SlideShare a Scribd company logo
1 of 38
Page 1 of 117
DESIGN CALCULATION FOR CONDITIONER FOUNDATION
Document No.
P1001-101-STR-001
A 18/03/2024 Issued for Construction AS MK MK
REV DATE DESCRIPTION ORIG CHK APPR
AS Civil Engg services
Document No. P1001-101-STR-001
DESIGN CALCULATION FOR CONDITIONER FOUNDATION
Page 2 of 11
CONTENTS
1. SCOPE ...............................................................................................................3
2. REFERENCES....................................................................................................3
2.1 Codes and Standards .........................................................................................3
3. MATERIALS AND UNITS....................................................................................4
4. SOIL PARAMETERS ..........................................................................................4
5. ANALYSIS AND DESIGN METHODOLOGY.......................................................4
5.1 Key Plan .............................................................................................................5
6. LOAD AND LOAD COMBINATION .....................................................................5
6.1 Primary Loads.....................................................................................................5
6.2 LOAD COMBINATIONS......................................................................................6
7. SUMMARY AND CONCLUSION.........................................................................8
8. APPENDIX..........................................................................................................8
ANNEXURE - A ................................................................................................................9
ANNEXURE - B ..............................................................................................................10
ANNEXURE - C ..............................................................................................................11
DESIGN CALCULATION FOR CONDITIONER FOUNDATION
Page 3 of 11
1. SCOPE
This calculation report is relevant to the structural analysis and design of and foundations of
the CONDITIONER.
2. REFERENCES
2.1 Codes and Standards
The latest edition for following standards, codes and specifications shall apply.
IS: 456 – 2000 Code of practice for plain and reinforced concrete.
IS: 875 (PART 1) – 2003 Code of Practice for Design Loads (Other than
Earthquake) for buildings and structures: Part-1
Dead Loads - Unit weights of Building materials
and stored material.
IS: 875 (PART 2) - 2003 Code of Practice for Design Loads (Other than
Earthquake) for buildings and structures: Part-2
Imposed Loads.
IS: 875 (PART 3) – 2003 Code of Practice for Design Loads (Other than
Earthquake) for buildings and structures: Part-3
Wind Loads.
SP: 34-1987 Handbook of Concrete Reinforcement and
Detailing
IS: 1904 – 1986 (Reaffirmed 1995) Code of Practice for Design and Construction of
Foundation in soils - General Requirements.
IS: 2502 – 2004 Code of Practice for Bending and Fixing of Bars
for Concrete Reinforcement.
BS 5950-1 Structural use of steel in buildings, Code of
practice for design in simple and continuous
construction, hot rolled sections
BS 6399-1 to 3 Code of Practice for Dead and Imposed Loads,
Wind loads and Imposed Roof Load
BS 8004 Code of Practice for Foundations
BS 8110–1 Structural use of concrete. Code of practice for
design and construction
ASCE 7 -05 Minimum Design Loads Buildings and other
Structures
IBC 2006 International Building Codes
DESIGN CALCULATION FOR CONDITIONER FOUNDATION
Page 4 of 11
3. MATERIALS AND UNITS
Concrete
Minimum Strength fck = 20 MPa at 28 days on cubes
c = Reinforced concrete unit weight = 25.00 (KN/m³)
mc = Partial safety factor for concrete in strength = 1.5 (ref. 36.4.2.1 of IS456-2000)
Steel Reinforcement
Steel type Grade Fe500 confirming to IS 1786
Minimum Yield Stress fy = 500 N/mm²
ms = Partial safety factor for reinforcement steel = 1.15 (ref. 36.4.2.1 of IS456-2000)
4. SOIL PARAMETERS
Following soil parameters are considered as per “Recommendations Based on Soil
Investigation Report for Design”.
A soil report is not available for the pond area, so the net safe bearing capacity of the soil is
conservatively assumed to be 100 kN/m2.
The following soil parameters assumed for foundation design
Unit weight of soil = 18.0 kN/m³
Coeff. of friction bet. conc and soil, = 0.30
Net allowable bearing capacity of soil (q) = 100 KPa
Angle of internal friction (ɸ) = 33˚
Coefficient of friction between soil & footing = 0.30
Coefficient of Active earth pressure (Ka) = 0.30
Coefficient of Passive earth pressure (Kp) = 3.33
5. ANALYSIS AND DESIGN METHODOLOGY
While analysis and design of foundation structure Geometry is modelled in the MAT3D
software. The structure is analysed and designed using MAT3D as per ASCE for the primary
load cases and load combination.
DESIGN CALCULATION FOR CONDITIONER FOUNDATION
Page 5 of 11
5.1 Key Plan
6. LOAD AND LOAD COMBINATION
6.1 Primary Loads
Following are the primary loads, considered for the analysis & design of foundation.
Dead - Dead Load
LL - Live load
SLL - Seismic Live load
Wind x – Wind load in X-direction
Wind z – Wind load in Z-direction
6.1.1 Dead Load (DL)
Self-weight of the pedestal and foundation is considered in the design. For load calculation
refer Appendix-A
Unit weight of Concrete = 25 kN/m3
Unit weight of Reinforcement Steel = 78.5 kN/m3
DESIGN CALCULATION FOR CONDITIONER FOUNDATION
Page 6 of 11
6.1.2 Wind Load in Transverse Direction – WT
The wind load is calculated in accordance with BS-6399, Part 2. The design wind loads shall
be calculated based on a basic wind speed (Vb) of 40 m/sec at a height of 10 m above the
ground
The site is located at approximately 60 km from the sea. Refer Appendix-A for calculations.
Since the structure is small shielding effect is not considered for analysis. For detailed
calculation refer Appendix-A.
6.1.3 Wind Load in Longitudinal Direction – WL
The wind load is calculated in accordance with BS-6399, Part 2. The design wind loads shall
be calculated based on a basic wind speed (Vb) of 40 m/sec at a height of 10 m above the
ground.
The site is located at approximately 60 km from the sea. Refer Appendix-A for calculations.
Since the structure is small shielding effect is not considered for analysis. For detailed
calculation refer Appendix-A.
6.1.4 Earthquake Load in X direction EHX
Seismic forces are calculated with reference to IBC 2006/ASCE 7-05. Refer Appendix-A.
Client Input Data:
Design Spectral Response Acceleration Coefficients
(5% damping) @ Short Periods SDs = 0.33
Design Spectral Response Acceleration Coefficients
(5% damping) @ 1s period SD1 = 0.154
Importance factor I = 1.25
Site class = D
6.1.5 Earthquake Load in Z direction EHZ
Seismic forces are calculated with reference to ASCE 7-05/IBC 2006. Refer Appendix-A.
6.2 LOAD COMBINATIONS
The load factors are followed as per code,
6.2.1 Serviceability Design Load Combinations
For serviceability limit state, the following load combinations are considered:
DESIGN CALCULATION FOR CONDITIONER FOUNDATION
Page 7 of 11
Load
Combinations
Dead
Load
- DL
Live
Load
LL
Wind - WL Seismic - EQ
1 2 3 4 5 6
Type L.C. DL(S) LL(O) WL(X+) WL(Z+) EQ(X) EQ(Z)
DL(S)+PL(O) 101 1 1
DL(S) + WLX+ 102 1 1
DL(S) + WLZ+ 103 1 1
DL(S)+PL(O)+WL(X+) 104 1 1 1
DL(S)+PL(O)+WL(Z+) 105 1 1 1
DL(S)+PL(O)-WL(X+) 106 1 1 1
DL(S)+PL(O)-WL(Z+) 107 1 1 1
DL(S)+PL(O)+0.7EQX 108 1 1 0.7
DL(S)+PL(O)+0.7EQZ 109 1 1 0.7
6.2.2 Ultimate Load Combinations
Foundation & Pedestal are designed with ultimate (Factored) load combinations.
Load
Combinations
Dead
Load
- DL
Live
Load
(LL)
Wind - WL Seismic - EQ
1 2 3 4 5 6
Type L.C. DL(S) LL(O) WL(X+) WL(Z+) EQ(X) EQ(Z)
1.4 DL(S) + 1.6PL(O) 201 1.4 1.6
1.2DL(S) + 1.4WLX+ 202 1.2 1.4
1.2DL(S) + 1.4WLZ+ 203 1.2 1.4
1.4DL(S)+1.6PL(O) 204 1.4 1.6
1.2DL(S)+1.2PL(O)+1.2WL 206 1.2 1.2 1.2
1.2DL(S)+1.2PL(O)-1.2 WL 207 1.2 1.2 1.2
1.2DL(S)+1.2PL(O)+1.2 WL 208 1.2 1.2 1.2
1.2DL(S)+1.2PL(O)-1.2 WL 209 1.2 1.2 1.2
1.2DL(S)+1.2PL(O)+0.6WL 206 1.2 1.2 0.6
DESIGN CALCULATION FOR CONDITIONER FOUNDATION
Page 8 of 11
1.2DL(S)+1.2PL(O)-0.6WL 207 1.2 1.2 0.6
1.2DL(S)+1.2PL(O)+0.6 WL 208 1.2 1.2 0.6
1.2DL(S)+1.2PL(O)-0.6 WL 209 1.2 1.2 0.6
1.2 D + 1.2PL(O) + 1.0 EQX 210 1.2 1.2 1
1.2 D + 1.2PL(O) + 1.0 EQZ 211 1.2 1.2 1
7. SUMMARY AND CONCLUSION
Foundation calculation has been designed for CONDITIONER as mentioned in the Load case &
Load combination on Section 7; Foundation calculation can be referred from Appendix – B. Detail
drawing has been included in Appendix – C.
8. APPENDIX
APPENDIX-A: LOAD CALCUALTION
APPENDIX-B: FOUNDATION CALCUALTION
APPENDIX-C: FOUNDATION DRAWING
DESIGN CALCULATION FOR CONDITIONER FOUNDATION
Page 9 of 11
ANNEXURE - A
LOAD CALCUALTION
LOAD CALCULATION
1. Dead Loads (DL)
= 25.00 kN
No. of Pedestal = 6.0 Nos
Load Per Pedestal = 25/6
= 4.17 KN
2. Live Loads (LL)
= 2.00 kN/m2
= 6.1x2.5 = 15.25 m2
Total Live Load = 30.5 kN
No. of Pedestal = 6.0 Nos
Load Per Pedestal = 30.5/6
= 5.08 KN
Live Load of Skid
Length & Width of Container
Dead Load of Skid
For dead load case, Self-weight of the pedestals and footing is considered in the analysis.
Load calculation 1 of 1
4.SEISMIC LOAD
Calculation of Seismic Load as per ASCE 7-05 & IBC-2009
Seismic Parameters
Occupancy catagory = III Table 1604.5: IBC 2009
Seismic Importance factor I = 1.25 Table 11.5-1: ASCE 7-05
Response modification factor(considering steel ordinary cantilever column system) R = 3.50 Table 12.2-1: ASCE 7-05
Site class = D Geotech Report Sec 10.6
Design Spectral Response Acceleration Coefficients (5% damping) @ short Periods SDS = 0.33 Eqn. 11.4-3: ASCE 7-05
=
Design Spectral Response Acceleration Coefficients (5% damping) @ 1s period SD1 = 0.15 Eqn. 11.4-4: ASCE 7-05
=
Seismic Response Coefficient CS = SDS/(R/I) Eqn. 12.8-2: ASCE 7-05
= 0.12
Height of structure hn = 2.28 m (Considered)
Approximate fundamental period Ta = Ct*hn
x
Eqn. 12.8-7: ASCE 7-05
= 0.09
Ct = 0.049
x = 0.75
T = Ta Clause 12.8-2: ASCE 7-05
= 0.09
Since T < TL, the calculated value of Cs should be less than SD1/(T*(R/I)) Eqn. 12.8-3: ASCE 7-05
SD1/(T*(R/I)) = 0.61
As per Eqn. 15.4-1:ASCE 7-05, CS shall not be less than 0.021. So CS CS = 0.12
Since S1 in this case is not greater than 0.6g, Eqn. 15.4-2 is not applicable.
Total design lateral force or shear V = CSXW Eqn. 12.8-1: ASCE 7-05
= 0.12xW
Seismic Weight W1 = DL (Refer Vendor Input)
= 55.500 kN
Total design lateral force or shear = 0.12x55.5
Ps1 = 6.66 kN
Load for Structure
Lateral force at the base of Structure Ps1 = 6.66 kN
No of Pedestal = 6 Nos
Lateral force per pedestal (Both Direction) = 6.66/6
= 1.11 kN
table 12.8-2 ASCE 7-05
SEISMIC LOAD CALCULATION
3.1 Design Data
Effective Height of Structure (1.110+0.3) Hc = 1.75 m
Closest Distance to Sea = 60.00 km
3.2 Wind Pressures
Basic wind speed = Vb = 44.00 m/s
Site Altitude above MSL = Ds = 30.00 m
Altitude factor = Sa = 1+0.001Ds Ref. Cl. 2.2.2.2
Sa = 1.030
Direction factor = Sd = 1.00 Ref. Cl. 2.2.2.3
Seasonal factor = Ss = 1.00 Ref. Cl. 2.2.2.4
Probability factor = Sp = 1.00 Ref. Cl. 2.2.2.5
Site Wind Speed = Vs = Vb*Sa*Sd*Ss*Sp Ref. Cl. 2.2.2.1
Vs = 45.32 m/s
= Sb = 1.070 Ref. Cl. 2.2.3.3, Table 4
Effective Wind Speed = Ve = Vs*Sb
Ve = 48.49 m/s
Dynamic pressure = qs = 0.613 Ve
2
Ref. Cl. 2.1.2
qs = 1.44 kN/m2
wind pressure = p = qs*Cp*Ca Ref.Cl 2.1
Net Pressure Coefficients = Cp = 1.00 Ref. Table 5a
Size effect factor Ca = 0.75 Ref Fig 4 (site in country)
= 1.44x1x0.75
= 1.08 kN/m2
WIND LOAD CALCULATION
3.Calculation of Wind Loads as per BS 6399: Part 2: 1997
Terrain & Building factor for Height of 4.05m
(extending >=2Km)
WIND LOAD CALCULATION
Horizontal load due to Wind Force:
Width of Tank Structure w = 2.440 m
Height of Tank Structure h = 2.590 m
Length of Tank Structure l = 6.100 m
Transverse direction
= 2.44x2.59x1.08
Horizontal Load on Transverse Direction(container) = 6.83 kN
Longitudinal direction
= 6.1x2.59x1.08
Horizontal Load on Longitudinal Direction (container) = 17.06 kN
Horizontal Load on Transverse Direction per Pedestal =
No of Pedestal = 6 Nos
= 6.83 / 6
Horizontal Load on Transverse Direction per Pedestal = 1.14 kN
Horizontal Load on Longitudinal Direction per Pedestal =
= 17.06 / 6
Horizontal Load on Longitudinal Direction per Pedestal = 2.84 kN
Horizontal Load on Transverse
Direction / No. of Pedestal
Horizontal Load onLongitudinal
Direction / No. of pedestal
Width of Structure x Height of
Structure (h) x Wind Pressure
=
Fx
Fz =
Length of Structure x Height of
Structure (h) x Wind Pressure
Load Case
Total Vertical
Load
(kN)
Total Horizontal
Load (Transverse)
(kN)
Total Horizontal
Load (Longitudinal)
(kN)
Vertical Load
(kN)
Horizontal Load
(Transverse)
(kN)
Horizontal Load
(Longitudinal)
(kN)
Dead Load 25.00 0.00 0.00 4.17 0.00 0.00
Live Load 30.50 0.00 0.00 5.08 0.00 0.00
Wind Load 0.00 6.83 17.06 0.00 1.14 2.84
Seismic Load 0.00 6.66 6.66 0.00 1.11 1.11
Over all Load Load Per Pedestal (6 Nos of Pedestal)
Load Summary Table for Foundation Design
DESIGN CALCULATION FOR CONDITIONER FOUNDATION
Page 10 of 11
ANNEXURE - B
FOUNDATION CALCUALTION
Dimensional Solutions Mat3D Product Version 23.1.3377.730 Date 18-03-2024 23:35:54
Workspace Name CONTAINER FOUNDATION DESIGN
Designed By Checked By:
File Path
REPORT - CONTAINER FOUNDATION DESIGN
PROJECT INFORMATION
Client Name:
Project Name:
Project Number:
RESULTS SUMMARY
Footing Description - - F1
Footing Result Min/Max Allowable/Required
Units Governing
Pass/Fail Value Value Load
Parameters Combination
Bearing Pressure PASS 148.6942 160.8 kN/sq m
Max Bearing to Allowable Bearing Ratio PASS 0.9247 1
Min Footing Contact Area Percent PASS 45.8435 100
Stability Ratio - X Direction PASS 99999 1.5
Stability Ratio - Z Direction PASS 99999 1.5
Sliding Ratio - X Direction PASS 3.8747 1.5
Sliding Ratio - Z Direction PASS 1.5554 1.5
Uplift Safety Factor PASS 99999 1.5
Beam Shear - X Direction PASS 0 3.5777 N/sq mm
Beam Shear - Z Direction PASS 0 3.5777 N/sq mm
Punching Shear PASS 0 0.3061 N/sq mm
Bottom Rebar Area - X Direction PASS 1675.5161 1440 sq mm/m
Bottom Rebar Area - Z Direction PASS 1675.5161 1440 sq mm/m
Top Rebar Area - X Direction PASS 1675.5161 0 sq mm/m
Top Rebar Area - Z Direction PASS 1675.5161 0 sq mm/m
4 - 1.2 DL(S) + 1.4 WL(CPZ-)
1 - 1.2 DL(S) + 1.4 WL(CPX+)
12 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPZ+)
5 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPX+)
3 - 1.2 DL(S) + 1.4 WL(CPZ+)
1 - DL(S) + WL(CPX+)
4 - DL(S) + WL(CPZ-)
1 - DL(S) + WL(CPX+)
1 - 1.2 DL(S) + 1.4 WL(CPX+)
4 - 1.2 DL(S) + 1.4 WL(CPZ-)
4 - DL(S) + WL(CPZ-)
4 - DL(S) + WL(CPZ-)
4 - DL(S) + WL(CPZ-)
1 - DL(S) + WL(CPX+)
1 - DL(S) + WL(CPX+)
CONTAINER FOUNDATION DESIGN Page 1 of 21
MATERIAL QUANTITIES
Footing Description - - F1
Parameters Value Units
Total Concrete Volume 0.288 cu m
Total Formwork 1.92 sq m
Total Pier Rebar Weight 0 kg
Total Footing Rebar Weight 15.79 kg
Total Rebar Weight 15.79 kg
Total Anchor Bolt Weight 0 kg
Total Grout Volume 0 cu m
Total Excavation Volume 0.216 cu m
DESIGN CODE BSI_8110_1997 INPUT UNITS SI OUTPUT UNITS SI
CONCRETE PARAMETERS: REINFORCING STEEL PARAMETERS:
Compressive Strength 20 N/sq mm Yield Strength 500 N/sq mm
Unit Weight 25 kN/cu m Unit Weight 76.973 kN/cu m
Pier Side Cover 40 mm Modulus Of Elasticity 199948.212 N/sq mm
Footing Side Cover 50 mm Pier Min Long Bar Spacing 25 mm
Footing Top Cover 50 mm Footing Min BarSpacing 125 mm
Footing Bottom Cover 50 mm Footing Max Bar Spacing 200 mm
Shear Enhancement Factor Close to Support 1 Consider Pier Long Bar Spacing Limit False
Distance to effective depth ratio for shear 1 Use Epoxy Coated Rebar No
enhancement in pile supported footings Consider Footing Crack Control Yes
Use Lightweight Concrete No Crack Control Spacing 150 mm
Lightweight Modification Factor 1
SOIL PARAMETERS: REBAR PARAMETERS:
Unit Weight 18 kN/cu m Max Pier Long Bar Size 16 mm
Allowable Net Bearing Capacity = Pnet = 150 kN/sq m Min Pier Long BarSize 14 mm
Bearing Capacity Method Linear Soil Pressure Max Pier Tie Bar Size 12 mm
Soil Type Granular Min Pier Tie Bar Size 8 mm
Ultimate Cohesion c 0 kN/sq m Max Footing Bar Size 25 mm
Ultimate Adhesion Ad 0 kN/sq m Min Footing Bar Size 12 mm
Passive Pressure Coefficient Ppc 0 Min Footing Steel Ratio 0.0018
