation, Semiconductor Devices
Description of Masters Project
The project involves simulation study of Bilayer Graphene FET using
nonequilibrium green's function formalism through the self
solution of the Poisson and the Schrodinger equations.
Other Projects
• Band gap reference,Two stage op-amp design
• Front-end and Back-end implementation of CORDIC algorithms
using synopsys EDA tools
• 32 point fft in Xilinx.
• FPGA Implementation of sequence detector,CORDIC
algorithms.
Link: https://in.linkedin.com/pub/raja
00/636/897
M.Tech(Microelectronics & VLSI)
://www.linkedin.com/pub/srinivasulu
electronics and
Fabrication, Characterization and Applications of Carbon electronics
Implementation of LMS filter on DSP and ARM cortex
end implementation of CORDIC
Two years of work experience as Embedded Engineer at Ami Tech
M.Tech (Microelectronics & VLSI)
Analog and Digital circuit design,
The project involves simulation study of Bilayer Graphene FET using
nequilibrium green's function formalism through the self-consistent
end implementation of CORDIC algorithms
FPGA Implementation of sequence detector,CORDIC
in.linkedin.com/pub/raja-upputuri/1
Contact Us
Indian Institute of Technology
Hyderabad,
Ordnance Factory Estate,
Yeddumailaram, Telangana, 502205.
Ph: +91-40-2301 6098.
Ph: +91-40-2301 6009.
Email: placement@iith.ac.in
Web: http://www.iith.ac.in/tp
Dr. B. Venkatesham
Faculty In-charge,
Training and Placement Office,
Ph: +91-40-2301 6110.
Email: venkatesham@iith.ac.in
Dr. Pradeep Yemula
Faculty In-charge,
Training and Placement Office,
Ph: +91-40-2301 7124.
Mobile: +918374993999.
Email: ypradeep@iith.ac.in
A. Pranitha/Archana Singh
Placement Coordinator,
Training and Placement Cell.
Ph: +91-40-2301 6098.
Email: pranitha@iith.ac.in/archanasingh@iith.ac.in
Student Placement Coordinators
Harsha S
Ph: +91-8861823623
Email: ee14mtech11015@iith.ac.in
Pranit Namdeorao Jadhav
Ph: +91-9542607912
Email: ee13m1023@iith.ac.in
Kunal Yadav
Ph: +91-8985201547
Email: ee13m1024@iith.ac.in

More Related Content

What's hot

Indian Space Research Organisation
Indian Space Research OrganisationIndian Space Research Organisation
Indian Space Research Organisation
Teja Narahari
 
CV_Wael_Dghais_2015
CV_Wael_Dghais_2015CV_Wael_Dghais_2015
CV_Wael_Dghais_2015
Wael Dghais
 

What's hot (17)

M.tech communication system engineering 2019 20
M.tech communication system engineering 2019 20M.tech communication system engineering 2019 20
M.tech communication system engineering 2019 20
 
IRJET- Power Monitoring with Time Controlling & Data Logging
IRJET- Power Monitoring with Time Controlling & Data LoggingIRJET- Power Monitoring with Time Controlling & Data Logging
IRJET- Power Monitoring with Time Controlling & Data Logging
 
Indian Space Research Organisation
Indian Space Research OrganisationIndian Space Research Organisation
Indian Space Research Organisation
 
IRJET - IoT based E-Prognosis System
IRJET - IoT based E-Prognosis SystemIRJET - IoT based E-Prognosis System
IRJET - IoT based E-Prognosis System
 
CV_Wael_Dghais_2015
CV_Wael_Dghais_2015CV_Wael_Dghais_2015
CV_Wael_Dghais_2015
 
Call for papers - 6th International Conference on Signal, Image Processing an...
Call for papers - 6th International Conference on Signal, Image Processing an...Call for papers - 6th International Conference on Signal, Image Processing an...
Call for papers - 6th International Conference on Signal, Image Processing an...
 
RPL AND COAP PROTOCOLS, EXPERIMENTAL ANALYSIS FOR IOT: A CASE STUDY
RPL AND COAP PROTOCOLS, EXPERIMENTAL ANALYSIS FOR IOT: A CASE STUDYRPL AND COAP PROTOCOLS, EXPERIMENTAL ANALYSIS FOR IOT: A CASE STUDY
RPL AND COAP PROTOCOLS, EXPERIMENTAL ANALYSIS FOR IOT: A CASE STUDY
 
IRJET - Smart Yoga Instructor
IRJET - Smart Yoga InstructorIRJET - Smart Yoga Instructor
IRJET - Smart Yoga Instructor
 
Sudhaman
SudhamanSudhaman
Sudhaman
 
IRJET- IoT based Facial Recognition Biometric Attendance
IRJET- IoT based Facial Recognition Biometric AttendanceIRJET- IoT based Facial Recognition Biometric Attendance
IRJET- IoT based Facial Recognition Biometric Attendance
 
Call for papers - 6th International Conference on Signal, Image Processing an...
Call for papers - 6th International Conference on Signal, Image Processing an...Call for papers - 6th International Conference on Signal, Image Processing an...
Call for papers - 6th International Conference on Signal, Image Processing an...
 
Iot
IotIot
Iot
 
IRJET- Circuit BuildAR: Interactive Circuit Designing and Simulating
IRJET- Circuit BuildAR: Interactive Circuit Designing and SimulatingIRJET- Circuit BuildAR: Interactive Circuit Designing and Simulating
IRJET- Circuit BuildAR: Interactive Circuit Designing and Simulating
 
Call for Paper - 7th International Conference on Image Processing and Pattern...
Call for Paper - 7th International Conference on Image Processing and Pattern...Call for Paper - 7th International Conference on Image Processing and Pattern...
Call for Paper - 7th International Conference on Image Processing and Pattern...
 
