SlideShare a Scribd company logo
1 of 259
Download to read offline
1
Faculty of Engineering and Material Science
Bachelor Thesis
“Structural design of a Research Centre A”
Submitted by:
Hasan Ahmed Gamal El-din
Submitted to Department of Civil Engineering Major Structure
Registration Number: 25-0294
Date of submission: 24/5/2015
Supervisor: Dr. Amr Shaat
2
Abstract
The structural engineering has an essential role in the construction of a steel structure as
Research Center. Project includes five main phases, which are proposing a general layout,
assuming reasonable loads, structural analyzing, designing, drawing and detailing. After that
building could be constructed. Assumption of the loads is done with the aid of Egyptian code.
Normally, the structural analysis is performed utilizing computer software. Afterwards, the
designing is carried out as per standard codes. Last but not least, drawing and detailing are done
to present the designs on sheets to be implemented later on. The purpose of this paper is to
design and implement a research center steel structure with all information and provide all details
need to construct the project.
Key words: Structure, Design, Steel, Research center
3
Contents
Abstract...................................................................................................................................................2
Chapter 1.................................................................................................................................................9
Introduction.............................................................................................................................................9
1.1 Aim and motivation .......................................................................................................................9
1.2 Background ...................................................................................................................................9
Chapter 2...............................................................................................................................................12
Glass types and application....................................................................................................................12
2.1Glass types and production overview: ...........................................................................................12
2.2Glass usage and applications:........................................................................................................14
Chapter 3...............................................................................................................................................15
Structural design of Research ................................................................................................................15
3.1 Building loads.............................................................................................................................. 15
3.1.1 Dead load.............................................................................................................................. 15
3.1.2 Live Load ............................................................................................................................. 15
3.1.3 Wind Load............................................................................................................................15
3.1.3.1 Wind West .....................................................................................................................15
3.1.3.2 Wind East.......................................................................................................................15
3.1.3.3 Wind North ....................................................................................................................15
3.1.3.4 Wind South ....................................................................................................................16
3.2 Structural analysis........................................................................................................................16
3.2.1 Defining Sections and Assigning Loads.................................................................................16
3.2.2 Straining Actions ..................................................................................................................22
3.2.2.1 Secondary Beams ...........................................................................................................22
3.2.2.1.1 Secondary Beams B1 ............................................................................................... 22
3.2.2.1.2 Secondary Beams B2 ............................................................................................... 22
3.2.2.2 Main Girders ..................................................................................................................23
3.2.2.2.1 Main Girders G1......................................................................................................23
3.2.2.2.2 Main Girders G2......................................................................................................23
3.2.2.2.3 Main Girders G3......................................................................................................24
3.2.2.2.4 Main Girders G4......................................................................................................24
3.2.2.3 Vertical Bracing .............................................................................................................25
4
3.2.2.3.1 Vertical Bracing Column 5m....................................................................................25
3.2.2.3.2 Vertical Bracing Column 6.25m...............................................................................26
3.2.2.3.2.1 Diagonal member.............................................................................................. 26
3.2.2.3.2.2 Horizontal member ...........................................................................................26
3.2.2.3.3 Vertical Bracing Column 7.5m.................................................................................27
3.2.2.3.3.1 Diagonal member.............................................................................................. 27
3.2.2.3.3.2 Horizontal member ...........................................................................................27
3.2.2.3.4 Vertical Bracing for Column 8.75m .........................................................................28
3.2.2.3.4.1 Diagonal member.............................................................................................. 28
3.2.2.3.4.2 Horizontal member ...........................................................................................28
3.2.2.4 Horizontal Bracing .........................................................................................................29
3.2.2.5 Columns.........................................................................................................................29
3.2.2.5.1 Columns 5m edge C5............................................................................................... 29
3.2.2.5.2 Columns 5m not edge C6.........................................................................................30
3.2.2.5.3 Column 6.25 edge C1 .............................................................................................. 31
3.2.2.5.4 Column 6.25 not edge C2.........................................................................................32
3.2.2.5.5 Column 7.5 edge C2’ ............................................................................................... 33
3.2.2.5.6 Column 7.5 not edge C4...........................................................................................34
3.2.2.5.7 Column 8.75m edge C7 ...........................................................................................35
3.2.2.5.8 Column 8.75m not edge C3......................................................................................36
3.2.2.5.9 Column 6.25m between 10m spans ..........................................................................37