Soil To Concrete Friction Scf 0.36 Max Strap Beam Long Bar Size 10 mm
Allowable Increase In Soil Pressure Min Strap Beam Long BarSize 6 mm
Dead 0 Max Strap Beam Tie Bar Size 10 mm
Live 0 Min Strap Beam Tie Bar Size 6 mm
Wind 0
Earthquake 0 CODE SPECIFIC OPTIONS
Erec 0 Allowable Crack Width 0.2 mm
Oper 0 Concrete Elastic Modulus for Crack Control 10000 N/sq mm
Test 0
Safety Factor Against Lateral Forces 1.5
Percent Neglected Overburden Nob 0
Percent Neglected Soil Cover Nsc 0
BUOYANCY CRITERIA:
Consider Buoyancy: No
Water Table Below Grade 2 m
CONTAINER FOUNDATION DESIGN Page 2 of 21
DEFAULT PARAMETERS:
Consider Biaxial Bending Pressure for Concrete Design: No
Limit Footing To Soil Non-Contact Area No
Max Non-Contact Area (%) 0
FOOTING GEOMETRY
Footing Description - - F1
Footing Maximum X Dimension - Lx = 0.6 m
Footing Maximum Z Dimension - Lz = 0.6 m
Footing Thickness - h = 0.8 m
Footing Depth Below Grade 0.6 m
LOAD ELEMENT GEOMETRY AND APPLIED LOADS
Loads applied at top of pedestal
Footing Description - - F1 - Load Element - - P1
Geometry Shape X Dim Z Dim Height Offset - X Offset - Z Min Reinft
Ratio
m m m m m
Rectangle 0.6 0.6 0.1 0 0 0.005
Load Case Axial Load Shear-X Mom-Z Shear-Z Mom-X
kN kN kN-m kN kN-m
1 - DL(S) 4.17 0 0 0 0
2 - LL 5.08 0 0 0 0
3 - WL(CPX+) 0 1.14 0 0 0
4 - WL(CPX-) 0 -1.14 0 0 0
5 - WL(CPZ+) 0 0 0 2.4 0
6 - WL(CPZ-) 0 0 0 -2.84 0
7 - EQ(X) 0 0 0 0 0
8 - EQ(Z) 0 0 0 0 0
ALLOWABLE LOAD COMBINATIONS
Footing Description - - F1 - Load Element - - P1
Load Combination Axial Load Shear-X Mom-Z Shear-Z Mom-X
kN kN kN-m kN kN-m
1 - DL(S) + WL(CPX+) 4.17 1.14 0 0 0
2 - DL(S) + WL(CPX-) 4.17 -1.14 0 0 0
3 - DL(S) + WL(CPZ+) 4.17 0 0 2.4 0
4 - DL(S) + WL(CPZ-) 4.17 0 0 -2.84 0
5 - DL(S) + LL + WL(CPX+) 9.25 1.14 0 0 0
6 - DL(S) + LL + WL(CPX-) 9.25 -1.14 0 0 0
7 - DL(S) + LL + WL(CPZ+) 9.25 0 0 2.4 0
8 - DL(S) + LL + WL(CPZ-) 9.25 0 0 -2.84 0
9 - DL(S) + LL 9.25 0 0 0 0
10 - DL(S) + LL + 0.7 EQ(X) 9.25 0 0 0 0
11 - DL(S) + LL - 0.7 EQ(X) 9.25 0 0 0 0
12 - DL(S) + LL + 0.7 EQ(Z) 9.25 0 0 0 0
13 - DL(S) + LL - 0.7 EQ(Z) 9.25 0 0 0 0
CONTAINER FOUNDATION DESIGN Page 3 of 21
ULTIMATE LOAD COMBINATIONS
Footing Description - - F1 - Load Element - - P1
Load Combination Axial Load Shear-X Mom-Z Shear-Z Mom-X
kN kN kN-m kN kN-m
1 - 1.2 DL(S) + 1.4 WL(CPX+) 5.004 1.596 0 0 0
2 - 1.2 DL(S) + 1.4 WL(CPX-) 5.004 -1.596 0 0 0
3 - 1.2 DL(S) + 1.4 WL(CPZ+) 5.004 0 0 3.36 0
4 - 1.2 DL(S) + 1.4 WL(CPZ-) 5.004 0 0 -3.976 0
5 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPX+) 11.1 1.368 0 0 0
6 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPX-) 11.1 -1.368 0 0 0
7 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPZ+) 11.1 0 0 2.88 0
8 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPZ-) 11.1 0 0 -3.408 0
9 - 1.4 DL(S) + 1.6 LL 13.966 0 0 0 0
10 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPX+) 11.1 0.684 0 0 0
11 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPX-) 11.1 -0.684 0 0 0
12 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPZ+) 11.1 0 0 1.44 0
13 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPZ-) 11.1 0 0 -1.704 0
14 - 1.2 DL(S) + 1.2 LL + EQ(X) 11.1 0 0 0 0
15 - 1.2 DL(S) + 1.2 LL - EQ(X) 11.1 0 0 0 0
16 - 1.2 DL(S) + 1.2 LL + EQ(Z) 11.1 0 0 0 0
17 - 1.2 DL(S) + 1.2 LL - EQ(Z) 11.1 0 0 0 0
CONTAINER FOUNDATION DESIGN Page 4 of 21
Footing Description - - F1
SELF WEIGHTS AND APPLIED EXTERNAL LOAD - Allowable Load Combinations
Load Combination Load Element Soil Footing App Axial Total Axial Buoyant
Weight Weight Weight Load Load Load
kN kN kN kN kN kN
1 - DL(S) + WL(CPX+) 0.9 0 7.2 4.17 12.27
2 - DL(S) + WL(CPX-) 0.9 0 7.2 4.17 12.27
3 - DL(S) + WL(CPZ+) 0.9 0 7.2 4.17 12.27
4 - DL(S) + WL(CPZ-) 0.9 0 7.2 4.17 12.27
5 - DL(S) + LL + WL(CPX+) 0.9 0 7.2 9.25 17.35
6 - DL(S) + LL + WL(CPX-) 0.9 0 7.2 9.25 17.35
7 - DL(S) + LL + WL(CPZ+) 0.9 0 7.2 9.25 17.35
8 - DL(S) + LL + WL(CPZ-) 0.9 0 7.2 9.25 17.35
9 - DL(S) + LL 0.9 0 7.2 9.25 17.35
10 - DL(S) + LL + 0.7 EQ(X) 0.9 0 7.2 9.25 17.35
11 - DL(S) + LL - 0.7 EQ(X) 0.9 0 7.2 9.25 17.35
12 - DL(S) + LL + 0.7 EQ(Z) 0.9 0 7.2 9.25 17.35
13 - DL(S) + LL - 0.7 EQ(Z) 0.9 0 7.2 9.25 17.35
Base Shears and Moments - Allowable Load Combinations
Load Combination Shear-X Mom-Z Shear-Z Mom-X
kN kN-m kN kN-m
1 - DL(S) + WL(CPX+) 1.14 1.026 0 0
2 - DL(S) + WL(CPX-) -1.14 -1.026 0 0
3 - DL(S) + WL(CPZ+) 0 0 2.4 2.16
4 - DL(S) + WL(CPZ-) 0 0 -2.84 -2.556
5 - DL(S) + LL + WL(CPX+) 1.14 1.026 0 0
6 - DL(S) + LL + WL(CPX-) -1.14 -1.026 0 0
7 - DL(S) + LL + WL(CPZ+) 0 0 2.4 2.16
8 - DL(S) + LL + WL(CPZ-) 0 0 -2.84 -2.556
9 - DL(S) + LL 0 0 0 0
10 - DL(S) + LL + 0.7 EQ(X) 0 0 0 0
11 - DL(S) + LL - 0.7 EQ(X) 0 0 0 0
12 - DL(S) + LL + 0.7 EQ(Z) 0 0 0 0
13 - DL(S) + LL - 0.7 EQ(Z) 0 0 0 0
SELF WEIGHTS AND APPLIED EXTERNAL LOAD - Ultimate Load Combinations
Load Combination Load Element Soil Footing App Axial Total Axial Buoyant
Weight Weight Weight Load Load Load
kN kN kN kN kN kN
1 - 1.2 DL(S) + 1.4 WL(CPX+) 1.08 0 8.64 5.004 14.724
2 - 1.2 DL(S) + 1.4 WL(CPX-) 1.08 0 8.64 5.004 14.724
3 - 1.2 DL(S) + 1.4 WL(CPZ+) 1.08 0 8.64 5.004 14.724
4 - 1.2 DL(S) + 1.4 WL(CPZ-) 1.08 0 8.64 5.004 14.724
5 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPX+) 1.08 0 8.64 11.1 20.82
6 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPX-) 1.08 0 8.64 11.1 20.82
7 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPZ+) 1.08 0 8.64 11.1 20.82
8 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPZ-) 1.08 0 8.64 11.1 20.82
9 - 1.4 DL(S) + 1.6 LL 1.26 0 10.08 13.966 25.306
10 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPX+) 1.08 0 8.64 11.1 20.82
11 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPX-) 1.08 0 8.64 11.1 20.82
CONTAINER FOUNDATION DESIGN Page 5 of 21
12 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPZ+) 1.08 0 8.64 11.1 20.82
13 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPZ-) 1.08 0 8.64 11.1 20.82
14 - 1.2 DL(S) + 1.2 LL + EQ(X) 1.08 0 8.64 11.1 20.82
15 - 1.2 DL(S) + 1.2 LL - EQ(X) 1.08 0 8.64 11.1 20.82
16 - 1.2 DL(S) + 1.2 LL + EQ(Z) 1.08 0 8.64 11.1 20.82
17 - 1.2 DL(S) + 1.2 LL - EQ(Z) 1.08 0 8.64 11.1 20.82
Base Shears and Moments - Ultimate Load Combinations
Load Combination Shear-X Mom-Z Shear-Z Mom-X
kN kN-m kN kN-m
1 - 1.2 DL(S) + 1.4 WL(CPX+) 1.596 1.4364 0 0
2 - 1.2 DL(S) + 1.4 WL(CPX-) -1.596 -1.4364 0 0
3 - 1.2 DL(S) + 1.4 WL(CPZ+) 0 0 3.36 3.024
4 - 1.2 DL(S) + 1.4 WL(CPZ-) 0 0 -3.976 -3.5784
5 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPX+) 1.368 1.2312 0 0
6 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPX-) -1.368 -1.2312 0 0
7 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPZ+) 0 0 2.88 2.592
8 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPZ-) 0 0 -3.408 -3.0672
9 - 1.4 DL(S) + 1.6 LL 0 0 0 0
10 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPX+) 0.684 0.6156 0 0
11 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPX-) -0.684 -0.6156 0 0
12 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPZ+) 0 0 1.44 1.296
13 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPZ-) 0 0 -1.704 -1.5336
14 - 1.2 DL(S) + 1.2 LL + EQ(X) 0 0 0 0
15 - 1.2 DL(S) + 1.2 LL - EQ(X) 0 0 0 0
16 - 1.2 DL(S) + 1.2 LL + EQ(Z) 0 0 0 0
17 - 1.2 DL(S) + 1.2 LL - EQ(Z) 0 0 0 0
CONTAINER FOUNDATION DESIGN Page 6 of 21
SOIL BEARING PRESSURE RESULTS - Allowable Load Combinations - Without Buoyancy
Footing Description - - F1
Load Combination Max Min Vertex 1 Vertex 2 All Contact Percent
Pressure Pressure Pressure Pressure Pressure Area Contact
kN/sq m kN/sq m kN/sq m kN/sq m kN/sq m sq m
1 - DL(S) + WL(CPX+) 62.5833 5.5833 62.5833 5.5833 160.8 0.36 100
2 - DL(S) + WL(CPX-) 62.5833 5.5833 62.5833 5.5833 160.8 0.36 100
3 - DL(S) + WL(CPZ+) 109.9809 0 109.9809 0 160.8 0.2231 61.9804
4 - DL(S) + WL(CPZ-) 148.6942 0 148.6942 0 160.8 0.165 45.8435
5 - DL(S) + LL + WL(CPX+) 76.6944 19.6944 76.6944 19.6944 160.8 0.36 100
6 - DL(S) + LL + WL(CPX-) 76.6944 19.6944 76.6944 19.6944 160.8 0.36 100
7 - DL(S) + LL + WL(CPZ+) 109.8422 0 109.8422 0 160.8 0.3159 87.7522
8 - DL(S) + LL + WL(CPZ-) 126.2625 0 126.2625 0 160.8 0.2748 76.3401
9 - DL(S) + LL 48.1944 48.1944 48.1944 48.1944 160.8 0.36 100
10 - DL(S) + LL + 0.7 EQ(X) 48.1944 48.1944 48.1944 48.1944 160.8 0.36 100
11 - DL(S) + LL - 0.7 EQ(X) 48.1944 48.1944 48.1944 48.1944 160.8 0.36 100
12 - DL(S) + LL + 0.7 EQ(Z) 48.1944 48.1944 48.1944 48.1944 160.8 0.36 100
13 - DL(S) + LL - 0.7 EQ(Z) 48.1944 48.1944 48.1944 48.1944 160.8 0.36 100
F1 - SOIL BEARING PRESSURE CALCULATION FOR LOAD COMBINATION 4
Eccentricity Condition: Eccentricity Greater Than Kern Distance in Z Direction
Eccentricity X Dir - Ecc,x = 0 m
Eccentricity Z Dir - Ecc,z = 0.2083 m
Total Axial Load - P = 12.27 kN
Footing Max Length X Dir - Lx = 0.6 m
Footing Max Width Z Dir - Lz = 0.6 m
Footing Area - A = 0.36 sq m
Soil Overburden - S = 10.8 kN/sq m
Gross Bearing Pressure - Gbp = (2*P)/(3*(Lz/2 - Ecc,z) * Lx) 148.6942 kN/sq m
Net Bearing Pressure - Nbp = Gbp - S = 137.8942 kN/sq m
STABILITY RATIO - Allowable Load Combinations - Without Buoyancy
Footing Description - - F1
Load Combination Overturning Resisting S.R. Overturning Resisting S.R. All
Moment Moment X Dir Moment Moment Z Dir S.R.
kN-m kN-m kN-m kN-m
1 - DL(S) + WL(CPX+) 0 NaN 99999 0 NaN 99999 1.5
2 - DL(S) + WL(CPX-) 1.026 NaN NaN 0 NaN 99999 1.5
3 - DL(S) + WL(CPZ+) 0 NaN 99999 0 NaN 99999 1.5
4 - DL(S) + WL(CPZ-) 0 NaN 99999 2.556 NaN NaN 1.5
5 - DL(S) + LL + WL(CPX+) 0 NaN 99999 0 NaN 99999 1.5
6 - DL(S) + LL + WL(CPX-) 1.026 NaN NaN 0 NaN 99999 1.5
7 - DL(S) + LL + WL(CPZ+) 0 NaN 99999 0 NaN 99999 1.5
8 - DL(S) + LL + WL(CPZ-) 0 NaN 99999 2.556 NaN NaN 1.5
9 - DL(S) + LL 0 NaN 99999 0 NaN 99999 1.5
10 - DL(S) + LL + 0.7 EQ(X) 0 NaN 99999 0 NaN 99999 1.5
11 - DL(S) + LL - 0.7 EQ(X) 0 NaN 99999 0 NaN 99999 1.5
12 - DL(S) + LL + 0.7 EQ(Z) 0 NaN 99999 0 NaN 99999 1.5
13 - DL(S) + LL - 0.7 EQ(Z) 0 NaN 99999 0 NaN 99999 1.5
CONTAINER FOUNDATION DESIGN Page 7 of 21
SLIDING SAFETY FACTOR - Allowable Load Combinations - Without Buoyancy
Footing Description - - F1
Load Combination Lateral Lateral Sliding Lateral Lateral Sliding All
Load Resist F.S. - X Dir Load Resist F.S. - Z Dir Sliding
kN kN kN kN
1 - DL(S) + WL(CPX+) 1.14 4.4172 3.8747 0 4.4172 99999 1.5
2 - DL(S) + WL(CPX-) 1.14 4.4172 3.8747 0 4.4172 99999 1.5
3 - DL(S) + WL(CPZ+) 0 4.4172 99999 2.4 4.4172 1.8405 1.5
4 - DL(S) + WL(CPZ-) 0 4.4172 99999 2.84 4.4172 1.5554 1.5
5 - DL(S) + LL + WL(CPX+) 1.14 6.246 5.4789 0 6.246 99999 1.5
6 - DL(S) + LL + WL(CPX-) 1.14 6.246 5.4789 0 6.246 99999 1.5
7 - DL(S) + LL + WL(CPZ+) 0 6.246 99999 2.4 6.246 2.6025 1.5
8 - DL(S) + LL + WL(CPZ-) 0 6.246 99999 2.84 6.246 2.1993 1.5
9 - DL(S) + LL 0 6.246 99999 0 6.246 99999 1.5
10 - DL(S) + LL + 0.7 EQ(X) 0 6.246 99999 0 6.246 99999 1.5
11 - DL(S) + LL - 0.7 EQ(X) 0 6.246 99999 0 6.246 99999 1.5
12 - DL(S) + LL + 0.7 EQ(Z) 0 6.246 99999 0 6.246 99999 1.5
13 - DL(S) + LL - 0.7 EQ(Z) 0 6.246 99999 0 6.246 99999 1.5
Footing Description - - F1
SLIDING RESISTANCE CALCULATION - X DIRECTION - LOAD COMBINATION 1
Effective Footing Length X Dir - Lx = 0.6 m
Effective Footing Width Z Dir - Lz = 0.6 m
Footing Thickness Considered = h = 0.6 m
Soil Cover - h1 = 0 m
Soil Unit Weight - Y = 18 kN/cu m
Passive Pressure At Footing Top - p1 = Yh1 = 0 kN/sq m
Passive Pressure At Footing Base - p2 = Y(h + h1) = 10.8 kN/sq m
Passive Resistance - R1 = 0.5*Lz*h*(p1+p2) = 1.944 kN
Cohesion - c = 0 kN/sq m
Adhesion - B = 0 kN/sq m
Cohesive Resistance - R2 = 2*c*Lz*h = 0 kN
Adhesive Resistance - R3 = B*Lx*Lz = 0 kN
Passive Resistance - R4 = R1 * Ppc = 0 kN
Applied Axial Load = Aal = 12.27 kN
Soil Weight = Sw = 0 kN
Friction Resistance - R5 = (Aal - Nsc * Sw) * Scf = 4.4172 kN
Total Lateral Resistance - R = R4+R5 = 4.4172 kN
Total Applied Lateral Load - S = 1.14 kN
Sliding Factor Of Safety - FS,slid = R/S = 3.8747
Footing Description - - F1
SLIDING RESISTANCE CALCULATION - Z DIRECTION - LOAD COMBINATION 4
Effective Footing Length Z Dir - Lz = 0.6 m
Effective Footing Width X Dir - Lx = 0.6 m
Footing Thickness Considered = h = 0.6 m
Soil Cover - h1 = 0 m
Soil Unit Weight - Y = 18 kN/cu m
Passive Pressure At Footing Top - p1 = Yh1 = 0 kN/sq m
Passive Pressure At Footing Base - p2 = Y(h + h1) = 10.8 kN/sq m
Passive Resistance - R1 = 0.5*Lx*h*(p1+p2) = 1.944 kN
Cohesion - c = 0 kN/sq m
Adhesion - B = 0 kN/sq m
CONTAINER FOUNDATION DESIGN Page 8 of 21
Cohesive Resistance - R2 = 2*c*Lx*h = 0 kN
Adhesive Resistance - R3 = B*Lx*Lz = 0 kN
Passive Resistance - R4 = R1 * Ppc = 0 kN
Applied Axial Load = Aal = 12.27 kN
Soil Weight = Sw = 0 kN
Friction Resistance - R5 = (Aal - Nsc * Sw) * Scf = 4.4172 kN
Total Lateral Resistance - R = R4+R5 = 4.4172 kN
Total Applied Lateral Load - S = 2.84 kN
Sliding Factor Of Safety - FS,slid = R/S = 1.5554
UPLIFT SAFETY FACTOR - Allowable Load Combinations - Without Buoyancy
Footing Description - - F1
Load Combination Load Element Soil Footing App Axial Buoyant Safety Allowable/Required
Weight Weight Weight Load Load Factor Factor
kN kN kN kN kN kN
1 - DL(S) + WL(CPX+) 0.9 0 7.2 4.17 0 99999 1.5
2 - DL(S) + WL(CPX-) 0.9 0 7.2 4.17 0 99999 1.5
3 - DL(S) + WL(CPZ+) 0.9 0 7.2 4.17 0 99999 1.5
4 - DL(S) + WL(CPZ-) 0.9 0 7.2 4.17 0 99999 1.5
5 - DL(S) + LL + WL(CPX+) 0.9 0 7.2 9.25 0 99999 1.5
6 - DL(S) + LL + WL(CPX-) 0.9 0 7.2 9.25 0 99999 1.5
7 - DL(S) + LL + WL(CPZ+) 0.9 0 7.2 9.25 0 99999 1.5
8 - DL(S) + LL + WL(CPZ-) 0.9 0 7.2 9.25 0 99999 1.5
9 - DL(S) + LL 0.9 0 7.2 9.25 0 99999 1.5
10 - DL(S) + LL + 0.7 EQ(X) 0.9 0 7.2 9.25 0 99999 1.5
11 - DL(S) + LL - 0.7 EQ(X) 0.9 0 7.2 9.25 0 99999 1.5
12 - DL(S) + LL + 0.7 EQ(Z) 0.9 0 7.2 9.25 0 99999 1.5
13 - DL(S) + LL - 0.7 EQ(Z) 0.9 0 7.2 9.25 0 99999 1.5
Footing Description - - F1
UPLIFT RESISTANCE CALCULATION - LOAD COMBINATION 1
Load Element Weight - Esf = 0.9 kN
Soil Weight - Ssw = 0 kN
Footing Weight - Fsw = 7.2 kN
App Axial Weight - Tal = 4.17 kN
Buoyant Weight - Bl = 0 kN
Total Self Weight - Tsw = Esf + Ssw + Fsw - Bl = 8.1 kN
Uplift Safety Factor - Usf = (Tsw / abs(Tal)) if Tal < 0 = 99999
Allowed Safety Factor - Asf = 1.5
CONTAINER FOUNDATION DESIGN Page 9 of 21
FACTORED SOIL BEARING PRESSURE RESULTS - Ultimate Load Combinations
Footing Description - - F1
Load Combination Max X Min X Max Z Min Z
Pressure Pressure Pressure Pressure
kN/sq m kN/sq m kN/sq m kN/sq m
1 - 1.2 DL(S) + 1.4 WL(CPX+) 80.8 1 40.9 40.9
2 - 1.2 DL(S) + 1.4 WL(CPX-) 80.8 1 40.9 40.9
3 - 1.2 DL(S) + 1.4 WL(CPZ+) 40.9 40.9 172.9003 0
4 - 1.2 DL(S) + 1.4 WL(CPZ-) 40.9 40.9 287.1777 0
5 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPX+) 92.0333 23.6333 57.8333 57.8333
6 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPX-) 92.0333 23.6333 57.8333 57.8333
7 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPZ+) 57.8333 57.8333 131.8106 0
8 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPZ-) 57.8333 57.8333 151.515 0
9 - 1.4 DL(S) + 1.6 LL 70.2944 70.2944 70.2944 70.2944
10 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPX+) 74.9333 40.7333 57.8333 57.8333
11 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPX-) 74.9333 40.7333 57.8333 57.8333
12 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPZ+) 57.8333 57.8333 93.8333 21.8333
13 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPZ-) 57.8333 57.8333 100.4333 15.2333
14 - 1.2 DL(S) + 1.2 LL + EQ(X) 57.8333 57.8333 57.8333 57.8333
15 - 1.2 DL(S) + 1.2 LL - EQ(X) 57.8333 57.8333 57.8333 57.8333
16 - 1.2 DL(S) + 1.2 LL + EQ(Z) 57.8333 57.8333 57.8333 57.8333
17 - 1.2 DL(S) + 1.2 LL - EQ(Z) 57.8333 57.8333 57.8333 57.8333
CONTAINER FOUNDATION DESIGN Page 10 of 21
BEAM SHEAR STRESS - X DIRECTION - Ultimate Load Combinations - Without Buoyancy
Footing Description - - F1
Beam Shear Stress Critical Section - Part 1, Section 3.11.3.3 / 3.11.3.4
Load Combination Location Shear Shear Allowable
Crit Sect Crit Sect Stress Stress
m kN N/sq mm N/sq mm
1 - 1.2 DL(S) + 1.4 WL(CPX+) 0.6 0 0 3.5777
2 - 1.2 DL(S) + 1.4 WL(CPX-) 0.6 0 0 3.5777
3 - 1.2 DL(S) + 1.4 WL(CPZ+) 0 0 0 0
4 - 1.2 DL(S) + 1.4 WL(CPZ-) 0 0 0 0
5 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPX+) 0 0 0 0
6 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPX-) 0 0 0 0
7 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPZ+) 0 0 0 0
8 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPZ-) 0 0 0 0
9 - 1.4 DL(S) + 1.6 LL 0 0 0 0
10 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPX+) 0 0 0 0
