SlideShare a Scribd company logo
1 of 22
Download to read offline
IEEE GLOBECOM 2010

Yang Hong, Changcheng Huang, and James Yan
Department of Systems and Computer Engineering, 
Carleton University, Ottawa, Canada
Wh t i SIP?
What is SIP?
 Session Initiation Protocol
 protocol that establishes,

Internet

manages (multimedia)
sessions [RFC 3261]
 used for VoIP presence &
VoIP,
video conference

Proxy
Server

Proxy
Server

 SIP consists of two basic

elements
l
t
 UA (User Agent) and P-Server
(Proxy Server)

 About 1000 companies produce

SIP products
 Microsoft’s Windows
Messenger (≥4 7) i l d SIP
M
(≥4.7) includes

UA

UA

Simplified SIP Network Configuration

2
Instant Messaging
Instant Messaging
SIP Redirect
server

ipcall.com
ipcall com

SIP proxy

2
3
sipvoice.com

voip.com

5

4

10
7

12

proxy
8
9

13
SIP UA

service

6

11
1

Location

SIP UA

sip.voip.com

3
IMS SIP Server Overload – A 
f
h ll
Performance Management Challenge
 3GPP has adopted SIP
 as the basis of IMS architecture

 Problem: Server(s) cannot complete

the processing of requests under
overload conditions

 Multiple causes: Insufficient
p

capacity, Component Failures,
Unexpected traffic surges, DOS
attacks [RFC 5390]

 Impact: Performance degradation,

drop in throughput, revenue loss,
network collapse
Simplified
Si lifi d IMS C t l L
Control Layer O
Overview
i
4
Why Worry About SIP Message Retransmission?
Why Worry About SIP Message Retransmission?
built in
 Retransmission built-in to maintain SIP reliability
against message loss
 Loss is detected as long delay in acknowledgment
 Surge in user demand can cause SIP server

overload and long delay to acknowledge SIP
messages
 Long dela s ma trigger more retransmissions and a
delays may

positive feedback exacerbating server overload

5
Contributions of This Paper
 Using control-theoretic approach to
 model an overloaded downstream server and its
upstream server as a feedback control system
 Proposing Redundant Retransmission Ratio Control

(RRRC) algorithm (a PI rate control algorithm) to
 mitigate the overload
 achieve satisfactory target redundant message ratio


by controlling retransmission rate

 Performing OPNET simulations under two typical

overload scenarios to
 Validate RRRC (implicit SIP overload control) algorithm
6
Outline
 SIP Retransmission Mechanism Overview
 Related Work on SIP Overload Control
 Queuing Dynamics of Overloaded Server
 Control-Theoretic Design for Overload Control Based
g

on Redundant Retransmission Ratio
 Performance Evaluation to Validate RRRC SIP

Overload Control Algorithm
 Conclusions
7
Typical SIP Procedure

8
Retransmission Mechanism
 Purpose: Confirmation of successful transmission

between UA and UA via P-servers
 Two Types:
 Hop by Hop

First retransmission after T1 , subsequent one is 2
times previous interval. Total intervals up to 64 x T1
(maximum 6 retransmissions). Default T1 = 0.5 s.
(
)
f
 End-to End
First retransmission after T1 , subsequent one is 2 times
previous interval up to a maximum of T2 . Total
intervals up to 64 x T1 (maximum 11 retransmissions).
Default T2 = 4.0 s.
9
Related Work on Overload Control
 All the existing overload control solutions adopt

push-back mechanism
 cancel the overload effectively


by introducing overhead to advertise upstream servers to
 reduce message sending rate
d
di
t

 produce overload propagation from sever to server

until end-users
 block a large amount of calls unnecessarily


cause revenue loss of service providers

• Our Proposal: Reduce retransmission rate only to

mitigate overload
 by maintaining original message rate to


keep the revenue of service providers
10
SIP Overload Control Mechanism Classification

Figure 3. The classification for the existing SIP overload control schemes

Y. Hong, C. Huang, and J. Yan, “A Comparative Study of SIP Overload Control Algorithms,”
Network and T ffi E i
N
k d Traffic Engineering i E
i in Emerging Di ib d C
i Distributed Computing A li i
i Applications, Edi d b
Edited by
J. Abawajy, M. Pathan, M. Rahman, A.K. Pathan, and M.M. Deris, IGI Global, 2012, pp. 1‐20.
11
Queuing Dynamics of Overloaded Server
Q
g y
 

100Trying response
Invite request 1(t)
r1(t)
r2' (t )  
Timer fires

Message buffer

q1(t)
Reset timer

Timer expires



qr1(t)

Invite request
Server 2
2(t)
2  
1  

r2(t)
Server 1
2(t)
q2(t)
1(t)
100Trying response
Timer starts
Ti

Timer buffer

Queuing dynamics of Server 2
Queuing dynamics of Server 1


q 2 (t )  2 (t )  r2 (t )   2 (t )   2 (t )


q1 (t )  1 (t )  r1 (t )  r2' (t )  1 (t )  1 (t )

(1)
(2)

Notation: 1(t) original message rate, r1 (t) message retransmission rate,
2(t) service rate 1 (t) response rate q1 (t) queue size
rate,
rate,
Overload Scenario: Server slowdown at Server 2 due to routine maintenance
Overload Collapse: 2(t)   2(t) > 2(t)  q 2 (t )  0 (see Eq. (1))  q2(t) 

ti
trigger r''2(t)  r2(t) i
increases q2(t) more quickly
i kl

Overload Propagation: r'2(t) enter Server 1  q 1 ( t )  0 (see Eq. (2))  q1(t) 
12
Feedback Overload Control System 
 

g
g
y
Figure 4.Block diagram of feedback SIP overload control system
Root Cause of Overload Collapse
• Retransmission for loss recovery is non-redundant
• Retransmission caused by the overload delay is redundant
Solution
• PI controller C(s) regulates retransmission rate r'2(t) to mitigate the
overload
• achieve desirable target redundant message ratio 0
• redundant message ratio  is the ratio between redundant
espo se essage ate
a d total espo se essage ate
response message rate 1r and tota response message rate 1
• P(s) represents the interaction between an overloaded downstream
receiving server and its upstream sending server
13
Overload Controller Design 
g
Redundant message ratio (t)=1r(t)/1(t) r'2(t)/1(t)
PI controller regulates retransmission rate r'2(t)
r
t

