SlideShare a Scribd company logo
1 of 33
Maximizing a churn
campaign’s profitability
with cost sensitive
machine learning
Alejandro Correa Bahnsen, PhD
Chief Data Scientist | Easy Solutions
Agosto 25 y 26 | Lima – Perú 2017
#BIGDATASUMMIT2017
Agenda
 Churn modeling
 Evaluation Measures
 Offers
 Predictive modeling
 Cost-Sensitive Predictive Modeling
 Cost Proportionate Sampling
 Bayes Minimum Risk
 CS – Decision Trees
 Conclusions
Churn Modeling
• Detect which customers are likely to abandon
Voluntary churn
Involuntary churn
Customer Churn Management Campaign
Inflow
New
Customers
Customer
Base
Active
Customers
*Verbraken et. al (2013). A novel profit maximizing metric for measuring classification performance of customer churn
prediction models.
Predicted Churners
Predicted Non-Churners
TP: Actual Churners
FP: Actual Non-Churners
FN: Actual Churners
TN: Actual Non-Churners
Outflow
Effective
Churners
Churn Model Prediction
1
1
1 − 𝛾𝛾
1
Evaluation of a Campaign
 Confusion Matrix
• Accuracy =
𝑇𝑃+𝑇𝑁
𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
• Recall =
𝑇𝑃
𝑇𝑃+𝐹𝑁
• Precision =
𝑇𝑃
𝑇𝑃+𝐹𝑃
• F1-Score = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
True Class (𝑦𝑖)
Churner
(𝑦𝑖=1)
Non-
Churner(𝑦𝑖=0)
Predicted
class (𝑐𝑖)
Churner (𝑐𝑖=1) TP FP
Non-Churner
(𝑐𝑖=0)
FN TN
Evaluation of a Campaign
 However these measures assign the same weight to different errors
 Not the case in a Churn model since
 Failing to predict a churner carries a different cost than wrongly
predicting a non-churner
 Churners have different financial impact
Financial Evaluation of a Campaign
Inflow
New
Customers
Customer
Base
Active
Customers
*Verbraken et. al (2013). A novel profit maximizing metric for measuring classification performance of customer churn
prediction models.
Predicted Churners
Predicted Non-Churners
TP: Actual Churners
FP: Actual Non-Churners
FN: Actual Churners
TN: Actual Non-Churners
Outflow
Effective
Churners
Churn Model Prediction
0
𝐶𝐿𝑉
𝐶𝐿𝑉 + 𝐶 𝑎𝐶 𝑜 + 𝐶 𝑎
𝐶 𝑜 + 𝐶 𝑎
Financial Evaluation of a Campaign
 Cost Matrix
where:
True Class (𝑦𝑖)
Churner (𝑦𝑖=1)
Non-
Churner(𝑦𝑖=0)
Predicte
d class
(𝑐𝑖)
Churner (𝑐𝑖=1)
Non-Churner
(𝑐𝑖=0)
𝐶 𝑎 = Administrative cost 𝐶𝐿𝑉𝑖 = Client Lifetime Value of
customer 𝑖
𝐶𝑜 𝑖
= Cost of the offer made to
customer 𝑖
𝛾𝑖 = Probability that customer 𝑖 accepts
the offer
𝐶 𝑇𝑃 𝑖
= 𝛾𝑖 𝐶 𝑜 𝑖
+ 1 − 𝛾𝑖 𝐶𝐿𝑉𝑖 + 𝐶 𝑎
𝐶 𝐹𝑁 𝑖
= 𝐶𝐿𝑉𝑖 𝐶 𝑇𝑁 𝑖
= 0
𝐶 𝐹𝑃 𝑖
= 𝐶 𝑜 𝑖
+ 𝐶 𝑎
Financial Evaluation of a Campaign
 Using the cost matrix the total cost is calculated as:
𝐶 = 𝑦𝑖 𝑐𝑖 ∙ 𝐶 𝑇𝑃 𝑖 + 1 − 𝑐𝑖 𝐶 𝐹𝑁 𝑖 + 1 − 𝑦𝑖 𝑐𝑖 ∙ 𝐶 𝐹𝑃 𝑖 + 1 − 𝑐𝑖 𝐶 𝑇𝑁 𝑖
 Additionally the savings are defined as:
𝐶𝑠 =
𝐶0 − 𝐶
𝐶0
where 𝐶0 is the cost when all the customers are predicted as non-churners
Financial Evaluation of a Campaign
 Customer Lifetime Value
*Glady et al. (2009). Modeling churn using customer lifetime value.
Offers
 Same offer may not apply to all customers (eg. Already
have premium channels)
 An offer should be made such that it maximizes the
probability of acceptance (𝛾)
Offers Analysis
Improve
to HD
DVR
Monthly
Discount
Premium
Channels
Evaluate
Offers
Performance
Offers Analysis
88%
90%
92%
94%
96%
98%
100%
0.0%
1.0%
2.0%
3.0%
4.0%
5.0%
6.0%
Cluster 1 Cluster 2 Cluster 3 Cluster 4
Churn Rate Gamma (right axis)
𝛾 = Probability that a customer accepts the offer
Predictive Modeling
Dataset N Churn 𝑪 𝟎 (Euros)
Total 9410 4.83% 580,884
Training 3758 5.05% 244,542
Validation 2824 4.77% 174,171
Testing 2825 4.42% 162,171
SMOTE 6988 48.94% 4,273,083
Under-Sampling 374 50.80% 244,542
Predictive Modeling
 Algorithms
 Decision Trees
 Logistic Regression
 Random Forest
Predictive Modeling - Results
0%
2%
4%
6%
8%
10%
12%
14%
Decision
Trees
Logistic
Regression
Random
Forest
F1-Score
Training Under-Sampling SMOTE
0%
1%
2%
3%
4%
5%
6%
7%
8%
Decision
Trees
Logistic
Regression
Random
Forest
Savings
Training Under-Sampling SMOTE
Predictive Modeling
 Sampling techniques helps to improve models’ predictive
power however not necessarily the savings
 There is a need for methods that aim to increase savings
Agenda
 Churn modeling
 Evaluation Measures
 Offers
 Predictive modeling
 Cost-Sensitive Predictive Modeling
 Cost Proportionate Sampling
 Bayes Minimum Risk
 CS – Decision Trees
 Conclusions
Cost-Sensitive Predictive Modeling
 Traditional methods assume the same cost for different
errors
 Not the case in Churn modeling
 Some cost-sensitive methods assume a constant cost
difference between errors
 Example-Dependent Cost-Sensitive Predictive Modeling
Cost-Sensitive Predictive Modeling
 Changing class distribution
 Cost Proportionate Rejection Sampling
 Cost Proportionate Over Sampling
 Direct Cost
 Bayes Minimum Risk
 Modifying a learning algorithm
 CS – Decision Tree
Cost Proportionate Sampling
 Cost Proportionate Over Sampling
Example 𝑦𝑖 𝑤𝑖
1 0 1
2 1 10
3 0 2
4 1 20
5 0 1
Initial
Dataset
(1,0,1)
(2,1,10)
(3,0,2)
(4,1,20)
(5,0,1)
Cost Proportionate Dataset
(1,0,1)
(2,1,1), (2,1,1), …, (2,1,1)
(3,0,2), (3,0,2)
(4,1,1), (4,1,1), (4,1,1), …, (4,1,1),
(4,1,1)
(5,0,1)
*Elkan, C. (2001). The Foundations of Cost-Sensitive Learning.
𝑤𝑖/max( 𝑤𝑖)
0.05
0.5
0.1
1
0.05
Cost Proportionate Sampling
 Cost Proportionate Rejection Sampling
Example 𝑦𝑖 𝑤𝑖
1 0 1
2 1 10
3 0 2
4 1 20
5 0 1
Initial
Dataset
(1,0,1)
(2,1,10)
(3,0,2)
(4,1,20)
(5,0,1)
Cost
Proportionat
e Dataset
(2,1,1)
(4,1,1)
(4,1,1)
(5,0,1)
*Zadrozny et al. (2003). Cost-sensitive learning by cost-proportionate example weighting.
Cost Proportionate Sampling
Dataset N Churn 𝑪 𝟎 (Euros)
Total 9410 4.83% 580,884
Training 3758 5.05% 244,542
Validation 2824 4.77% 174,171
Testing 2825 4.42% 162,171
Under-Sampling 374 50.80% 244,542
SMOTE 6988 48.94% 4,273,083
CS – Rejection-Sampling 428 41.35% 231,428
CS – Over-Sampling 5767 31.24% 2,350,285
Cost Proportionate Sampling
0%
5%
10%
15%
20%
25%
Decision
Trees
Logistic
Regression
Random
Forest
Savings
Training Under
SMOTE CS-Rejection
CS-Over
0%
5%
10%
15%
Decision
Trees
Logistic
Regression
Random
Forest
F1-Score
Training Under
SMOTE CS-Rejection
CS-Over
Bayes Minimum Risk
 Decision model based on quantifying tradeoffs between various decisions
using probabilities and the costs that accompany such decisions
 Risk of classification
𝑅 𝑐𝑖 = 0|𝑥𝑖 = 𝐶 𝑇𝑁 𝑖
1 − 𝑝𝑖 + 𝐶 𝐹𝑁 𝑖
∙ 𝑝𝑖
𝑅 𝑐𝑖 = 1|𝑥𝑖 = 𝐶 𝐹𝑃 𝑖
1 − 𝑝𝑖 + 𝐶 𝑇𝑃 𝑖
∙ 𝑝𝑖
 Using the different risks the prediction is made based on the following
condition:
𝑐𝑖 =
0 𝑅 𝑐𝑖 = 0|𝑥𝑖 ≤ 𝑅 𝑐𝑖 = 1|𝑥𝑖
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
Bayes Minimum Risk
0%
5%
10%
15%
20%
25%
30%
35%
- BMR - BMR - BMR
Decision Trees Logistic Regression Random Forest
Savings
Training Under-Sampling SMOTE CS-Rejection CS-Over
Bayes Minimum Risk
0
0.02
0.04
0.06
0.08
0.1
0.12
0.14
- BMR - BMR - BMR
Decision Trees Logistic Regression Random Forest
F1-Score
Training Under-Sampling SMOTE CS-Rejection CS-Over
Bayes Minimum Risk
 Bayes Minimum Risk increases the savings by using a cost-
insensitive method and then introducing the costs
 Why not introduce the costs during the estimation of the
methods?
CS – Decision Trees
 Decision trees
 Classification model that iteratively creates binary
decision rules 𝑥 𝑗, 𝑙 𝑗
𝑚 that maximize certain criteria
 Where 𝑥 𝑗, 𝑙 𝑗
𝑚 refers to making a rule using feature 𝑗 on
value 𝑚
Comparison of Models
0%
10%
20%
30%
40%
50%
Random Forest
Train
Logistic
Regression
CSRejection
Logistic
Regression BMR
Train
Decision Tree
CostPruning
CSRejection
CS-Decision Tree
Train
Savings F1-Score
Conclusions
 Selecting models based on traditional statistics does not
gives the best results measured by savings
 Incorporating the costs into the modeling helps to achieve
higher savings
Thank you!
Alejandro Correa Bahnsen
acorrea@easysol.net

