SlideShare a Scribd company logo
1 of 37
Antennas – G. Villemaud 0
4th year – Electrical Engineering Department
Guillaume VILLEMAUD
DIFFERENT KINDS
OF ANTENNAS
Antennas – G. Villemaud 1
Outline
We will see main families of antenna used to create a
radiated radio wave:
• wire antennas (dipole, monopole Yagi)
• slot antennas (half or quarter wave)
• patch antennas (planar)
• aperture antennas (horn)
• reflector antennas (dishes)
We conclude this chapter by the principle of arrays of
elementary antennas and beamforming techniques.
Antennas – G. Villemaud 2
Wire antennas
By definition, the category of wire antennas includes all
antennas formed of a conductor structure where, due to
small diameter of cables, we consider only the linear
current densities.
The basic antennas are: dipoles, monopoles,
loops.
More advanced structures: helical, Yaguis, the log-
periodic ...
Antennas – G. Villemaud 3
RADIATING DIPOLE
The dipole antenna is a wire composed of two conductive strands
apart in opposite directions. The source is most often presented in
the center of the structure which gives a symmetrical system.
    zlIzI m 

2sin
Current distribution:
l
We can calculate the radiated field
as the sum of contributions of
elementary dipoles driven by an
intensity I(z)
Antennas – G. Villemaud 4
CHARACTERISTIC FUNCTION OF THE DIPOLE
  ,
60
),( E
I
r
F To visualize the radiation:
   dzdEE .,with
      






l
dzzzlF
0
coscos.
2
sinsin
2







Antennas – G. Villemaud 5
HALF-WAVELENGTH DIPOLE
The simpliest form of
the radiating dipole is
an antenna of total
length /2, also known
as half-wavelength
dipole.
  


sin
)cos
2
cos(
F
The maximum directivity
obtained is 1,64 so 2,15 dBi or
0 dBd
radiation
Antennas – G. Villemaud 6
IMPEDANCE OF THE DIPOLE
Half-wavelength : Z=73+j42 ohms
Serial resonances
Parallel resonances
Inductive antenna
Capacitive antenna
Antennas – G. Villemaud 7
THICK DIPOLE
To match the dipole, we can adapt the diameter of wires (a) with
respect to the length of the arms (l).
Antennas – G. Villemaud 8
OTHER SIZE OF DIPOLES
General characteristic function:
Antennas – G. Villemaud 9
OTHER SIZE OF DIPOLES
Antennas – G. Villemaud 10
/2
OTHER SIZE OF DIPOLES
Antennas – G. Villemaud 11

OTHER SIZE OF DIPOLES
Antennas – G. Villemaud 12
3/2
OTHER SIZE OF DIPOLES
Antennas – G. Villemaud 13
2
OTHER SIZE OF DIPOLES
Antennas – G. Villemaud 14
MONOPOLE ANTENNA
Image principle
Antennas – G. Villemaud 15
CHARACTERISTICS OF THE MONOPOLE
Half-space radiation
Gain increased by 3 dB
Quarter-wavelength: Z=36,5+j21 ohms
Antennas – G. Villemaud 16
DIPOLE ABOVE A PERFECT REFLECTOR
Direct wave
Reflected wave
Image dipole Phase difference of 
Antennas – G. Villemaud 17
FOLDED DIPOLE
Same radiation characteristics
Impedance 300 ohms
Higher bandwidth
Antennas – G. Villemaud 18
EFFECT OF PARASITIC ELEMENTS
If we place a passive element close to the feeded dipole, a coupling
effect is established. By choosing slightly different sizes of these
parasites, you can create behaviors like reflector or director.
Radiation
patterns
Dipole alone Dipole with parasitic element
Antennas – G. Villemaud 19
YAGI-UDA ANTENNA
Combining the effect of reflectors and directors elements, a highly
directional antenna is obtained: the Yagi.
Reflector
Folded dipole
Directors
Spacing:
Metallic support
Wires diameter:
Antennas – G. Villemaud 20
OTHER WIRE ANTENNAS
(a) (b) (c)
Resonating loop antenna Helical antenna
Multiple Helix
Simple Helix
• Radial mode
• Axial mode
Antennas – G. Villemaud 21
SLOT ANTENNAS
(b)(a)
Dual of the dipole
/2 /4
Same behavior than the dipole antenna but changing
the laws for E and H (therefore V and I).
By the way, inversion of impedance varaitions.
Illustration of Babinet’s principle
with Impedance of the slot
Impedance of the equivalent dipole
Impedance of vacuum (377 ohms)
Antennas – G. Villemaud 22
COMPARISON DIPOLE-SLOT
Dimensions Impedance of the dipole Impedance of the slot
Antennas – G. Villemaud 23
PLANAR ANTENNAS
Patch Antenna
Metallization on the surface of a
dielectric substrate, the lower
face is entirely metallized.
Directive radiation
Fundamental mode /2
substrate
Ground plane
Antennas – G. Villemaud 24
PATCH ANTENNAS
Principle of operation: Leaky-cavity
h
Z
X
Y
Z
X
Direction de rayonnement
privilégiée
Radiating element
(electric wall)
Dielectric substrate
Lossy magnetic
walls
Ground plane
(electric wall)
Direction of main radiation
Antennas – G. Villemaud 25
H
Plan de masse
Substrat diélectriqueÉlément
rayonnant  ( )r
Sonde
coaxiale
Feeding systems:
Ez
y
x
g/2
Sonde d ’alimentation
Plan de masse
Plaque métallique
y
z
E