'
r2 (t)  KPe(t )  KI 0 e()d
t

 KP ( 0   (t ))  KI 0 ( 0   ())d
Control plant P(s)=(s)/r'2(s)=[r'2(s)e-s/1]/r'2(s)=e-s/1
PI controller C(s)=KP+KI/s
Open-loop overload control system G(s)=C(s)P(s)=(KP+KI/s)e-s/1
Positive phase margin m of G(s) can guarantee control system stability
PI controller gains can be obtained based on phase margin m

KP 

1
2

KI 

1 (3 / 4   m )
2
14
SIP Overload Control Algorithm (RRRC)
SIP Overload Control Algorithm (RRRC)
Overload Control Algorithm
When each retransmission timer fires or expires
if < 1
Retransmit the message
else
Retransmit the message with a retransmission
probability corresponding to a retransmission
rate r'2 calculated by a PI controller
Adaptive PI control algorithm:
(1) Specify target redundant message ratio
and phase margin m; Set the initial values for ,
and ; Obtain PI controller gains using Eq.
(13).
(2) Measure ,
and
r and calculate
upon response message arrivals.
>1.5
or
<0.5 , self-tune PI
(3) If
controller gains using Eq. (13) and update = ;
g
Otherwise, PI controller remains unchanged.
(4) Calculate the retransmission rate r'2 using
Eq. (7); Go to Step (2).

Varying parameter:
: Round trip delay
: Response message rate
1r : Redundant response message rate
: Redundant message ratio
1r/ 1
KP : Proportional gain of PI controller
KI : Integral gain of PI controller
r'2 : Message retransmission rate
: Monitoring parameter
/ 1
Fixed parameter:
T1 : First-time retransmission timer
: Target redundant message ratio
m : Phase margin
15
Scenario to Validate Overload Control Algorithm
Scenario to Validate Overload Control Algorithm
• Poisson distributed message generation rate and service rate
• Two typical overload scenarios
Scenario 1
Initial overload at 
Server 1 due to 
demand burst

• Mean arrival rate 1=800 messages/sec (emulating a

short surge of user demands) from time t=0s to t=30s

• Mean arrival rate 1=200 messages/sec (emulating

regular user demands) from time t=30s to t=90s

• Mean service capacities of two proxy servers were

C1=C2=1000 messages/sec
Scenario 2
Initial overload at 
Server 2 due to 
server slowdown

• Mean arrival rate 1=200 messages/sec
• Mean server capacity C1=1000 messages/sec
• Mean server capacity C2=100 messages/sec (emulating

server slowdown) from time t=0s to t=30s, and C2=1000
messages/sec from time t=30s to t=90s

16
SIP Network Topology For OPNET Simulation
SIP Network Topology For OPNET Simulation

17
Simulation Results of Scenario 1
Simulation Results of Scenario 1
4

x 10

NOLC q1

7

OLC q1
6

o

5
4
3
2
1
0

10

20

30

40

50

60

70

80

90

Time (sec)

Queue size q1 (messages) of Server 1
versus time

OLC qo

8000

6000
10
4000

2000

0

0

20
NOLC qo

0

10

20

30

40

50

60

70

80

OLC Queue size qo (messag
ges)

10000

NOLC Queue size q (messag
e
ges)

Queue siz q1 (messages
ze
s)

8

0
90

Time (sec)

Queue size qo (messages) of an originating
server versus time

• Without overload control algorithm applied, Server 1 became CPU overloaded
 overload deteriorated as time evolves, leading to eventual crash of Server 1
• RRRC algorithm made queue size of Server 1 increase slowly
 taking only 8s to cancel the overload at Server 1 after new user demand
rate reduced at time t=30s
18
Simulation Results of Scenario 2
Simulation Results of Scenario 2
4

x 10

OLC q1

4

1

3

2

10
2

1

0

10

20

30

40

50

60

70

80

0
90

Time (sec)
( )

Queue size q1 (messages) of Server 1
versus time

x 10

1.8

Queue size q2 (messages
s
s)

NOLC q1

0

4

20

OLC Queu size q (messa
ue
ages)

1

NOLC Que size q (mess
eue
sages)

5

NOLC q2

1.6

OLC q2

1.4
1.2
1
0.8
0.6
0.4
0.2
0

0

10

20

30

40

50

60

70

80

90

Time (sec)

Queue size q2 (messages) of Server 2
versus time

• Without overload control algorithm applied overload was propagated from Server
applied,
2 to Server 1 when initial overload happened at Server 2
• Persisted overload would crash Server 1 after Server 2 resumed its normal
service
• RRRC algorithm prevent overload propagation to Server 1
 taking only 9s to cancel the overload at Server 2
19
Conclusions
 Applying control-theoretic approach to model SIP

overload problem as a feedback control problem
D
Developing R d d t R t
l i Redundant Retransmission R ti C t l
i i Ratio Control
(RRRC) algorithm (a PI rate control algorithm) to mitigate
the overload by
 controlling retransmission rate
 achieving desirable target redundant message ratio

 Simulation results demonstrate that RRRC (implicit SIP

overload control) algorithm can
 prevent the overload propagation
 cancel the overload effectively

 Our solution does NOT require modification in the SIP

header and time consuming standardization process
time-consuming
 can be freely implemented in any SIP servers of different carriers
20
Remarks (1)
 OPNET simulation code for 3 implicit SIP overload control algorithms

(RRRC, RTDC, and RTQC) published by IEEE Globecom 2010/ICC 2011
available for non-commercial research use upon request
 RRRC algorithm (proposed by this IEEE Globecom 2010 paper) has been

quickly adopted by The Central Weather Bureau of Taiwan for their early
earthquake warning system
 “A Effi i t Earthquake Early W
“An Efficient E th
k E l Warning M
i Message D li
Delivery Al ith U i an i
Algorithm Using
in

Time Control-Theoretic Approach,” Ubiquitous Intelligence and Computing,
Lecture Notes in Computer Science, 6905, Springer, Berlin, Heidelberg, 2011, pp.
161-173.

http://www.springerlink.com/content/b6252x2k613rv211/?MUD=MP
http://www.ipv6.org.tw/docu/elearning8_2011/1010004798p_3-7.pdf
 S
Short review and comments on RRRC (
C (implicit S overload control)
SIP
)

algorithm: "Local SIP Overload Control", Proceedings of WWIC, June 2013.
http://link.springer.com/chapter/10.1007%2F978-3-642-38401-1_16#
http://c3lab.poliba.it/images/2/2a/SipOverload_WWIC13.pdf
http://c3lab poliba it/images/2/2a/SipOverload WWIC13 pdf
21
Remarks (2)
 Journal version discusses how to apply RTDC algorithm to mitigate SIP

overload for both SIP over UDP and SIP over TCP (with TLS)
 “Applying control theoretic approach to mitigate SIP overload,”
y
( )
Telecommunication Systems, 54(4), 2013, pp. 387-404. Available at
http://www.researchgate.net/publication/257667871_Applying_control_theoretic
_approach_to_mitigate_SIP_overload
 Survey on SIP overload control algorithms: “A Comparative Study of SIP
y
g
p
y