More Related Content

Viewers also liked

BDAS-2017 | Evolución de Open Data en el desarrollo de las ciudades inteligentes
BDAS-2017 | Evolución de Open Data en el desarrollo de las ciudades inteligentesBDAS-2017 | Evolución de Open Data en el desarrollo de las ciudades inteligentes
BDAS-2017 | Evolución de Open Data en el desarrollo de las ciudades inteligentesBig-Data-Summit
 
BDAS-2017 | Comprendiendo nuestras motivaciones a través de Big Data
BDAS-2017 | Comprendiendo nuestras motivaciones a través de Big DataBDAS-2017 | Comprendiendo nuestras motivaciones a través de Big Data
BDAS-2017 | Comprendiendo nuestras motivaciones a través de Big DataBig-Data-Summit
 
BDAS-2017 | DMC Challengue concurso satisfacción universidad
BDAS-2017 | DMC Challengue concurso satisfacción universidadBDAS-2017 | DMC Challengue concurso satisfacción universidad
BDAS-2017 | DMC Challengue concurso satisfacción universidadBig-Data-Summit
 
BDAS-2017 | Big Data y Retail: fidelizando a mis clientes en un entorno compe...
BDAS-2017 | Big Data y Retail: fidelizando a mis clientes en un entorno compe...BDAS-2017 | Big Data y Retail: fidelizando a mis clientes en un entorno compe...
BDAS-2017 | Big Data y Retail: fidelizando a mis clientes en un entorno compe...Big-Data-Summit
 
Building Innovative Data Products in a Banking Environment
Building Innovative Data Products in a Banking EnvironmentBuilding Innovative Data Products in a Banking Environment
Building Innovative Data Products in a Banking EnvironmentBig-Data-Summit
 
BDAS-2017 | Organizaciones Orientadas al dato
BDAS-2017 | Organizaciones Orientadas al datoBDAS-2017 | Organizaciones Orientadas al dato
BDAS-2017 | Organizaciones Orientadas al datoBig-Data-Summit
 
BDAS-2017 | Deep Neural Networks Para la Detección de Phishing
BDAS-2017 | Deep Neural Networks Para la Detección de PhishingBDAS-2017 | Deep Neural Networks Para la Detección de Phishing
BDAS-2017 | Deep Neural Networks Para la Detección de PhishingBig-Data-Summit
 