Classical system: coaxial probe
Placement in order to match the
desired mode
PATCH ANTENNAS
Radiation pattern
Feeding probe
Metallic plate
Ground plane
Dielectric substrateRadiating
element
Coaxial
probe
Antennas – G. Villemaud 26
APERTURE ANTENNAS
Progressive aperture of a waveguide to free space
conditions : the Horn antenna.
Example of rectangular horn
Antennas – G. Villemaud 27
HORN CHARACTERISTICS
)(
5.7
log.10 2
dBi
Ap
D 







H plane: E plane:
Radiation :
Antennas – G. Villemaud 28
ANTENNAS WITH FOCUSING SYSTEM
The focusing systems use the principles of optics:
a plane wave is converted into a spherical wave or vice
versa.
Lens : focusing system in transmission
Parabolic : focusing system in reflection
Antennas – G. Villemaud 29
PARABOLIC DISH
A reflector is used to focus the energy to an antenna
element placed at the focal point.
Approximation :
with k between 0.5 and 0.8
Antennas – G. Villemaud 30
DOUBLE REFLECTOR SYSTEM
To improve the focusing, it is also possible to use two
levels of reflectors: the principle of the Cassegrain
antenna.
Antennas – G. Villemaud 31
ANTENNA ARRAYS
When calculating the radiation of a resonant antenna,
we sum the contributions of the elementary dipoles
that provide radiation of the assembly. We are then
constrained by the pre-determined laws of distribution
of these currents (amplitude and phase).
The array principle is to use single antennas whose
contributions are summed by controlling the
amplitudes and phases with which they are fed.
Antennas – G. Villemaud 32
COMBINATION PRINCIPLE
If we consider the combination of isotropic elementary
sources supplied with the same amplitude and the
same phase, the sum of the fields becomes:
wavefront

d
 
  p
dnjdjdjdj
rj
eeeee
r
e
E

....1 sin1sin3sin2sin 




approximation on the amplitude
Antennas – G. Villemaud 33
ARRAY FACTOR
The principle of combination of the fields is the same
regardless of the source radiation pattern. We then
multiply by the characteristic function of the source.
      
 sin1sin3sin2sin
...1,, dnjdjdjdj
g eeeeFF 

R()
Array factor or grouping factor
Pattern Multiplication
Antennas – G. Villemaud 34
GAIN INCREASE
We can use the combination to increase the gain of an
antenna.
From a basic directional antenna, the doubling of the
number of elements increases the directivity by two.
Ex array of patch antennas:
patch alone : 6 dBi
What is the gain of an array of 256 ?
Antennas – G. Villemaud 35
WEIGHTING
It may further choose the principle of combination of
the laws of the radiating elements in phase and
amplitude to change the array factor.
wavefront

d
Electronic steering
Antennas – G. Villemaud 36
BEAMFORMING
To create the necessary laws of amplitudes and
phases, we may use an array of fixed or reconfigurable
distribution.
Multibeam antennas
Adaptive or smart antennas