Overload Control Algorithms,” Network and Traffic Engineering in Emerging
Distributed Computing Applications, IGI Global, 2012, pp. 1-20.
http://www.igi-global.com/chapter/comparative-study-sip-overloadcontrol/67496
t l/67496
http://www.researchgate.net/publication/231609451_A_Comparative_Study_of
_SIP_Overload_Control_Algorithms
 Discussion on control system design can be found in the answers to the

ResearchGate question “What are trends in control theory and its
applications in physical systems (from a research point of view)? ”
https://www.researchgate.net/post/What_are_trends_in_control_theory_and_its
https://www researchgate net/post/What are trends in control theory and its
_applications_in_physical_systems_from_a_research_point_of_view2
22

More Related Content

What's hot

Basic ntp configuration
Basic ntp configurationBasic ntp configuration
Basic ntp configurationRaghu nath
 
RIP RTCP RTSP
RIP RTCP RTSPRIP RTCP RTSP
RIP RTCP RTSPDev Heba
 
Distributed Video Streaming over Internet
Distributed Video Streaming over InternetDistributed Video Streaming over Internet
Distributed Video Streaming over InternetVideoguy
 
RTSP Protocol - Explanation to develop API of RTSP Protocol
RTSP Protocol - Explanation to develop API of RTSP ProtocolRTSP Protocol - Explanation to develop API of RTSP Protocol
RTSP Protocol - Explanation to develop API of RTSP ProtocolFranZEast
 
features of tcp important for the web
features of tcp  important for the webfeatures of tcp  important for the web
features of tcp important for the webrinnocente
 
RIPE 80: Buffers and Protocols
RIPE 80: Buffers and ProtocolsRIPE 80: Buffers and Protocols
RIPE 80: Buffers and ProtocolsAPNIC
 
RTSP Analysis Wireshark
RTSP Analysis WiresharkRTSP Analysis Wireshark
RTSP Analysis WiresharkYoss Cohen
 

What's hot (18)

RTP.ppt
RTP.pptRTP.ppt
RTP.ppt
 
Sania rtp
Sania rtpSania rtp
Sania rtp
 
Basic ntp configuration
Basic ntp configurationBasic ntp configuration
Basic ntp configuration
 
RIP RTCP RTSP
RIP RTCP RTSPRIP RTCP RTSP
RIP RTCP RTSP
 
Rtp
RtpRtp
Rtp
 
6 app-tcp
6 app-tcp6 app-tcp
6 app-tcp
 
Distributed Video Streaming over Internet
Distributed Video Streaming over InternetDistributed Video Streaming over Internet
Distributed Video Streaming over Internet
 
Part 1 : reliable transmission
Part 1 : reliable transmissionPart 1 : reliable transmission
Part 1 : reliable transmission
 
Rtp
RtpRtp
Rtp
 
RTP
RTPRTP
RTP
 
Iperf Tutorial
Iperf Tutorial Iperf Tutorial
Iperf Tutorial
 
Rtp
RtpRtp
Rtp
 
RTSP Protocol - Explanation to develop API of RTSP Protocol
RTSP Protocol - Explanation to develop API of RTSP ProtocolRTSP Protocol - Explanation to develop API of RTSP Protocol
RTSP Protocol - Explanation to develop API of RTSP Protocol
 
features of tcp important for the web
features of tcp  important for the webfeatures of tcp  important for the web
features of tcp important for the web
 
RIPE 80: Buffers and Protocols
RIPE 80: Buffers and ProtocolsRIPE 80: Buffers and Protocols
RIPE 80: Buffers and Protocols
 
RTSP Analysis Wireshark
RTSP Analysis WiresharkRTSP Analysis Wireshark
RTSP Analysis Wireshark
 
Tcp traffic control and red ecn
Tcp traffic control and red ecnTcp traffic control and red ecn
Tcp traffic control and red ecn
 
7.protocols 2
7.protocols 27.protocols 2
7.protocols 2
 

Similar to Mitigating SIP Overload Using a Control-Theoretic Approach

Self-adaptive container monitoring with performance-aware Load-Shedding policies
Self-adaptive container monitoring with performance-aware Load-Shedding policiesSelf-adaptive container monitoring with performance-aware Load-Shedding policies
Self-adaptive container monitoring with performance-aware Load-Shedding policiesNECST Lab @ Politecnico di Milano
 
CRC AND TRANSMIT ERROR REPORT
CRC AND TRANSMIT ERROR REPORTCRC AND TRANSMIT ERROR REPORT
CRC AND TRANSMIT ERROR REPORTAlex TX
 
IRJET- Modeling a New Startup Algorithm for TCP New Reno
IRJET- Modeling a New Startup Algorithm for TCP New RenoIRJET- Modeling a New Startup Algorithm for TCP New Reno
IRJET- Modeling a New Startup Algorithm for TCP New RenoIRJET Journal
 
chapter 3.2 TCP.pptx
chapter 3.2 TCP.pptxchapter 3.2 TCP.pptx
chapter 3.2 TCP.pptxTekle12
 
LF_OVS_17_OVS/OVS-DPDK connection tracking for Mobile usecases
LF_OVS_17_OVS/OVS-DPDK connection tracking for Mobile usecasesLF_OVS_17_OVS/OVS-DPDK connection tracking for Mobile usecases
LF_OVS_17_OVS/OVS-DPDK connection tracking for Mobile usecasesLF_OpenvSwitch
 
Design and Performance Optimization of Authentication, Authorization, and Acc...
Design and Performance Optimization of Authentication, Authorization, and Acc...Design and Performance Optimization of Authentication, Authorization, and Acc...
Design and Performance Optimization of Authentication, Authorization, and Acc...saidzaghloul
 
Qualcomm lte-performance-challenges-09-01-2011
Qualcomm lte-performance-challenges-09-01-2011Qualcomm lte-performance-challenges-09-01-2011
Qualcomm lte-performance-challenges-09-01-2011Muhammad Noor Ifansyah
 