BDAS-2017 | Convergencia entre Open Data y Big Data, casos y tendencias
BDAS-2017 | Convergencia entre Open Data y Big Data, casos y tendenciasBDAS-2017 | Convergencia entre Open Data y Big Data, casos y tendencias
BDAS-2017 | Convergencia entre Open Data y Big Data, casos y tendenciasBig-Data-Summit
 
BDAS-2017 | Hanldling Target Bias in Predictive Modelling
BDAS-2017 | Hanldling Target Bias in Predictive ModellingBDAS-2017 | Hanldling Target Bias in Predictive Modelling
BDAS-2017 | Hanldling Target Bias in Predictive ModellingBig-Data-Summit
 
BDAS-2017 | Innovación con base en datos en Silicon Valley y Latino América
BDAS-2017 | Innovación con base en datos en Silicon Valley y Latino AméricaBDAS-2017 | Innovación con base en datos en Silicon Valley y Latino América
BDAS-2017 | Innovación con base en datos en Silicon Valley y Latino AméricaBig-Data-Summit
 

Viewers also liked (10)

BDAS-2017 | Evolución de Open Data en el desarrollo de las ciudades inteligentes
BDAS-2017 | Evolución de Open Data en el desarrollo de las ciudades inteligentesBDAS-2017 | Evolución de Open Data en el desarrollo de las ciudades inteligentes
BDAS-2017 | Evolución de Open Data en el desarrollo de las ciudades inteligentes
 
BDAS-2017 | Comprendiendo nuestras motivaciones a través de Big Data
BDAS-2017 | Comprendiendo nuestras motivaciones a través de Big DataBDAS-2017 | Comprendiendo nuestras motivaciones a través de Big Data
BDAS-2017 | Comprendiendo nuestras motivaciones a través de Big Data
 
BDAS-2017 | DMC Challengue concurso satisfacción universidad
BDAS-2017 | DMC Challengue concurso satisfacción universidadBDAS-2017 | DMC Challengue concurso satisfacción universidad
BDAS-2017 | DMC Challengue concurso satisfacción universidad
 
BDAS-2017 | Big Data y Retail: fidelizando a mis clientes en un entorno compe...
BDAS-2017 | Big Data y Retail: fidelizando a mis clientes en un entorno compe...BDAS-2017 | Big Data y Retail: fidelizando a mis clientes en un entorno compe...
BDAS-2017 | Big Data y Retail: fidelizando a mis clientes en un entorno compe...
 
Building Innovative Data Products in a Banking Environment
Building Innovative Data Products in a Banking EnvironmentBuilding Innovative Data Products in a Banking Environment
Building Innovative Data Products in a Banking Environment
 
BDAS-2017 | Organizaciones Orientadas al dato
BDAS-2017 | Organizaciones Orientadas al datoBDAS-2017 | Organizaciones Orientadas al dato
BDAS-2017 | Organizaciones Orientadas al dato
 
BDAS-2017 | Deep Neural Networks Para la Detección de Phishing
BDAS-2017 | Deep Neural Networks Para la Detección de PhishingBDAS-2017 | Deep Neural Networks Para la Detección de Phishing
BDAS-2017 | Deep Neural Networks Para la Detección de Phishing
 
BDAS-2017 | Convergencia entre Open Data y Big Data, casos y tendencias
BDAS-2017 | Convergencia entre Open Data y Big Data, casos y tendenciasBDAS-2017 | Convergencia entre Open Data y Big Data, casos y tendencias
BDAS-2017 | Convergencia entre Open Data y Big Data, casos y tendencias
 
BDAS-2017 | Hanldling Target Bias in Predictive Modelling
BDAS-2017 | Hanldling Target Bias in Predictive ModellingBDAS-2017 | Hanldling Target Bias in Predictive Modelling
BDAS-2017 | Hanldling Target Bias in Predictive Modelling
 
BDAS-2017 | Innovación con base en datos en Silicon Valley y Latino América
BDAS-2017 | Innovación con base en datos en Silicon Valley y Latino AméricaBDAS-2017 | Innovación con base en datos en Silicon Valley y Latino América
BDAS-2017 | Innovación con base en datos en Silicon Valley y Latino América
 

Similar to BDAS-2017 | Maximizing a churn campaign’s profitability with cost sensitive machine learning

Hero conference 2016 - advanced bidding
Hero conference   2016 - advanced biddingHero conference   2016 - advanced bidding
Hero conference 2016 - advanced biddingChris Haleua
 
Media Optimization Model
Media Optimization ModelMedia Optimization Model
Media Optimization ModelDaniel McKean
 
Optimizing marketing campaigns using experimental designs
Optimizing marketing campaigns using experimental designsOptimizing marketing campaigns using experimental designs
Optimizing marketing campaigns using experimental designsPankaj Sharma
 
Maximizing a churn campaign’s profitability with cost sensitive predictive an...
Maximizing a churn campaign’s profitability with cost sensitive predictive an...Maximizing a churn campaign’s profitability with cost sensitive predictive an...
Maximizing a churn campaign’s profitability with cost sensitive predictive an...Alejandro Correa Bahnsen, PhD
 
Developing Web-scale Machine Learning at LinkedIn - From Soup to Nuts
Developing Web-scale Machine Learning at LinkedIn - From Soup to NutsDeveloping Web-scale Machine Learning at LinkedIn - From Soup to Nuts
Developing Web-scale Machine Learning at LinkedIn - From Soup to NutsKun Liu
 
Deepak-Computational Advertising-The LinkedIn Way
Deepak-Computational Advertising-The LinkedIn WayDeepak-Computational Advertising-The LinkedIn Way
Deepak-Computational Advertising-The LinkedIn Wayyingfeng
 
Predictive Model Example
Predictive Model ExamplePredictive Model Example
Predictive Model ExampleDaniel McKean
 
AHP_Report_EM-206.ppt
AHP_Report_EM-206.pptAHP_Report_EM-206.ppt
AHP_Report_EM-206.pptGeorgeGomez31
 
Big Data LDN 2017: Advanced Analytics Applied to Marketing Attribution
Big Data LDN 2017: Advanced Analytics Applied to Marketing AttributionBig Data LDN 2017: Advanced Analytics Applied to Marketing Attribution
Big Data LDN 2017: Advanced Analytics Applied to Marketing AttributionMatt Stubbs
 
Six Sigma- Define & Measure_Sudhanshu.pdf
Six Sigma- Define & Measure_Sudhanshu.pdfSix Sigma- Define & Measure_Sudhanshu.pdf
Six Sigma- Define & Measure_Sudhanshu.pdfSudhanshuMittal20
 