11 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPX-) 0 0 0 0
12 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPZ+) 0 0 0 0
13 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPZ-) 0 0 0 0
14 - 1.2 DL(S) + 1.2 LL + EQ(X) 0 0 0 0
15 - 1.2 DL(S) + 1.2 LL - EQ(X) 0 0 0 0
16 - 1.2 DL(S) + 1.2 LL + EQ(Z) 0 0 0 0
17 - 1.2 DL(S) + 1.2 LL - EQ(Z) 0 0 0 0
Footing Description - - F1
MAXIMUM BEAM SHEAR STRESS CALCULATION - X DIRECTION - Load Combination 1
Effective Footing Width Z Dir - Lz = 0.6 m
Critical Section Location - l = 0.6 m
Bearing Pressure at Critical Section - Pcs = 80.8 kN/sq m
Shear from soil pressure at Critical Section - Sa,cs 14.724 kN
Shear from axial load and footing/Soil at Critical Section - Sf,cs -14.724 kN
Max Shear - Smax,cs = Sa,cs + Sf,cs = 0 kN
ALLOWABLE BEAM SHEAR STRESS CALCULATION - X DIRECTION - Load Combination 1
Allowable Beam Shear Stress - Part 1, Section 3.11.3.4 / 3.11.4.4
Concrete Compressive Strength - fc' = 20 N/sq mm
Effective Depth - d = 0.726 m
Effective Footing Width Z Dir - Lz = 0.6 m
Footing Thickness - h = 0.8 m
Footing Reinforcement Area = Ra = 0.001 sq m
Percent Reinforcement - Rap = 0.15 <= 100 * (Ra/(L*d) <= 3 0.23078734
EffectiveDepthFactor = Edf = 400/d >= 1 0.55096419
ConcreteStrengthFactor = Csf (for fc' > 25; fc' <=40) = (fc'/25) ^ (1/3) 0.92831777
Allowable Shear Stress - F,all = 0.79 * (Rap ^ (1/3)) * (Edf ^ (1/4)) * Csf / f 3.5777 N/sq mm
Shear Strength Reduction Factor - f = 1.25
Critical Section Location - l = 0.6 m
Maxshear 0 kN
ActualShearStress 0 N/sq mm
BEAM SHEAR STRESS - Z DIRECTION - Ultimate Load Combinations - Without Buoyancy
CONTAINER FOUNDATION DESIGN Page 11 of 21
Footing Description - - F1
Beam Shear Stress Critical Section - Part 1, Section 3.11.3.3 / 3.11.3.4
Load Combination Location Shear Shear Allowable
Crit Sect Crit Sect Stress Stress
m kN N/sq mm N/sq mm
1 - 1.2 DL(S) + 1.4 WL(CPX+) 0 0 0 0
2 - 1.2 DL(S) + 1.4 WL(CPX-) 0 0 0 0
3 - 1.2 DL(S) + 1.4 WL(CPZ+) 0 0 0 0
4 - 1.2 DL(S) + 1.4 WL(CPZ-) 0.6 0 0 3.5777
5 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPX+) 0 0 0 0
6 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPX-) 0 0 0 0
7 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPZ+) 0 0 0 0
8 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPZ-) 0 0 0 0
9 - 1.4 DL(S) + 1.6 LL 0 0 0 0
10 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPX+) 0 0 0 0
11 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPX-) 0 0 0 0
12 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPZ+) 0 0 0 0
13 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPZ-) 0 0 0 0
14 - 1.2 DL(S) + 1.2 LL + EQ(X) 0 0 0 0
15 - 1.2 DL(S) + 1.2 LL - EQ(X) 0 0 0 0
16 - 1.2 DL(S) + 1.2 LL + EQ(Z) 0 0 0 0
17 - 1.2 DL(S) + 1.2 LL - EQ(Z) 0 0 0 0
Footing Description - - F1
MAXIMUM BEAM SHEAR STRESS CALCULATION - Z DIRECTION - Load Combination 4
Effective Footing Width X Dir - Lx = 0.6 m
Critical Section Location - l = 0.6 m
Bearing Pressure at Critical Section - Pcs = 0 kN/sq m
Shear from soil pressure at Critical Section - Sa,cs 14.724 kN
Shear from axial load and footing/Soil at Critical Section - Sf,cs -14.724 kN
Max Shear - Smax,cs = Sa,cs + Sf,cs = 0 kN
ALLOWABLE BEAM SHEAR STRESS CALCULATION - Z DIRECTION - Load Combination 4
Allowable Beam Shear Stress - Part 1, Section 3.11.3.4 / 3.11.4.4
Concrete Compressive Strength - fc' = 20 N/sq mm
Effective Depth - d = 0.742 m
Effective Footing Width X Dir - Lx = 0.6 m
Footing Thickness - h = 0.8 m
Footing Reinforcement Area = Ra = 0.001 sq m
Percent Reinforcement - Rap = 0.15 <= 100 * (Ra/(L*d) <= 3 0.22581079
EffectiveDepthFactor = Edf = 400/d >= 1 0.53908356
ConcreteStrengthFactor = Csf (for fc' > 25; fc' <=40) = (fc'/25) ^ (1/3) 0.92831777
Allowable Shear Stress - F,all = 0.79 * (Rap ^ (1/3)) * (Edf ^ (1/4)) * Csf / f 3.5777 N/sq mm
Shear Strength Reduction Factor - f = 1.25
Critical Section Location - l = 0.6 m
Maxshear 0 kN
ActualShearStress 0 N/sq mm
CONTAINER FOUNDATION DESIGN Page 12 of 21
PUNCHING SHEAR STRESS - Ultimate Load Combinations - Without Buoyancy
Footing Description - - F1 - Load Element - - P1
Punching Perimeter - Pp = 0 m
Load Combination Net Punching Punching Allowable
Load Stress Stress
kN N/sq mm N/sq mm
1 - 1.2 DL(S) + 1.4 WL(CPX+) 2.394 0 0.3061
2 - 1.2 DL(S) + 1.4 WL(CPX-) 2.394 0 0.3061
3 - 1.2 DL(S) + 1.4 WL(CPZ+) 5.04 0 0.3061
4 - 1.2 DL(S) + 1.4 WL(CPZ-) 5.964 0 0.3061
5 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPX+) 2.052 0 0.3061
6 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPX-) 2.052 0 0.3061
7 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPZ+) 4.32 0 0.3061
8 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPZ-) 5.112 0 0.3061
9 - 1.4 DL(S) + 1.6 LL 0 0 0.3061
10 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPX+) 1.026 0 0.3061
11 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPX-) 1.026 0 0.3061
12 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPZ+) 2.16 0 0.3061
13 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPZ-) 2.556 0 0.3061
14 - 1.2 DL(S) + 1.2 LL + EQ(X) 0 0 0.3061
15 - 1.2 DL(S) + 1.2 LL - EQ(X) 0 0 0.3061
16 - 1.2 DL(S) + 1.2 LL + EQ(Z) 0 0 0.3061
17 - 1.2 DL(S) + 1.2 LL - EQ(Z) 0 0 0.3061
PUNCHING SHEAR CALCULATION FOR LOAD ELEMENT - P1 - Footing - F1 - Load Combination 4
Allowable Punching Shear Stress - Part 1, Section 3.11.3.4 / 3.11.4.5
Punching Shear Stress Critical Section - Part 1, Section 3.11.3.4 / 3.11.4.5
Ultimate Soil Bearing At Left Critical Section - X Dir - SBl,x = 40.9 kN/sq m
Ultimate Soil Bearing At Right Critical Section - X Dir - SBr,x = 40.9 kN/sq m
Ultimate Soil Bearing At Left Critical Section - Z Dir - SBl,z = 287.1777 kN/sq m
Ultimate Soil Bearing At Right Critical Section - Z Dir - SBr,z = 0 kN/sq m
Area Under Pressure Diagram X Dir - Ap,x = 14.724 kN
Area Under Pressure Diagram Z Dir - Ap,z = 14.724 kN
Footing Weight Within Punching Perimeter - Fw,p = 8.64 kN
Soil Weight Within Punching Perimeter - Sw,p = 0 kN
Applied Axial Load - P = 6.084 kN
Total Punching Load - Pt = P + Fw,p + Sw,p = 14.724 kN
Punching Load Due To Moment - X Dir = Npm,x = 0 kN
Punching Load Due To Moment - Z Dir = Npm,z = 5.964 kN
Net Punching Load - X Dir - Np,x = Pt + Npm,x - Ap,x = 0 kN
Net Punching Load - Z Dir - Np,z = Pt + Npm,z - Ap,z = 5.964 kN
Maximum Punching Load - Pmax = Max (Np,x, Np,z) = 5.964 kN
Average Effective Depth For Punching Shear - deff = 742 mm
Punching Perimeter - Pp = 0 m
Punching Shear Stress - Ps = Pmax/(deff * Pp) = 0 N/sq mm
CONTAINER FOUNDATION DESIGN Page 13 of 21
FOOTING MOMENTS - X DIRECTION - Ultimate Load Combinations
Footing Description - - F1
Load Combination Max Pos Pos Mom Max Neg Neg Mom
Moment Location Moment Location
kN-m m kN-m m
1 - 1.2 DL(S) + 1.4 WL(CPX+) 0 0.6 0 0
2 - 1.2 DL(S) + 1.4 WL(CPX-) 0 0 0 0
3 - 1.2 DL(S) + 1.4 WL(CPZ+) 0 0.6 0 0
4 - 1.2 DL(S) + 1.4 WL(CPZ-) 0 0.6 0 0
5 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPX+) 0 0 0 0.6
6 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPX-) 0 0.6 0 0
7 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPZ+) 0 0 0 0
8 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPZ-) 0 0 0 0
9 - 1.4 DL(S) + 1.6 LL 0 0.6 0 0
10 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPX+) 0 0 0 0
11 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPX-) 0 0 0 0
12 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPZ+) 0 0 0 0
13 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPZ-) 0 0 0 0
14 - 1.2 DL(S) + 1.2 LL + EQ(X) 0 0 0 0
15 - 1.2 DL(S) + 1.2 LL - EQ(X) 0 0 0 0
16 - 1.2 DL(S) + 1.2 LL + EQ(Z) 0 0 0 0
17 - 1.2 DL(S) + 1.2 LL - EQ(Z) 0 0 0 0
FOOTING MOMENTS - Z DIRECTION - Ultimate Load Combinations
Footing Description - - F1
Load Combination Max Pos Pos Mom Max Neg Neg Mom
Moment Location Moment Location
kN-m m kN-m m
1 - 1.2 DL(S) + 1.4 WL(CPX+) 0 0.6 0 0
2 - 1.2 DL(S) + 1.4 WL(CPX-) 0 0.6 0 0
3 - 1.2 DL(S) + 1.4 WL(CPZ+) 0 0 0 0.6
4 - 1.2 DL(S) + 1.4 WL(CPZ-) 0 0 0 0
5 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPX+) 0 0 0 0
6 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPX-) 0 0 0 0
7 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPZ+) 0 0 0 0
8 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPZ-) 0 0.6 0 0
9 - 1.4 DL(S) + 1.6 LL 0 0.6 0 0
10 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPX+) 0 0 0 0
11 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPX-) 0 0 0 0
12 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPZ+) 0 0.6 0 0
13 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPZ-) 0 0 0 0
14 - 1.2 DL(S) + 1.2 LL + EQ(X) 0 0 0 0
15 - 1.2 DL(S) + 1.2 LL - EQ(X) 0 0 0 0
16 - 1.2 DL(S) + 1.2 LL + EQ(Z) 0 0 0 0
17 - 1.2 DL(S) + 1.2 LL - EQ(Z) 0 0 0 0
CONTAINER FOUNDATION DESIGN Page 14 of 21
FOOTING REINFORCEMENT
Min Reinft of Flexural Members - Part 1, Section 3.12.5
Moment Critical Section - Part 1, Section 3.11.2.2
Top Steel
Footing Description - - F1
Governing No. of Bar Bar Area Area Moment Direction
Load Combination Bars Size Spac Prov Req
mm mm sq mm/m sq mm/m kN-m/m
5 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPX+) 5 16 100 1675.516 0 0 X
3 - 1.2 DL(S) + 1.4 WL(CPZ+) 5 16 100 1675.516 0 0 Z
Note: Bar spacing in top level X direction does not meet spacing requirements
Note: Bar spacing in top level Z direction does not meet spacing requirements
Bottom Steel
Footing Description - - F1
Governing No. of Bar Bar Area Area Moment Direction
Load Combination Bars Size Spac Prov Req
mm mm sq mm/m sq mm/m kN-m/m
1 - 1.2 DL(S) + 1.4 WL(CPX+) 5 16 100 1675.516 1440 0 X
12 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPZ+) 5 16 100 1675.516 1440 0 Z
Note: Bar spacing in bottom level X direction does not meet spacing requirements
Note: Bar spacing in bottom level Z direction does not meet spacing requirements
CONTAINER FOUNDATION DESIGN Page 15 of 21
CRACK CONTROL
Top Surface
Footing Description - - F1
Governing Bar Bar Area Unfactored Crack All Direction
Load Combination Size Spac Prov Moment Width CrackWidth
mm mm sq mm kN-m mm mm
3 - DL(S) + WL(CPZ+) 16 100 1005.31 0 0 0.2 X
1 - DL(S) + WL(CPX+) 16 100 1005.31 0 0 0.2 Z
Bottom Surface
Footing Description - - F1
Governing Bar Bar Area Unfactored Crack All Direction
Load Combination Size Spac Prov Moment Width CrackWidth
mm mm sq mm kN-m mm mm
2 - DL(S) + WL(CPX-) 16 100 1005.31 0 0 0.2 X
7 - DL(S) + LL + WL(CPZ+) 16 100 1005.31 0 0 0.2 Z
GOVERNING CRACK CONTROL CALCULATION
Effective Concrete Elastic Modulus for Crack Control 10000 N/sq mm
Modular Ratio 19.995
Unfactored Max Service Moment 0 kN-m
Governing Load Combination 2 - DL(S) + WL(CPX-)
Moment of Resistance of Uncracked Section 200.352 kN-m
Area of Tension Steel 1005.31 sq mm
Cracked Section Neutral Axis Depth 174.83 mm
Mean Surface Strain 0
Crack Width 0 mm
All Crack Width 0.2 mm
CONTAINER FOUNDATION DESIGN Page 16 of 21
CONTAINER FOUNDATION DESIGN Page 17 of 21
CONTAINER FOUNDATION DESIGN Page 18 of 21
FOOTING DEVELOPMENT LENGTH CALCULATION
Footing Description - - F1
Footing development length - Part 1, Section 3.12.8
Compressive Strength fc' = 20 N/sq mm
Yield Strength fy = 500 N/sq mm
Footing Side Cover Cb = 50 mm
Bottom Rebar - X Direction
Rebar size Rs = 16 mm
Rebar diameter db = 16 mm
Rebar area Ab = 201.062 sq mm
Footing Moment M = 0 kN-m/m
Cast concrete depth below rebar Cd = 50 mm
Casting Postion Factor Fcp = Not Applicable 0
Lightweight Concrete Modification Factor Lamda = 1
Epoxy Coating Factor Fep = Not Applicable 1
Rebar Size Factor Frb= Not Applicable 0
Transverse Reinforcement Index Ktr = Not Applicable 0
Rebar cover to rebar diameter ratio r = f(Cb/db) = 1
Reinforcement Grade Factor Frg= 1
Ultimate Bond Stress Tbd = Beta * sqrt(fc'); Beta = 0.5 for deformed bars 2.236 N/sq mm
Required development length in tension ld,o = (0.87)*(fy*db)/(4*Tbd) 0 mm
Minimum required development length In tension ld,min = 0 mm
Consider reduction based On rebar stress ratio Cred = False
Provided rebar area Aprov = 1005.31 sq mm
Required rebar area based on moment Areqd = 0 sq mm
Provided to required rebar ratio Rp,r = Aprov/Areqd 0
Reduced development length based on rebar ratio ld,rpr = ld,o/Rp,r 0 mm
Final Development Length ld = max{ld,rpr,ld,min} 0 mm
Footing Max Moment Location Mloc = 0 m
Footing Maximum X Dimension - Lx = 0.6 m
Available Development Length lavail = 0 mm
Is available development length adequate Not Applicable
Bottom Rebar - Z Direction
Rebar size Rs = 16 mm
Rebar diameter db = 16 mm
Rebar area Ab = 201.062 sq mm
Footing Moment M = 0 kN-m/m
Cast concrete depth below rebar Cd = 50 mm
Casting Postion Factor Fcp = Not Applicable 0
Lightweight Concrete Modification Factor Lamda = 1
Epoxy Coating Factor Fep = Not Applicable 1
Rebar Size Factor Frb= Not Applicable 0
Transverse Reinforcement Index Ktr = Not Applicable 0
Rebar cover to rebar diameter ratio r = f(Cb/db) = 1
Reinforcement Grade Factor Frg= 1
Ultimate Bond Stress Tbd = Beta * sqrt(fc'); Beta = 0.5 for deformed bars 2.236 N/sq mm
Required development length in tension ld,o = (0.87)*(fy*db)/(4*Tbd) 0 mm
Minimum required development length In tension ld,min = 0 mm
Consider reduction based On rebar stress ratio Cred = False
CONTAINER FOUNDATION DESIGN Page 19 of 21
Provided rebar area Aprov = 1005.31 sq mm
Required rebar area based on moment Areqd = 0 sq mm
Provided to required rebar ratio Rp,r = Aprov/Areqd 0
Reduced development length based on rebar ratio ld,rpr = ld,o/Rp,r 0 mm
Final Development Length ld = max{ld,rpr,ld,min} 0 mm
Footing Max Moment Location Mloc = 0 m
Footing Maximum Z Dimension - Lz = 0.6 m
Available Development Length lavail = 0 mm
Is available development length adequate Not Applicable
Top Rebar - X Direction
Rebar size Rs = 16 mm
Rebar diameter db = 16 mm
Rebar area Ab = 201.062 sq mm
Footing Moment M = 0 kN-m/m
Cast concrete depth below rebar Cd = 750 mm
Casting Postion Factor Fcp = Not Applicable 0
Lightweight Concrete Modification Factor Lamda = 1
Epoxy Coating Factor Fep = Not Applicable 1
Rebar Size Factor Frb= Not Applicable 0
Transverse Reinforcement Index Ktr = Not Applicable 0
Rebar cover to rebar diameter ratio r = f(Cb/db) = 1
Reinforcement Grade Factor Frg= 1
Ultimate Bond Stress Tbd = Beta * sqrt(fc'); Beta = 0.5 for deformed bars 2.236 N/sq mm
Required development length in tension ld,o = (0.87)*(fy*db)/(4*Tbd) 0 mm
Minimum required development length In tension ld,min = 0 mm
Consider reduction based On rebar stress ratio Cred = False
Provided rebar area Aprov = 1005.31 sq mm
Required rebar area based on moment Areqd = 0 sq mm
Provided to required rebar ratio Rp,r = Aprov/Areqd 0
Reduced development length based on rebar ratio ld,rpr = ld,o/Rp,r 0 mm
Final Development Length ld = max{ld,rpr,ld,min} 0 mm
Footing Max Moment Location Mloc = 0 m
Footing Maximum X Dimension - Lx = 0.6 m
Available Development Length lavail = 0 mm
Is available development length adequate Not Applicable
Top Rebar - Z Direction
Rebar size Rs = 16 mm
Rebar diameter db = 16 mm
Rebar area Ab = 201.062 sq mm
Footing Moment M = 0 kN-m/m
Cast concrete depth below rebar Cd = 750 mm
Casting Postion Factor Fcp = Not Applicable 0
Lightweight Concrete Modification Factor Lamda = 1
Epoxy Coating Factor Fep = Not Applicable 1
Rebar Size Factor Frb= Not Applicable 0
Transverse Reinforcement Index Ktr = Not Applicable 0
Rebar cover to rebar diameter ratio r = f(Cb/db) = 1
Reinforcement Grade Factor Frg= 1
Ultimate Bond Stress Tbd = Beta * sqrt(fc'); Beta = 0.5 for deformed bars 2.236 N/sq mm
Required development length in tension ld,o = (0.87)*(fy*db)/(4*Tbd) 0 mm
Minimum required development length In tension ld,min = 0 mm
Consider reduction based On rebar stress ratio Cred = False
CONTAINER FOUNDATION DESIGN Page 20 of 21
Provided rebar area Aprov = 1005.31 sq mm
Required rebar area based on moment Areqd = 0 sq mm
Provided to required rebar ratio Rp,r = Aprov/Areqd 0
Reduced development length based on rebar ratio ld,rpr = ld,o/Rp,r 0 mm
Final Development Length ld = max{ld,rpr,ld,min} 0 mm
Footing Max Moment Location Mloc = 0 m
Footing Maximum Z Dimension - Lz = 0.6 m
Available Development Length lavail = 0 mm
Is available development length adequate Not Applicable
CONTAINER FOUNDATION DESIGN Page 21 of 21
DESIGN CALCULATION FOR CONDITIONER FOUNDATION
Page 11 of 11
ANNEXURE - C
FOUNDATION DRAWING
CONTAINER FOUNDATION
STRUCTURAL DRAWING
DRAWING
AS civil Engg services
100X50 mm RHS