AWS re:Invent 2016: Making Every Packet Count (NET404)
AWS re:Invent 2016: Making Every Packet Count (NET404)AWS re:Invent 2016: Making Every Packet Count (NET404)
AWS re:Invent 2016: Making Every Packet Count (NET404)Amazon Web Services
 
Dccp evaluation for sip signaling ict4 m
Dccp evaluation for sip signaling   ict4 m Dccp evaluation for sip signaling   ict4 m
Dccp evaluation for sip signaling ict4 m Agus Awaludin
 
Performance Evaluation of High Speed Congestion Control Protocols
Performance Evaluation of High Speed Congestion Control  ProtocolsPerformance Evaluation of High Speed Congestion Control  Protocols
Performance Evaluation of High Speed Congestion Control ProtocolsIOSR Journals
 
QCON 2015: Gearpump, Realtime Streaming on Akka
QCON 2015: Gearpump, Realtime Streaming on AkkaQCON 2015: Gearpump, Realtime Streaming on Akka
QCON 2015: Gearpump, Realtime Streaming on AkkaSean Zhong
 
(NET404) Making Every Packet Count
(NET404) Making Every Packet Count(NET404) Making Every Packet Count
(NET404) Making Every Packet CountAmazon Web Services
 
intelligent braking system report
intelligent braking system reportintelligent braking system report
intelligent braking system reportSumit Kumar
 
A New Multi-Channel MAC Protocol With On-Demand Channel Assignment For Multi-...
A New Multi-Channel MAC Protocol With On-Demand Channel Assignment For Multi-...A New Multi-Channel MAC Protocol With On-Demand Channel Assignment For Multi-...
A New Multi-Channel MAC Protocol With On-Demand Channel Assignment For Multi-...Steven Wallach
 
Jaimin chp-6 - transport layer- 2011 batch
Jaimin   chp-6 - transport layer- 2011 batchJaimin   chp-6 - transport layer- 2011 batch
Jaimin chp-6 - transport layer- 2011 batchJaimin Jani
 

Similar to Mitigating SIP Overload Using a Control-Theoretic Approach (20)

Self-adaptive container monitoring with performance-aware Load-Shedding policies
Self-adaptive container monitoring with performance-aware Load-Shedding policiesSelf-adaptive container monitoring with performance-aware Load-Shedding policies
Self-adaptive container monitoring with performance-aware Load-Shedding policies
 
CRC AND TRANSMIT ERROR REPORT
CRC AND TRANSMIT ERROR REPORTCRC AND TRANSMIT ERROR REPORT
CRC AND TRANSMIT ERROR REPORT
 
IRJET- Modeling a New Startup Algorithm for TCP New Reno
IRJET- Modeling a New Startup Algorithm for TCP New RenoIRJET- Modeling a New Startup Algorithm for TCP New Reno
IRJET- Modeling a New Startup Algorithm for TCP New Reno
 
chapter 3.2 TCP.pptx
chapter 3.2 TCP.pptxchapter 3.2 TCP.pptx
chapter 3.2 TCP.pptx
 
14 queuing
14 queuing14 queuing
14 queuing
 
HIGH SPEED NETWORKS
HIGH SPEED NETWORKSHIGH SPEED NETWORKS
HIGH SPEED NETWORKS
 
LF_OVS_17_OVS/OVS-DPDK connection tracking for Mobile usecases
LF_OVS_17_OVS/OVS-DPDK connection tracking for Mobile usecasesLF_OVS_17_OVS/OVS-DPDK connection tracking for Mobile usecases
LF_OVS_17_OVS/OVS-DPDK connection tracking for Mobile usecases
 
Design and Performance Optimization of Authentication, Authorization, and Acc...
Design and Performance Optimization of Authentication, Authorization, and Acc...Design and Performance Optimization of Authentication, Authorization, and Acc...
Design and Performance Optimization of Authentication, Authorization, and Acc...
 
Qualcomm lte-performance-challenges-09-01-2011
Qualcomm lte-performance-challenges-09-01-2011Qualcomm lte-performance-challenges-09-01-2011
Qualcomm lte-performance-challenges-09-01-2011
 
Polyraptor
PolyraptorPolyraptor
Polyraptor
 
AWS re:Invent 2016: Making Every Packet Count (NET404)
AWS re:Invent 2016: Making Every Packet Count (NET404)AWS re:Invent 2016: Making Every Packet Count (NET404)
AWS re:Invent 2016: Making Every Packet Count (NET404)
 
Dccp evaluation for sip signaling ict4 m
Dccp evaluation for sip signaling   ict4 m Dccp evaluation for sip signaling   ict4 m
Dccp evaluation for sip signaling ict4 m
 
Performance Evaluation of High Speed Congestion Control Protocols
Performance Evaluation of High Speed Congestion Control  ProtocolsPerformance Evaluation of High Speed Congestion Control  Protocols
Performance Evaluation of High Speed Congestion Control Protocols
 
Lte epc kp is and signalling (sf)
Lte epc kp is and signalling (sf)Lte epc kp is and signalling (sf)
Lte epc kp is and signalling (sf)
 
QCON 2015: Gearpump, Realtime Streaming on Akka
QCON 2015: Gearpump, Realtime Streaming on AkkaQCON 2015: Gearpump, Realtime Streaming on Akka
QCON 2015: Gearpump, Realtime Streaming on Akka
 
(NET404) Making Every Packet Count
(NET404) Making Every Packet Count(NET404) Making Every Packet Count
(NET404) Making Every Packet Count
 
intelligent braking system report
intelligent braking system reportintelligent braking system report
intelligent braking system report
 
A New Multi-Channel MAC Protocol With On-Demand Channel Assignment For Multi-...
A New Multi-Channel MAC Protocol With On-Demand Channel Assignment For Multi-...A New Multi-Channel MAC Protocol With On-Demand Channel Assignment For Multi-...
A New Multi-Channel MAC Protocol With On-Demand Channel Assignment For Multi-...
 