3.2.2.5.10 Column 8.75m between 10m spans ........................................................................38
3.2.2.5 Space Truss....................................................................................................................39
Chapter 4...............................................................................................................................................40
Design and Calculation sheet.................................................................................................................40
4.1 Building Loads ............................................................................................................................40
4.2 Design of Secondary Beams and Main Beams..............................................................................44
4.3 Design of Columns ......................................................................................................................66
4.4 Design of Bracing......................................................................................................................106
4.5 Design of Space Truss.................................................................................................................120
4.6 Design of Connections...............................................................................................................124
Chapter 5.............................................................................................................................................147
5
Drawing and implementation...............................................................................................................147
Chapter 6.............................................................................................................................................194
Additional Project ............................................................................................................................... 194
6.2 Background ............................................................................................................................... 194
6.2.1 Loads..................................................................................................................................194
6.2.2 Structural Analysis..............................................................................................................194
6.2.2.1 Portal frame with mezzanine floor ................................................................................194
6.2.2.2 Portal frame with crane.................................................................................................195
Chapter 7.............................................................................................................................................197
Design and Calculation Sheet for Additional Project............................................................................197
7.1 Design of Secondary Beam and Main Beam Mezzanine............................................................. 197
7.2 Loads and Design of Portal Frame of Mezzanine........................................................................205
7.3 Design of Portal Frame with Crane ............................................................................................216
7.4 Design of Connections...............................................................................................................223
7.6 Design Of Crane Girder .............................................................................................................238
7.7 Design of Purlins........................................................................................................................245
Chapter 8.............................................................................................................................................250
Drawings and detailing for additional project.......................................................................................250
Chapter 9.............................................................................................................................................257
Conclusion ..........................................................................................................................................257
References...........................................................................................................................................258
6
Table of Figures
Figure 1-Location Building....................................................................................................................10
Figure 2-3D view ..................................................................................................................................10
Figure 3-Sky Light ................................................................................................................................ 11
Figure 4-Define Sections .......................................................................................................................16
Figure 5-Define Load Patterns...............................................................................................................17
Figure 6-Define Load Combinations......................................................................................................18
Figure 7-3D modeling ........................................................................................................................... 19
Figure 8- Plan 0 level ............................................................................................................................ 20
Figure 9-Vertical Bracing ......................................................................................................................20
Figure 10-D.L on Secondary Beam........................................................................................................21
Figure 11-Wind West ............................................................................................................................ 21
Figure 12-Straining action B1................................................................................................................22
Figure 13-Straining Action B2...............................................................................................................22
Figure 14-Straining Action G1...............................................................................................................23
Figure 15-Straining Actions G2 .............................................................................................................23
Figure 16-Straining Action G3...............................................................................................................24
Figure 17-Bending moment & Shear Stress G4......................................................................................24
Figure 18-Axial Force G4......................................................................................................................25
Figure 19-Axial Force column 5m .........................................................................................................25
Figure 20-Diagonal member Column 6.25m .......................................................................................... 26
Figure 21-Horizontal member Column 6.25m........................................................................................ 26
Figure 22-Diagonal member 7.5m .........................................................................................................27
Figure 23-Horizontal member Column 7.5m.......................................................................................... 27
Figure 24-Diagonal member Column 8.75m .......................................................................................... 28
Figure 25-Horizontal member Column 8.75m........................................................................................ 28
Figure 26-Axial Force Horizontal Bracing............................................................................................. 29