COMPLEX EVENT PROCESSING USING IOT DEVICES BASED ON ARDUINO
COMPLEX EVENT PROCESSING USING IOT DEVICES BASED ON ARDUINOCOMPLEX EVENT PROCESSING USING IOT DEVICES BASED ON ARDUINO
COMPLEX EVENT PROCESSING USING IOT DEVICES BASED ON ARDUINO
 
sss_CV_2014
sss_CV_2014sss_CV_2014
sss_CV_2014
 
METHODOLOGIES AND CHALLENGES OF WSN FOR IOT
METHODOLOGIES AND CHALLENGES OF WSN FOR IOT METHODOLOGIES AND CHALLENGES OF WSN FOR IOT
METHODOLOGIES AND CHALLENGES OF WSN FOR IOT
 

Viewers also liked (10)

Vlsi physical design automation on partitioning
Vlsi physical design automation on partitioningVlsi physical design automation on partitioning
Vlsi physical design automation on partitioning
 
Vlsi Education In India
Vlsi Education In IndiaVlsi Education In India
Vlsi Education In India
 
Physical Design Flow Challenges at 28nm on Multi-million Gate Blocks
Physical Design Flow Challenges at 28nm on Multi-million Gate BlocksPhysical Design Flow Challenges at 28nm on Multi-million Gate Blocks
Physical Design Flow Challenges at 28nm on Multi-million Gate Blocks
 
Vlsi physical design
Vlsi physical designVlsi physical design
Vlsi physical design
 
CAD: introduction to floorplanning
CAD:  introduction to floorplanningCAD:  introduction to floorplanning
CAD: introduction to floorplanning
 
Floorplanning in physical design
Floorplanning in physical designFloorplanning in physical design
Floorplanning in physical design
 
Physical design-complete
Physical design-completePhysical design-complete
Physical design-complete
 
Physical design
Physical design Physical design
Physical design
 
FLOORPLANNING USING DE
FLOORPLANNING USING DEFLOORPLANNING USING DE
FLOORPLANNING USING DE
 
Slideshare ppt
Slideshare pptSlideshare ppt
Slideshare ppt
 

Similar to Research Facilities and Student Profile VLSI IITH

IoT Based Smart Energy Grid-3.docx
IoT Based Smart Energy Grid-3.docxIoT Based Smart Energy Grid-3.docx
IoT Based Smart Energy Grid-3.docx
Akash390381
 
Resume Song Chen 2016
Resume Song Chen 2016Resume Song Chen 2016
Resume Song Chen 2016
Song Chen
 
Thesis of-rajesh-gps
Thesis of-rajesh-gpsThesis of-rajesh-gps
Thesis of-rajesh-gps
lakshmi610
 
TUC_Presentation-Convergenceof_Technologies_to_Address_the_Challenges_of_the_...
TUC_Presentation-Convergenceof_Technologies_to_Address_the_Challenges_of_the_...TUC_Presentation-Convergenceof_Technologies_to_Address_the_Challenges_of_the_...
TUC_Presentation-Convergenceof_Technologies_to_Address_the_Challenges_of_the_...
ssuser046cf5
 
TUC_Presentation-Convergenceof_Technologies_to_Address_the_Challenges_of_the_...
TUC_Presentation-Convergenceof_Technologies_to_Address_the_Challenges_of_the_...TUC_Presentation-Convergenceof_Technologies_to_Address_the_Challenges_of_the_...
TUC_Presentation-Convergenceof_Technologies_to_Address_the_Challenges_of_the_...
ssuser046cf5
 

Similar to Research Facilities and Student Profile VLSI IITH (20)

Presentaion on Report for Financial Terminology
Presentaion on Report for Financial TerminologyPresentaion on Report for Financial Terminology
Presentaion on Report for Financial Terminology
 
hot research topics
hot research topicshot research topics
hot research topics
 
Nanomaterials invitation
Nanomaterials invitationNanomaterials invitation
Nanomaterials invitation
 
Preprint-ICTACS2022 - 10-12 Oct 2022.pdf
Preprint-ICTACS2022 - 10-12 Oct 2022.pdfPreprint-ICTACS2022 - 10-12 Oct 2022.pdf
Preprint-ICTACS2022 - 10-12 Oct 2022.pdf
 
Applications of Computational Intelligence, Internet of Things and Cutting Ed...
Applications of Computational Intelligence, Internet of Things and Cutting Ed...Applications of Computational Intelligence, Internet of Things and Cutting Ed...
Applications of Computational Intelligence, Internet of Things and Cutting Ed...
 
IoT Based Smart Energy Grid-3.docx
IoT Based Smart Energy Grid-3.docxIoT Based Smart Energy Grid-3.docx
IoT Based Smart Energy Grid-3.docx
 
IoT Based Smart Energy Grid-3.docx
IoT Based Smart Energy Grid-3.docxIoT Based Smart Energy Grid-3.docx
IoT Based Smart Energy Grid-3.docx
 
Resume Song Chen 2016
Resume Song Chen 2016Resume Song Chen 2016
Resume Song Chen 2016
 
Vlsi
VlsiVlsi
Vlsi
 
Thesis of-rajesh-gps
Thesis of-rajesh-gpsThesis of-rajesh-gps
Thesis of-rajesh-gps
 
Embedded System Design.pptx
Embedded System Design.pptxEmbedded System Design.pptx
Embedded System Design.pptx
 
Disruptive technologies - Session 4 - Biochip Digital twin Smart Fabrics
Disruptive technologies - Session 4 - Biochip Digital twin Smart FabricsDisruptive technologies - Session 4 - Biochip Digital twin Smart Fabrics
Disruptive technologies - Session 4 - Biochip Digital twin Smart Fabrics
 
Technologies_to_Address_the_Challenges_of_the_21st_Century.pptx
Technologies_to_Address_the_Challenges_of_the_21st_Century.pptxTechnologies_to_Address_the_Challenges_of_the_21st_Century.pptx
Technologies_to_Address_the_Challenges_of_the_21st_Century.pptx
 
Call for Papers- Special Issue: Applications of Advanced Power Semiconductors...
Call for Papers- Special Issue: Applications of Advanced Power Semiconductors...Call for Papers- Special Issue: Applications of Advanced Power Semiconductors...
Call for Papers- Special Issue: Applications of Advanced Power Semiconductors...
 