Prediction of customer propensity to churn - Telecom Industry
Prediction of customer propensity to churn - Telecom IndustryPrediction of customer propensity to churn - Telecom Industry
Prediction of customer propensity to churn - Telecom IndustryPranov Mishra
 
Mastering customer journey with reactivation
Mastering customer journey with reactivation Mastering customer journey with reactivation
Mastering customer journey with reactivation Exponea
 
Machine Learning Project - 1994 U.S. Census
Machine Learning Project - 1994 U.S. CensusMachine Learning Project - 1994 U.S. Census
Machine Learning Project - 1994 U.S. CensusTim Enalls
 
Risk_Management_Poster
Risk_Management_PosterRisk_Management_Poster
Risk_Management_PosterRohan Sanas
 
Basic Statistics for Paid Search Advertising
Basic Statistics for Paid Search AdvertisingBasic Statistics for Paid Search Advertising
Basic Statistics for Paid Search AdvertisingNina Estenzo
 
Statistical modelling to optimise paid media campaigns
Statistical modelling to optimise paid media campaignsStatistical modelling to optimise paid media campaigns
Statistical modelling to optimise paid media campaignsAyima
 

Similar to BDAS-2017 | Maximizing a churn campaign’s profitability with cost sensitive machine learning (20)

Hero conference 2016 - advanced bidding
Hero conference   2016 - advanced biddingHero conference   2016 - advanced bidding
Hero conference 2016 - advanced bidding
 
Media Optimization Model
Media Optimization ModelMedia Optimization Model
Media Optimization Model
 
Optimizing marketing campaigns using experimental designs
Optimizing marketing campaigns using experimental designsOptimizing marketing campaigns using experimental designs
Optimizing marketing campaigns using experimental designs
 
Maximizing a churn campaign’s profitability with cost sensitive predictive an...
Maximizing a churn campaign’s profitability with cost sensitive predictive an...Maximizing a churn campaign’s profitability with cost sensitive predictive an...
Maximizing a churn campaign’s profitability with cost sensitive predictive an...
 
Developing Web-scale Machine Learning at LinkedIn - From Soup to Nuts
Developing Web-scale Machine Learning at LinkedIn - From Soup to NutsDeveloping Web-scale Machine Learning at LinkedIn - From Soup to Nuts
Developing Web-scale Machine Learning at LinkedIn - From Soup to Nuts
 
Strategic approachppg v02
Strategic approachppg v02Strategic approachppg v02
Strategic approachppg v02
 
Deepak-Computational Advertising-The LinkedIn Way
Deepak-Computational Advertising-The LinkedIn WayDeepak-Computational Advertising-The LinkedIn Way
Deepak-Computational Advertising-The LinkedIn Way
 
Predictive Model Example
Predictive Model ExamplePredictive Model Example
Predictive Model Example
 
AHP_Report_EM-206.ppt
AHP_Report_EM-206.pptAHP_Report_EM-206.ppt
AHP_Report_EM-206.ppt
 
Big Data LDN 2017: Advanced Analytics Applied to Marketing Attribution
Big Data LDN 2017: Advanced Analytics Applied to Marketing AttributionBig Data LDN 2017: Advanced Analytics Applied to Marketing Attribution
Big Data LDN 2017: Advanced Analytics Applied to Marketing Attribution
 
Six Sigma- Define & Measure_Sudhanshu.pdf
Six Sigma- Define & Measure_Sudhanshu.pdfSix Sigma- Define & Measure_Sudhanshu.pdf
Six Sigma- Define & Measure_Sudhanshu.pdf
 
Prediction of customer propensity to churn - Telecom Industry
Prediction of customer propensity to churn - Telecom IndustryPrediction of customer propensity to churn - Telecom Industry
Prediction of customer propensity to churn - Telecom Industry
 
Mastering customer journey with reactivation
Mastering customer journey with reactivation Mastering customer journey with reactivation
Mastering customer journey with reactivation
 
Case studies to engage
Case studies to engageCase studies to engage
Case studies to engage
 
Aqbd seminar tmu
Aqbd seminar tmuAqbd seminar tmu
Aqbd seminar tmu
 
Machine Learning Project - 1994 U.S. Census
Machine Learning Project - 1994 U.S. CensusMachine Learning Project - 1994 U.S. Census
Machine Learning Project - 1994 U.S. Census
 
Risk_Management_Poster
Risk_Management_PosterRisk_Management_Poster
Risk_Management_Poster
 
Basic Statistics for Paid Search Advertising
Basic Statistics for Paid Search AdvertisingBasic Statistics for Paid Search Advertising
Basic Statistics for Paid Search Advertising
 
Corporate presentation
Corporate presentationCorporate presentation
Corporate presentation
 
Statistical modelling to optimise paid media campaigns
Statistical modelling to optimise paid media campaignsStatistical modelling to optimise paid media campaigns
Statistical modelling to optimise paid media campaigns
 

More from Big-Data-Summit

SafeHomeFace - Sistema de reconocimiento facial.
SafeHomeFace - Sistema de reconocimiento facial.SafeHomeFace - Sistema de reconocimiento facial.
SafeHomeFace - Sistema de reconocimiento facial.Big-Data-Summit
 
Las 10 tendencias principales de BI para el 2018 - Carloz Díaz
Las 10 tendencias principales de BI para el 2018 - Carloz DíazLas 10 tendencias principales de BI para el 2018 - Carloz Díaz
Las 10 tendencias principales de BI para el 2018 - Carloz DíazBig-Data-Summit
 
El big data analytics donde menos te lo esperas - Alex Rayón
El big data analytics donde menos te lo esperas - Alex RayónEl big data analytics donde menos te lo esperas - Alex Rayón
El big data analytics donde menos te lo esperas - Alex RayónBig-Data-Summit
 
Big Data en el sector inmobiliario - Gonzalo Martín
Big Data en el sector inmobiliario - Gonzalo MartínBig Data en el sector inmobiliario - Gonzalo Martín
Big Data en el sector inmobiliario - Gonzalo MartínBig-Data-Summit
 
Modelo Operativo para grandes proyectos de AI - Ignacio Marrero
Modelo Operativo para grandes proyectos de AI - Ignacio MarreroModelo Operativo para grandes proyectos de AI - Ignacio Marrero
Modelo Operativo para grandes proyectos de AI - Ignacio MarreroBig-Data-Summit
 
La evolución de la analítica descriptiva - Diego Aguirre
La evolución de la analítica descriptiva - Diego AguirreLa evolución de la analítica descriptiva - Diego Aguirre
La evolución de la analítica descriptiva - Diego AguirreBig-Data-Summit
 
El dato tiene forma y la forma significado - Josep Curto
El dato tiene forma y la forma significado - Josep CurtoEl dato tiene forma y la forma significado - Josep Curto
El dato tiene forma y la forma significado - Josep CurtoBig-Data-Summit
 