Figure 27-Bending moment C5..............................................................................................................29
Figure 28-Axial Force C5......................................................................................................................30
Figure 29-Bending Moment C6 .............................................................................................................30
Figure 30-Axial Force C6......................................................................................................................31
Figure 31-Bending Moment C1 .............................................................................................................31
Figure 32-Axial Force C1......................................................................................................................31
Figure 33-Bending Moment C2 .............................................................................................................32
Figure 34-Axial Force C2......................................................................................................................32
Figure 35-Bending Moment C2'.............................................................................................................33
Figure 36-Axial Force C2' .....................................................................................................................33
Figure 37-Bending Moment C4 .............................................................................................................34
Figure 38-Axial Force C4......................................................................................................................34
7
Figure 39-Bending Moment C7 .............................................................................................................35
Figure 40-Axial Force C7......................................................................................................................35
Figure 41-Bending Moment C3 .............................................................................................................36
Figure 42-Axial Force C3......................................................................................................................36
Figure 43-Bending Moment C 6.25m between 10m spans......................................................................37
Figure 44-Axial Force C 6.25m between 10m spans ..............................................................................37
Figure 45-Bending Moment C 8.75m between 10m spans......................................................................38
Figure 46-Axial Force C 8.75m between 10m spans ..............................................................................38
Figure 47- Space Truss.......................................................................................................................... 39
Figure 48- Axial force of chords ............................................................................................................39
Figure 49-3D model "Tekla"................................................................................................................ 147
Figure 50-Vertical Bracing "Tekla" ..................................................................................................... 148
Figure 51-Connections "Tekla"............................................................................................................ 148
Figure 52-Create drawings "Tekla"...................................................................................................... 149
Figure 53-Drawing List ....................................................................................................................... 150
Figure 54-Base Plate............................................................................................................................ 151
Figure 55-Level +0.............................................................................................................................. 152
Figure 56-Level +5m........................................................................................................................... 153
Figure 57-Level +6.25m...................................................................................................................... 154
Figure 58-Level +7.5m........................................................................................................................ 155
Figure 59-Level +8.75m...................................................................................................................... 156
Figure 60-Level +10m......................................................................................................................... 157
Figure 61-Level +11.25m.................................................................................................................... 158
Figure 62-Level +12.5m...................................................................................................................... 159
Figure 63-Level +13.75m.................................................................................................................... 160
Figure 64-Level +15m......................................................................................................................... 161
Figure 65-Level +16.25m.................................................................................................................... 162
Figure 66- Level +17.5m..................................................................................................................... 163
Figure 67-Level +18.75m.................................................................................................................... 164
Figure 68-GRID A .............................................................................................................................. 165
Figure 69-GRID B............................................................................................................................... 166
Figure 70-GRID C............................................................................................................................... 167
Figure 71-GRID D .............................................................................................................................. 168
Figure 72-GRID E............................................................................................................................... 169
Figure 73-GRID F............................................................................................................................... 170
Figure 74-GRID H .............................................................................................................................. 171
Figure 75-GRID I................................................................................................................................ 172
Figure 76-GRID J................................................................................................................................ 173
Figure 77-GRID K .............................................................................................................................. 174
Figure 78-GRID L............................................................................................................................... 175
Figure 79-GRID M.............................................................................................................................. 176
Figure 80-SIDE VIEW 13 ................................................................................................................... 177
Figure 81-SIDE VIEW 1 ..................................................................................................................... 178
Figure 82-HORIZONTAL BRACING................................................................................................. 179
8
Figure 83-COLUMN HEA320 C (5).................................................................................................... 180
Figure 84-COLUMN HEA360 C (1).................................................................................................... 181