TUC_Presentation-Convergenceof_Technologies_to_Address_the_Challenges_of_the_...
TUC_Presentation-Convergenceof_Technologies_to_Address_the_Challenges_of_the_...TUC_Presentation-Convergenceof_Technologies_to_Address_the_Challenges_of_the_...
TUC_Presentation-Convergenceof_Technologies_to_Address_the_Challenges_of_the_...
 
TUC_Presentation-Convergenceof_Technologies_to_Address_the_Challenges_of_the_...
TUC_Presentation-Convergenceof_Technologies_to_Address_the_Challenges_of_the_...TUC_Presentation-Convergenceof_Technologies_to_Address_the_Challenges_of_the_...
TUC_Presentation-Convergenceof_Technologies_to_Address_the_Challenges_of_the_...
 
Call for papers ijrte
Call for papers ijrteCall for papers ijrte
Call for papers ijrte
 
HANI
HANIHANI
HANI
 
Resume
ResumeResume
Resume
 
Resume
ResumeResume
Resume
 

Research Facilities and Student Profile VLSI IITH

  • 1. Microelectronics & VLSI Department Of Electrical Engineering IIT Hyderabad Research Overview and M.Tech Student Profile
  • 2. Advanced Embedded System and IC Design L Research Overview Research activity involves designing and implementation of low complexity and low power VLSI circuits for personalized health development of CAD tool for IC design to reduce time to market, traditional transistors for next generation electronics, design for testability of 3D IC, signal processing and hardware development for stereovision useful in survey lines and ro Research Area: · Electronic Design Automation for next generation IC Design. · Cyber Physical Systems for remote healthcare applications: VLSI fo · Internet of Things for smarter healthcare: VLSI fo perspective. · Next Generation Electronics: Exploration into a new paradigm. dvanced Embedded System and IC Design Lab Research activity involves designing and implementation of low complexity and low power VLSI circuits for personalized health development of CAD tool for IC design to reduce time to market, energy harvesting from trees, magnetic logic circuits to replace traditional transistors for next generation electronics, design for testability of 3D IC, methodology to detect diseases using proteomics hardware development for stereovision useful in survey lines and robots. Electronic Design Automation for next generation IC Design. Cyber Physical Systems for remote healthcare applications: VLSI for signal processing, VLSI Design and Verification perspective. SI for signal processing, VLSI Design and Verification, SOC Design and Verification Next Generation Electronics: Exploration into a new paradigm. Research activity involves designing and implementation of low complexity and low power VLSI circuits for personalized healthcare, ic logic circuits to replace methodology to detect diseases using proteomics VLSI Design and Verification perspective. SOC Design and Verification
  • 3. Related Courses: • Embedded System. • Embedded Programming. • Digital IC Design & Verification. • Microprocessors and Computer Organization. • Biomedical IC Design. Faculty Profile Dr. Amit Acharyya (Assistant Professor) Phone: +91-40-2301 6106 (Office) Fax: +91-40-2301 6032 Email:amit_acharyya [at] iith.ac.in Homepage:http://www.iith.ac.in/~amit_acharyya/index.html Areas of Interest:Signal Processing Algorithm and VLSI Architectures, VLSI systems for next generation healthcare systems, Low Power Design Techniques, Electronic Aspects of Pervasive Computing, Bio-informatics, Digital Arithmetic, Linear Algebra, Numerical Analysis, Computer-aided designs, VLSI for Communication systems, Genomic and Proteomic Signal Processing, VLSI in Proteomics. Projects · Department of Electronics and Information Technology (DEITY), Ministry of Communications and Information Technology, Government of India funded research project entitled "IOT for Smarter Healthcare".
  • 4. · Advanced Research and Analysis Group, (ANURAG), Defense Research and Development Organization (DRDO), Government of India funded research project on "Healthcare Technology". · Science and Engineering Research Board, (SERB), Department of Science and Technology (DST), Government of India funded research project on "Shear flow estimation and damage assessment of reinforced concrete columns under combined loading including torsion". Tape Out SoC Real-time Automated Non-invasive Cardiac Remote Health Monitoring System in TSMC 130nm operating at 2MHz.
  • 5. Analog/Mixed-Signal, RF, Microwaves Research Overview This research cluster emphasizes synergistic cooperation and innovation amongst faculty members whose research focuses on various aspects of electrical systems. The faculty in this research cluster are involved in biomedical system and circuits, RF transceivers, harvesting circuits and Data convertors. An effective top-down simulation and modeling methodology of systems is being emphasized. Our research forms the basis for personal portable, self-sustainable healthcare devices of today and of the future. Research Thrust Ø Analog integrated circuits Ø Data Converters Ø RF Circuit design Ø System-on-a-chip design Ø Energy Harvesting circuits Ø Radiation Hardened Circuits Related courses Ø Analog IC design Ø Advanced memory design Ø Digital IC design Ø Biomedical IC design Ø Analog & digital circuit simulation lab Ø Embedded Circuit design
  • 6. Faculty Selected Projects "IOT for Smarter Healthcare"funded by Department of Electronics and Information Technology (DEITY), Ministry of Communications and Information Technology, Government of India. "Cyber Physical Systems for remote healthcare applications"funded by Department of Electronics and Information Technology (DEITY), Ministry of Communications and Information Technology, Government of India. "Self-powered wireless chipset for building to building communication" funded by Department of Electronics and Information Technology (DEITY), Ministry of Communications and Information Technology, Government of India. Dr.Ashudeb Dutta (Assistant Professor) Email : asudeb_dutta [at] iith.ac.in Phone : +91 (40) 2301 6051 Areas of Interest: Analog circuit design, biomedical circuit design, data Converters, energy harvesting circuits, RF circuit design.