More Related Content

Similar to This calculation report is relevant to the structural analysis and design of and foundations of the CONDITIONER

strip-foundation-design-calcualtion.docx
strip-foundation-design-calcualtion.docxstrip-foundation-design-calcualtion.docx
strip-foundation-design-calcualtion.docxVICTOR A. KIPLAGAT
 
Bs procedure
Bs procedureBs procedure
Bs procedurehlksd
 
APIRP2A 2000VS2007.pdf
APIRP2A 2000VS2007.pdfAPIRP2A 2000VS2007.pdf
APIRP2A 2000VS2007.pdfShMN3
 
Chimney design &amp;engg code
Chimney design &amp;engg codeChimney design &amp;engg code
Chimney design &amp;engg codeVarun Nath
 
IRJET- Designing and Analysis of Elements of a Multi-Storey Building
IRJET-  	  Designing and Analysis of Elements of a Multi-Storey BuildingIRJET-  	  Designing and Analysis of Elements of a Multi-Storey Building
IRJET- Designing and Analysis of Elements of a Multi-Storey BuildingIRJET Journal
 
Steel Warehouse Project
Steel Warehouse ProjectSteel Warehouse Project
Steel Warehouse ProjectJawad Shaukat
 
Chapter 2 design loads(3)
Chapter 2 design loads(3)Chapter 2 design loads(3)
Chapter 2 design loads(3)FahadYaqoob7
 
Kachlakev_RC Control Beam MSC-Marc_wAppendix
Kachlakev_RC Control Beam MSC-Marc_wAppendixKachlakev_RC Control Beam MSC-Marc_wAppendix
Kachlakev_RC Control Beam MSC-Marc_wAppendixDavid Dearth
 
Example314b taskgroupb-c-120730160543-phpapp01
Example314b taskgroupb-c-120730160543-phpapp01Example314b taskgroupb-c-120730160543-phpapp01
Example314b taskgroupb-c-120730160543-phpapp01Ramil Artates
 
determining_wind_and_snow_loads_for_solaR PANELS EXAPMPLE USA-1-1.pdf
determining_wind_and_snow_loads_for_solaR PANELS EXAPMPLE USA-1-1.pdfdetermining_wind_and_snow_loads_for_solaR PANELS EXAPMPLE USA-1-1.pdf
determining_wind_and_snow_loads_for_solaR PANELS EXAPMPLE USA-1-1.pdfssuser99a391
 
COMPARATIVE STUDY ON ANALYSIS AND DESIGN OF TRUSS USING MANUAL CALCULATIONS A...
COMPARATIVE STUDY ON ANALYSIS AND DESIGN OF TRUSS USING MANUAL CALCULATIONS A...COMPARATIVE STUDY ON ANALYSIS AND DESIGN OF TRUSS USING MANUAL CALCULATIONS A...
COMPARATIVE STUDY ON ANALYSIS AND DESIGN OF TRUSS USING MANUAL CALCULATIONS A...IRJET Journal
 
Structural Steel Design Project.pdf
Structural Steel Design Project.pdfStructural Steel Design Project.pdf
Structural Steel Design Project.pdfdynamicchikku06
 
Structural Steel Design Project.pdf
Structural Steel Design Project.pdfStructural Steel Design Project.pdf
Structural Steel Design Project.pdfdynamicchikku06
 
IRJET- Dynamic Analysis and Response of K Type & KT Type Fixed Jacket Offshor...
IRJET- Dynamic Analysis and Response of K Type & KT Type Fixed Jacket Offshor...IRJET- Dynamic Analysis and Response of K Type & KT Type Fixed Jacket Offshor...
IRJET- Dynamic Analysis and Response of K Type & KT Type Fixed Jacket Offshor...IRJET Journal
 
IRJET- Dynamic Analysis and Response of K Type & KT Type Fixed Jacket Offshor...
IRJET- Dynamic Analysis and Response of K Type & KT Type Fixed Jacket Offshor...IRJET- Dynamic Analysis and Response of K Type & KT Type Fixed Jacket Offshor...
IRJET- Dynamic Analysis and Response of K Type & KT Type Fixed Jacket Offshor...IRJET Journal
 
WIND AND EARTHQUAKE EFFECT ON R.C.C & STEEL STRUCTURE
WIND AND EARTHQUAKE EFFECT ON R.C.C & STEEL STRUCTUREWIND AND EARTHQUAKE EFFECT ON R.C.C & STEEL STRUCTURE
WIND AND EARTHQUAKE EFFECT ON R.C.C & STEEL STRUCTUREIAEME Publication
 
Graduation Project (DESIGN AND ANALYSIS OF MULTI-TOWER STRUCTURE USING ETABS).
Graduation Project (DESIGN AND ANALYSIS OF MULTI-TOWER STRUCTURE USING ETABS).Graduation Project (DESIGN AND ANALYSIS OF MULTI-TOWER STRUCTURE USING ETABS).
Graduation Project (DESIGN AND ANALYSIS OF MULTI-TOWER STRUCTURE USING ETABS).khaledalshami93
 

Similar to This calculation report is relevant to the structural analysis and design of and foundations of the CONDITIONER (20)

strip-foundation-design-calcualtion.docx
strip-foundation-design-calcualtion.docxstrip-foundation-design-calcualtion.docx
strip-foundation-design-calcualtion.docx
 
design c
design cdesign c
design c
 
Bs procedure
Bs procedureBs procedure
Bs procedure
 
B.praveen kumar
B.praveen kumarB.praveen kumar
B.praveen kumar
 
APIRP2A 2000VS2007.pdf
APIRP2A 2000VS2007.pdfAPIRP2A 2000VS2007.pdf
APIRP2A 2000VS2007.pdf
 
Chimney design &amp;engg code
Chimney design &amp;engg codeChimney design &amp;engg code
Chimney design &amp;engg code
 
IRJET- Designing and Analysis of Elements of a Multi-Storey Building
IRJET-  	  Designing and Analysis of Elements of a Multi-Storey BuildingIRJET-  	  Designing and Analysis of Elements of a Multi-Storey Building
IRJET- Designing and Analysis of Elements of a Multi-Storey Building
 
Steel Warehouse Project
Steel Warehouse ProjectSteel Warehouse Project
Steel Warehouse Project
 
Chapter 2 design loads(3)
Chapter 2 design loads(3)Chapter 2 design loads(3)
Chapter 2 design loads(3)
 
Kachlakev_RC Control Beam MSC-Marc_wAppendix
Kachlakev_RC Control Beam MSC-Marc_wAppendixKachlakev_RC Control Beam MSC-Marc_wAppendix
Kachlakev_RC Control Beam MSC-Marc_wAppendix
 
Example314b taskgroupb-c-120730160543-phpapp01
Example314b taskgroupb-c-120730160543-phpapp01Example314b taskgroupb-c-120730160543-phpapp01
Example314b taskgroupb-c-120730160543-phpapp01
 
determining_wind_and_snow_loads_for_solaR PANELS EXAPMPLE USA-1-1.pdf
determining_wind_and_snow_loads_for_solaR PANELS EXAPMPLE USA-1-1.pdfdetermining_wind_and_snow_loads_for_solaR PANELS EXAPMPLE USA-1-1.pdf
determining_wind_and_snow_loads_for_solaR PANELS EXAPMPLE USA-1-1.pdf
 
COMPARATIVE STUDY ON ANALYSIS AND DESIGN OF TRUSS USING MANUAL CALCULATIONS A...
COMPARATIVE STUDY ON ANALYSIS AND DESIGN OF TRUSS USING MANUAL CALCULATIONS A...COMPARATIVE STUDY ON ANALYSIS AND DESIGN OF TRUSS USING MANUAL CALCULATIONS A...
COMPARATIVE STUDY ON ANALYSIS AND DESIGN OF TRUSS USING MANUAL CALCULATIONS A...
 