Figure 85-COLUMN HEA400 C (6).................................................................................................... 182
Figure 86-COLUMN HEA 450 C (2) @ EDGE................................................................................... 183
Figure 87-COLUMN HEA 450 C (2)................................................................................................... 184
Figure 88-COLUMN HEA 500 C (4)................................................................................................... 185
Figure 89-COLUMN HEA 550 C (7)................................................................................................... 186
Figure 90-COLUMN HEA 650 C (3)................................................................................................... 187
Figure 91-COLUMN HEA 650 PL400*10 C (3')................................................................................. 188
Figure 92-IPE240................................................................................................................................ 189
Figure 93-IPE270................................................................................................................................ 190
Figure 94-IPE300................................................................................................................................ 191
Figure 95-IPE600................................................................................................................................ 192
Figure 96-IPE360................................................................................................................................ 193
Figure 97-Portal Frame with mezzanine............................................................................................... 194
Figure 98-Maximum positive moment on Rafter.................................................................................. 195
Figure 99-Portal Frame with crane....................................................................................................... 195
Figure 100-Load combinations ............................................................................................................ 196
Figure 101-Bending moment on column.............................................................................................. 196
Figure 102-Straining action on Rafter.................................................................................................. 197
Figure 103-3D of factory "Tekla" ........................................................................................................ 250
Figure 104-General Layout.................................................................................................................. 251
Figure 105- General layout 2 ............................................................................................................... 252
Figure 106- Portal Frame with Crane................................................................................................... 253
Figure 107- Rafter of PF with Crane and Connection........................................................................... 254
Figure 108- Portal Frame with mezzanine............................................................................................ 255
Figure 109- Rafter in PF with mezzanine............................................................................................. 256
9
Chapter 1
Introduction
1.1 Aim and motivation
To construct a research center requirements have to be taken in consideration. First of all
architectural plans done by engineers should take care that type of these buildings need large
areas for labs, decrease number of columns to allow researchers moving from one office to the
other easily, provide a place for eating and drinking where it is away from offices and labs. Also
a research center need to be located in area with less pollution and sky lights to allow sun light
from entering building. In addition, structural engineering choose best way and criteria for
design to combine and gather information from plans of architecture and any of imagination of
architectural engineering. Also, structural designer have to take care of electricity such as
lightings and mechanical devices in the building. Finally, implementation done by forming
drawings and details of design which help to build and construct any building.
The purpose of this paper to design and implement a research center steel structure with all
information taken from architectural plans and draw all details needed after that to construct that
building if needed. Also, share information and experience gained from this project to other
engineers.
1.2 Background
The structure is steel frame to cover area of 60m*60m of a managerial building “Research
Center”. The structure located in Cairo. Research Center consists of ground floor and 3 floors.
Each floor has 4 levels with difference 1.25m between them except ground floor that has one
level. The floors are typical in design as they are replicate from ground floor. In addition, the
structure contains large areas especially in labs which better way for design is to use frame
structure than beam-column. Moreover, outer area of building covered by glass façade to allow
sun light to go into the building. There is a void in center of the building while offices and labs
are around this void. The total height of building is 18.75m and a space truss for a sky light at
roof. Frame type is used and other direction vertical bracing. Horizontal bracing used in building
for wind load till pouring of concrete. Columns reached level -3m for garage usage. In columns
will find that normal force and buckling length is the critical in design. Designs of columns in
edge differ than between spans due to normal force. In labs main beams have high largest section
due to its span. Also, the largest section of secondary beam found in cafeteria area. In this project
hot rolled sections used in design except in one types of columns. The code used for loads ECP
2008 and for design ECP 205-2001. Steel used in design is Steel 37 mild steel. In this structure
analysis are done using SAP2000 by adding load (Dead, Live and Wind) according to Egyptian
code. After that designs using Egyptian code and calculation sheets are formed.
10
Research Center found in Cairo “Tagamo Elkhames” (Figure 1). Also building is characterized
by its large areas and outer are is a square shape with 4 levels in each floor with sky light at roof
and glass façade at the outer areas, void at center of building with a cafeteria inside that void
with also a square shape.
Figure 1-Location Building
Figure 2-3D view
11
Figure 3-Sky Light
General layout formed with main elements and secondary elements, analysis using SAP2000
V16 where straining actions are taken and deflections, calculation sheets with design in it
according Egyptian Code, 3D modeling, drawings and detailing using Tekla and Autocad
programs.
12
Chapter 2
Glass types and application
2.1Glass types and production overview:
Over decades, glass productions in terms of types and ingredients have witnessed great
evolution. Including various compositions such as; Fused silica glass, Sodium borosilicate glass,
Lead-oxide glass, Alumino-silicate glass, Oxide glass and the Soda-lime-silica glass and Soda-
lime glass, also called soda-lime-silica glass. These types are considered to be the most known
types of glass that are usually used for glass containers, windowpanes and other commodity
items. Moving to the most common type of glass that have been developed over time to become
the most important type of glass used in today's constructions which is the float glass.
Float glass manufacturing consumes some of the earth’s most rich raw materials which are the
silica sand, counting for 60 % (by weight) of the materials that are called the batch. Minerals and
dolomite are added to assist in the enduring and weathering properties of the finished glass,
while other components are added to help melting the sand such as soda ash and sulfate. The
following figure illustrates the production process of the float glass including all the stages that
the glass goes through for manufacturing.