BDAS-2017 | sanselix jobranke_rpptx
BDAS-2017 | sanselix jobranke_rpptxBDAS-2017 | sanselix jobranke_rpptx
BDAS-2017 | sanselix jobranke_rpptxBig-Data-Summit
 
BDAS-2017 | Analitica visual presentación mlms2
BDAS-2017 | Analitica visual presentación mlms2BDAS-2017 | Analitica visual presentación mlms2
BDAS-2017 | Analitica visual presentación mlms2Big-Data-Summit
 
BDAS-2017 | Comunidad Data Science
BDAS-2017 | Comunidad Data ScienceBDAS-2017 | Comunidad Data Science
BDAS-2017 | Comunidad Data ScienceBig-Data-Summit
 
Modelos Predictivos, Big Data Retos y Generación de nuevas soluciones
Modelos Predictivos, Big Data Retos y Generación de nuevas solucionesModelos Predictivos, Big Data Retos y Generación de nuevas soluciones
Modelos Predictivos, Big Data Retos y Generación de nuevas solucionesBig-Data-Summit
 
Estrategias omnicanal para la mejora de los procesos de comunicación y marke...
	Estrategias omnicanal para la mejora de los procesos de comunicación y marke...	Estrategias omnicanal para la mejora de los procesos de comunicación y marke...
Estrategias omnicanal para la mejora de los procesos de comunicación y marke...Big-Data-Summit
 
Convergencia de Analítica con la Experiencia Digital
Convergencia de Analítica con la Experiencia DigitalConvergencia de Analítica con la Experiencia Digital
Convergencia de Analítica con la Experiencia DigitalBig-Data-Summit
 

More from Big-Data-Summit (13)

SafeHomeFace - Sistema de reconocimiento facial.
SafeHomeFace - Sistema de reconocimiento facial.SafeHomeFace - Sistema de reconocimiento facial.
SafeHomeFace - Sistema de reconocimiento facial.
 
Las 10 tendencias principales de BI para el 2018 - Carloz Díaz
Las 10 tendencias principales de BI para el 2018 - Carloz DíazLas 10 tendencias principales de BI para el 2018 - Carloz Díaz
Las 10 tendencias principales de BI para el 2018 - Carloz Díaz
 
El big data analytics donde menos te lo esperas - Alex Rayón
El big data analytics donde menos te lo esperas - Alex RayónEl big data analytics donde menos te lo esperas - Alex Rayón
El big data analytics donde menos te lo esperas - Alex Rayón
 
Big Data en el sector inmobiliario - Gonzalo Martín
Big Data en el sector inmobiliario - Gonzalo MartínBig Data en el sector inmobiliario - Gonzalo Martín
Big Data en el sector inmobiliario - Gonzalo Martín
 
Modelo Operativo para grandes proyectos de AI - Ignacio Marrero
Modelo Operativo para grandes proyectos de AI - Ignacio MarreroModelo Operativo para grandes proyectos de AI - Ignacio Marrero
Modelo Operativo para grandes proyectos de AI - Ignacio Marrero
 
La evolución de la analítica descriptiva - Diego Aguirre
La evolución de la analítica descriptiva - Diego AguirreLa evolución de la analítica descriptiva - Diego Aguirre
La evolución de la analítica descriptiva - Diego Aguirre
 
El dato tiene forma y la forma significado - Josep Curto
El dato tiene forma y la forma significado - Josep CurtoEl dato tiene forma y la forma significado - Josep Curto
El dato tiene forma y la forma significado - Josep Curto
 
BDAS-2017 | sanselix jobranke_rpptx
BDAS-2017 | sanselix jobranke_rpptxBDAS-2017 | sanselix jobranke_rpptx
BDAS-2017 | sanselix jobranke_rpptx
 
BDAS-2017 | Analitica visual presentación mlms2
BDAS-2017 | Analitica visual presentación mlms2BDAS-2017 | Analitica visual presentación mlms2
BDAS-2017 | Analitica visual presentación mlms2
 
BDAS-2017 | Comunidad Data Science
BDAS-2017 | Comunidad Data ScienceBDAS-2017 | Comunidad Data Science
BDAS-2017 | Comunidad Data Science
 
Modelos Predictivos, Big Data Retos y Generación de nuevas soluciones
Modelos Predictivos, Big Data Retos y Generación de nuevas solucionesModelos Predictivos, Big Data Retos y Generación de nuevas soluciones
Modelos Predictivos, Big Data Retos y Generación de nuevas soluciones
 
Estrategias omnicanal para la mejora de los procesos de comunicación y marke...
	Estrategias omnicanal para la mejora de los procesos de comunicación y marke...	Estrategias omnicanal para la mejora de los procesos de comunicación y marke...
Estrategias omnicanal para la mejora de los procesos de comunicación y marke...
 
Convergencia de Analítica con la Experiencia Digital
Convergencia de Analítica con la Experiencia DigitalConvergencia de Analítica con la Experiencia Digital
Convergencia de Analítica con la Experiencia Digital
 

Recently uploaded

Kantar AI Summit- Under Embargo till Wednesday, 24th April 2024, 4 PM, IST.pdf
Kantar AI Summit- Under Embargo till Wednesday, 24th April 2024, 4 PM, IST.pdfKantar AI Summit- Under Embargo till Wednesday, 24th April 2024, 4 PM, IST.pdf
Kantar AI Summit- Under Embargo till Wednesday, 24th April 2024, 4 PM, IST.pdfSocial Samosa
 
(PARI) Call Girls Wanowrie ( 7001035870 ) HI-Fi Pune Escorts Service
(PARI) Call Girls Wanowrie ( 7001035870 ) HI-Fi Pune Escorts Service(PARI) Call Girls Wanowrie ( 7001035870 ) HI-Fi Pune Escorts Service
(PARI) Call Girls Wanowrie ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 
꧁❤ Greater Noida Call Girls Delhi ❤꧂ 9711199171 ☎️ Hard And Sexy Vip Call
꧁❤ Greater Noida Call Girls Delhi ❤꧂ 9711199171 ☎️ Hard And Sexy Vip Call꧁❤ Greater Noida Call Girls Delhi ❤꧂ 9711199171 ☎️ Hard And Sexy Vip Call
꧁❤ Greater Noida Call Girls Delhi ❤꧂ 9711199171 ☎️ Hard And Sexy Vip Callshivangimorya083
 
Dubai Call Girls Wifey O52&786472 Call Girls Dubai
Dubai Call Girls Wifey O52&786472 Call Girls DubaiDubai Call Girls Wifey O52&786472 Call Girls Dubai
Dubai Call Girls Wifey O52&786472 Call Girls Dubaihf8803863
 