UDT
UDTUDT
UDT
 
Jaimin chp-6 - transport layer- 2011 batch
Jaimin   chp-6 - transport layer- 2011 batchJaimin   chp-6 - transport layer- 2011 batch
Jaimin chp-6 - transport layer- 2011 batch
 

Recently uploaded

定制(Management毕业证书)新加坡管理大学毕业证成绩单原版一比一
定制(Management毕业证书)新加坡管理大学毕业证成绩单原版一比一定制(Management毕业证书)新加坡管理大学毕业证成绩单原版一比一
定制(Management毕业证书)新加坡管理大学毕业证成绩单原版一比一Fs
 
VIP Kolkata Call Girl Salt Lake 👉 8250192130 Available With Room
VIP Kolkata Call Girl Salt Lake 👉 8250192130  Available With RoomVIP Kolkata Call Girl Salt Lake 👉 8250192130  Available With Room
VIP Kolkata Call Girl Salt Lake 👉 8250192130 Available With Roomishabajaj13
 
Call Girls Service Adil Nagar 7001305949 Need escorts Service Pooja Vip
Call Girls Service Adil Nagar 7001305949 Need escorts Service Pooja VipCall Girls Service Adil Nagar 7001305949 Need escorts Service Pooja Vip
Call Girls Service Adil Nagar 7001305949 Need escorts Service Pooja VipCall Girls Lucknow
 
VIP Kolkata Call Girl Kestopur 👉 8250192130 Available With Room
VIP Kolkata Call Girl Kestopur 👉 8250192130  Available With RoomVIP Kolkata Call Girl Kestopur 👉 8250192130  Available With Room
VIP Kolkata Call Girl Kestopur 👉 8250192130 Available With Roomdivyansh0kumar0
 
VIP Kolkata Call Girl Alambazar 👉 8250192130 Available With Room
VIP Kolkata Call Girl Alambazar 👉 8250192130  Available With RoomVIP Kolkata Call Girl Alambazar 👉 8250192130  Available With Room
VIP Kolkata Call Girl Alambazar 👉 8250192130 Available With Roomdivyansh0kumar0
 
A Good Girl's Guide to Murder (A Good Girl's Guide to Murder, #1)
A Good Girl's Guide to Murder (A Good Girl's Guide to Murder, #1)A Good Girl's Guide to Murder (A Good Girl's Guide to Murder, #1)
A Good Girl's Guide to Murder (A Good Girl's Guide to Murder, #1)Christopher H Felton
 
Potsdam FH学位证,波茨坦应用技术大学毕业证书1:1制作
Potsdam FH学位证,波茨坦应用技术大学毕业证书1:1制作Potsdam FH学位证,波茨坦应用技术大学毕业证书1:1制作
Potsdam FH学位证,波茨坦应用技术大学毕业证书1:1制作ys8omjxb
 
Chennai Call Girls Alwarpet Phone 🍆 8250192130 👅 celebrity escorts service
Chennai Call Girls Alwarpet Phone 🍆 8250192130 👅 celebrity escorts serviceChennai Call Girls Alwarpet Phone 🍆 8250192130 👅 celebrity escorts service
Chennai Call Girls Alwarpet Phone 🍆 8250192130 👅 celebrity escorts servicevipmodelshub1
 
Chennai Call Girls Porur Phone 🍆 8250192130 👅 celebrity escorts service
Chennai Call Girls Porur Phone 🍆 8250192130 👅 celebrity escorts serviceChennai Call Girls Porur Phone 🍆 8250192130 👅 celebrity escorts service
Chennai Call Girls Porur Phone 🍆 8250192130 👅 celebrity escorts servicesonalikaur4
 
Call Girls In Mumbai Central Mumbai ❤️ 9920874524 👈 Cash on Delivery
Call Girls In Mumbai Central Mumbai ❤️ 9920874524 👈 Cash on DeliveryCall Girls In Mumbai Central Mumbai ❤️ 9920874524 👈 Cash on Delivery
Call Girls In Mumbai Central Mumbai ❤️ 9920874524 👈 Cash on Deliverybabeytanya
 
定制(CC毕业证书)美国美国社区大学毕业证成绩单原版一比一
定制(CC毕业证书)美国美国社区大学毕业证成绩单原版一比一定制(CC毕业证书)美国美国社区大学毕业证成绩单原版一比一
定制(CC毕业证书)美国美国社区大学毕业证成绩单原版一比一3sw2qly1
 
Complet Documnetation for Smart Assistant Application for Disabled Person
Complet Documnetation   for Smart Assistant Application for Disabled PersonComplet Documnetation   for Smart Assistant Application for Disabled Person
Complet Documnetation for Smart Assistant Application for Disabled Personfurqan222004
 
Git and Github workshop GDSC MLRITM
Git and Github  workshop GDSC MLRITMGit and Github  workshop GDSC MLRITM
Git and Github workshop GDSC MLRITMgdsc13
 
定制(Lincoln毕业证书)新西兰林肯大学毕业证成绩单原版一比一
定制(Lincoln毕业证书)新西兰林肯大学毕业证成绩单原版一比一定制(Lincoln毕业证书)新西兰林肯大学毕业证成绩单原版一比一
定制(Lincoln毕业证书)新西兰林肯大学毕业证成绩单原版一比一Fs
 
Magic exist by Marta Loveguard - presentation.pptx
Magic exist by Marta Loveguard - presentation.pptxMagic exist by Marta Loveguard - presentation.pptx
Magic exist by Marta Loveguard - presentation.pptxMartaLoveguard
 
Sushant Golf City / best call girls in Lucknow | Service-oriented sexy call g...
Sushant Golf City / best call girls in Lucknow | Service-oriented sexy call g...Sushant Golf City / best call girls in Lucknow | Service-oriented sexy call g...
Sushant Golf City / best call girls in Lucknow | Service-oriented sexy call g...akbard9823
 
定制(AUT毕业证书)新西兰奥克兰理工大学毕业证成绩单原版一比一
定制(AUT毕业证书)新西兰奥克兰理工大学毕业证成绩单原版一比一定制(AUT毕业证书)新西兰奥克兰理工大学毕业证成绩单原版一比一
定制(AUT毕业证书)新西兰奥克兰理工大学毕业证成绩单原版一比一Fs
 
Call Girls South Delhi Delhi reach out to us at ☎ 9711199012
Call Girls South Delhi Delhi reach out to us at ☎ 9711199012Call Girls South Delhi Delhi reach out to us at ☎ 9711199012
Call Girls South Delhi Delhi reach out to us at ☎ 9711199012rehmti665
 

Recently uploaded (20)

定制(Management毕业证书)新加坡管理大学毕业证成绩单原版一比一
定制(Management毕业证书)新加坡管理大学毕业证成绩单原版一比一定制(Management毕业证书)新加坡管理大学毕业证成绩单原版一比一
定制(Management毕业证书)新加坡管理大学毕业证成绩单原版一比一
 