Moreover, there are many types of glass final products in terms of physical properties and
appearance. First, the extra clear glass which is a final product derived from melted glass (float
glass). This specific type of glass is made of very low quantities of iron component in order to its
properties of sun and heat reflection. It is considered the most applicable option to use for solar
energy applications where the heat is needed to be absorbed and reach the solar cells.
13
Another product is the mirrored glass which is coated with a metal layer to one of the sides of the
glass the coating is mostly made of aluminum, silver, chrome or gold. Mirrored glass is widely
used for architectural purposes and may be used for essential functional reasons as well as for the
visual effect and even for privacy purposes.
There is also the coated glass which is made to adjust its appearance and provide it with several
advanced features and functions available in flat glass products, such as special reflection, scratch
resistance, transmission and low maintenance. On the other hand there is the tinted glass which is
made by small metal additions to the float glass in order to give the glass some colors such as
green, bronze, grey or blue, however it does not affect the basic functions of the glass excluding
some modifications in the solar energy transmission. Finally, the frosted or sandblasted glass,
which is manufactured by acid engraving or sandblasting of clear sheet glass. It has the effect of
sprinkling of light transmission, thus blurring images while still diffusing light.
14
2.2Glass usage and applications:
There is a very specific design of glass that is commonly used for structural and architectural
purposes which is "Glass-fiber-reinforced concrete (GFRC) panels". This system is light weight
system that includes various colors and textures which make these panels very adaptable for many
designs and architectural applications. GFRC can also be designed similarly to the precast
concrete panels. These lightweight systems like GFRC, stone facings and thin brick are very
beneficial as they are easy to construct and do not involve heavy steel structural support in the
principal structure of the building. Therefore, GFRC and other lightweight systems are more cost-
effective and reasonable steel frames.
GFRC systems usually weight among 9 and 25 psf depending on the type of the panel shape and
size, external finish, and back-up frame structure. Usual wall systems are embraced of the panel
skin, anchors fastening the skin to the back-up frame, while the panel back-up frame and
connectors are attaching the panel frame to the main building structure. GFRC generally are not
load bearing and are not deliberated as a part of the lateral load resisting system. Thereby, the
primary structure of the building must be designed with separate lateral force resisting system and
requires the support for the weight and lateral loads from the panel system. So that it could be
transferred from the panel skin to the main building structure. This system mechanism and
components are illustrated in the following figure in more details.
15
Chapter 3
Structural design of Research
3.1 Building loads
3.1.1 Dead load
Use R.C thickness 0.12m, specific weight for concrete 2.5t/m2 (ECP Table (3-1) P17), floor
cover 0.2 t/m’ and spacing between secondary beams is 1.67m.
Wd.l= (0.12*2.5+0.2)-1.67= 0.84t/m’
3.1.2 Live Load
Use Live load= 0.4t/m2 (ECP Table (4-1) P32)
Wl.l= 0.4*1.67= 0.67t/m’
3.1.3 Wind Load
The building located at Cairo q=70kg/m2 and spacing between frames are 5m
Ww= C*K*q*s
3.1.3.1 Wind West
Ww1= 0.8*1*0.07*5= 0.28t/m’
Ww2= 0.5*1*0.07*5= 0.175t/m’
Ww3= -0.7*1*0.07*5= -0.245t/m’
Ww4= -0.7*1*0.07*5= -0.245t/m’
Ww5= -0.8*1*0.07*5= -0.28t/m’
3.1.3.2 Wind East
Ww1= -0.8*1*0.07*5= -0.28t/m’
Ww2= -0.5*1*0.07*5= -0.175t/m’
Ww3= -0.7*1*0.07*5= -0.245t/m’
Ww4= -0.7*1*0.07*5= -0.245t/m’
Ww5= -0.8*1*0.07*5= -0.28t/m’
3.1.3.3 Wind North
Ww1= 0.8*1*0.07*5= 0.28t/m’
16
Ww2= 0.5*1*0.07*5= 0.175t/m’
Ww3= -0.7*1*0.07*5= -0.245t/m’
Ww4= -0.7*1*0.07*5= -0.245t/m’
Ww5= -0.8*1*0.07*5= -0.28t/m’
3.1.3.4 Wind South
Ww1= 0.8*1*0.07*5= 0.28t/m’
Ww2= 0.5*1*0.07*5= 0.175t/m’
Ww3= -0.7*1*0.07*5= -0.245t/m’
Ww4= -0.7*1*0.07*5= -0.245t/m’
Ww5= -0.8*1*0.07*5= -0.28t/m’
3.2 Structural analysis
In step of structural analysis, SAP2000 V16 used to find out all straining actions needed for
design and check for deflection. First of all, define material used in project which is St37, all
sections needed in projects as I use hot rolled section as show in (Figure 4). Define load patterns
which are Dead load, Live load and Wind load as in (Figure 5).