Structural Steel Design Project.pdf
Structural Steel Design Project.pdfStructural Steel Design Project.pdf
Structural Steel Design Project.pdf
 
Structural Steel Design Project.pdf
Structural Steel Design Project.pdfStructural Steel Design Project.pdf
Structural Steel Design Project.pdf
 
IRJET- Dynamic Analysis and Response of K Type & KT Type Fixed Jacket Offshor...
IRJET- Dynamic Analysis and Response of K Type & KT Type Fixed Jacket Offshor...IRJET- Dynamic Analysis and Response of K Type & KT Type Fixed Jacket Offshor...
IRJET- Dynamic Analysis and Response of K Type & KT Type Fixed Jacket Offshor...
 
IRJET- Dynamic Analysis and Response of K Type & KT Type Fixed Jacket Offshor...
IRJET- Dynamic Analysis and Response of K Type & KT Type Fixed Jacket Offshor...IRJET- Dynamic Analysis and Response of K Type & KT Type Fixed Jacket Offshor...
IRJET- Dynamic Analysis and Response of K Type & KT Type Fixed Jacket Offshor...
 
WIND AND EARTHQUAKE EFFECT ON R.C.C & STEEL STRUCTURE
WIND AND EARTHQUAKE EFFECT ON R.C.C & STEEL STRUCTUREWIND AND EARTHQUAKE EFFECT ON R.C.C & STEEL STRUCTURE
WIND AND EARTHQUAKE EFFECT ON R.C.C & STEEL STRUCTURE
 
Ijciet 06 08_005
Ijciet 06 08_005Ijciet 06 08_005
Ijciet 06 08_005
 
Graduation Project (DESIGN AND ANALYSIS OF MULTI-TOWER STRUCTURE USING ETABS).
Graduation Project (DESIGN AND ANALYSIS OF MULTI-TOWER STRUCTURE USING ETABS).Graduation Project (DESIGN AND ANALYSIS OF MULTI-TOWER STRUCTURE USING ETABS).
Graduation Project (DESIGN AND ANALYSIS OF MULTI-TOWER STRUCTURE USING ETABS).
 

More from ASEngineeringService

More from ASEngineeringService (6)

CIVIL ENGINEERING PROJECTS OUTPUTS STAAD OUTPUTS REPORT ACTIVITY
CIVIL ENGINEERING PROJECTS OUTPUTS STAAD OUTPUTS REPORT ACTIVITYCIVIL ENGINEERING PROJECTS OUTPUTS STAAD OUTPUTS REPORT ACTIVITY
CIVIL ENGINEERING PROJECTS OUTPUTS STAAD OUTPUTS REPORT ACTIVITY
 
dsd ds ffffffffffff FURNITURE ffgfg gdfgdgdfg gdfg .ppt
dsd ds ffffffffffff FURNITURE ffgfg gdfgdgdfg gdfg .pptdsd ds ffffffffffff FURNITURE ffgfg gdfgdgdfg gdfg .ppt
dsd ds ffffffffffff FURNITURE ffgfg gdfgdgdfg gdfg .ppt
 
tree.pdf
tree.pdftree.pdf
tree.pdf
 
H 1.ppt
H 1.pptH 1.ppt
H 1.ppt
 
tree.pdf
tree.pdftree.pdf
tree.pdf
 
FDF_watermark (1).pdf
FDF_watermark (1).pdfFDF_watermark (1).pdf
FDF_watermark (1).pdf
 

Recently uploaded

Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptxthe ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptxhumanexperienceaaa
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learningmisbanausheenparvam
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
Analog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAnalog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAbhinavSharma374939
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxupamatechverse
 

Recently uploaded (20)

Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptxthe ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learning
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
Analog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAnalog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog Converter
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
 

This calculation report is relevant to the structural analysis and design of and foundations of the CONDITIONER