More Related Content

What's hot

Antennas used in mobiles
Antennas used in mobilesAntennas used in mobiles
Antennas used in mobiles
Mugadha Bane
 
Turnstile antenna
Turnstile antennaTurnstile antenna
Turnstile antenna
tinalegre
 
Radiation & propogation AJAL
Radiation & propogation AJAL Radiation & propogation AJAL
Radiation & propogation AJAL
AJAL A J
 
Telvass Systems Pvt Ltd Antenna Ppt
Telvass Systems Pvt Ltd Antenna PptTelvass Systems Pvt Ltd Antenna Ppt
Telvass Systems Pvt Ltd Antenna Ppt
soumya_12
 

What's hot (20)

Antenna basic
Antenna basicAntenna basic
Antenna basic
 
Something about Antenna design
Something about Antenna designSomething about Antenna design
Something about Antenna design
 
Turnstile S-Shaped Dipole and Swastika Wire Antennas for VHF and UHF Applica...
Turnstile S-Shaped Dipole and Swastika Wire Antennas for VHF  and UHF Applica...Turnstile S-Shaped Dipole and Swastika Wire Antennas for VHF  and UHF Applica...
Turnstile S-Shaped Dipole and Swastika Wire Antennas for VHF and UHF Applica...
 
Matching techniques
Matching techniquesMatching techniques
Matching techniques
 
Antenna PARAMETERS
Antenna PARAMETERSAntenna PARAMETERS
Antenna PARAMETERS
 
Lecture Notes: EEEE6490345 RF and Microwave Electronics - Terrestrial Microw...
Lecture Notes:  EEEE6490345 RF and Microwave Electronics - Terrestrial Microw...Lecture Notes:  EEEE6490345 RF and Microwave Electronics - Terrestrial Microw...
Lecture Notes: EEEE6490345 RF and Microwave Electronics - Terrestrial Microw...
 
Antennas used in mobiles
Antennas used in mobilesAntennas used in mobiles
Antennas used in mobiles
 
Vivaldi antenna
Vivaldi antennaVivaldi antenna
Vivaldi antenna
 
Antenna parameters
Antenna parametersAntenna parameters
Antenna parameters
 
Turnstile antenna
Turnstile antennaTurnstile antenna
Turnstile antenna
 
Isolation of MIMO Antenna with Electromagnetic Band Gap Structure
Isolation of MIMO Antenna with Electromagnetic Band Gap StructureIsolation of MIMO Antenna with Electromagnetic Band Gap Structure
Isolation of MIMO Antenna with Electromagnetic Band Gap Structure
 
Antennas for Cell-Phones
Antennas for Cell-PhonesAntennas for Cell-Phones
Antennas for Cell-Phones
 
Microwave devices
Microwave devicesMicrowave devices
Microwave devices
 
Traveling Wave Antenna
Traveling Wave Antenna  Traveling Wave Antenna
Traveling Wave Antenna
 
Mobile Phone Antenna Design
Mobile Phone Antenna Design Mobile Phone Antenna Design
Mobile Phone Antenna Design
 
Radiation & propogation AJAL
Radiation & propogation AJAL Radiation & propogation AJAL
Radiation & propogation AJAL
 
Antennas slideshare part 2
Antennas slideshare part 2Antennas slideshare part 2
Antennas slideshare part 2
 
Effect of electrical and mechanical tilt
Effect of electrical and mechanical tiltEffect of electrical and mechanical tilt
Effect of electrical and mechanical tilt
 
Telvass Systems Pvt Ltd Antenna Ppt
Telvass Systems Pvt Ltd Antenna PptTelvass Systems Pvt Ltd Antenna Ppt
Telvass Systems Pvt Ltd Antenna Ppt
 
Rf and microwave components and devices
Rf and microwave components and devicesRf and microwave components and devices
Rf and microwave components and devices
 

Similar to different kinds of antennas

fdocuments.net_introduction-to-antenna-theory.ppt
fdocuments.net_introduction-to-antenna-theory.pptfdocuments.net_introduction-to-antenna-theory.ppt
fdocuments.net_introduction-to-antenna-theory.ppt
MLUQMANNAZAR
 