3.2.1 Defining Sections and Assigning Loads
Figure 4-Define Sections
17
Figure 5-Define Load Patterns
 Load combinations used in this project are
D.L
D.L+L.L
D.L+L.L+W.E
D.L+L.L+W.W
D.L+L.L+W.S
D.L+L.L+W.N
D.L+W.E
D.L+W.W
D.L+W.S
D.L+W.N
MAX “Envelope”
18
Figure 6-Define Load Combinations
 3D modeling and draw frames with all its aspects and importing 3D from Autocad
(Figure 7)
19
Figure 7-3D modeling
20
Figure 8- Plan 0 level
Figure 9-Vertical Bracing
21
 Assign frame loads, dead load and live load on secondary beams and wind load on
columns (Figure 9 & Figure 10)
Figure 10-D.L on Secondary Beam
Figure 11-Wind West
22
3.2.2 Straining Actions
Axial force, bending moment, shear stress and deflection are gained
3.2.2.1 Secondary Beams
3.2.2.1.1 Secondary Beams B1
B1 is found in all frames of building with span 5 meters except in cafeteria
Figure 12-Straining action B1
3.2.2.1.2 Secondary Beams B2
B2 is found in cafeteria area with span 10m
Figure 13-Straining Action B2
23
3.2.2.2 Main Girders
3.2.2.2.1 Main Girders G1
G1 is not at edges and found in frames not having horizontal bracing.
Figure 14-Straining Action G1
3.2.2.2.2 Main Girders G2
G2 is found at edges of frames, these girders have negative moment greater than other due to
continuity of moment.
Figure 15-Straining Actions G2
24
3.2.2.2.3 Main Girders G3
G3 are beams with span 10m long found at edges, these long members are for labs area, where
negative moment value is close to positive moment value.
Figure 16-Straining Action G3
3.2.2.2.4 Main Girders G4
G4 found in middle of frames of horizontal bracing where we find a great value of normal force
which is formed due to wind load.
Figure 17-Bending moment & Shear Stress G4
25
Figure 18-Axial Force G4
3.2.2.3 Vertical Bracing
3.2.2.3.1 Vertical Bracing Column 5m
In Column 5m long there is vertical bracing which is cross designed as double angle.
Figure 19-Axial Force column 5m
26
3.2.2.3.2 Vertical Bracing Column 6.25m
In column 6.25m long bracing divide into two parts both 3.125m
3.2.2.3.2.1 Diagonal member
Figure 20-Diagonal member Column 6.25m
3.2.2.3.2.2 Horizontal member
Figure 21-Horizontal member Column 6.25m
27
3.2.2.3.3 Vertical Bracing Column 7.5m
In column 6.25m long bracing divide into two parts both 3.75m
3.2.2.3.3.1 Diagonal member
Figure 22-Diagonal member 7.5m
3.2.2.3.3.2 Horizontal member
Figure 23-Horizontal member Column 7.5m
28
3.2.2.3.4 Vertical Bracing for Column 8.75m
In column 6.25m long bracing divide into two parts both 4.375m
3.2.2.3.4.1 Diagonal member
Figure 24-Diagonal member Column 8.75m
3.2.2.3.4.2 Horizontal member
Figure 25-Horizontal member Column 8.75m
29
3.2.2.4 Horizontal Bracing
Horizontal bracing designed as its maximum compression force
Figure 26-Axial Force Horizontal Bracing
3.2.2.5 Columns
Columns in this building have tall spans which increase value of buckling length. Also, normal
forces are critical with highest value while bending moments doesn’t affect too much on design.