  • 7. Tapeout 2.4GHz direct conversion QLMVF mode ZigBee/BLE Receiver including integer N PLL A 6µW Biomedical Frontend with powered U A 6µW Biomedical Frontend with ∑∆ ADC forSelf- powered U-Healthcare Devices in 0.18µmCMOS 2.4GHz direct conversion QLMVF mode including integer N PLL 2.4GHz direct conversion QLMVF mode ZigBee Receiver including integer N PLL
  • 8. Nano-X Lab Research Overview Research activities in the Microelectronics Group span a wide range of areas: physics, technology, characterization, modeling, simulation and design. Labs where research is conducted are Fabrication Clean Room, Electrochemistry laboratory, device characterization laboratory and simulation laboratory.
  • 9. Faculty Profile Areas of Interest:3-D ICs technology Development (Interconnects, electro-migration, Electrical and Thermal Modeling of 3-D ICs, Thermal and power aware placement of TSV (both signal and thermal) RF MEMS device design simulation fabrication and Characterization Micro/Nano fluidics, Electronics cooling, Lab on chip 3D solar cell, Ultra low power solar cell based energy harvesting ckt. Milk Net, Synthetic tree, Water adulterant, Mechanical to Electrical Energy Conversion. Dr.Shiv Govind Singh (Associate Professor) Email : sgsingh [at] iith.ac.in Phone : +91 (40) 2301 6079 Related Courses: • Semiconductor Device and Modeling • VLSI Technology • CMOS Sensors • More than Moore Electronics • Nanotechnology and Principles. Research Area: · Nano Devices and Sensors. · MEMS · Micro fluidics · 3D IC Technology Development · Lab On Chip Applications · Antennas · Silicon Based Sensors
  • 10. Areas of Interest:Biosensors, Lab on Chip applications, VLSI Technology, Semiconductor device physics, MEMS Areas of Interest:Nanomaterials, devices and circuits. Areas of Interest:Physics of semiconductor devices and electronic transport, Micro/Nano-electronics, Modeling and simulation of electron devices, Quantum phenomena in nanostructures, Physical and wave electronics. Dr.Kaushik Nayak (Assistant Professor) Email : :knayak [at] iith.ac.in Phone : +91 (40) 2301 8440 Dr.Sushmee Badhulika (Assistant Professor) Email : :sbadh [at] iith.ac.in Siva Rama Krishna (Assistant Professor) Email : svanjari [at] iith.ac.in
  • 11. Labs & Tools VLSI Design Lab: Cadence (UMC 180nm) Pspice Agilent ADS MATLAB Silvaco TCAD COMSOL Advanced Digital design: Synopsis, Mentor Graphics Xilinx ISE, Xilinx Vivado Keil µVision Xilinx FPGA: Spartan 6, Virtex 7, Kintex 7, ZedBoard ARM Versatile Express Cortex M Prototyping System ARM lab Advanced Digital design: Synopsis, Mentor Graphics Xilinx ISE, Xilinx Vivado Keil µVision Xilinx FPGA: Spartan 6, Virtex 7, Kintex 7, ZedBoard ARM Versatile Express Cortex- M Prototyping System ARM lab-in-a-box. Nano-X Lab: RF sputtering Lithography system Wafer Bonder Cascade Probshield and Keithley 4200 SCS with switch matrix Vector network analyzer Sonoscan Acoustic Microscope Electrochemical spectroscopy Cascade Probshield and Keithley 4200 SCS with switch Vector network analyzer Sonoscan Acoustic Microscope Electrochemical spectroscopy
  • 13. Areas of Interest:Low power and complexity VLSI Architectures, Digital Design, Signal processing algorithms and Analog Design. Description of Masters Project: Title: Algorithms and architectures for CORDIC based low complexity reconfigurable n-D FastICA (Independent Component Analysis) Description: FastICA separates the independent signals from mixed signals. To reduce the complexity, CORDIC has been used to compute costly arithmetic operations involved in the FastICA. reconfigurable nature of the proposed n-dimensional architecture makes it possible to use for any number of inputs (≤n). So, it can be used in signal processing and biomedical applications (ECG, EEG signal extraction) without any changes. Apart from this, I am also working on designing of low complexity architecture for unsupervised K-means clustering as part of the post processing of FastICA, wh will be used in the health monitoring systems. Other Projects: • Implementation of low complexity ECG Feature extraction algorithm on TMS320C6713DSK and FPGA prototyping. • Design of Incremental Delta Sigma ADC. • Design of 256x64 6T SRAM cell and Read/Wri modelling • Fast algorithm for Dynamic Supply and Threshold Voltage Scaling for CMOS circuits. Publications: 2 - IEEE international conference papers Adapa Bhagyaraja M.Tech (Microelectronics & VLSI) Link: http://in.linkedin.com/in/adapabhagyaraja Student Profile Bollam Nandini M.Tech (Microelectronics & VLSI) Link:https://in.linkedin.com/pub/bollam Description of Masters Project: Title: Implementation of 10 bit 50MSPS Pipeline ADC for CMOS along with design of readout circuit for single pixel using CDS amplifier. Pipeline ADC is best to implement high-speed, medium ADCs with minimum power consumption. Pipelined adc is designed by using optimized number of bits per stage which significantly reduces the requirements of amplifier therefore power and also area of each stage. In order to decrease the total power stage scaling is included. Now the next step is to design Correlated double sampling (CDS) amplifier to noise in image sensor and 4T pixel circuit. Final target is to do layout of the entire system. Other Projects: • Design of 1MSPS 4bit first order noise shaped two step pipeline for incorporating itas a quantizer in sigma delta ADC . • Implementation of controller algorithm for an Adaptive artificial pancreas system in Verilog. • Implementation of ECG feature extraction algorithm in Verilog • Design of 256 x 64 6T SRAM array • Implementation of low complexity Foetal