Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

争点空間の歪みと有権者の選択: 伸縮近接性モデルによる争点投票理論の統合

245 views

Published on

神戸大学政治学研究会 (2018/3/18) 報告資料

Title: Distortion of Issue Space and Voters' Choice: Unifying Issue Voting Model Using Elastic Proximity Model
Date: Mar. 8, 2018
Location: Kobe University Political Science Workshop, Kobe University

  • Be the first to comment

  • Be the first to like this

争点空間の歪みと有権者の選択: 伸縮近接性モデルによる争点投票理論の統合

  1. 1. – – 2018/03/07 0
  2. 2. Table of Contents 1
  3. 3. (Campbell et al. 1960; 1989) 1. 2. 3. (+ ) 2
  4. 4. 1. (Downs 1957) • Westholm (1997, 2001) Claassen (2007) Tomz and Van Houweling (2008) Lacy and Paolino (2010) 2. (Rabinowitz and Macdonald 1989) • Macdonald, Listhaug, and Rabinowitz (1991) Macdonald, Rabinowitz, and Listhaug (1998) 3. ! • Lewis and King (1999) Merrill and Grofman (1999) Weber (2015) 3
  5. 5. 2 • • • • : ˙ ˙ ˙ ˙ × • : ˙ ˙ ˙ (neutral point) • 4
  6. 6. : • • • • ( ) • (projection) ⇒ (Lewis and King 1999) 9
  7. 7. A B 1 ⃝ A ⃝ B 10
  8. 8. 10 ( ) 1 9 6 2 7 3 8 4 9 5 10 10
  9. 9. Ci,A i A (Ci,A ∈ {0,1}) Di i (Di ∈ {−1,0,1}) Ii i (Di ∈ {0,1,2,...,7}) ω (0 ≤ ω ≤ 1) Ci,A ∼ Bernoulli(θA i ), logit(θA i ) = β0 +β1(Ui,A −Ui,B), Ui,c = −|P adj. i −P adj. i,c |, P adj. i = Di Ii−1 ∑ j=0 ωj , ω ∼ Normal+ (0,102 ), β ∼ Normal(0,102 ) (1) 11
  10. 10. (ω) ( ( 5 )) 90% HPDI 90% HPDI MAP MAP 1 0.897 0.864 0.925 6 0.921 0.891 0.951 2 1.017 0.986 1.052 7 0.940 0.908 0.970 3 0.937 0.900 0.966 8 0.918 0.889 0.951 4 0.920 0.886 0.952 9 0.909 0.873 0.940 5 0.935 0.901 0.969 10 0.957 0.924 0.989 2 Pr(ω < 1) > 0.9 12
  11. 11. 1. (Downs 1957) 2. (Rabinowitz and Macdonald 1989) 3. Representatinal Policy Leadership (Iversen 1994) 4. (Grofman 1985) 5. • κ (Cohen 1960) WAIC (Watanabe 2010) 13
  12. 12. vs. • Merrill (1995) Maddens (1996) • ↑ • Merrill (1995) • ( ) ⇔ ( ) • (2005) • 15
  13. 13. • • (Deli Carpini and Keeter 1997) • : • & : ( 1985) • • : • : • : • 16
  14. 14. : Luskin (1987) DK (IRT ) • (1985) (2006) • + 17
  15. 15. : ω • ωi,j: j i (j = {1,2,3,4};i = {1,2,...,N};ω ∈ [0,1]) logit(ωi,j) = γ0,j +γ1Sophistication+γ2Engagement γ3Detached+γ4Engagement·Detached, γ0 ∼ Normal(2.669,0.490), γ1∼4 ∼ Normal(0,104 ). (2) 18
  16. 16. (CSES) 33 • ≃ ⇐ • ⇒ • ≃ ⇐ • & ⇒ • ≃ ⇐ • ⇒ 21
  17. 17. : • ωi: i • j[i]: i j ωi ∼ Beta(θj[i]φj[i],(1−θj[i])φj[i]), logit(θj[i]) = γ0 +logENPj[i] +logPressj[i] +logLastj[i], φ ∼ Normal+ (0,104 ), γ ∼ Normal(ζγ ,τγ ), ζ ∼ Cauchy(0,104 ), τ ∼ Cauchy+ (0,104 ). (3) 22
  18. 18. : ( 1) 1. • 2. ( ) : → • j i • (random-effect) • (three-level) • (2 ∼ 9 ) ← ← 22
  19. 19. • ⇔ • • • ↑ • ( ) • • : • : 25
  20. 20. 1. 2. 3. ⇒ ABM 争点空間の 伸縮 既存の政党 の分極化 第三政党の 登場 両端 第三政党の 登場 中道 既存の政党 の収斂 第三政党の 消滅 循環 26
  21. 21. • • • • ? • • : • : • • • JES 27

×