3.2.2.5.1 Columns 5m edge C5
These columns are found at edges of building with tall 5m
Figure 27-Bending moment C5
30
Figure 28-Axial Force C5
3.2.2.5.2 Columns 5m not edge C6
These columns are found inside building not at edge with tall 5m.
Figure 29-Bending Moment C6
31
Figure 30-Axial Force C6
3.2.2.5.3 Column 6.25 edge C1
These columns are found at edge of building with tall 6.25m
Figure 31-Bending Moment C1
Figure 32-Axial Force C1
32
3.2.2.5.4 Column 6.25 not edge C2
These types of columns are found inside building not at edge with tall 6.25m.
Figure 33-Bending Moment C2
Figure 34-Axial Force C2
33
3.2.2.5.5 Column 7.5 edge C2’
These columns are found in the edge of building with tall 7.5m.
Figure 35-Bending Moment C2'
Figure 36-Axial Force C2'
34
3.2.2.5.6 Column 7.5 not edge C4
These Columns are found inside building not at edge with tall 7.5m.
Figure 37-Bending Moment C4
Figure 38-Axial Force C4
35
3.2.2.5.7 Column 8.75m edge C7
These columns are found at edge of research center with tall 8.75m
Figure 39-Bending Moment C7
Figure 40-Axial Force C7
36
3.2.2.5.8 Column 8.75m not edge C3
These types of column found inside building of research center not at edge between 5m spans.
Figure 41-Bending Moment C3
.
Figure 42-Axial Force C3
37
3.2.2.5.9 Column 6.25m between 10m spans
These types of column with tall 6.2m are found in labs area which has span 10m.
Figure 43-Bending Moment C 6.25m between 10m spans
Figure 44-Axial Force C 6.25m between 10m spans
38
3.2.2.5.10 Column 8.75m between 10m spans
These types of column with tall 8.75m are found in labs area which has span 10m.
Figure 45-Bending Moment C 8.75m between 10m spans
Figure 46-Axial Force C 8.75m between 10m spans
39
3.2.2.5 Space Truss
Space truss used to hold double laminated glass at roof to allow sun light to enter building with
area 30*30m2 and columns support it every 10m.
Figure 47- Space Truss
Figure 48- Axial force of chords
40
Chapter 4
Design and Calculation sheet
4.1 Building Loads
41
42
43
44
4.2 Design of Secondary Beams and Main Beams
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
4.3 Design of Columns
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
4.4 Design of Bracing
107
108
109
110
111
112
113
114
115
116
117
118
119
120
4.5 Design of Space Truss
121
122
123
124
4.6 Design of Connections
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
Chapter 5
Drawing and implementation
In this chapter will talk about steps for drawing and implantation. First of all, I used Tekla
program to draw actual section that I designed according to Egyptian code. 3D modeling using
Tekla help to see building with its section and connections needed for building and if there any
clash could happen. In Tekla one could draw and implement building as it will be constructed in
reality (Figure 49). In addition, Tekla program helps to create drawings and import it to Autocad
for any changes I want. Moreover, detailing and sections done easily with only some steps.
Assembly and drawing parts for all section could be done easily, these drawing parts used to
manufacturing of sections with its actual dimensions and actual connections with more details in
factory. Also, Tekla doesn’t stop in those parts but they can calculate total weight of building
from all parts and section. Engineers used this program for implementing and create drawings in
easily way. In Autocad changes are done by adding some additional information and changing
template box needed. Also, Autocad helps to add lines and erase it easily.
Figure 49-3D model "Tekla"
148
Figure 50-Vertical Bracing "Tekla"
Figure 51-Connections "Tekla"
149
Figure 52-Create drawings "Tekla"
 Numbering and naming of drawings is important for good arrangement of drawings.
Also, doing a drawing list is a key to facilitate process of searching and finding of
drawings.