N 6-ee302-lesson-13-antenna-fundamentals
N 6-ee302-lesson-13-antenna-fundamentalsN 6-ee302-lesson-13-antenna-fundamentals
N 6-ee302-lesson-13-antenna-fundamentals
15010192
 
Reflector Antennas Design and mathematical expression_1.pptx
Reflector Antennas Design and mathematical expression_1.pptxReflector Antennas Design and mathematical expression_1.pptx
Reflector Antennas Design and mathematical expression_1.pptx
jaychoudhary37
 

Similar to different kinds of antennas (20)

3 different kinds of antennas en
3  different kinds of antennas en3  different kinds of antennas en
3 different kinds of antennas en
 
Transmission lines, Waveguide, Antennas
Transmission lines, Waveguide, AntennasTransmission lines, Waveguide, Antennas
Transmission lines, Waveguide, Antennas
 
fdocuments.net_introduction-to-antenna-theory.ppt
fdocuments.net_introduction-to-antenna-theory.pptfdocuments.net_introduction-to-antenna-theory.ppt
fdocuments.net_introduction-to-antenna-theory.ppt
 
Antenna Basics
Antenna BasicsAntenna Basics
Antenna Basics
 
1- Main Principles of Radiation_en.pptx
1- Main Principles of Radiation_en.pptx1- Main Principles of Radiation_en.pptx
1- Main Principles of Radiation_en.pptx
 
Antenna chapter 1
Antenna chapter 1Antenna chapter 1
Antenna chapter 1
 
Antenna arrays
Antenna arraysAntenna arrays
Antenna arrays
 
LECT_Chap2_AntPar1.pdf
LECT_Chap2_AntPar1.pdfLECT_Chap2_AntPar1.pdf
LECT_Chap2_AntPar1.pdf
 
Types of microstrip antenna
Types of microstrip antenna Types of microstrip antenna
Types of microstrip antenna
 
Antenna
AntennaAntenna
Antenna
 
AWP PPT.pdf
AWP PPT.pdfAWP PPT.pdf
AWP PPT.pdf
 
Introduction_to_antennas.ppt
Introduction_to_antennas.pptIntroduction_to_antennas.ppt
Introduction_to_antennas.ppt
 
ANTENNAS
ANTENNASANTENNAS
ANTENNAS
 
Antenna Array Tutorial for dummies making of.pdf
Antenna Array Tutorial for dummies making of.pdfAntenna Array Tutorial for dummies making of.pdf
Antenna Array Tutorial for dummies making of.pdf
 
N 6-ee302-lesson-13-antenna-fundamentals
N 6-ee302-lesson-13-antenna-fundamentalsN 6-ee302-lesson-13-antenna-fundamentals
N 6-ee302-lesson-13-antenna-fundamentals
 
Reflector Antennas Design and mathematical expression_1.pptx
Reflector Antennas Design and mathematical expression_1.pptxReflector Antennas Design and mathematical expression_1.pptx
Reflector Antennas Design and mathematical expression_1.pptx
 
Presentation
PresentationPresentation
Presentation
 
antenna book.pdf
antenna book.pdfantenna book.pdf
antenna book.pdf
 
Introduction to antenna system
Introduction to antenna systemIntroduction to antenna system
Introduction to antenna system
 
Antenna
AntennaAntenna
Antenna
 

Recently uploaded

Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Kandungan 087776558899
 
Verification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptxVerification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptx
chumtiyababu
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdf
Kamal Acharya
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ssuser89054b
 

Recently uploaded (20)

Wadi Rum luxhotel lodge Analysis case study.pptx
Wadi Rum luxhotel lodge Analysis case study.pptxWadi Rum luxhotel lodge Analysis case study.pptx
Wadi Rum luxhotel lodge Analysis case study.pptx
 
Engineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planesEngineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planes
 
PE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiesPE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and properties
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
kiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal loadkiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal load
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLEGEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best ServiceTamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdf
 
Moment Distribution Method For Btech Civil
Moment Distribution Method For Btech CivilMoment Distribution Method For Btech Civil
Moment Distribution Method For Btech Civil
 
Verification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptxVerification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptx
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdf
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdf
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptx
 