FESE Capital Markets Fact Sheet 2024 Q1.pdf
FESE Capital Markets Fact Sheet 2024 Q1.pdfFESE Capital Markets Fact Sheet 2024 Q1.pdf
FESE Capital Markets Fact Sheet 2024 Q1.pdfMarinCaroMartnezBerg
 
Delhi Call Girls CP 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls CP 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip CallDelhi Call Girls CP 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls CP 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Callshivangimorya083
 
Customer Service Analytics - Make Sense of All Your Data.pptx
Customer Service Analytics - Make Sense of All Your Data.pptxCustomer Service Analytics - Make Sense of All Your Data.pptx
Customer Service Analytics - Make Sense of All Your Data.pptxEmmanuel Dauda
 
BigBuy dropshipping via API with DroFx.pptx
BigBuy dropshipping via API with DroFx.pptxBigBuy dropshipping via API with DroFx.pptx
BigBuy dropshipping via API with DroFx.pptxolyaivanovalion
 
Delhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip CallDelhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Callshivangimorya083
 
EMERCE - 2024 - AMSTERDAM - CROSS-PLATFORM TRACKING WITH GOOGLE ANALYTICS.pptx
EMERCE - 2024 - AMSTERDAM - CROSS-PLATFORM  TRACKING WITH GOOGLE ANALYTICS.pptxEMERCE - 2024 - AMSTERDAM - CROSS-PLATFORM  TRACKING WITH GOOGLE ANALYTICS.pptx
EMERCE - 2024 - AMSTERDAM - CROSS-PLATFORM TRACKING WITH GOOGLE ANALYTICS.pptxthyngster
 
April 2024 - Crypto Market Report's Analysis
April 2024 - Crypto Market Report's AnalysisApril 2024 - Crypto Market Report's Analysis
April 2024 - Crypto Market Report's Analysismanisha194592
 
Halmar dropshipping via API with DroFx
Halmar  dropshipping  via API with DroFxHalmar  dropshipping  via API with DroFx
Halmar dropshipping via API with DroFxolyaivanovalion
 
VIP High Class Call Girls Jamshedpur Anushka 8250192130 Independent Escort Se...
VIP High Class Call Girls Jamshedpur Anushka 8250192130 Independent Escort Se...VIP High Class Call Girls Jamshedpur Anushka 8250192130 Independent Escort Se...
VIP High Class Call Girls Jamshedpur Anushka 8250192130 Independent Escort Se...Suhani Kapoor
 
Schema on read is obsolete. Welcome metaprogramming..pdf
Schema on read is obsolete. Welcome metaprogramming..pdfSchema on read is obsolete. Welcome metaprogramming..pdf
Schema on read is obsolete. Welcome metaprogramming..pdfLars Albertsson
 
Brighton SEO | April 2024 | Data Storytelling
Brighton SEO | April 2024 | Data StorytellingBrighton SEO | April 2024 | Data Storytelling
Brighton SEO | April 2024 | Data StorytellingNeil Barnes
 
VidaXL dropshipping via API with DroFx.pptx
VidaXL dropshipping via API with DroFx.pptxVidaXL dropshipping via API with DroFx.pptx
VidaXL dropshipping via API with DroFx.pptxolyaivanovalion
 
Generative AI on Enterprise Cloud with NiFi and Milvus
Generative AI on Enterprise Cloud with NiFi and MilvusGenerative AI on Enterprise Cloud with NiFi and Milvus
Generative AI on Enterprise Cloud with NiFi and MilvusTimothy Spann
 
Introduction-to-Machine-Learning (1).pptx
Introduction-to-Machine-Learning (1).pptxIntroduction-to-Machine-Learning (1).pptx
Introduction-to-Machine-Learning (1).pptxfirstjob4
 
Midocean dropshipping via API with DroFx
Midocean dropshipping via API with DroFxMidocean dropshipping via API with DroFx
Midocean dropshipping via API with DroFxolyaivanovalion
 

Recently uploaded (20)

Kantar AI Summit- Under Embargo till Wednesday, 24th April 2024, 4 PM, IST.pdf
Kantar AI Summit- Under Embargo till Wednesday, 24th April 2024, 4 PM, IST.pdfKantar AI Summit- Under Embargo till Wednesday, 24th April 2024, 4 PM, IST.pdf
Kantar AI Summit- Under Embargo till Wednesday, 24th April 2024, 4 PM, IST.pdf
 
(PARI) Call Girls Wanowrie ( 7001035870 ) HI-Fi Pune Escorts Service
(PARI) Call Girls Wanowrie ( 7001035870 ) HI-Fi Pune Escorts Service(PARI) Call Girls Wanowrie ( 7001035870 ) HI-Fi Pune Escorts Service
(PARI) Call Girls Wanowrie ( 7001035870 ) HI-Fi Pune Escorts Service
 
꧁❤ Greater Noida Call Girls Delhi ❤꧂ 9711199171 ☎️ Hard And Sexy Vip Call
꧁❤ Greater Noida Call Girls Delhi ❤꧂ 9711199171 ☎️ Hard And Sexy Vip Call꧁❤ Greater Noida Call Girls Delhi ❤꧂ 9711199171 ☎️ Hard And Sexy Vip Call
꧁❤ Greater Noida Call Girls Delhi ❤꧂ 9711199171 ☎️ Hard And Sexy Vip Call
 
Dubai Call Girls Wifey O52&786472 Call Girls Dubai
Dubai Call Girls Wifey O52&786472 Call Girls DubaiDubai Call Girls Wifey O52&786472 Call Girls Dubai
Dubai Call Girls Wifey O52&786472 Call Girls Dubai
 
FESE Capital Markets Fact Sheet 2024 Q1.pdf
FESE Capital Markets Fact Sheet 2024 Q1.pdfFESE Capital Markets Fact Sheet 2024 Q1.pdf
FESE Capital Markets Fact Sheet 2024 Q1.pdf
 
Delhi Call Girls CP 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls CP 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip CallDelhi Call Girls CP 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls CP 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
 
Customer Service Analytics - Make Sense of All Your Data.pptx
Customer Service Analytics - Make Sense of All Your Data.pptxCustomer Service Analytics - Make Sense of All Your Data.pptx
Customer Service Analytics - Make Sense of All Your Data.pptx
 
BigBuy dropshipping via API with DroFx.pptx
BigBuy dropshipping via API with DroFx.pptxBigBuy dropshipping via API with DroFx.pptx
BigBuy dropshipping via API with DroFx.pptx
 
Delhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip CallDelhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
 
EMERCE - 2024 - AMSTERDAM - CROSS-PLATFORM TRACKING WITH GOOGLE ANALYTICS.pptx
EMERCE - 2024 - AMSTERDAM - CROSS-PLATFORM  TRACKING WITH GOOGLE ANALYTICS.pptxEMERCE - 2024 - AMSTERDAM - CROSS-PLATFORM  TRACKING WITH GOOGLE ANALYTICS.pptx
EMERCE - 2024 - AMSTERDAM - CROSS-PLATFORM TRACKING WITH GOOGLE ANALYTICS.pptx
 
April 2024 - Crypto Market Report's Analysis
April 2024 - Crypto Market Report's AnalysisApril 2024 - Crypto Market Report's Analysis
April 2024 - Crypto Market Report's Analysis
 
Halmar dropshipping via API with DroFx
Halmar  dropshipping  via API with DroFxHalmar  dropshipping  via API with DroFx
Halmar dropshipping via API with DroFx
 
VIP High Class Call Girls Jamshedpur Anushka 8250192130 Independent Escort Se...
VIP High Class Call Girls Jamshedpur Anushka 8250192130 Independent Escort Se...VIP High Class Call Girls Jamshedpur Anushka 8250192130 Independent Escort Se...
VIP High Class Call Girls Jamshedpur Anushka 8250192130 Independent Escort Se...
 