VIP Kolkata Call Girl Salt Lake 👉 8250192130 Available With Room
VIP Kolkata Call Girl Salt Lake 👉 8250192130  Available With RoomVIP Kolkata Call Girl Salt Lake 👉 8250192130  Available With Room
VIP Kolkata Call Girl Salt Lake 👉 8250192130 Available With Room
 
Call Girls Service Adil Nagar 7001305949 Need escorts Service Pooja Vip
Call Girls Service Adil Nagar 7001305949 Need escorts Service Pooja VipCall Girls Service Adil Nagar 7001305949 Need escorts Service Pooja Vip
Call Girls Service Adil Nagar 7001305949 Need escorts Service Pooja Vip
 
VIP Kolkata Call Girl Kestopur 👉 8250192130 Available With Room
VIP Kolkata Call Girl Kestopur 👉 8250192130  Available With RoomVIP Kolkata Call Girl Kestopur 👉 8250192130  Available With Room
VIP Kolkata Call Girl Kestopur 👉 8250192130 Available With Room
 
VIP Kolkata Call Girl Alambazar 👉 8250192130 Available With Room
VIP Kolkata Call Girl Alambazar 👉 8250192130  Available With RoomVIP Kolkata Call Girl Alambazar 👉 8250192130  Available With Room
VIP Kolkata Call Girl Alambazar 👉 8250192130 Available With Room
 
A Good Girl's Guide to Murder (A Good Girl's Guide to Murder, #1)
A Good Girl's Guide to Murder (A Good Girl's Guide to Murder, #1)A Good Girl's Guide to Murder (A Good Girl's Guide to Murder, #1)
A Good Girl's Guide to Murder (A Good Girl's Guide to Murder, #1)
 
Potsdam FH学位证,波茨坦应用技术大学毕业证书1:1制作
Potsdam FH学位证,波茨坦应用技术大学毕业证书1:1制作Potsdam FH学位证,波茨坦应用技术大学毕业证书1:1制作
Potsdam FH学位证,波茨坦应用技术大学毕业证书1:1制作
 
Chennai Call Girls Alwarpet Phone 🍆 8250192130 👅 celebrity escorts service
Chennai Call Girls Alwarpet Phone 🍆 8250192130 👅 celebrity escorts serviceChennai Call Girls Alwarpet Phone 🍆 8250192130 👅 celebrity escorts service
Chennai Call Girls Alwarpet Phone 🍆 8250192130 👅 celebrity escorts service
 
Chennai Call Girls Porur Phone 🍆 8250192130 👅 celebrity escorts service
Chennai Call Girls Porur Phone 🍆 8250192130 👅 celebrity escorts serviceChennai Call Girls Porur Phone 🍆 8250192130 👅 celebrity escorts service
Chennai Call Girls Porur Phone 🍆 8250192130 👅 celebrity escorts service
 
Call Girls In Mumbai Central Mumbai ❤️ 9920874524 👈 Cash on Delivery
Call Girls In Mumbai Central Mumbai ❤️ 9920874524 👈 Cash on DeliveryCall Girls In Mumbai Central Mumbai ❤️ 9920874524 👈 Cash on Delivery
Call Girls In Mumbai Central Mumbai ❤️ 9920874524 👈 Cash on Delivery
 
定制(CC毕业证书)美国美国社区大学毕业证成绩单原版一比一
定制(CC毕业证书)美国美国社区大学毕业证成绩单原版一比一定制(CC毕业证书)美国美国社区大学毕业证成绩单原版一比一
定制(CC毕业证书)美国美国社区大学毕业证成绩单原版一比一
 
Complet Documnetation for Smart Assistant Application for Disabled Person
Complet Documnetation   for Smart Assistant Application for Disabled PersonComplet Documnetation   for Smart Assistant Application for Disabled Person
Complet Documnetation for Smart Assistant Application for Disabled Person
 
Hot Sexy call girls in Rk Puram 🔝 9953056974 🔝 Delhi escort Service
Hot Sexy call girls in  Rk Puram 🔝 9953056974 🔝 Delhi escort ServiceHot Sexy call girls in  Rk Puram 🔝 9953056974 🔝 Delhi escort Service
Hot Sexy call girls in Rk Puram 🔝 9953056974 🔝 Delhi escort Service
 
Git and Github workshop GDSC MLRITM
Git and Github  workshop GDSC MLRITMGit and Github  workshop GDSC MLRITM
Git and Github workshop GDSC MLRITM
 
定制(Lincoln毕业证书)新西兰林肯大学毕业证成绩单原版一比一
定制(Lincoln毕业证书)新西兰林肯大学毕业证成绩单原版一比一定制(Lincoln毕业证书)新西兰林肯大学毕业证成绩单原版一比一
定制(Lincoln毕业证书)新西兰林肯大学毕业证成绩单原版一比一
 
Magic exist by Marta Loveguard - presentation.pptx
Magic exist by Marta Loveguard - presentation.pptxMagic exist by Marta Loveguard - presentation.pptx
Magic exist by Marta Loveguard - presentation.pptx
 
Sushant Golf City / best call girls in Lucknow | Service-oriented sexy call g...
Sushant Golf City / best call girls in Lucknow | Service-oriented sexy call g...Sushant Golf City / best call girls in Lucknow | Service-oriented sexy call g...
Sushant Golf City / best call girls in Lucknow | Service-oriented sexy call g...
 
Model Call Girl in Jamuna Vihar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in  Jamuna Vihar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in  Jamuna Vihar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Jamuna Vihar Delhi reach out to us at 🔝9953056974🔝
 
定制(AUT毕业证书)新西兰奥克兰理工大学毕业证成绩单原版一比一
定制(AUT毕业证书)新西兰奥克兰理工大学毕业证成绩单原版一比一定制(AUT毕业证书)新西兰奥克兰理工大学毕业证成绩单原版一比一
定制(AUT毕业证书)新西兰奥克兰理工大学毕业证成绩单原版一比一
 
Call Girls South Delhi Delhi reach out to us at ☎ 9711199012
Call Girls South Delhi Delhi reach out to us at ☎ 9711199012Call Girls South Delhi Delhi reach out to us at ☎ 9711199012
Call Girls South Delhi Delhi reach out to us at ☎ 9711199012
 