  • 1. Page 1 of 117 DESIGN CALCULATION FOR CONDITIONER FOUNDATION Document No. P1001-101-STR-001 A 18/03/2024 Issued for Construction AS MK MK REV DATE DESCRIPTION ORIG CHK APPR AS Civil Engg services Document No. P1001-101-STR-001
  • 2. DESIGN CALCULATION FOR CONDITIONER FOUNDATION Page 2 of 11 CONTENTS 1. SCOPE ...............................................................................................................3 2. REFERENCES....................................................................................................3 2.1 Codes and Standards .........................................................................................3 3. MATERIALS AND UNITS....................................................................................4 4. SOIL PARAMETERS ..........................................................................................4 5. ANALYSIS AND DESIGN METHODOLOGY.......................................................4 5.1 Key Plan .............................................................................................................5 6. LOAD AND LOAD COMBINATION .....................................................................5 6.1 Primary Loads.....................................................................................................5 6.2 LOAD COMBINATIONS......................................................................................6 7. SUMMARY AND CONCLUSION.........................................................................8 8. APPENDIX..........................................................................................................8 ANNEXURE - A ................................................................................................................9 ANNEXURE - B ..............................................................................................................10 ANNEXURE - C ..............................................................................................................11
  • 3. DESIGN CALCULATION FOR CONDITIONER FOUNDATION Page 3 of 11 1. SCOPE This calculation report is relevant to the structural analysis and design of and foundations of the CONDITIONER. 2. REFERENCES 2.1 Codes and Standards The latest edition for following standards, codes and specifications shall apply. IS: 456 – 2000 Code of practice for plain and reinforced concrete. IS: 875 (PART 1) – 2003 Code of Practice for Design Loads (Other than Earthquake) for buildings and structures: Part-1 Dead Loads - Unit weights of Building materials and stored material. IS: 875 (PART 2) - 2003 Code of Practice for Design Loads (Other than Earthquake) for buildings and structures: Part-2 Imposed Loads. IS: 875 (PART 3) – 2003 Code of Practice for Design Loads (Other than Earthquake) for buildings and structures: Part-3 Wind Loads. SP: 34-1987 Handbook of Concrete Reinforcement and Detailing IS: 1904 – 1986 (Reaffirmed 1995) Code of Practice for Design and Construction of Foundation in soils - General Requirements. IS: 2502 – 2004 Code of Practice for Bending and Fixing of Bars for Concrete Reinforcement. BS 5950-1 Structural use of steel in buildings, Code of practice for design in simple and continuous construction, hot rolled sections BS 6399-1 to 3 Code of Practice for Dead and Imposed Loads, Wind loads and Imposed Roof Load BS 8004 Code of Practice for Foundations BS 8110–1 Structural use of concrete. Code of practice for design and construction ASCE 7 -05 Minimum Design Loads Buildings and other Structures IBC 2006 International Building Codes
  • 4. DESIGN CALCULATION FOR CONDITIONER FOUNDATION Page 4 of 11 3. MATERIALS AND UNITS Concrete Minimum Strength fck = 20 MPa at 28 days on cubes c = Reinforced concrete unit weight = 25.00 (KN/m³) mc = Partial safety factor for concrete in strength = 1.5 (ref. 36.4.2.1 of IS456-2000) Steel Reinforcement Steel type Grade Fe500 confirming to IS 1786 Minimum Yield Stress fy = 500 N/mm² ms = Partial safety factor for reinforcement steel = 1.15 (ref. 36.4.2.1 of IS456-2000) 4. SOIL PARAMETERS Following soil parameters are considered as per “Recommendations Based on Soil Investigation Report for Design”. A soil report is not available for the pond area, so the net safe bearing capacity of the soil is conservatively assumed to be 100 kN/m2. The following soil parameters assumed for foundation design Unit weight of soil = 18.0 kN/m³ Coeff. of friction bet. conc and soil, = 0.30 Net allowable bearing capacity of soil (q) = 100 KPa Angle of internal friction (ɸ) = 33˚ Coefficient of friction between soil & footing = 0.30 Coefficient of Active earth pressure (Ka) = 0.30 Coefficient of Passive earth pressure (Kp) = 3.33 5. ANALYSIS AND DESIGN METHODOLOGY While analysis and design of foundation structure Geometry is modelled in the MAT3D software. The structure is analysed and designed using MAT3D as per ASCE for the primary load cases and load combination.
  • 5. DESIGN CALCULATION FOR CONDITIONER FOUNDATION Page 5 of 11 5.1 Key Plan 6. LOAD AND LOAD COMBINATION 6.1 Primary Loads Following are the primary loads, considered for the analysis & design of foundation. Dead - Dead Load LL - Live load SLL - Seismic Live load Wind x – Wind load in X-direction Wind z – Wind load in Z-direction 6.1.1 Dead Load (DL) Self-weight of the pedestal and foundation is considered in the design. For load calculation refer Appendix-A Unit weight of Concrete = 25 kN/m3 Unit weight of Reinforcement Steel = 78.5 kN/m3
  • 6. DESIGN CALCULATION FOR CONDITIONER FOUNDATION Page 6 of 11 6.1.2 Wind Load in Transverse Direction – WT The wind load is calculated in accordance with BS-6399, Part 2. The design wind loads shall be calculated based on a basic wind speed (Vb) of 40 m/sec at a height of 10 m above the ground The site is located at approximately 60 km from the sea. Refer Appendix-A for calculations. Since the structure is small shielding effect is not considered for analysis. For detailed calculation refer Appendix-A. 6.1.3 Wind Load in Longitudinal Direction – WL The wind load is calculated in accordance with BS-6399, Part 2. The design wind loads shall be calculated based on a basic wind speed (Vb) of 40 m/sec at a height of 10 m above the ground. The site is located at approximately 60 km from the sea. Refer Appendix-A for calculations. Since the structure is small shielding effect is not considered for analysis. For detailed calculation refer Appendix-A. 6.1.4 Earthquake Load in X direction EHX Seismic forces are calculated with reference to IBC 2006/ASCE 7-05. Refer Appendix-A. Client Input Data: Design Spectral Response Acceleration Coefficients (5% damping) @ Short Periods SDs = 0.33 Design Spectral Response Acceleration Coefficients (5% damping) @ 1s period SD1 = 0.154 Importance factor I = 1.25 Site class = D 6.1.5 Earthquake Load in Z direction EHZ Seismic forces are calculated with reference to ASCE 7-05/IBC 2006. Refer Appendix-A. 6.2 LOAD COMBINATIONS The load factors are followed as per code, 6.2.1 Serviceability Design Load Combinations For serviceability limit state, the following load combinations are considered:
  • 7. DESIGN CALCULATION FOR CONDITIONER FOUNDATION Page 7 of 11 Load Combinations Dead Load - DL Live Load LL Wind - WL Seismic - EQ 1 2 3 4 5 6 Type L.C. DL(S) LL(O) WL(X+) WL(Z+) EQ(X) EQ(Z) DL(S)+PL(O) 101 1 1 DL(S) + WLX+ 102 1 1 DL(S) + WLZ+ 103 1 1 DL(S)+PL(O)+WL(X+) 104 1 1 1 DL(S)+PL(O)+WL(Z+) 105 1 1 1 DL(S)+PL(O)-WL(X+) 106 1 1 1 DL(S)+PL(O)-WL(Z+) 107 1 1 1 DL(S)+PL(O)+0.7EQX 108 1 1 0.7 DL(S)+PL(O)+0.7EQZ 109 1 1 0.7 6.2.2 Ultimate Load Combinations Foundation & Pedestal are designed with ultimate (Factored) load combinations. Load Combinations Dead Load - DL Live Load (LL) Wind - WL Seismic - EQ 1 2 3 4 5 6 Type L.C. DL(S) LL(O) WL(X+) WL(Z+) EQ(X) EQ(Z) 1.4 DL(S) + 1.6PL(O) 201 1.4 1.6 1.2DL(S) + 1.4WLX+ 202 1.2 1.4 1.2DL(S) + 1.4WLZ+ 203 1.2 1.4 1.4DL(S)+1.6PL(O) 204 1.4 1.6 1.2DL(S)+1.2PL(O)+1.2WL 206 1.2 1.2 1.2 1.2DL(S)+1.2PL(O)-1.2 WL 207 1.2 1.2 1.2 1.2DL(S)+1.2PL(O)+1.2 WL 208 1.2 1.2 1.2 1.2DL(S)+1.2PL(O)-1.2 WL 209 1.2 1.2 1.2 1.2DL(S)+1.2PL(O)+0.6WL 206 1.2 1.2 0.6
  • 8. DESIGN CALCULATION FOR CONDITIONER FOUNDATION Page 8 of 11 1.2DL(S)+1.2PL(O)-0.6WL 207 1.2 1.2 0.6 1.2DL(S)+1.2PL(O)+0.6 WL 208 1.2 1.2 0.6 1.2DL(S)+1.2PL(O)-0.6 WL 209 1.2 1.2 0.6 1.2 D + 1.2PL(O) + 1.0 EQX 210 1.2 1.2 1 1.2 D + 1.2PL(O) + 1.0 EQZ 211 1.2 1.2 1 7. SUMMARY AND CONCLUSION Foundation calculation has been designed for CONDITIONER as mentioned in the Load case & Load combination on Section 7; Foundation calculation can be referred from Appendix – B. Detail drawing has been included in Appendix – C. 8. APPENDIX APPENDIX-A: LOAD CALCUALTION APPENDIX-B: FOUNDATION CALCUALTION APPENDIX-C: FOUNDATION DRAWING
  • 9. DESIGN CALCULATION FOR CONDITIONER FOUNDATION Page 9 of 11 ANNEXURE - A LOAD CALCUALTION
  • 10. LOAD CALCULATION 1. Dead Loads (DL) = 25.00 kN No. of Pedestal = 6.0 Nos Load Per Pedestal = 25/6 = 4.17 KN 2. Live Loads (LL) = 2.00 kN/m2 = 6.1x2.5 = 15.25 m2 Total Live Load = 30.5 kN No. of Pedestal = 6.0 Nos Load Per Pedestal = 30.5/6 = 5.08 KN Live Load of Skid Length & Width of Container Dead Load of Skid For dead load case, Self-weight of the pedestals and footing is considered in the analysis. Load calculation 1 of 1
  • 11. 4.SEISMIC LOAD Calculation of Seismic Load as per ASCE 7-05 & IBC-2009 Seismic Parameters Occupancy catagory = III Table 1604.5: IBC 2009 Seismic Importance factor I = 1.25 Table 11.5-1: ASCE 7-05 Response modification factor(considering steel ordinary cantilever column system) R = 3.50 Table 12.2-1: ASCE 7-05 Site class = D Geotech Report Sec 10.6 Design Spectral Response Acceleration Coefficients (5% damping) @ short Periods SDS = 0.33 Eqn. 11.4-3: ASCE 7-05 = Design Spectral Response Acceleration Coefficients (5% damping) @ 1s period SD1 = 0.15 Eqn. 11.4-4: ASCE 7-05 = Seismic Response Coefficient CS = SDS/(R/I) Eqn. 12.8-2: ASCE 7-05 = 0.12 Height of structure hn = 2.28 m (Considered) Approximate fundamental period Ta = Ct*hn x Eqn. 12.8-7: ASCE 7-05 = 0.09 Ct = 0.049 x = 0.75 T = Ta Clause 12.8-2: ASCE 7-05 = 0.09 Since T < TL, the calculated value of Cs should be less than SD1/(T*(R/I)) Eqn. 12.8-3: ASCE 7-05 SD1/(T*(R/I)) = 0.61 As per Eqn. 15.4-1:ASCE 7-05, CS shall not be less than 0.021. So CS CS = 0.12 Since S1 in this case is not greater than 0.6g, Eqn. 15.4-2 is not applicable. Total design lateral force or shear V = CSXW Eqn. 12.8-1: ASCE 7-05 = 0.12xW Seismic Weight W1 = DL (Refer Vendor Input) = 55.500 kN Total design lateral force or shear = 0.12x55.5 Ps1 = 6.66 kN Load for Structure Lateral force at the base of Structure Ps1 = 6.66 kN No of Pedestal = 6 Nos Lateral force per pedestal (Both Direction) = 6.66/6 = 1.11 kN table 12.8-2 ASCE 7-05 SEISMIC LOAD CALCULATION
  • 12. 3.1 Design Data Effective Height of Structure (1.110+0.3) Hc = 1.75 m Closest Distance to Sea = 60.00 km 3.2 Wind Pressures Basic wind speed = Vb = 44.00 m/s Site Altitude above MSL = Ds = 30.00 m Altitude factor = Sa = 1+0.001Ds Ref. Cl. 2.2.2.2 Sa = 1.030 Direction factor = Sd = 1.00 Ref. Cl. 2.2.2.3 Seasonal factor = Ss = 1.00 Ref. Cl. 2.2.2.4 Probability factor = Sp = 1.00 Ref. Cl. 2.2.2.5 Site Wind Speed = Vs = Vb*Sa*Sd*Ss*Sp Ref. Cl. 2.2.2.1 Vs = 45.32 m/s = Sb = 1.070 Ref. Cl. 2.2.3.3, Table 4 Effective Wind Speed = Ve = Vs*Sb Ve = 48.49 m/s Dynamic pressure = qs = 0.613 Ve 2 Ref. Cl. 2.1.2 qs = 1.44 kN/m2 wind pressure = p = qs*Cp*Ca Ref.Cl 2.1 Net Pressure Coefficients = Cp = 1.00 Ref. Table 5a Size effect factor Ca = 0.75 Ref Fig 4 (site in country) = 1.44x1x0.75 = 1.08 kN/m2 WIND LOAD CALCULATION 3.Calculation of Wind Loads as per BS 6399: Part 2: 1997 Terrain & Building factor for Height of 4.05m (extending >=2Km)
  • 13. WIND LOAD CALCULATION Horizontal load due to Wind Force: Width of Tank Structure w = 2.440 m Height of Tank Structure h = 2.590 m Length of Tank Structure l = 6.100 m Transverse direction = 2.44x2.59x1.08 Horizontal Load on Transverse Direction(container) = 6.83 kN Longitudinal direction = 6.1x2.59x1.08 Horizontal Load on Longitudinal Direction (container) = 17.06 kN Horizontal Load on Transverse Direction per Pedestal = No of Pedestal = 6 Nos = 6.83 / 6 Horizontal Load on Transverse Direction per Pedestal = 1.14 kN Horizontal Load on Longitudinal Direction per Pedestal = = 17.06 / 6 Horizontal Load on Longitudinal Direction per Pedestal = 2.84 kN Horizontal Load on Transverse Direction / No. of Pedestal Horizontal Load onLongitudinal Direction / No. of pedestal Width of Structure x Height of Structure (h) x Wind Pressure = Fx Fz = Length of Structure x Height of Structure (h) x Wind Pressure
  • 14. Load Case Total Vertical Load (kN) Total Horizontal Load (Transverse) (kN) Total Horizontal Load (Longitudinal) (kN) Vertical Load (kN) Horizontal Load (Transverse) (kN) Horizontal Load (Longitudinal) (kN) Dead Load 25.00 0.00 0.00 4.17 0.00 0.00 Live Load 30.50 0.00 0.00 5.08 0.00 0.00 Wind Load 0.00 6.83 17.06 0.00 1.14 2.84 Seismic Load 0.00 6.66 6.66 0.00 1.11 1.11 Over all Load Load Per Pedestal (6 Nos of Pedestal) Load Summary Table for Foundation Design
  • 15. DESIGN CALCULATION FOR CONDITIONER FOUNDATION Page 10 of 11 ANNEXURE - B FOUNDATION CALCUALTION
  • 16. Dimensional Solutions Mat3D Product Version 23.1.3377.730 Date 18-03-2024 23:35:54 Workspace Name CONTAINER FOUNDATION DESIGN Designed By Checked By: File Path REPORT - CONTAINER FOUNDATION DESIGN PROJECT INFORMATION Client Name: Project Name: Project Number: RESULTS SUMMARY Footing Description - - F1 Footing Result Min/Max Allowable/Required Units Governing Pass/Fail Value Value Load Parameters Combination Bearing Pressure PASS 148.6942 160.8 kN/sq m Max Bearing to Allowable Bearing Ratio PASS 0.9247 1 Min Footing Contact Area Percent PASS 45.8435 100 Stability Ratio - X Direction PASS 99999 1.5 Stability Ratio - Z Direction PASS 99999 1.5 Sliding Ratio - X Direction PASS 3.8747 1.5 Sliding Ratio - Z Direction PASS 1.5554 1.5 Uplift Safety Factor PASS 99999 1.5 Beam Shear - X Direction PASS 0 3.5777 N/sq mm Beam Shear - Z Direction PASS 0 3.5777 N/sq mm Punching Shear PASS 0 0.3061 N/sq mm Bottom Rebar Area - X Direction PASS 1675.5161 1440 sq mm/m Bottom Rebar Area - Z Direction PASS 1675.5161 1440 sq mm/m Top Rebar Area - X Direction PASS 1675.5161 0 sq mm/m Top Rebar Area - Z Direction PASS 1675.5161 0 sq mm/m 4 - 1.2 DL(S) + 1.4 WL(CPZ-) 1 - 1.2 DL(S) + 1.4 WL(CPX+) 12 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPZ+) 5 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPX+) 3 - 1.2 DL(S) + 1.4 WL(CPZ+) 1 - DL(S) + WL(CPX+) 4 - DL(S) + WL(CPZ-) 1 - DL(S) + WL(CPX+) 1 - 1.2 DL(S) + 1.4 WL(CPX+) 4 - 1.2 DL(S) + 1.4 WL(CPZ-) 4 - DL(S) + WL(CPZ-) 4 - DL(S) + WL(CPZ-) 4 - DL(S) + WL(CPZ-) 1 - DL(S) + WL(CPX+) 1 - DL(S) + WL(CPX+) CONTAINER FOUNDATION DESIGN Page 1 of 21
  • 17. MATERIAL QUANTITIES Footing Description - - F1 Parameters Value Units Total Concrete Volume 0.288 cu m Total Formwork 1.92 sq m Total Pier Rebar Weight 0 kg Total Footing Rebar Weight 15.79 kg Total Rebar Weight 15.79 kg Total Anchor Bolt Weight 0 kg Total Grout Volume 0 cu m Total Excavation Volume 0.216 cu m DESIGN CODE BSI_8110_1997 INPUT UNITS SI OUTPUT UNITS SI CONCRETE PARAMETERS: REINFORCING STEEL PARAMETERS: Compressive Strength 20 N/sq mm Yield Strength 500 N/sq mm Unit Weight 25 kN/cu m Unit Weight 76.973 kN/cu m Pier Side Cover 40 mm Modulus Of Elasticity 199948.212 N/sq mm Footing Side Cover 50 mm Pier Min Long Bar Spacing 25 mm Footing Top Cover 50 mm Footing Min BarSpacing 125 mm Footing Bottom Cover 50 mm Footing Max Bar Spacing 200 mm Shear Enhancement Factor Close to Support 1 Consider Pier Long Bar Spacing Limit False Distance to effective depth ratio for shear 1 Use Epoxy Coated Rebar No enhancement in pile supported footings Consider Footing Crack Control Yes Use Lightweight Concrete No Crack Control Spacing 150 mm Lightweight Modification Factor 1 SOIL PARAMETERS: REBAR PARAMETERS: Unit Weight 18 kN/cu m Max Pier Long Bar Size 16 mm Allowable Net Bearing Capacity = Pnet = 150 kN/sq m Min Pier Long BarSize 14 mm Bearing Capacity Method Linear Soil Pressure Max Pier Tie Bar Size 12 mm Soil Type Granular Min Pier Tie Bar Size 8 mm Ultimate Cohesion c 0 kN/sq m Max Footing Bar Size 25 mm Ultimate Adhesion Ad 0 kN/sq m Min Footing Bar Size 12 mm Passive Pressure Coefficient Ppc 0 Min Footing Steel Ratio 0.0018 Soil To Concrete Friction Scf 0.36 Max Strap Beam Long Bar Size 10 mm Allowable Increase In Soil Pressure Min Strap Beam Long BarSize 6 mm Dead 0 Max Strap Beam Tie Bar Size 10 mm Live 0 Min Strap Beam Tie Bar Size 6 mm Wind 0 Earthquake 0 CODE SPECIFIC OPTIONS Erec 0 Allowable Crack Width 0.2 mm Oper 0 Concrete Elastic Modulus for Crack Control 10000 N/sq mm Test 0 Safety Factor Against Lateral Forces 1.5 Percent Neglected Overburden Nob 0 Percent Neglected Soil Cover Nsc 0 BUOYANCY CRITERIA: Consider Buoyancy: No Water Table Below Grade 2 m CONTAINER FOUNDATION DESIGN Page 2 of 21