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxHOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.
 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
 

different kinds of antennas

  • 1. Antennas – G. Villemaud 0 4th year – Electrical Engineering Department Guillaume VILLEMAUD DIFFERENT KINDS OF ANTENNAS
  • 2. Antennas – G. Villemaud 1 Outline We will see main families of antenna used to create a radiated radio wave: • wire antennas (dipole, monopole Yagi) • slot antennas (half or quarter wave) • patch antennas (planar) • aperture antennas (horn) • reflector antennas (dishes) We conclude this chapter by the principle of arrays of elementary antennas and beamforming techniques.
  • 3. Antennas – G. Villemaud 2 Wire antennas By definition, the category of wire antennas includes all antennas formed of a conductor structure where, due to small diameter of cables, we consider only the linear current densities. The basic antennas are: dipoles, monopoles, loops. More advanced structures: helical, Yaguis, the log- periodic ...
  • 4. Antennas – G. Villemaud 3 RADIATING DIPOLE The dipole antenna is a wire composed of two conductive strands apart in opposite directions. The source is most often presented in the center of the structure which gives a symmetrical system.     zlIzI m   2sin Current distribution: l We can calculate the radiated field as the sum of contributions of elementary dipoles driven by an intensity I(z)
  • 5. Antennas – G. Villemaud 4 CHARACTERISTIC FUNCTION OF THE DIPOLE   , 60 ),( E I r F To visualize the radiation:    dzdEE .,with              l dzzzlF 0 coscos. 2 sinsin 2       
  • 6. Antennas – G. Villemaud 5 HALF-WAVELENGTH DIPOLE The simpliest form of the radiating dipole is an antenna of total length /2, also known as half-wavelength dipole.      sin )cos 2 cos( F The maximum directivity obtained is 1,64 so 2,15 dBi or 0 dBd radiation
  • 7. Antennas – G. Villemaud 6 IMPEDANCE OF THE DIPOLE Half-wavelength : Z=73+j42 ohms Serial resonances Parallel resonances Inductive antenna Capacitive antenna
  • 8. Antennas – G. Villemaud 7 THICK DIPOLE To match the dipole, we can adapt the diameter of wires (a) with respect to the length of the arms (l).
  • 9. Antennas – G. Villemaud 8 OTHER SIZE OF DIPOLES General characteristic function:
  • 10. Antennas – G. Villemaud 9 OTHER SIZE OF DIPOLES
  • 11. Antennas – G. Villemaud 10 /2 OTHER SIZE OF DIPOLES
  • 12. Antennas – G. Villemaud 11  OTHER SIZE OF DIPOLES
  • 13. Antennas – G. Villemaud 12 3/2 OTHER SIZE OF DIPOLES
  • 14. Antennas – G. Villemaud 13 2 OTHER SIZE OF DIPOLES
  • 15. Antennas – G. Villemaud 14 MONOPOLE ANTENNA Image principle
  • 16. Antennas – G. Villemaud 15 CHARACTERISTICS OF THE MONOPOLE Half-space radiation Gain increased by 3 dB Quarter-wavelength: Z=36,5+j21 ohms
  • 17. Antennas – G. Villemaud 16 DIPOLE ABOVE A PERFECT REFLECTOR Direct wave Reflected wave Image dipole Phase difference of 
  • 18. Antennas – G. Villemaud 17 FOLDED DIPOLE Same radiation characteristics Impedance 300 ohms Higher bandwidth
  • 19. Antennas – G. Villemaud 18 EFFECT OF PARASITIC ELEMENTS If we place a passive element close to the feeded dipole, a coupling effect is established. By choosing slightly different sizes of these parasites, you can create behaviors like reflector or director. Radiation patterns Dipole alone Dipole with parasitic element
  • 20. Antennas – G. Villemaud 19 YAGI-UDA ANTENNA Combining the effect of reflectors and directors elements, a highly directional antenna is obtained: the Yagi. Reflector Folded dipole Directors Spacing: Metallic support Wires diameter:
  • 21. Antennas – G. Villemaud 20 OTHER WIRE ANTENNAS (a) (b) (c) Resonating loop antenna Helical antenna Multiple Helix Simple Helix • Radial mode • Axial mode