Schema on read is obsolete. Welcome metaprogramming..pdf
Schema on read is obsolete. Welcome metaprogramming..pdfSchema on read is obsolete. Welcome metaprogramming..pdf
Schema on read is obsolete. Welcome metaprogramming..pdf
 
Brighton SEO | April 2024 | Data Storytelling
Brighton SEO | April 2024 | Data StorytellingBrighton SEO | April 2024 | Data Storytelling
Brighton SEO | April 2024 | Data Storytelling
 
E-Commerce Order PredictionShraddha Kamble.pptx
E-Commerce Order PredictionShraddha Kamble.pptxE-Commerce Order PredictionShraddha Kamble.pptx
E-Commerce Order PredictionShraddha Kamble.pptx
 
VidaXL dropshipping via API with DroFx.pptx
VidaXL dropshipping via API with DroFx.pptxVidaXL dropshipping via API with DroFx.pptx
VidaXL dropshipping via API with DroFx.pptx
 
Generative AI on Enterprise Cloud with NiFi and Milvus
Generative AI on Enterprise Cloud with NiFi and MilvusGenerative AI on Enterprise Cloud with NiFi and Milvus
Generative AI on Enterprise Cloud with NiFi and Milvus
 
Introduction-to-Machine-Learning (1).pptx
Introduction-to-Machine-Learning (1).pptxIntroduction-to-Machine-Learning (1).pptx
Introduction-to-Machine-Learning (1).pptx
 
Midocean dropshipping via API with DroFx
Midocean dropshipping via API with DroFxMidocean dropshipping via API with DroFx
Midocean dropshipping via API with DroFx
 

BDAS-2017 | Maximizing a churn campaign’s profitability with cost sensitive machine learning