  • 18. DEFAULT PARAMETERS: Consider Biaxial Bending Pressure for Concrete Design: No Limit Footing To Soil Non-Contact Area No Max Non-Contact Area (%) 0 FOOTING GEOMETRY Footing Description - - F1 Footing Maximum X Dimension - Lx = 0.6 m Footing Maximum Z Dimension - Lz = 0.6 m Footing Thickness - h = 0.8 m Footing Depth Below Grade 0.6 m LOAD ELEMENT GEOMETRY AND APPLIED LOADS Loads applied at top of pedestal Footing Description - - F1 - Load Element - - P1 Geometry Shape X Dim Z Dim Height Offset - X Offset - Z Min Reinft Ratio m m m m m Rectangle 0.6 0.6 0.1 0 0 0.005 Load Case Axial Load Shear-X Mom-Z Shear-Z Mom-X kN kN kN-m kN kN-m 1 - DL(S) 4.17 0 0 0 0 2 - LL 5.08 0 0 0 0 3 - WL(CPX+) 0 1.14 0 0 0 4 - WL(CPX-) 0 -1.14 0 0 0 5 - WL(CPZ+) 0 0 0 2.4 0 6 - WL(CPZ-) 0 0 0 -2.84 0 7 - EQ(X) 0 0 0 0 0 8 - EQ(Z) 0 0 0 0 0 ALLOWABLE LOAD COMBINATIONS Footing Description - - F1 - Load Element - - P1 Load Combination Axial Load Shear-X Mom-Z Shear-Z Mom-X kN kN kN-m kN kN-m 1 - DL(S) + WL(CPX+) 4.17 1.14 0 0 0 2 - DL(S) + WL(CPX-) 4.17 -1.14 0 0 0 3 - DL(S) + WL(CPZ+) 4.17 0 0 2.4 0 4 - DL(S) + WL(CPZ-) 4.17 0 0 -2.84 0 5 - DL(S) + LL + WL(CPX+) 9.25 1.14 0 0 0 6 - DL(S) + LL + WL(CPX-) 9.25 -1.14 0 0 0 7 - DL(S) + LL + WL(CPZ+) 9.25 0 0 2.4 0 8 - DL(S) + LL + WL(CPZ-) 9.25 0 0 -2.84 0 9 - DL(S) + LL 9.25 0 0 0 0 10 - DL(S) + LL + 0.7 EQ(X) 9.25 0 0 0 0 11 - DL(S) + LL - 0.7 EQ(X) 9.25 0 0 0 0 12 - DL(S) + LL + 0.7 EQ(Z) 9.25 0 0 0 0 13 - DL(S) + LL - 0.7 EQ(Z) 9.25 0 0 0 0 CONTAINER FOUNDATION DESIGN Page 3 of 21
  • 19. ULTIMATE LOAD COMBINATIONS Footing Description - - F1 - Load Element - - P1 Load Combination Axial Load Shear-X Mom-Z Shear-Z Mom-X kN kN kN-m kN kN-m 1 - 1.2 DL(S) + 1.4 WL(CPX+) 5.004 1.596 0 0 0 2 - 1.2 DL(S) + 1.4 WL(CPX-) 5.004 -1.596 0 0 0 3 - 1.2 DL(S) + 1.4 WL(CPZ+) 5.004 0 0 3.36 0 4 - 1.2 DL(S) + 1.4 WL(CPZ-) 5.004 0 0 -3.976 0 5 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPX+) 11.1 1.368 0 0 0 6 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPX-) 11.1 -1.368 0 0 0 7 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPZ+) 11.1 0 0 2.88 0 8 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPZ-) 11.1 0 0 -3.408 0 9 - 1.4 DL(S) + 1.6 LL 13.966 0 0 0 0 10 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPX+) 11.1 0.684 0 0 0 11 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPX-) 11.1 -0.684 0 0 0 12 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPZ+) 11.1 0 0 1.44 0 13 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPZ-) 11.1 0 0 -1.704 0 14 - 1.2 DL(S) + 1.2 LL + EQ(X) 11.1 0 0 0 0 15 - 1.2 DL(S) + 1.2 LL - EQ(X) 11.1 0 0 0 0 16 - 1.2 DL(S) + 1.2 LL + EQ(Z) 11.1 0 0 0 0 17 - 1.2 DL(S) + 1.2 LL - EQ(Z) 11.1 0 0 0 0 CONTAINER FOUNDATION DESIGN Page 4 of 21
  • 20. Footing Description - - F1 SELF WEIGHTS AND APPLIED EXTERNAL LOAD - Allowable Load Combinations Load Combination Load Element Soil Footing App Axial Total Axial Buoyant Weight Weight Weight Load Load Load kN kN kN kN kN kN 1 - DL(S) + WL(CPX+) 0.9 0 7.2 4.17 12.27 2 - DL(S) + WL(CPX-) 0.9 0 7.2 4.17 12.27 3 - DL(S) + WL(CPZ+) 0.9 0 7.2 4.17 12.27 4 - DL(S) + WL(CPZ-) 0.9 0 7.2 4.17 12.27 5 - DL(S) + LL + WL(CPX+) 0.9 0 7.2 9.25 17.35 6 - DL(S) + LL + WL(CPX-) 0.9 0 7.2 9.25 17.35 7 - DL(S) + LL + WL(CPZ+) 0.9 0 7.2 9.25 17.35 8 - DL(S) + LL + WL(CPZ-) 0.9 0 7.2 9.25 17.35 9 - DL(S) + LL 0.9 0 7.2 9.25 17.35 10 - DL(S) + LL + 0.7 EQ(X) 0.9 0 7.2 9.25 17.35 11 - DL(S) + LL - 0.7 EQ(X) 0.9 0 7.2 9.25 17.35 12 - DL(S) + LL + 0.7 EQ(Z) 0.9 0 7.2 9.25 17.35 13 - DL(S) + LL - 0.7 EQ(Z) 0.9 0 7.2 9.25 17.35 Base Shears and Moments - Allowable Load Combinations Load Combination Shear-X Mom-Z Shear-Z Mom-X kN kN-m kN kN-m 1 - DL(S) + WL(CPX+) 1.14 1.026 0 0 2 - DL(S) + WL(CPX-) -1.14 -1.026 0 0 3 - DL(S) + WL(CPZ+) 0 0 2.4 2.16 4 - DL(S) + WL(CPZ-) 0 0 -2.84 -2.556 5 - DL(S) + LL + WL(CPX+) 1.14 1.026 0 0 6 - DL(S) + LL + WL(CPX-) -1.14 -1.026 0 0 7 - DL(S) + LL + WL(CPZ+) 0 0 2.4 2.16 8 - DL(S) + LL + WL(CPZ-) 0 0 -2.84 -2.556 9 - DL(S) + LL 0 0 0 0 10 - DL(S) + LL + 0.7 EQ(X) 0 0 0 0 11 - DL(S) + LL - 0.7 EQ(X) 0 0 0 0 12 - DL(S) + LL + 0.7 EQ(Z) 0 0 0 0 13 - DL(S) + LL - 0.7 EQ(Z) 0 0 0 0 SELF WEIGHTS AND APPLIED EXTERNAL LOAD - Ultimate Load Combinations Load Combination Load Element Soil Footing App Axial Total Axial Buoyant Weight Weight Weight Load Load Load kN kN kN kN kN kN 1 - 1.2 DL(S) + 1.4 WL(CPX+) 1.08 0 8.64 5.004 14.724 2 - 1.2 DL(S) + 1.4 WL(CPX-) 1.08 0 8.64 5.004 14.724 3 - 1.2 DL(S) + 1.4 WL(CPZ+) 1.08 0 8.64 5.004 14.724 4 - 1.2 DL(S) + 1.4 WL(CPZ-) 1.08 0 8.64 5.004 14.724 5 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPX+) 1.08 0 8.64 11.1 20.82 6 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPX-) 1.08 0 8.64 11.1 20.82 7 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPZ+) 1.08 0 8.64 11.1 20.82 8 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPZ-) 1.08 0 8.64 11.1 20.82 9 - 1.4 DL(S) + 1.6 LL 1.26 0 10.08 13.966 25.306 10 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPX+) 1.08 0 8.64 11.1 20.82 11 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPX-) 1.08 0 8.64 11.1 20.82 CONTAINER FOUNDATION DESIGN Page 5 of 21
  • 21. 12 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPZ+) 1.08 0 8.64 11.1 20.82 13 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPZ-) 1.08 0 8.64 11.1 20.82 14 - 1.2 DL(S) + 1.2 LL + EQ(X) 1.08 0 8.64 11.1 20.82 15 - 1.2 DL(S) + 1.2 LL - EQ(X) 1.08 0 8.64 11.1 20.82 16 - 1.2 DL(S) + 1.2 LL + EQ(Z) 1.08 0 8.64 11.1 20.82 17 - 1.2 DL(S) + 1.2 LL - EQ(Z) 1.08 0 8.64 11.1 20.82 Base Shears and Moments - Ultimate Load Combinations Load Combination Shear-X Mom-Z Shear-Z Mom-X kN kN-m kN kN-m 1 - 1.2 DL(S) + 1.4 WL(CPX+) 1.596 1.4364 0 0 2 - 1.2 DL(S) + 1.4 WL(CPX-) -1.596 -1.4364 0 0 3 - 1.2 DL(S) + 1.4 WL(CPZ+) 0 0 3.36 3.024 4 - 1.2 DL(S) + 1.4 WL(CPZ-) 0 0 -3.976 -3.5784 5 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPX+) 1.368 1.2312 0 0 6 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPX-) -1.368 -1.2312 0 0 7 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPZ+) 0 0 2.88 2.592 8 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPZ-) 0 0 -3.408 -3.0672 9 - 1.4 DL(S) + 1.6 LL 0 0 0 0 10 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPX+) 0.684 0.6156 0 0 11 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPX-) -0.684 -0.6156 0 0 12 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPZ+) 0 0 1.44 1.296 13 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPZ-) 0 0 -1.704 -1.5336 14 - 1.2 DL(S) + 1.2 LL + EQ(X) 0 0 0 0 15 - 1.2 DL(S) + 1.2 LL - EQ(X) 0 0 0 0 16 - 1.2 DL(S) + 1.2 LL + EQ(Z) 0 0 0 0 17 - 1.2 DL(S) + 1.2 LL - EQ(Z) 0 0 0 0 CONTAINER FOUNDATION DESIGN Page 6 of 21
  • 22. SOIL BEARING PRESSURE RESULTS - Allowable Load Combinations - Without Buoyancy Footing Description - - F1 Load Combination Max Min Vertex 1 Vertex 2 All Contact Percent Pressure Pressure Pressure Pressure Pressure Area Contact kN/sq m kN/sq m kN/sq m kN/sq m kN/sq m sq m 1 - DL(S) + WL(CPX+) 62.5833 5.5833 62.5833 5.5833 160.8 0.36 100 2 - DL(S) + WL(CPX-) 62.5833 5.5833 62.5833 5.5833 160.8 0.36 100 3 - DL(S) + WL(CPZ+) 109.9809 0 109.9809 0 160.8 0.2231 61.9804 4 - DL(S) + WL(CPZ-) 148.6942 0 148.6942 0 160.8 0.165 45.8435 5 - DL(S) + LL + WL(CPX+) 76.6944 19.6944 76.6944 19.6944 160.8 0.36 100 6 - DL(S) + LL + WL(CPX-) 76.6944 19.6944 76.6944 19.6944 160.8 0.36 100 7 - DL(S) + LL + WL(CPZ+) 109.8422 0 109.8422 0 160.8 0.3159 87.7522 8 - DL(S) + LL + WL(CPZ-) 126.2625 0 126.2625 0 160.8 0.2748 76.3401 9 - DL(S) + LL 48.1944 48.1944 48.1944 48.1944 160.8 0.36 100 10 - DL(S) + LL + 0.7 EQ(X) 48.1944 48.1944 48.1944 48.1944 160.8 0.36 100 11 - DL(S) + LL - 0.7 EQ(X) 48.1944 48.1944 48.1944 48.1944 160.8 0.36 100 12 - DL(S) + LL + 0.7 EQ(Z) 48.1944 48.1944 48.1944 48.1944 160.8 0.36 100 13 - DL(S) + LL - 0.7 EQ(Z) 48.1944 48.1944 48.1944 48.1944 160.8 0.36 100 F1 - SOIL BEARING PRESSURE CALCULATION FOR LOAD COMBINATION 4 Eccentricity Condition: Eccentricity Greater Than Kern Distance in Z Direction Eccentricity X Dir - Ecc,x = 0 m Eccentricity Z Dir - Ecc,z = 0.2083 m Total Axial Load - P = 12.27 kN Footing Max Length X Dir - Lx = 0.6 m Footing Max Width Z Dir - Lz = 0.6 m Footing Area - A = 0.36 sq m Soil Overburden - S = 10.8 kN/sq m Gross Bearing Pressure - Gbp = (2*P)/(3*(Lz/2 - Ecc,z) * Lx) 148.6942 kN/sq m Net Bearing Pressure - Nbp = Gbp - S = 137.8942 kN/sq m STABILITY RATIO - Allowable Load Combinations - Without Buoyancy Footing Description - - F1 Load Combination Overturning Resisting S.R. Overturning Resisting S.R. All Moment Moment X Dir Moment Moment Z Dir S.R. kN-m kN-m kN-m kN-m 1 - DL(S) + WL(CPX+) 0 NaN 99999 0 NaN 99999 1.5 2 - DL(S) + WL(CPX-) 1.026 NaN NaN 0 NaN 99999 1.5 3 - DL(S) + WL(CPZ+) 0 NaN 99999 0 NaN 99999 1.5 4 - DL(S) + WL(CPZ-) 0 NaN 99999 2.556 NaN NaN 1.5 5 - DL(S) + LL + WL(CPX+) 0 NaN 99999 0 NaN 99999 1.5 6 - DL(S) + LL + WL(CPX-) 1.026 NaN NaN 0 NaN 99999 1.5 7 - DL(S) + LL + WL(CPZ+) 0 NaN 99999 0 NaN 99999 1.5 8 - DL(S) + LL + WL(CPZ-) 0 NaN 99999 2.556 NaN NaN 1.5 9 - DL(S) + LL 0 NaN 99999 0 NaN 99999 1.5 10 - DL(S) + LL + 0.7 EQ(X) 0 NaN 99999 0 NaN 99999 1.5 11 - DL(S) + LL - 0.7 EQ(X) 0 NaN 99999 0 NaN 99999 1.5 12 - DL(S) + LL + 0.7 EQ(Z) 0 NaN 99999 0 NaN 99999 1.5 13 - DL(S) + LL - 0.7 EQ(Z) 0 NaN 99999 0 NaN 99999 1.5 CONTAINER FOUNDATION DESIGN Page 7 of 21
  • 23. SLIDING SAFETY FACTOR - Allowable Load Combinations - Without Buoyancy Footing Description - - F1 Load Combination Lateral Lateral Sliding Lateral Lateral Sliding All Load Resist F.S. - X Dir Load Resist F.S. - Z Dir Sliding kN kN kN kN 1 - DL(S) + WL(CPX+) 1.14 4.4172 3.8747 0 4.4172 99999 1.5 2 - DL(S) + WL(CPX-) 1.14 4.4172 3.8747 0 4.4172 99999 1.5 3 - DL(S) + WL(CPZ+) 0 4.4172 99999 2.4 4.4172 1.8405 1.5 4 - DL(S) + WL(CPZ-) 0 4.4172 99999 2.84 4.4172 1.5554 1.5 5 - DL(S) + LL + WL(CPX+) 1.14 6.246 5.4789 0 6.246 99999 1.5 6 - DL(S) + LL + WL(CPX-) 1.14 6.246 5.4789 0 6.246 99999 1.5 7 - DL(S) + LL + WL(CPZ+) 0 6.246 99999 2.4 6.246 2.6025 1.5 8 - DL(S) + LL + WL(CPZ-) 0 6.246 99999 2.84 6.246 2.1993 1.5 9 - DL(S) + LL 0 6.246 99999 0 6.246 99999 1.5 10 - DL(S) + LL + 0.7 EQ(X) 0 6.246 99999 0 6.246 99999 1.5 11 - DL(S) + LL - 0.7 EQ(X) 0 6.246 99999 0 6.246 99999 1.5 12 - DL(S) + LL + 0.7 EQ(Z) 0 6.246 99999 0 6.246 99999 1.5 13 - DL(S) + LL - 0.7 EQ(Z) 0 6.246 99999 0 6.246 99999 1.5 Footing Description - - F1 SLIDING RESISTANCE CALCULATION - X DIRECTION - LOAD COMBINATION 1 Effective Footing Length X Dir - Lx = 0.6 m Effective Footing Width Z Dir - Lz = 0.6 m Footing Thickness Considered = h = 0.6 m Soil Cover - h1 = 0 m Soil Unit Weight - Y = 18 kN/cu m Passive Pressure At Footing Top - p1 = Yh1 = 0 kN/sq m Passive Pressure At Footing Base - p2 = Y(h + h1) = 10.8 kN/sq m Passive Resistance - R1 = 0.5*Lz*h*(p1+p2) = 1.944 kN Cohesion - c = 0 kN/sq m Adhesion - B = 0 kN/sq m Cohesive Resistance - R2 = 2*c*Lz*h = 0 kN Adhesive Resistance - R3 = B*Lx*Lz = 0 kN Passive Resistance - R4 = R1 * Ppc = 0 kN Applied Axial Load = Aal = 12.27 kN Soil Weight = Sw = 0 kN Friction Resistance - R5 = (Aal - Nsc * Sw) * Scf = 4.4172 kN Total Lateral Resistance - R = R4+R5 = 4.4172 kN Total Applied Lateral Load - S = 1.14 kN Sliding Factor Of Safety - FS,slid = R/S = 3.8747 Footing Description - - F1 SLIDING RESISTANCE CALCULATION - Z DIRECTION - LOAD COMBINATION 4 Effective Footing Length Z Dir - Lz = 0.6 m Effective Footing Width X Dir - Lx = 0.6 m Footing Thickness Considered = h = 0.6 m Soil Cover - h1 = 0 m Soil Unit Weight - Y = 18 kN/cu m Passive Pressure At Footing Top - p1 = Yh1 = 0 kN/sq m Passive Pressure At Footing Base - p2 = Y(h + h1) = 10.8 kN/sq m Passive Resistance - R1 = 0.5*Lx*h*(p1+p2) = 1.944 kN Cohesion - c = 0 kN/sq m Adhesion - B = 0 kN/sq m CONTAINER FOUNDATION DESIGN Page 8 of 21
  • 24. Cohesive Resistance - R2 = 2*c*Lx*h = 0 kN Adhesive Resistance - R3 = B*Lx*Lz = 0 kN Passive Resistance - R4 = R1 * Ppc = 0 kN Applied Axial Load = Aal = 12.27 kN Soil Weight = Sw = 0 kN Friction Resistance - R5 = (Aal - Nsc * Sw) * Scf = 4.4172 kN Total Lateral Resistance - R = R4+R5 = 4.4172 kN Total Applied Lateral Load - S = 2.84 kN Sliding Factor Of Safety - FS,slid = R/S = 1.5554 UPLIFT SAFETY FACTOR - Allowable Load Combinations - Without Buoyancy Footing Description - - F1 Load Combination Load Element Soil Footing App Axial Buoyant Safety Allowable/Required Weight Weight Weight Load Load Factor Factor kN kN kN kN kN kN 1 - DL(S) + WL(CPX+) 0.9 0 7.2 4.17 0 99999 1.5 2 - DL(S) + WL(CPX-) 0.9 0 7.2 4.17 0 99999 1.5 3 - DL(S) + WL(CPZ+) 0.9 0 7.2 4.17 0 99999 1.5 4 - DL(S) + WL(CPZ-) 0.9 0 7.2 4.17 0 99999 1.5 5 - DL(S) + LL + WL(CPX+) 0.9 0 7.2 9.25 0 99999 1.5 6 - DL(S) + LL + WL(CPX-) 0.9 0 7.2 9.25 0 99999 1.5 7 - DL(S) + LL + WL(CPZ+) 0.9 0 7.2 9.25 0 99999 1.5 8 - DL(S) + LL + WL(CPZ-) 0.9 0 7.2 9.25 0 99999 1.5 9 - DL(S) + LL 0.9 0 7.2 9.25 0 99999 1.5 10 - DL(S) + LL + 0.7 EQ(X) 0.9 0 7.2 9.25 0 99999 1.5 11 - DL(S) + LL - 0.7 EQ(X) 0.9 0 7.2 9.25 0 99999 1.5 12 - DL(S) + LL + 0.7 EQ(Z) 0.9 0 7.2 9.25 0 99999 1.5 13 - DL(S) + LL - 0.7 EQ(Z) 0.9 0 7.2 9.25 0 99999 1.5 Footing Description - - F1 UPLIFT RESISTANCE CALCULATION - LOAD COMBINATION 1 Load Element Weight - Esf = 0.9 kN Soil Weight - Ssw = 0 kN Footing Weight - Fsw = 7.2 kN App Axial Weight - Tal = 4.17 kN Buoyant Weight - Bl = 0 kN Total Self Weight - Tsw = Esf + Ssw + Fsw - Bl = 8.1 kN Uplift Safety Factor - Usf = (Tsw / abs(Tal)) if Tal < 0 = 99999 Allowed Safety Factor - Asf = 1.5 CONTAINER FOUNDATION DESIGN Page 9 of 21
  • 25. FACTORED SOIL BEARING PRESSURE RESULTS - Ultimate Load Combinations Footing Description - - F1 Load Combination Max X Min X Max Z Min Z Pressure Pressure Pressure Pressure kN/sq m kN/sq m kN/sq m kN/sq m 1 - 1.2 DL(S) + 1.4 WL(CPX+) 80.8 1 40.9 40.9 2 - 1.2 DL(S) + 1.4 WL(CPX-) 80.8 1 40.9 40.9 3 - 1.2 DL(S) + 1.4 WL(CPZ+) 40.9 40.9 172.9003 0 4 - 1.2 DL(S) + 1.4 WL(CPZ-) 40.9 40.9 287.1777 0 5 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPX+) 92.0333 23.6333 57.8333 57.8333 6 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPX-) 92.0333 23.6333 57.8333 57.8333 7 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPZ+) 57.8333 57.8333 131.8106 0 8 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPZ-) 57.8333 57.8333 151.515 0 9 - 1.4 DL(S) + 1.6 LL 70.2944 70.2944 70.2944 70.2944 10 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPX+) 74.9333 40.7333 57.8333 57.8333 11 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPX-) 74.9333 40.7333 57.8333 57.8333 12 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPZ+) 57.8333 57.8333 93.8333 21.8333 13 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPZ-) 57.8333 57.8333 100.4333 15.2333 14 - 1.2 DL(S) + 1.2 LL + EQ(X) 57.8333 57.8333 57.8333 57.8333 15 - 1.2 DL(S) + 1.2 LL - EQ(X) 57.8333 57.8333 57.8333 57.8333 16 - 1.2 DL(S) + 1.2 LL + EQ(Z) 57.8333 57.8333 57.8333 57.8333 17 - 1.2 DL(S) + 1.2 LL - EQ(Z) 57.8333 57.8333 57.8333 57.8333 CONTAINER FOUNDATION DESIGN Page 10 of 21