ECG Extraction algorithm for Mobile Health Monitoring Applications using TMS320C6713 DSK. Low power and complexity VLSI Architectures, Digital Design, Signal nalog Design. Algorithms and architectures for CORDIC based low complexity D FastICA (Independent Component Analysis) FastICA separates the independent signals from mixed reduce the complexity, CORDIC has been used to arithmetic operations involved in the FastICA. The dimensional architecture ≤n). So, it can be signal processing and biomedical applications (ECG, EEG signal extraction) without any changes. Apart from this, I am also working on designing of low complexity architecture for unsupervised means clustering as part of the post processing of FastICA, which Implementation of low complexity ECG Feature extraction algorithm on TMS320C6713DSK and FPGA prototyping. Design of 256x64 6T SRAM cell and Read/Write Delay Fast algorithm for Dynamic Supply and Threshold Voltage ://in.linkedin.com/in/adapabhagyaraja Areas of Interest: Low power and complexity VLSI Architectures, Digital Design, Signal processing algorithms and Analog Design. in.linkedin.com/pub/bollam-nandini/93/8a4/a16 for CMOS image sensor circuit for single pixel using CDS amplifier. medium-to-high resolution ADCs with minimum power consumption. Pipelined adc is designed by using optimized number of bits per stage which significantly reduces the requirements of amplifier therefore power and also area of each stage. In order to decrease the total power stage scaling is included. Now the next step is to reduce fixed pattern target is to do layout of the Design of 1MSPS 4bit first order noise shaped two step pipeline adc incorporating itas a quantizer in sigma delta ADC . an Adaptive artificial Implementation of ECG feature extraction algorithm in Verilog Implementation of low complexity Foetal ECG Extraction algorithm for ng TMS320C6713 DSK. Low power and complexity VLSI Architectures, Digital Design, Signal processing algorithms and Analog Design.
  • 14. Pranit Namdeorao Jadhav M.Tech (Microelectronics & VLSI) Link: http://www.iith.ac.in/~amit_acharyya/ Homepages/Jadhav_Pranit_Namdeorao.html https://in.linkedin.com/in/jadhavpranit Area of Interest:Digital Circuits, Digital System Design, Low complexity architecture for EEG processor, Embedded System Design, VLSI for Signal Processing, Analog circuits. Description of Master’s Project: The main objective of the project is to remove blink and muscle artefact from the EEG recording for proper diagnosis and treatment of various neurodevelopmental disorders in children. FastICA based on CORDIC, separates the independent EEG signal from the mixed EEG signals. Discrete Wavelet Transform is applied to each of the independent signal and further processing is carried out to detect and remove the artefacts based on the characteristics feature without the use of reference electrode. This system is prototyped and tested on FPGA platform and further work on Silicon implementation is going on. Currently working on designing of low complexity architecture for Single Channel ICA (SCICA) which will extract frequency disjoint signals from single source to reduce EEG electrodes. Other Projects: • RF energy harvesting • Designing of 6T SRAM cell and Read/Write delay model of 256*64 SRAM memory. • Power control using microcontroller for efficient moulding of plastic. amit_acharyya/ Homepages/Jadhav_Pranit_Namdeorao.html Digital Circuits, Digital System Design, Low complexity System Design, VLSI for Signal The main objective of the project is to remove blink and muscle artefact from the EEG recording for proper diagnosis and treatment of various isorders in children. FastICA based on CORDIC, separates the independent EEG signal from the mixed EEG signals. Discrete Wavelet Transform is applied to each of the independent signal and further processing is carried out to detect and remove the artefacts based on the characteristics feature without the use of reference electrode. This system is prototyped and tested on FPGA platform and further work on Silicon implementation is going on. Currently working on designing of low ingle Channel ICA (SCICA) which will extract frequency disjoint signals from single source to reduce EEG electrodes. Designing of 6T SRAM cell and Read/Write delay model of 256*64 controller for efficient moulding of plastic. Aniket Ramesh Ghole M.Tech (Microelectronics & VLSI) Link:https://in.linkedin.com/pub/aniket Areas of Interest: Analog & Mixed Signal Design, cost Sensors design and Modelling. Description of Master’s Project: Milk adulteration detection. Commercially available milk is found to be adulterated with number of chemicals such as hydrated lime, sodium hydroxide, sodium carbonate, sodium bicarbonate, hydrogen peroxide, etc. which may cause hazardous and irreversible damage to the organs of the consumers. We work on development of the single hand-held sensor platform (with single sensor) for the all adulterants. The fabrication of the sensor and requiredcircuitry for the same on single chip forms the major objective of the project. Other Projects: • Remove blink and muscle artefact from the EEG recording for proper diagnosis and treatment of various neuro disorders in children and its implementation on FPGA. • Designing of 6T SRAM cell and Read/Write delay model of 256*64 SRAM memory. • RF energy harvesting system. • Development nanofiber composite using electrospinning technique for bio-sensing applications. • Development of sensor for early cancer detect anomalies in DNA strands. • Publications:1 IEEE Conference Paper. Aniket Ramesh Ghole M.Tech (Microelectronics & VLSI) in.linkedin.com/pub/aniket-ghole/17/10b/939 Design, Digital IC Design, Low Milk adulteration detection. Commercially available milk is found to be adulterated with number of chemicals such as hydrated lime, sodium hydroxide, sodium carbonate, ide, etc. which may cause hazardous and irreversible damage to the organs of the consumers. We held sensor platform (with single the all adulterants. The fabrication of the sensor and designof the same on single chip forms the major objective of Remove blink and muscle artefact from the EEG recording for proper diagnosis and treatment of various neuro-developmental on on FPGA. Designing of 6T SRAM cell and Read/Write delay model of Development nanofiber composite using electrospinning Development of sensor for early cancer detection by sensing