  • 1. Maximizing a churn campaign’s profitability with cost sensitive machine learning Alejandro Correa Bahnsen, PhD Chief Data Scientist | Easy Solutions Agosto 25 y 26 | Lima – Perú 2017 #BIGDATASUMMIT2017
  • 2. Agenda  Churn modeling  Evaluation Measures  Offers  Predictive modeling  Cost-Sensitive Predictive Modeling  Cost Proportionate Sampling  Bayes Minimum Risk  CS – Decision Trees  Conclusions
  • 3. Churn Modeling • Detect which customers are likely to abandon Voluntary churn Involuntary churn
  • 4. Customer Churn Management Campaign Inflow New Customers Customer Base Active Customers *Verbraken et. al (2013). A novel profit maximizing metric for measuring classification performance of customer churn prediction models. Predicted Churners Predicted Non-Churners TP: Actual Churners FP: Actual Non-Churners FN: Actual Churners TN: Actual Non-Churners Outflow Effective Churners Churn Model Prediction 1 1 1 − 𝛾𝛾 1
  • 5. Evaluation of a Campaign  Confusion Matrix • Accuracy = 𝑇𝑃+𝑇𝑁 𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁 • Recall = 𝑇𝑃 𝑇𝑃+𝐹𝑁 • Precision = 𝑇𝑃 𝑇𝑃+𝐹𝑃 • F1-Score = 2 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙 True Class (𝑦𝑖) Churner (𝑦𝑖=1) Non- Churner(𝑦𝑖=0) Predicted class (𝑐𝑖) Churner (𝑐𝑖=1) TP FP Non-Churner (𝑐𝑖=0) FN TN
  • 6. Evaluation of a Campaign  However these measures assign the same weight to different errors  Not the case in a Churn model since  Failing to predict a churner carries a different cost than wrongly predicting a non-churner  Churners have different financial impact
  • 7. Financial Evaluation of a Campaign Inflow New Customers Customer Base Active Customers *Verbraken et. al (2013). A novel profit maximizing metric for measuring classification performance of customer churn prediction models. Predicted Churners Predicted Non-Churners TP: Actual Churners FP: Actual Non-Churners FN: Actual Churners TN: Actual Non-Churners Outflow Effective Churners Churn Model Prediction 0 𝐶𝐿𝑉 𝐶𝐿𝑉 + 𝐶 𝑎𝐶 𝑜 + 𝐶 𝑎 𝐶 𝑜 + 𝐶 𝑎
  • 8. Financial Evaluation of a Campaign  Cost Matrix where: True Class (𝑦𝑖) Churner (𝑦𝑖=1) Non- Churner(𝑦𝑖=0) Predicte d class (𝑐𝑖) Churner (𝑐𝑖=1) Non-Churner (𝑐𝑖=0) 𝐶 𝑎 = Administrative cost 𝐶𝐿𝑉𝑖 = Client Lifetime Value of customer 𝑖 𝐶𝑜 𝑖 = Cost of the offer made to customer 𝑖 𝛾𝑖 = Probability that customer 𝑖 accepts the offer 𝐶 𝑇𝑃 𝑖 = 𝛾𝑖 𝐶 𝑜 𝑖 + 1 − 𝛾𝑖 𝐶𝐿𝑉𝑖 + 𝐶 𝑎 𝐶 𝐹𝑁 𝑖 = 𝐶𝐿𝑉𝑖 𝐶 𝑇𝑁 𝑖 = 0 𝐶 𝐹𝑃 𝑖 = 𝐶 𝑜 𝑖 + 𝐶 𝑎
  • 9. Financial Evaluation of a Campaign  Using the cost matrix the total cost is calculated as: 𝐶 = 𝑦𝑖 𝑐𝑖 ∙ 𝐶 𝑇𝑃 𝑖 + 1 − 𝑐𝑖 𝐶 𝐹𝑁 𝑖 + 1 − 𝑦𝑖 𝑐𝑖 ∙ 𝐶 𝐹𝑃 𝑖 + 1 − 𝑐𝑖 𝐶 𝑇𝑁 𝑖  Additionally the savings are defined as: 𝐶𝑠 = 𝐶0 − 𝐶 𝐶0 where 𝐶0 is the cost when all the customers are predicted as non-churners
  • 10. Financial Evaluation of a Campaign  Customer Lifetime Value *Glady et al. (2009). Modeling churn using customer lifetime value.
  • 11. Offers  Same offer may not apply to all customers (eg. Already have premium channels)  An offer should be made such that it maximizes the probability of acceptance (𝛾)
  • 13. Offers Analysis 88% 90% 92% 94% 96% 98% 100% 0.0% 1.0% 2.0% 3.0% 4.0% 5.0% 6.0% Cluster 1 Cluster 2 Cluster 3 Cluster 4 Churn Rate Gamma (right axis) 𝛾 = Probability that a customer accepts the offer
  • 14. Predictive Modeling Dataset N Churn 𝑪 𝟎 (Euros) Total 9410 4.83% 580,884 Training 3758 5.05% 244,542 Validation 2824 4.77% 174,171 Testing 2825 4.42% 162,171 SMOTE 6988 48.94% 4,273,083 Under-Sampling 374 50.80% 244,542
  • 15. Predictive Modeling  Algorithms  Decision Trees  Logistic Regression  Random Forest
  • 16. Predictive Modeling - Results 0% 2% 4% 6% 8% 10% 12% 14% Decision Trees Logistic Regression Random Forest F1-Score Training Under-Sampling SMOTE 0% 1% 2% 3% 4% 5% 6% 7% 8% Decision Trees Logistic Regression Random Forest Savings Training Under-Sampling SMOTE
  • 17. Predictive Modeling  Sampling techniques helps to improve models’ predictive power however not necessarily the savings  There is a need for methods that aim to increase savings
  • 18. Agenda  Churn modeling  Evaluation Measures  Offers  Predictive modeling  Cost-Sensitive Predictive Modeling  Cost Proportionate Sampling  Bayes Minimum Risk  CS – Decision Trees  Conclusions
  • 19. Cost-Sensitive Predictive Modeling  Traditional methods assume the same cost for different errors  Not the case in Churn modeling  Some cost-sensitive methods assume a constant cost difference between errors  Example-Dependent Cost-Sensitive Predictive Modeling
  • 20. Cost-Sensitive Predictive Modeling  Changing class distribution  Cost Proportionate Rejection Sampling  Cost Proportionate Over Sampling  Direct Cost  Bayes Minimum Risk  Modifying a learning algorithm  CS – Decision Tree
  • 21. Cost Proportionate Sampling  Cost Proportionate Over Sampling Example 𝑦𝑖 𝑤𝑖 1 0 1 2 1 10 3 0 2 4 1 20 5 0 1 Initial Dataset (1,0,1) (2,1,10) (3,0,2) (4,1,20) (5,0,1) Cost Proportionate Dataset (1,0,1) (2,1,1), (2,1,1), …, (2,1,1) (3,0,2), (3,0,2) (4,1,1), (4,1,1), (4,1,1), …, (4,1,1), (4,1,1) (5,0,1) *Elkan, C. (2001). The Foundations of Cost-Sensitive Learning.
  • 22. 𝑤𝑖/max( 𝑤𝑖) 0.05 0.5 0.1 1 0.05 Cost Proportionate Sampling  Cost Proportionate Rejection Sampling Example 𝑦𝑖 𝑤𝑖 1 0 1 2 1 10 3 0 2 4 1 20 5 0 1 Initial Dataset (1,0,1) (2,1,10) (3,0,2) (4,1,20) (5,0,1) Cost Proportionat e Dataset (2,1,1) (4,1,1) (4,1,1) (5,0,1) *Zadrozny et al. (2003). Cost-sensitive learning by cost-proportionate example weighting.
  • 23. Cost Proportionate Sampling Dataset N Churn 𝑪 𝟎 (Euros) Total 9410 4.83% 580,884 Training 3758 5.05% 244,542 Validation 2824 4.77% 174,171 Testing 2825 4.42% 162,171 Under-Sampling 374 50.80% 244,542 SMOTE 6988 48.94% 4,273,083 CS – Rejection-Sampling 428 41.35% 231,428 CS – Over-Sampling 5767 31.24% 2,350,285
  • 24. Cost Proportionate Sampling 0% 5% 10% 15% 20% 25% Decision Trees Logistic Regression Random Forest Savings Training Under SMOTE CS-Rejection CS-Over 0% 5% 10% 15% Decision Trees Logistic Regression Random Forest F1-Score Training Under SMOTE CS-Rejection CS-Over
  • 25. Bayes Minimum Risk  Decision model based on quantifying tradeoffs between various decisions using probabilities and the costs that accompany such decisions  Risk of classification 𝑅 𝑐𝑖 = 0|𝑥𝑖 = 𝐶 𝑇𝑁 𝑖 1 − 𝑝𝑖 + 𝐶 𝐹𝑁 𝑖 ∙ 𝑝𝑖 𝑅 𝑐𝑖 = 1|𝑥𝑖 = 𝐶 𝐹𝑃 𝑖 1 − 𝑝𝑖 + 𝐶 𝑇𝑃 𝑖 ∙ 𝑝𝑖  Using the different risks the prediction is made based on the following condition: 𝑐𝑖 = 0 𝑅 𝑐𝑖 = 0|𝑥𝑖 ≤ 𝑅 𝑐𝑖 = 1|𝑥𝑖 1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  • 26. Bayes Minimum Risk 0% 5% 10% 15% 20% 25% 30% 35% - BMR - BMR - BMR Decision Trees Logistic Regression Random Forest Savings Training Under-Sampling SMOTE CS-Rejection CS-Over
  • 27. Bayes Minimum Risk 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 - BMR - BMR - BMR Decision Trees Logistic Regression Random Forest F1-Score Training Under-Sampling SMOTE CS-Rejection CS-Over
  • 28. Bayes Minimum Risk  Bayes Minimum Risk increases the savings by using a cost- insensitive method and then introducing the costs  Why not introduce the costs during the estimation of the methods?
  • 29. CS – Decision Trees  Decision trees  Classification model that iteratively creates binary decision rules 𝑥 𝑗, 𝑙 𝑗 𝑚 that maximize certain criteria  Where 𝑥 𝑗, 𝑙 𝑗 𝑚 refers to making a rule using feature 𝑗 on value 𝑚
  • 30. Comparison of Models 0% 10% 20% 30% 40% 50% Random Forest Train Logistic Regression CSRejection Logistic Regression BMR Train Decision Tree CostPruning CSRejection CS-Decision Tree Train Savings F1-Score
  • 31. Conclusions  Selecting models based on traditional statistics does not gives the best results measured by savings  Incorporating the costs into the modeling helps to achieve higher savings
  • 32.
  • 33. Thank you! Alejandro Correa Bahnsen acorrea@easysol.net