Mitigating SIP Overload Using a Control-Theoretic Approach

  • 2. Wh t i SIP? What is SIP?  Session Initiation Protocol  protocol that establishes, Internet manages (multimedia) sessions [RFC 3261]  used for VoIP presence & VoIP, video conference Proxy Server Proxy Server  SIP consists of two basic elements l t  UA (User Agent) and P-Server (Proxy Server)  About 1000 companies produce SIP products  Microsoft’s Windows Messenger (≥4 7) i l d SIP M (≥4.7) includes UA UA Simplified SIP Network Configuration 2
  • 3. Instant Messaging Instant Messaging SIP Redirect server ipcall.com ipcall com SIP proxy 2 3 sipvoice.com voip.com 5 4 10 7 12 proxy 8 9 13 SIP UA service 6 11 1 Location SIP UA sip.voip.com 3
  • 4. IMS SIP Server Overload – A  f h ll Performance Management Challenge  3GPP has adopted SIP  as the basis of IMS architecture  Problem: Server(s) cannot complete the processing of requests under overload conditions  Multiple causes: Insufficient p capacity, Component Failures, Unexpected traffic surges, DOS attacks [RFC 5390]  Impact: Performance degradation, drop in throughput, revenue loss, network collapse Simplified Si lifi d IMS C t l L Control Layer O Overview i 4
  • 5. Why Worry About SIP Message Retransmission? Why Worry About SIP Message Retransmission? built in  Retransmission built-in to maintain SIP reliability against message loss  Loss is detected as long delay in acknowledgment  Surge in user demand can cause SIP server overload and long delay to acknowledge SIP messages  Long dela s ma trigger more retransmissions and a delays may positive feedback exacerbating server overload 5
  • 6. Contributions of This Paper  Using control-theoretic approach to  model an overloaded downstream server and its upstream server as a feedback control system  Proposing Redundant Retransmission Ratio Control (RRRC) algorithm (a PI rate control algorithm) to  mitigate the overload  achieve satisfactory target redundant message ratio  by controlling retransmission rate  Performing OPNET simulations under two typical overload scenarios to  Validate RRRC (implicit SIP overload control) algorithm 6
  • 7. Outline  SIP Retransmission Mechanism Overview  Related Work on SIP Overload Control  Queuing Dynamics of Overloaded Server  Control-Theoretic Design for Overload Control Based g on Redundant Retransmission Ratio  Performance Evaluation to Validate RRRC SIP Overload Control Algorithm  Conclusions 7
  • 9. Retransmission Mechanism  Purpose: Confirmation of successful transmission between UA and UA via P-servers  Two Types:  Hop by Hop First retransmission after T1 , subsequent one is 2 times previous interval. Total intervals up to 64 x T1 (maximum 6 retransmissions). Default T1 = 0.5 s. ( ) f  End-to End First retransmission after T1 , subsequent one is 2 times previous interval up to a maximum of T2 . Total intervals up to 64 x T1 (maximum 11 retransmissions). Default T2 = 4.0 s. 9
  • 10. Related Work on Overload Control  All the existing overload control solutions adopt push-back mechanism  cancel the overload effectively  by introducing overhead to advertise upstream servers to  reduce message sending rate d di t  produce overload propagation from sever to server until end-users  block a large amount of calls unnecessarily  cause revenue loss of service providers • Our Proposal: Reduce retransmission rate only to mitigate overload  by maintaining original message rate to  keep the revenue of service providers 10
  • 11. SIP Overload Control Mechanism Classification Figure 3. The classification for the existing SIP overload control schemes Y. Hong, C. Huang, and J. Yan, “A Comparative Study of SIP Overload Control Algorithms,” Network and T ffi E i N k d Traffic Engineering i E i in Emerging Di ib d C i Distributed Computing A li i i Applications, Edi d b Edited by J. Abawajy, M. Pathan, M. Rahman, A.K. Pathan, and M.M. Deris, IGI Global, 2012, pp. 1‐20. 11
  • 12. Queuing Dynamics of Overloaded Server Q g y   100Trying response Invite request 1(t) r1(t) r2' (t )   Timer fires Message buffer  q1(t) Reset timer Timer expires  qr1(t) Invite request Server 2 2(t) 2   1    r2(t) Server 1 2(t) q2(t) 1(t) 100Trying response Timer starts Ti Timer buffer Queuing dynamics of Server 2 Queuing dynamics of Server 1  q 2 (t )  2 (t )  r2 (t )   2 (t )   2 (t )  q1 (t )  1 (t )  r1 (t )  r2' (t )  1 (t )  1 (t ) (1) (2) Notation: 1(t) original message rate, r1 (t) message retransmission rate, 2(t) service rate 1 (t) response rate q1 (t) queue size rate, rate, Overload Scenario: Server slowdown at Server 2 due to routine maintenance Overload Collapse: 2(t)   2(t) > 2(t)  q 2 (t )  0 (see Eq. (1))  q2(t)   ti trigger r''2(t)  r2(t) i increases q2(t) more quickly i kl  Overload Propagation: r'2(t) enter Server 1  q 1 ( t )  0 (see Eq. (2))  q1(t)  12
  • 13. Feedback Overload Control System    g g y Figure 4.Block diagram of feedback SIP overload control system Root Cause of Overload Collapse • Retransmission for loss recovery is non-redundant • Retransmission caused by the overload delay is redundant Solution • PI controller C(s) regulates retransmission rate r'2(t) to mitigate the overload • achieve desirable target redundant message ratio 0 • redundant message ratio  is the ratio between redundant espo se essage ate a d total espo se essage ate response message rate 1r and tota response message rate 1 • P(s) represents the interaction between an overloaded downstream receiving server and its upstream sending server 13
  • 14. Overload Controller Design  g Redundant message ratio (t)=1r(t)/1(t) r'2(t)/1(t) PI controller regulates retransmission rate r'2(t) r t ' r2 (t)  KPe(t )  KI 0 e()d t  KP ( 0   (t ))  KI 0 ( 0   ())d Control plant P(s)=(s)/r'2(s)=[r'2(s)e-s/1]/r'2(s)=e-s/1 PI controller C(s)=KP+KI/s Open-loop overload control system G(s)=C(s)P(s)=(KP+KI/s)e-s/1 Positive phase margin m of G(s) can guarantee control system stability PI controller gains can be obtained based on phase margin m KP  1 2 KI  1 (3 / 4   m ) 2 14