  • 15. Area of Interest: Data Converters, ultra-low power analog circuit design, biomedical signal processing circuits, mixed signal design, Digital IC Design, electronic design automation, embedded system design. Other Projects: • A low power analog front-end for ECG signals • Designing of 6T SRAM cell and Read/Write delay model of 256*64 SRAM memory. • ECG signal denoising and the system implementation on Virtex-7 FPGA board. Work experience: One and half year experience in Tata consultancy services as Assistant System engineer. Worked in SAP EDI domain in B2B integration & deployment. Description of Master’s Project: An ultra-low power successive approximationregisterADC for biomedical application is the focus of my research. An energy efficient Charge recycling approach such as split capacitor, merged capacitor are targeted in UMC 180nm process. An Ultra-low power (<50nW) SAR ADC chip is expected to be taped out and tested at the end of my project. Kunal Yadav M.Tech(Microelectronics & VLSI) Link: https://in.linkedin.com/in/kunalyadav2 low power analog circuit n, biomedical signal processing circuits, mixed signal design, Digital IC Design, electronic design automation, embedded system design. Designing of 6T SRAM cell and Read/Write delay model of stem implementation on ta consultancy System engineer. Worked in SAP EDI domain in low power successive biomedical application is the focus of my research. An energy efficient Charge recycling approach such as split capacitor, merged capacitor are targeted in UMC 180nm process. An low power (<50nW) SAR ADC chip is expected to be taped out and ://in.linkedin.com/in/kunalyadav2 Areas of Interest:mm wave antenna Design, UWB antenna Design, Analog circuit Design. Description of Masters Project: Title: Body worn millimeter wave antenna design on fabric. Description: The goal is to design a wearable antenna at mm wave which can be stitched on to the fabric. The various issues which need to be considered at mm wave include interaction of mm w human body at 60 GHz and change in the antenna performance in the close vicinity of human body. A detailed study of human skin dielectric constant is needed since at 60 GHz or in V-band properties of skin differ from properties at other frequency. Other Projects: • Magnetic quantum cellular automata (MQCA) for Digital logic • Multilayer nanoparticle arrays for efficiency enhancement in thin film photovoltaic • Design of 256x64 6T SRAM cell and Read/Write Delay modelling • Modified-Dickson Charge pump design • CMOS RF Biosensor using Nuclear Magnetic Resonance (NMR) Publications: 2 - IEEE international conference papers Lakhan M.Tech (Microelectronics & VLSI) Link: https://in.linkedin.com/pub/lakhan mm wave antenna Design, UWB antenna Body worn millimeter wave antenna design on fabric. wearable antenna at mm wave which can be stitched on to the fabric. The various issues which need to be considered at mm wave include interaction of mm waves with and change in the antenna performance in the human body. A detailed study of human skin dielectric band properties of skin Magnetic quantum cellular automata (MQCA) for Digital logic Multilayer nanoparticle arrays for efficiency enhancement in Design of 256x64 6T SRAM cell and Read/Write Delay CMOS RF Biosensor using Nuclear Magnetic Resonance M.Tech (Microelectronics & VLSI) in.linkedin.com/pub/lakhan-panwar/81/baa/108
  • 16. R.Aishwarya M.Tech (Microelectronics and VLSI) Link:https://in.linkedin.com/pub/raishwarya/9a/555/a02a Description of Masters Project: Fabricating and characterizing a T microchannel device for Lab (LoC) applications. The applications of this device is detection of occurrence of heart attack and detection of cancer and other diseases. This device used to separate the plasma from blood by using a passive method called hydrodynamic separation technique in microchannels with size of the order of mm which leads to cost reduction and low maintenance of the device. This separated plasma can be post processed for the detection of proteins like Cardiac troponin I or cardiac troponin T which indicates occurrence of heart attack and then WBC s are separated for detecting cancer. Other Projects •FPGA based design and implementation of an adaptive Artificial Pancreas System. •Design of 256x64 6T SRAM array with 65nm node. •Gm-C filter design with 180nm node. •Implementation of voice Scrambler using TMS320C6713 DSK. • ECG lead reconstruction. •TCAD Simulation of Ion Sensitive field effect transistor (ISFET). Areas of Interest:Digital and Analog Circuitdesign, Embedded system design,Memory design, Microsensors for Lab-on Systems,Cooling system for 3D IC. in.linkedin.com/pub/raishwarya/9a/555/a02a e for Lab-on-Chip (LoC) applications. The applications of this device is detection of occurrence of heart attack and detection of cancer and other diseases. This device is from blood by using a passive method called c separation technique in microchannels with size of the order of mm which leads to cost reduction and low maintenance of the device. This separated plasma can be post processed for the detection of proteins which indicates occurrence of heart attack and then WBC s are separated for detecting cancer. •FPGA based design and implementation of an adaptive Artificial Pancreas TMS320C6713 DSK. ield