  • 26. BEAM SHEAR STRESS - X DIRECTION - Ultimate Load Combinations - Without Buoyancy Footing Description - - F1 Beam Shear Stress Critical Section - Part 1, Section 3.11.3.3 / 3.11.3.4 Load Combination Location Shear Shear Allowable Crit Sect Crit Sect Stress Stress m kN N/sq mm N/sq mm 1 - 1.2 DL(S) + 1.4 WL(CPX+) 0.6 0 0 3.5777 2 - 1.2 DL(S) + 1.4 WL(CPX-) 0.6 0 0 3.5777 3 - 1.2 DL(S) + 1.4 WL(CPZ+) 0 0 0 0 4 - 1.2 DL(S) + 1.4 WL(CPZ-) 0 0 0 0 5 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPX+) 0 0 0 0 6 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPX-) 0 0 0 0 7 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPZ+) 0 0 0 0 8 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPZ-) 0 0 0 0 9 - 1.4 DL(S) + 1.6 LL 0 0 0 0 10 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPX+) 0 0 0 0 11 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPX-) 0 0 0 0 12 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPZ+) 0 0 0 0 13 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPZ-) 0 0 0 0 14 - 1.2 DL(S) + 1.2 LL + EQ(X) 0 0 0 0 15 - 1.2 DL(S) + 1.2 LL - EQ(X) 0 0 0 0 16 - 1.2 DL(S) + 1.2 LL + EQ(Z) 0 0 0 0 17 - 1.2 DL(S) + 1.2 LL - EQ(Z) 0 0 0 0 Footing Description - - F1 MAXIMUM BEAM SHEAR STRESS CALCULATION - X DIRECTION - Load Combination 1 Effective Footing Width Z Dir - Lz = 0.6 m Critical Section Location - l = 0.6 m Bearing Pressure at Critical Section - Pcs = 80.8 kN/sq m Shear from soil pressure at Critical Section - Sa,cs 14.724 kN Shear from axial load and footing/Soil at Critical Section - Sf,cs -14.724 kN Max Shear - Smax,cs = Sa,cs + Sf,cs = 0 kN ALLOWABLE BEAM SHEAR STRESS CALCULATION - X DIRECTION - Load Combination 1 Allowable Beam Shear Stress - Part 1, Section 3.11.3.4 / 3.11.4.4 Concrete Compressive Strength - fc' = 20 N/sq mm Effective Depth - d = 0.726 m Effective Footing Width Z Dir - Lz = 0.6 m Footing Thickness - h = 0.8 m Footing Reinforcement Area = Ra = 0.001 sq m Percent Reinforcement - Rap = 0.15 <= 100 * (Ra/(L*d) <= 3 0.23078734 EffectiveDepthFactor = Edf = 400/d >= 1 0.55096419 ConcreteStrengthFactor = Csf (for fc' > 25; fc' <=40) = (fc'/25) ^ (1/3) 0.92831777 Allowable Shear Stress - F,all = 0.79 * (Rap ^ (1/3)) * (Edf ^ (1/4)) * Csf / f 3.5777 N/sq mm Shear Strength Reduction Factor - f = 1.25 Critical Section Location - l = 0.6 m Maxshear 0 kN ActualShearStress 0 N/sq mm BEAM SHEAR STRESS - Z DIRECTION - Ultimate Load Combinations - Without Buoyancy CONTAINER FOUNDATION DESIGN Page 11 of 21
  • 27. Footing Description - - F1 Beam Shear Stress Critical Section - Part 1, Section 3.11.3.3 / 3.11.3.4 Load Combination Location Shear Shear Allowable Crit Sect Crit Sect Stress Stress m kN N/sq mm N/sq mm 1 - 1.2 DL(S) + 1.4 WL(CPX+) 0 0 0 0 2 - 1.2 DL(S) + 1.4 WL(CPX-) 0 0 0 0 3 - 1.2 DL(S) + 1.4 WL(CPZ+) 0 0 0 0 4 - 1.2 DL(S) + 1.4 WL(CPZ-) 0.6 0 0 3.5777 5 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPX+) 0 0 0 0 6 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPX-) 0 0 0 0 7 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPZ+) 0 0 0 0 8 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPZ-) 0 0 0 0 9 - 1.4 DL(S) + 1.6 LL 0 0 0 0 10 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPX+) 0 0 0 0 11 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPX-) 0 0 0 0 12 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPZ+) 0 0 0 0 13 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPZ-) 0 0 0 0 14 - 1.2 DL(S) + 1.2 LL + EQ(X) 0 0 0 0 15 - 1.2 DL(S) + 1.2 LL - EQ(X) 0 0 0 0 16 - 1.2 DL(S) + 1.2 LL + EQ(Z) 0 0 0 0 17 - 1.2 DL(S) + 1.2 LL - EQ(Z) 0 0 0 0 Footing Description - - F1 MAXIMUM BEAM SHEAR STRESS CALCULATION - Z DIRECTION - Load Combination 4 Effective Footing Width X Dir - Lx = 0.6 m Critical Section Location - l = 0.6 m Bearing Pressure at Critical Section - Pcs = 0 kN/sq m Shear from soil pressure at Critical Section - Sa,cs 14.724 kN Shear from axial load and footing/Soil at Critical Section - Sf,cs -14.724 kN Max Shear - Smax,cs = Sa,cs + Sf,cs = 0 kN ALLOWABLE BEAM SHEAR STRESS CALCULATION - Z DIRECTION - Load Combination 4 Allowable Beam Shear Stress - Part 1, Section 3.11.3.4 / 3.11.4.4 Concrete Compressive Strength - fc' = 20 N/sq mm Effective Depth - d = 0.742 m Effective Footing Width X Dir - Lx = 0.6 m Footing Thickness - h = 0.8 m Footing Reinforcement Area = Ra = 0.001 sq m Percent Reinforcement - Rap = 0.15 <= 100 * (Ra/(L*d) <= 3 0.22581079 EffectiveDepthFactor = Edf = 400/d >= 1 0.53908356 ConcreteStrengthFactor = Csf (for fc' > 25; fc' <=40) = (fc'/25) ^ (1/3) 0.92831777 Allowable Shear Stress - F,all = 0.79 * (Rap ^ (1/3)) * (Edf ^ (1/4)) * Csf / f 3.5777 N/sq mm Shear Strength Reduction Factor - f = 1.25 Critical Section Location - l = 0.6 m Maxshear 0 kN ActualShearStress 0 N/sq mm CONTAINER FOUNDATION DESIGN Page 12 of 21
  • 28. PUNCHING SHEAR STRESS - Ultimate Load Combinations - Without Buoyancy Footing Description - - F1 - Load Element - - P1 Punching Perimeter - Pp = 0 m Load Combination Net Punching Punching Allowable Load Stress Stress kN N/sq mm N/sq mm 1 - 1.2 DL(S) + 1.4 WL(CPX+) 2.394 0 0.3061 2 - 1.2 DL(S) + 1.4 WL(CPX-) 2.394 0 0.3061 3 - 1.2 DL(S) + 1.4 WL(CPZ+) 5.04 0 0.3061 4 - 1.2 DL(S) + 1.4 WL(CPZ-) 5.964 0 0.3061 5 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPX+) 2.052 0 0.3061 6 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPX-) 2.052 0 0.3061 7 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPZ+) 4.32 0 0.3061 8 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPZ-) 5.112 0 0.3061 9 - 1.4 DL(S) + 1.6 LL 0 0 0.3061 10 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPX+) 1.026 0 0.3061 11 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPX-) 1.026 0 0.3061 12 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPZ+) 2.16 0 0.3061 13 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPZ-) 2.556 0 0.3061 14 - 1.2 DL(S) + 1.2 LL + EQ(X) 0 0 0.3061 15 - 1.2 DL(S) + 1.2 LL - EQ(X) 0 0 0.3061 16 - 1.2 DL(S) + 1.2 LL + EQ(Z) 0 0 0.3061 17 - 1.2 DL(S) + 1.2 LL - EQ(Z) 0 0 0.3061 PUNCHING SHEAR CALCULATION FOR LOAD ELEMENT - P1 - Footing - F1 - Load Combination 4 Allowable Punching Shear Stress - Part 1, Section 3.11.3.4 / 3.11.4.5 Punching Shear Stress Critical Section - Part 1, Section 3.11.3.4 / 3.11.4.5 Ultimate Soil Bearing At Left Critical Section - X Dir - SBl,x = 40.9 kN/sq m Ultimate Soil Bearing At Right Critical Section - X Dir - SBr,x = 40.9 kN/sq m Ultimate Soil Bearing At Left Critical Section - Z Dir - SBl,z = 287.1777 kN/sq m Ultimate Soil Bearing At Right Critical Section - Z Dir - SBr,z = 0 kN/sq m Area Under Pressure Diagram X Dir - Ap,x = 14.724 kN Area Under Pressure Diagram Z Dir - Ap,z = 14.724 kN Footing Weight Within Punching Perimeter - Fw,p = 8.64 kN Soil Weight Within Punching Perimeter - Sw,p = 0 kN Applied Axial Load - P = 6.084 kN Total Punching Load - Pt = P + Fw,p + Sw,p = 14.724 kN Punching Load Due To Moment - X Dir = Npm,x = 0 kN Punching Load Due To Moment - Z Dir = Npm,z = 5.964 kN Net Punching Load - X Dir - Np,x = Pt + Npm,x - Ap,x = 0 kN Net Punching Load - Z Dir - Np,z = Pt + Npm,z - Ap,z = 5.964 kN Maximum Punching Load - Pmax = Max (Np,x, Np,z) = 5.964 kN Average Effective Depth For Punching Shear - deff = 742 mm Punching Perimeter - Pp = 0 m Punching Shear Stress - Ps = Pmax/(deff * Pp) = 0 N/sq mm CONTAINER FOUNDATION DESIGN Page 13 of 21
  • 29. FOOTING MOMENTS - X DIRECTION - Ultimate Load Combinations Footing Description - - F1 Load Combination Max Pos Pos Mom Max Neg Neg Mom Moment Location Moment Location kN-m m kN-m m 1 - 1.2 DL(S) + 1.4 WL(CPX+) 0 0.6 0 0 2 - 1.2 DL(S) + 1.4 WL(CPX-) 0 0 0 0 3 - 1.2 DL(S) + 1.4 WL(CPZ+) 0 0.6 0 0 4 - 1.2 DL(S) + 1.4 WL(CPZ-) 0 0.6 0 0 5 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPX+) 0 0 0 0.6 6 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPX-) 0 0.6 0 0 7 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPZ+) 0 0 0 0 8 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPZ-) 0 0 0 0 9 - 1.4 DL(S) + 1.6 LL 0 0.6 0 0 10 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPX+) 0 0 0 0 11 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPX-) 0 0 0 0 12 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPZ+) 0 0 0 0 13 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPZ-) 0 0 0 0 14 - 1.2 DL(S) + 1.2 LL + EQ(X) 0 0 0 0 15 - 1.2 DL(S) + 1.2 LL - EQ(X) 0 0 0 0 16 - 1.2 DL(S) + 1.2 LL + EQ(Z) 0 0 0 0 17 - 1.2 DL(S) + 1.2 LL - EQ(Z) 0 0 0 0 FOOTING MOMENTS - Z DIRECTION - Ultimate Load Combinations Footing Description - - F1 Load Combination Max Pos Pos Mom Max Neg Neg Mom Moment Location Moment Location kN-m m kN-m m 1 - 1.2 DL(S) + 1.4 WL(CPX+) 0 0.6 0 0 2 - 1.2 DL(S) + 1.4 WL(CPX-) 0 0.6 0 0 3 - 1.2 DL(S) + 1.4 WL(CPZ+) 0 0 0 0.6 4 - 1.2 DL(S) + 1.4 WL(CPZ-) 0 0 0 0 5 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPX+) 0 0 0 0 6 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPX-) 0 0 0 0 7 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPZ+) 0 0 0 0 8 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPZ-) 0 0.6 0 0 9 - 1.4 DL(S) + 1.6 LL 0 0.6 0 0 10 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPX+) 0 0 0 0 11 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPX-) 0 0 0 0 12 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPZ+) 0 0.6 0 0 13 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPZ-) 0 0 0 0 14 - 1.2 DL(S) + 1.2 LL + EQ(X) 0 0 0 0 15 - 1.2 DL(S) + 1.2 LL - EQ(X) 0 0 0 0 16 - 1.2 DL(S) + 1.2 LL + EQ(Z) 0 0 0 0 17 - 1.2 DL(S) + 1.2 LL - EQ(Z) 0 0 0 0 CONTAINER FOUNDATION DESIGN Page 14 of 21
  • 30. FOOTING REINFORCEMENT Min Reinft of Flexural Members - Part 1, Section 3.12.5 Moment Critical Section - Part 1, Section 3.11.2.2 Top Steel Footing Description - - F1 Governing No. of Bar Bar Area Area Moment Direction Load Combination Bars Size Spac Prov Req mm mm sq mm/m sq mm/m kN-m/m 5 - 1.2 DL(S) + 1.2 LL + 1.2 WL(CPX+) 5 16 100 1675.516 0 0 X 3 - 1.2 DL(S) + 1.4 WL(CPZ+) 5 16 100 1675.516 0 0 Z Note: Bar spacing in top level X direction does not meet spacing requirements Note: Bar spacing in top level Z direction does not meet spacing requirements Bottom Steel Footing Description - - F1 Governing No. of Bar Bar Area Area Moment Direction Load Combination Bars Size Spac Prov Req mm mm sq mm/m sq mm/m kN-m/m 1 - 1.2 DL(S) + 1.4 WL(CPX+) 5 16 100 1675.516 1440 0 X 12 - 1.2 DL(S) + 1.2 LL + 0.6 WL(CPZ+) 5 16 100 1675.516 1440 0 Z Note: Bar spacing in bottom level X direction does not meet spacing requirements Note: Bar spacing in bottom level Z direction does not meet spacing requirements CONTAINER FOUNDATION DESIGN Page 15 of 21
  • 31. CRACK CONTROL Top Surface Footing Description - - F1 Governing Bar Bar Area Unfactored Crack All Direction Load Combination Size Spac Prov Moment Width CrackWidth mm mm sq mm kN-m mm mm 3 - DL(S) + WL(CPZ+) 16 100 1005.31 0 0 0.2 X 1 - DL(S) + WL(CPX+) 16 100 1005.31 0 0 0.2 Z Bottom Surface Footing Description - - F1 Governing Bar Bar Area Unfactored Crack All Direction Load Combination Size Spac Prov Moment Width CrackWidth mm mm sq mm kN-m mm mm 2 - DL(S) + WL(CPX-) 16 100 1005.31 0 0 0.2 X 7 - DL(S) + LL + WL(CPZ+) 16 100 1005.31 0 0 0.2 Z GOVERNING CRACK CONTROL CALCULATION Effective Concrete Elastic Modulus for Crack Control 10000 N/sq mm Modular Ratio 19.995 Unfactored Max Service Moment 0 kN-m Governing Load Combination 2 - DL(S) + WL(CPX-) Moment of Resistance of Uncracked Section 200.352 kN-m Area of Tension Steel 1005.31 sq mm Cracked Section Neutral Axis Depth 174.83 mm Mean Surface Strain 0 Crack Width 0 mm All Crack Width 0.2 mm CONTAINER FOUNDATION DESIGN Page 16 of 21
  • 34. FOOTING DEVELOPMENT LENGTH CALCULATION Footing Description - - F1 Footing development length - Part 1, Section 3.12.8 Compressive Strength fc' = 20 N/sq mm Yield Strength fy = 500 N/sq mm Footing Side Cover Cb = 50 mm Bottom Rebar - X Direction Rebar size Rs = 16 mm Rebar diameter db = 16 mm Rebar area Ab = 201.062 sq mm Footing Moment M = 0 kN-m/m Cast concrete depth below rebar Cd = 50 mm Casting Postion Factor Fcp = Not Applicable 0 Lightweight Concrete Modification Factor Lamda = 1 Epoxy Coating Factor Fep = Not Applicable 1 Rebar Size Factor Frb= Not Applicable 0 Transverse Reinforcement Index Ktr = Not Applicable 0 Rebar cover to rebar diameter ratio r = f(Cb/db) = 1 Reinforcement Grade Factor Frg= 1 Ultimate Bond Stress Tbd = Beta * sqrt(fc'); Beta = 0.5 for deformed bars 2.236 N/sq mm Required development length in tension ld,o = (0.87)*(fy*db)/(4*Tbd) 0 mm Minimum required development length In tension ld,min = 0 mm Consider reduction based On rebar stress ratio Cred = False Provided rebar area Aprov = 1005.31 sq mm Required rebar area based on moment Areqd = 0 sq mm Provided to required rebar ratio Rp,r = Aprov/Areqd 0 Reduced development length based on rebar ratio ld,rpr = ld,o/Rp,r 0 mm Final Development Length ld = max{ld,rpr,ld,min} 0 mm Footing Max Moment Location Mloc = 0 m Footing Maximum X Dimension - Lx = 0.6 m Available Development Length lavail = 0 mm Is available development length adequate Not Applicable Bottom Rebar - Z Direction Rebar size Rs = 16 mm Rebar diameter db = 16 mm Rebar area Ab = 201.062 sq mm Footing Moment M = 0 kN-m/m Cast concrete depth below rebar Cd = 50 mm Casting Postion Factor Fcp = Not Applicable 0 Lightweight Concrete Modification Factor Lamda = 1 Epoxy Coating Factor Fep = Not Applicable 1 Rebar Size Factor Frb= Not Applicable 0 Transverse Reinforcement Index Ktr = Not Applicable 0 Rebar cover to rebar diameter ratio r = f(Cb/db) = 1 Reinforcement Grade Factor Frg= 1 Ultimate Bond Stress Tbd = Beta * sqrt(fc'); Beta = 0.5 for deformed bars 2.236 N/sq mm Required development length in tension ld,o = (0.87)*(fy*db)/(4*Tbd) 0 mm Minimum required development length In tension ld,min = 0 mm Consider reduction based On rebar stress ratio Cred = False CONTAINER FOUNDATION DESIGN Page 19 of 21
  • 35. Provided rebar area Aprov = 1005.31 sq mm Required rebar area based on moment Areqd = 0 sq mm Provided to required rebar ratio Rp,r = Aprov/Areqd 0 Reduced development length based on rebar ratio ld,rpr = ld,o/Rp,r 0 mm Final Development Length ld = max{ld,rpr,ld,min} 0 mm Footing Max Moment Location Mloc = 0 m Footing Maximum Z Dimension - Lz = 0.6 m Available Development Length lavail = 0 mm Is available development length adequate Not Applicable Top Rebar - X Direction Rebar size Rs = 16 mm Rebar diameter db = 16 mm Rebar area Ab = 201.062 sq mm Footing Moment M = 0 kN-m/m Cast concrete depth below rebar Cd = 750 mm Casting Postion Factor Fcp = Not Applicable 0 Lightweight Concrete Modification Factor Lamda = 1 Epoxy Coating Factor Fep = Not Applicable 1 Rebar Size Factor Frb= Not Applicable 0 Transverse Reinforcement Index Ktr = Not Applicable 0 Rebar cover to rebar diameter ratio r = f(Cb/db) = 1 Reinforcement Grade Factor Frg= 1 Ultimate Bond Stress Tbd = Beta * sqrt(fc'); Beta = 0.5 for deformed bars 2.236 N/sq mm Required development length in tension ld,o = (0.87)*(fy*db)/(4*Tbd) 0 mm Minimum required development length In tension ld,min = 0 mm Consider reduction based On rebar stress ratio Cred = False Provided rebar area Aprov = 1005.31 sq mm Required rebar area based on moment Areqd = 0 sq mm Provided to required rebar ratio Rp,r = Aprov/Areqd 0 Reduced development length based on rebar ratio ld,rpr = ld,o/Rp,r 0 mm Final Development Length ld = max{ld,rpr,ld,min} 0 mm Footing Max Moment Location Mloc = 0 m Footing Maximum X Dimension - Lx = 0.6 m Available Development Length lavail = 0 mm Is available development length adequate Not Applicable Top Rebar - Z Direction Rebar size Rs = 16 mm Rebar diameter db = 16 mm Rebar area Ab = 201.062 sq mm Footing Moment M = 0 kN-m/m Cast concrete depth below rebar Cd = 750 mm Casting Postion Factor Fcp = Not Applicable 0 Lightweight Concrete Modification Factor Lamda = 1 Epoxy Coating Factor Fep = Not Applicable 1 Rebar Size Factor Frb= Not Applicable 0 Transverse Reinforcement Index Ktr = Not Applicable 0 Rebar cover to rebar diameter ratio r = f(Cb/db) = 1 Reinforcement Grade Factor Frg= 1 Ultimate Bond Stress Tbd = Beta * sqrt(fc'); Beta = 0.5 for deformed bars 2.236 N/sq mm Required development length in tension ld,o = (0.87)*(fy*db)/(4*Tbd) 0 mm Minimum required development length In tension ld,min = 0 mm Consider reduction based On rebar stress ratio Cred = False CONTAINER FOUNDATION DESIGN Page 20 of 21
  • 36. Provided rebar area Aprov = 1005.31 sq mm Required rebar area based on moment Areqd = 0 sq mm Provided to required rebar ratio Rp,r = Aprov/Areqd 0 Reduced development length based on rebar ratio ld,rpr = ld,o/Rp,r 0 mm Final Development Length ld = max{ld,rpr,ld,min} 0 mm Footing Max Moment Location Mloc = 0 m Footing Maximum Z Dimension - Lz = 0.6 m Available Development Length lavail = 0 mm Is available development length adequate Not Applicable CONTAINER FOUNDATION DESIGN Page 21 of 21
  • 37. DESIGN CALCULATION FOR CONDITIONER FOUNDATION Page 11 of 11 ANNEXURE - C FOUNDATION DRAWING
  • 38. CONTAINER FOUNDATION STRUCTURAL DRAWING DRAWING AS civil Engg services 100X50 mm RHS