  • 15. SIP Overload Control Algorithm (RRRC) SIP Overload Control Algorithm (RRRC) Overload Control Algorithm When each retransmission timer fires or expires if < 1 Retransmit the message else Retransmit the message with a retransmission probability corresponding to a retransmission rate r'2 calculated by a PI controller Adaptive PI control algorithm: (1) Specify target redundant message ratio and phase margin m; Set the initial values for , and ; Obtain PI controller gains using Eq. (13). (2) Measure , and r and calculate upon response message arrivals. >1.5 or <0.5 , self-tune PI (3) If controller gains using Eq. (13) and update = ; g Otherwise, PI controller remains unchanged. (4) Calculate the retransmission rate r'2 using Eq. (7); Go to Step (2). Varying parameter: : Round trip delay : Response message rate 1r : Redundant response message rate : Redundant message ratio 1r/ 1 KP : Proportional gain of PI controller KI : Integral gain of PI controller r'2 : Message retransmission rate : Monitoring parameter / 1 Fixed parameter: T1 : First-time retransmission timer : Target redundant message ratio m : Phase margin 15
  • 16. Scenario to Validate Overload Control Algorithm Scenario to Validate Overload Control Algorithm • Poisson distributed message generation rate and service rate • Two typical overload scenarios Scenario 1 Initial overload at  Server 1 due to  demand burst • Mean arrival rate 1=800 messages/sec (emulating a short surge of user demands) from time t=0s to t=30s • Mean arrival rate 1=200 messages/sec (emulating regular user demands) from time t=30s to t=90s • Mean service capacities of two proxy servers were C1=C2=1000 messages/sec Scenario 2 Initial overload at  Server 2 due to  server slowdown • Mean arrival rate 1=200 messages/sec • Mean server capacity C1=1000 messages/sec • Mean server capacity C2=100 messages/sec (emulating server slowdown) from time t=0s to t=30s, and C2=1000 messages/sec from time t=30s to t=90s 16
  • 17. SIP Network Topology For OPNET Simulation SIP Network Topology For OPNET Simulation 17
  • 18. Simulation Results of Scenario 1 Simulation Results of Scenario 1 4 x 10 NOLC q1 7 OLC q1 6 o 5 4 3 2 1 0 10 20 30 40 50 60 70 80 90 Time (sec) Queue size q1 (messages) of Server 1 versus time OLC qo 8000 6000 10 4000 2000 0 0 20 NOLC qo 0 10 20 30 40 50 60 70 80 OLC Queue size qo (messag ges) 10000 NOLC Queue size q (messag e ges) Queue siz q1 (messages ze s) 8 0 90 Time (sec) Queue size qo (messages) of an originating server versus time • Without overload control algorithm applied, Server 1 became CPU overloaded  overload deteriorated as time evolves, leading to eventual crash of Server 1 • RRRC algorithm made queue size of Server 1 increase slowly  taking only 8s to cancel the overload at Server 1 after new user demand rate reduced at time t=30s 18
  • 19. Simulation Results of Scenario 2 Simulation Results of Scenario 2 4 x 10 OLC q1 4 1 3 2 10 2 1 0 10 20 30 40 50 60 70 80 0 90 Time (sec) ( ) Queue size q1 (messages) of Server 1 versus time x 10 1.8 Queue size q2 (messages s s) NOLC q1 0 4 20 OLC Queu size q (messa ue ages) 1 NOLC Que size q (mess eue sages) 5 NOLC q2 1.6 OLC q2 1.4 1.2 1 0.8 0.6 0.4 0.2 0 0 10 20 30 40 50 60 70 80 90 Time (sec) Queue size q2 (messages) of Server 2 versus time • Without overload control algorithm applied overload was propagated from Server applied, 2 to Server 1 when initial overload happened at Server 2 • Persisted overload would crash Server 1 after Server 2 resumed its normal service • RRRC algorithm prevent overload propagation to Server 1  taking only 9s to cancel the overload at Server 2 19
  • 20. Conclusions  Applying control-theoretic approach to model SIP overload problem as a feedback control problem D Developing R d d t R t l i Redundant Retransmission R ti C t l i i Ratio Control (RRRC) algorithm (a PI rate control algorithm) to mitigate the overload by  controlling retransmission rate  achieving desirable target redundant message ratio  Simulation results demonstrate that RRRC (implicit SIP overload control) algorithm can  prevent the overload propagation  cancel the overload effectively  Our solution does NOT require modification in the SIP header and time consuming standardization process time-consuming  can be freely implemented in any SIP servers of different carriers 20
  • 21. Remarks (1)  OPNET simulation code for 3 implicit SIP overload control algorithms (RRRC, RTDC, and RTQC) published by IEEE Globecom 2010/ICC 2011 available for non-commercial research use upon request  RRRC algorithm (proposed by this IEEE Globecom 2010 paper) has been quickly adopted by The Central Weather Bureau of Taiwan for their early earthquake warning system  “A Effi i t Earthquake Early W “An Efficient E th k E l Warning M i Message D li Delivery Al ith U i an i Algorithm Using in Time Control-Theoretic Approach,” Ubiquitous Intelligence and Computing, Lecture Notes in Computer Science, 6905, Springer, Berlin, Heidelberg, 2011, pp. 161-173. http://www.springerlink.com/content/b6252x2k613rv211/?MUD=MP http://www.ipv6.org.tw/docu/elearning8_2011/1010004798p_3-7.pdf  S Short review and comments on RRRC ( C (implicit S overload control) SIP ) algorithm: "Local SIP Overload Control", Proceedings of WWIC, June 2013. http://link.springer.com/chapter/10.1007%2F978-3-642-38401-1_16# http://c3lab.poliba.it/images/2/2a/SipOverload_WWIC13.pdf http://c3lab poliba it/images/2/2a/SipOverload WWIC13 pdf 21
  • 22. Remarks (2)  Journal version discusses how to apply RTDC algorithm to mitigate SIP overload for both SIP over UDP and SIP over TCP (with TLS)  “Applying control theoretic approach to mitigate SIP overload,” y ( ) Telecommunication Systems, 54(4), 2013, pp. 387-404. Available at http://www.researchgate.net/publication/257667871_Applying_control_theoretic _approach_to_mitigate_SIP_overload  Survey on SIP overload control algorithms: “A Comparative Study of SIP y g p y Overload Control Algorithms,” Network and Traffic Engineering in Emerging Distributed Computing Applications, IGI Global, 2012, pp. 1-20. http://www.igi-global.com/chapter/comparative-study-sip-overloadcontrol/67496 t l/67496 http://www.researchgate.net/publication/231609451_A_Comparative_Study_of _SIP_Overload_Control_Algorithms  Discussion on control system design can be found in the answers to the ResearchGate question “What are trends in control theory and its applications in physical systems (from a research point of view)? ” https://www.researchgate.net/post/What_are_trends_in_control_theory_and_its https://www researchgate net/post/What are trends in control theory and its _applications_in_physical_systems_from_a_research_point_of_view2 22