effect transistor (ISFET). Digital and Analog Circuitdesign, Embedded system on-Chip (LoC) ThalladaSandeep M.Tech (Microelectronics and VLSI) Link:https://in.linkedin.com/pub/thallada Areas of Interest:Digital IC design, Low power VLSI Design Automation, Embedded Systems, Analog Circuits, Semiconductor Device Modelling, VLSI Technology, Programming and Software Development. Description of Master’s Thesis: Title: Hardware Software co-design of Protein Sequencing in Bioinformatics: Design of bit split implementation of Aho-Corasick algorithm Description: Aho-Corasick algorithm is a string based pattern matching algorithm and it is used in analysis of protein sequences. The proposed algorithm is written in C language and subsequently implemented on FPGA using the Xilinx Tools. The proposed algorithm accelerates string matching process, improves the speed of peptide identification and consumes less memory as compared to the existing algorithms. Other projects: • Fast and reliable protein profile extraction using Fast ICA in Matlab. • Low complexity hardware based feature extractio • Design of 256x64 6T SRAM cell and its analysis for critical path timing for read and write operations. • Metal assisted chemical etching for the formation of TSV used in 3D IC integration. • Characterization of Junctionless transistor using Microelectronics and VLSI) in.linkedin.com/pub/thallada-sandeep/56/aba/943 Low power VLSI design, Electronic Design Automation, Embedded Systems, Analog Circuits, Semiconductor nology, Programming and Software design of Protein Sequencing in Bioinformatics: Corasick algorithm string based pattern matching algorithm and it is used in analysis of protein sequences. The proposed algorithm is written in C language and subsequently implemented on FPGA using the Xilinx Tools. The proposed algorithm accelerates string matching , improves the speed of peptide identification and consumes less file extraction using Fast ICA algorithm Low complexity hardware based feature extraction of ECG signal. Design of 256x64 6T SRAM cell and its analysis for critical path Metal assisted chemical etching for the formation of TSV used in 3D Characterization of Junctionless transistor using Silvaco TCAD.
  • 17. Harsha S M.Tech (Microelectronics & VLSI) Link: https://in.linkedin.com/pub/harsha-s/44/59/a16 Areas of Interest:Digital and Analog system design, ASIC/FPGAImplementation, Semiconductor Devices Description of Master’s Project: Fabrication Of Hybrid Photo Detector(HPD) The project involves detection of single photon within a range of wavelengths using a combination of photo cathode and an electron multiplier. III-V semiconductor based photo cathode and a Silicon based avalanche diode in reverse biased mode as electron multiplier form the basic structure of the device.Material used for III-V semiconductor wil determine the range of wavelengths that can be detected by the system. High gain by avalanche multiplication helps in detection of current using normal read out circuits.HPD finds application in various fields in medical field,LIDAR(communication), nuclear reactors(detect leakage) etc., Other Projects: • CORDIC based Householder Reflection with ASIC process flow implementation • FPGA Implementation of Hamming Code • FPGA Implementation of Lapped Orthogonal Transform • ADPCM Encoder • SILVACO/TCAD Simulation of Dual-Material Gate Junctionless Transistor s/44/59/a16 Digital and Analog system design, The project involves detection of single photon within a range of bination of photo cathode and an electron V semiconductor based photo cathode and a Silicon based avalanche diode in reverse biased mode as electron multiplier form the V semiconductor will determine the range of wavelengths that can be detected by the system. High gain by avalanche multiplication helps in detection of current using normal read out circuits.HPD finds application in various fields in ar reactors(detect leakage) CORDIC based Householder Reflection with ASIC process flow FPGA Implementation of Lapped Orthogonal Transform Material Gate Junctionless Link:https://in.linkedin.com/pub/himanshu bansal/a0/357/861 Areas of Interest: Analog and Digital circuit design, ASIC/FPGA Implementation, Semiconductor Devices Description of Master’s Project: Simulation and Fabrication of Solar Cells: Embedding different kind of nanoparticles with-in and above the surface of Amorphous Si to improve solar cell efficiency. Other Projects: ● CORDIC Based Householder Reflection ● FPGA Implementation of Hamming code ● Front-end and back-end implementation of CORDIC algorithms using synopsis EDA tools Himanshu M.Tech(Microelectronics & VLSI https://in.linkedin.com/pub/himanshu- Analog and Digital circuit design, ASIC/FPGA in and above the surface of end implementation of CORDIC algorithms M.Tech(Microelectronics & VLSI)
  • 18. K.DEEP M.Tech (Microelectronics & VLSI) Link:https://in.linkedin.com/pub/khandavallideep /b0/8ba/43a Areas of Interest: Semiconductor Devices, Analog and Digital circuit design. Description of Masters Project The project involves designing a chip for Medical diagnosis(LAB O which includes simulation and fabrication of devices. Project mainly deals with the concept of Electro-wetting on dielectric(EWOD) Other Projects • Band gap reference, Two stage op-amp design • Front-end and Back-end implementation of CORDIC algorithm using synopsis EDA tools. • FPGA Implementation of sequence detector. • 32 point FFT implementation in Xilinx. khandavallideep Semiconductor Devices, Analog and Digital circuit The project involves designing a chip for Medical diagnosis(LAB ON CHIP) which includes simulation and fabrication of devices. Project mainly deals ion of CORDIC algorithms Areas of Interest: ASIC Design, Physical Design Flow, EDA Tools, FRONT END Design Projects: • Design of High speed Adders, Multiplier and Square Root Modules • 32 point FFT implementation using verilog • Cordic implementation • Booth Algorithm implementation on FPGA P Udaya Teja M.Tech (Microelectronics & VLSI) Link:https://in.linkedin.com/pub/uday a/26/9ab hysical Design Flow, EDA Design of High speed Adders, Multiplier and Square Root 32 point FFT implementation using verilog Booth Algorithm implementation on FPGA (Microelectronics & VLSI) https://in.linkedin.com/pub/uday-teja/1