  • 22. Antennas – G. Villemaud 21 SLOT ANTENNAS (b)(a) Dual of the dipole /2 /4 Same behavior than the dipole antenna but changing the laws for E and H (therefore V and I). By the way, inversion of impedance varaitions. Illustration of Babinet’s principle with Impedance of the slot Impedance of the equivalent dipole Impedance of vacuum (377 ohms)
  • 23. Antennas – G. Villemaud 22 COMPARISON DIPOLE-SLOT Dimensions Impedance of the dipole Impedance of the slot
  • 24. Antennas – G. Villemaud 23 PLANAR ANTENNAS Patch Antenna Metallization on the surface of a dielectric substrate, the lower face is entirely metallized. Directive radiation Fundamental mode /2 substrate Ground plane
  • 25. Antennas – G. Villemaud 24 PATCH ANTENNAS Principle of operation: Leaky-cavity h Z X Y Z X Direction de rayonnement privilégiée Radiating element (electric wall) Dielectric substrate Lossy magnetic walls Ground plane (electric wall) Direction of main radiation
  • 26. Antennas – G. Villemaud 25 H Plan de masse Substrat diélectriqueÉlément rayonnant  ( )r Sonde coaxiale Feeding systems: Ez y x g/2 Sonde d ’alimentation Plan de masse Plaque métallique y z E  Classical system: coaxial probe Placement in order to match the desired mode PATCH ANTENNAS Radiation pattern Feeding probe Metallic plate Ground plane Dielectric substrateRadiating element Coaxial probe
  • 27. Antennas – G. Villemaud 26 APERTURE ANTENNAS Progressive aperture of a waveguide to free space conditions : the Horn antenna. Example of rectangular horn
  • 28. Antennas – G. Villemaud 27 HORN CHARACTERISTICS )( 5.7 log.10 2 dBi Ap D         H plane: E plane: Radiation :
  • 29. Antennas – G. Villemaud 28 ANTENNAS WITH FOCUSING SYSTEM The focusing systems use the principles of optics: a plane wave is converted into a spherical wave or vice versa. Lens : focusing system in transmission Parabolic : focusing system in reflection
  • 30. Antennas – G. Villemaud 29 PARABOLIC DISH A reflector is used to focus the energy to an antenna element placed at the focal point. Approximation : with k between 0.5 and 0.8
  • 31. Antennas – G. Villemaud 30 DOUBLE REFLECTOR SYSTEM To improve the focusing, it is also possible to use two levels of reflectors: the principle of the Cassegrain antenna.
  • 32. Antennas – G. Villemaud 31 ANTENNA ARRAYS When calculating the radiation of a resonant antenna, we sum the contributions of the elementary dipoles that provide radiation of the assembly. We are then constrained by the pre-determined laws of distribution of these currents (amplitude and phase). The array principle is to use single antennas whose contributions are summed by controlling the amplitudes and phases with which they are fed.
  • 33. Antennas – G. Villemaud 32 COMBINATION PRINCIPLE If we consider the combination of isotropic elementary sources supplied with the same amplitude and the same phase, the sum of the fields becomes: wavefront  d     p dnjdjdjdj rj eeeee r e E  ....1 sin1sin3sin2sin      approximation on the amplitude
  • 34. Antennas – G. Villemaud 33 ARRAY FACTOR The principle of combination of the fields is the same regardless of the source radiation pattern. We then multiply by the characteristic function of the source.         sin1sin3sin2sin ...1,, dnjdjdjdj g eeeeFF   R() Array factor or grouping factor Pattern Multiplication
  • 35. Antennas – G. Villemaud 34 GAIN INCREASE We can use the combination to increase the gain of an antenna. From a basic directional antenna, the doubling of the number of elements increases the directivity by two. Ex array of patch antennas: patch alone : 6 dBi What is the gain of an array of 256 ?
  • 36. Antennas – G. Villemaud 35 WEIGHTING It may further choose the principle of combination of the laws of the radiating elements in phase and amplitude to change the array factor. wavefront  d Electronic steering
  • 37. Antennas – G. Villemaud 36 BEAMFORMING To create the necessary laws of amplitudes and phases, we may use an array of fixed or reconfigurable distribution. Multibeam antennas Adaptive or smart antennas