  • 19. Shikhar Jain M.Tech (Microelectronics & VLSI) Link:https://in.linkedin.com/pub/shikhar jain/a2/800/ab4 Areas ofInterest: Analog and Digital system design, ASIC/FPGAimplementation, Semiconductor Devices Description of Masters Project: The project involves 3D IC fine chip Cu-Cu bonding using Nickel as passivation layer within Industrial limits of Temperature and Pressure. This technology can be used for more fine pitch with more stable bondseven at higher temperature and smaller footprint. Other Projects: • Band gap reference, Two stage op-amp design • 32 point fft in Xilinx. • Booth Algorithm implementation on FPGA • Front-end and Back-end implementation of CORDIC algorithms using synopsys EDA tools. ://in.linkedin.com/pub/shikhar- Digital system design, using Nickel as passivation layer within Industrial limits of Temperature and pitch with more footprint. ion of CORDIC Description of Masters Project: A bolometer is an IR sensor used in thermal imaging having wide range of applications. This project is targeted at making a low cost micro bolometer on Silicon only with front-end bulk micro-machin simple fabrication steps and then integrate vertically (3D integration) with the Read Out IC (ROIC) designed for it. A micro bolometer is realized on a Silicon wafer by under etching Si and creating a hanging structure of it. We use only wet chemical etching of Silicon and the mask geometry that we used exposes planes at an angle of 450 with the wafer flat which etches the Silicon vertically(also horizontally) unlike Areas of Interest: Digital Design, Analog Design, Device Modelling, Link:https://in.linkedin.com/pub/ranga reddy/a0/34b/976 Other Project: • Implementation of CORDIC based Householder reflection. • TSV noise coupling in 3D IC using guard Ring Publications: 1- IEEE International conference Paper the 54.70 planes exposed when etched on (100) wafer . R Ranga Reddy M.Tech (Microelectronics & VLSI) A bolometer is an IR sensor used in thermal imaging having wide range of applications. This project is targeted at making a low cost micro machining using simple fabrication steps and then integrate vertically (3D integration) with the Read Out IC (ROIC) designed for it. A micro bolometer is realized on a Silicon wafer by under etching Si and creating a hanging ical etching of Silicon and the mask geometry that we used exposes planes at an angle of 450 with the wafer flat which etches the Silicon vertically(also horizontally) unlike Digital Design, Analog ://in.linkedin.com/pub/ranga- Implementation of CORDIC based Householder reflection. VLSI)
  • 20. Srinivasulu Kanaparthi M.Tech(Microelectronics & VLSI) Link:https://www.linkedin.com/pub/srinivasulu -kanaparthi/a7/792/879 Areas of Interest:Semiconductor Devices, Nanoelectronics Design of Analog and Digital circuits Description of Master’s Project: Fabrication, Characterization and Applications of Carbon electronics Other Project: • RF data concentrator Unit • Solar String Monitoring Unit • Rectifier for Piezoelectric Energy Harvesting • Implementation of LMS filter on DSP and ARM cortex boards • FPGA implementation of sequence detector • Front-end and Back-end implementation of CORDIC Algorithm using Synopsis EDA Experience: Two years of work experience as Embedded Engineer at Ami Te (India) Pvt. Ltd Raja U M.Tech (Microelectronics & VLSI) Areas of Interest: Analog and Digital circuit design, ASIC/FPGAimplementation, Semiconductor Devices Description of Masters Project The project involves simulation study of Bilayer Graphene FET using nonequilibrium green's function formalism through the self solution of the Poisson and the Schrodinger equations. Other Projects • Band gap reference,Two stage op-amp design • Front-end and Back-end implementation of CORDIC algorithms using synopsys EDA tools • 32 point fft in Xilinx. • FPGA Implementation of sequence detector,CORDIC algorithms. Link: https://in.linkedin.com/pub/raja 00/636/897 M.Tech(Microelectronics & VLSI) ://www.linkedin.com/pub/srinivasulu electronics and Fabrication, Characterization and Applications of Carbon electronics Implementation of LMS filter on DSP and ARM cortex end implementation of CORDIC Two years of work experience as Embedded Engineer at Ami Tech M.Tech (Microelectronics & VLSI) Analog and Digital circuit design, The project involves simulation study of Bilayer Graphene FET using nequilibrium green's function formalism through the self-consistent end implementation of CORDIC algorithms FPGA Implementation of sequence detector,CORDIC in.linkedin.com/pub/raja-upputuri/1
  • 21. Contact Us Indian Institute of Technology Hyderabad, Ordnance Factory Estate, Yeddumailaram, Telangana, 502205. Ph: +91-40-2301 6098. Ph: +91-40-2301 6009. Email: placement@iith.ac.in Web: http://www.iith.ac.in/tp Dr. B. Venkatesham Faculty In-charge, Training and Placement Office, Ph: +91-40-2301 6110. Email: venkatesham@iith.ac.in Dr. Pradeep Yemula Faculty In-charge, Training and Placement Office, Ph: +91-40-2301 7124. Mobile: +918374993999. Email: ypradeep@iith.ac.in A. Pranitha/Archana Singh Placement Coordinator, Training and Placement Cell. Ph: +91-40-2301 6098. Email: pranitha@iith.ac.in/archanasingh@iith.ac.in
  • 22. Student Placement Coordinators Harsha S Ph: +91-8861823623 Email: ee14mtech11015@iith.ac.in Pranit Namdeorao Jadhav Ph: +91-9542607912 Email: ee13m1023@iith.ac.in Kunal Yadav Ph: +91-8985201547 Email: ee13m1024@iith.ac.in