150
DWG LIST
MADE BY
Hassan Ahmed
Number Name Notes
ST-0 BASE PLATE
ST-1 PLAN LEVEL +0
ST-2 PLAN LEVEL +5m
ST-3 PLAN LEVEL +6.25m
ST-4 PLAN LEVEL +7.5m
ST-5 PLAN LEVEL +8.75m
ST-6 PLAN LEVEL +10m
ST-7 PLAN LEVEL +11.25m
ST-8 PLAN LEVEL +12.5m
ST-9 PLAN LEVEL +13.75m
ST-10 PLAN LEVEL +15m
ST-11 PLAN LEVEL +16.25m
ST-12 PLAN LEVEL +17.5m
ST-13 PLAN LEVEL +18.75m
ST-14 ELEVATION GRID A
ST-15 ELEVATION GRID B
ST-16 ELEVATION GRID C
ST-17 ELEVATION GRID D
ST-18 ELEVATION GRID E
ST-19 ELEVATION GRID F
ST-20 ELEVATION GRID G
ST-21 ELEVATION GRID H
ST-22 ELEVATION GRID I
ST-23 ELEVATION GRID J
ST-24 ELEVATION GRID K
ST-25 ELEVATION GRID L
ST-26 ELEVATION GRID M
ST-27 SIDE VIEW GRID 13
ST-28 SIDE VIEW GRID 1
ST-29 HORIZONTAL BRACING
ST-30 IPE 240 A3
ST-31 IPE 270 A3
ST-32 IPE 300 A3
ST-33 IPE 600 A2
ST-34 IPE 360 A2
ST-35 COLUMN HEA 320 C(5) A3
ST-36 COLUMN HEA 360 C(1) A2
ST-37 COLUMN HEA 400 C(6) A2
ST-38 COLUMN HEA 450 C(2) @ EDGE A2
ST-39 COLUMN HEA 450 C(2) A2
ST-40 COLUMN HEA 500 C(4) A2
ST-41 COLUMN HEA 550 C(7) A2
ST-42 COLUMN HEA 650 C(3) A2
ST-43 COLUMN HEA 650 PL400*10 C(3') A3
PROJECT : RESEAECH CENTER
Figure 53-Drawing List
151
Figure 54-Base Plate
152
Figure 55-Level +0
153
Figure 56-Level +5m
154
Figure 57-Level +6.25m
155
Figure 58-Level +7.5m
156
Figure 59-Level +8.75m
157
Figure 60-Level +10m
158
Figure 61-Level +11.25m
159
Figure 62-Level +12.5m
160
Figure 63-Level +13.75m
161
Figure 64-Level +15m
162
Figure 65-Level +16.25m
163
Figure 66- Level +17.5m
164
Figure 67-Level +18.75m
165
Figure 68-GRID A
166
Figure 69-GRID B
167
Figure 70-GRID C
168
Figure 71-GRID D
169
Figure 72-GRID E
170
Figure 73-GRID F
171
Figure 74-GRID H
172
Figure 75-GRID I
173
Figure 76-GRID J
174
Figure 77-GRID K
175
Figure 78-GRID L
176
Figure 79-GRID M
177
Figure 80-SIDE VIEW 13
178
Figure 81-SIDE VIEW 1
179
Figure 82-HORIZONTAL BRACING
180
Figure 83-COLUMN HEA320 C (5)
181
Figure 84-COLUMN HEA360 C (1)
182
Figure 85-COLUMN HEA400 C (6)
183
Figure 86-COLUMN HEA 450 C (2) @ EDGE
184
Figure 87-COLUMN HEA 450 C (2)
185
Figure 88-COLUMN HEA 500 C (4)
186
Figure 89-COLUMN HEA 550 C (7)
187
Figure 90-COLUMN HEA 650 C (3)
188
Figure 91-COLUMN HEA 650 PL400*10 C (3')
189
Figure 92-IPE240
190
Figure 93-IPE270
191
Figure 94-IPE300
192
Figure 95-IPE600
193
Figure 96-IPE360
194
Chapter 6
Additional Project
6.2 Background
In this chapter a new project designed and implemented. The factory accommodates machine
hall, welding area and end products. There is an overhead crane 20t capacity. This project is a
factory with area 22*48m2 with height 10m. In this factory there is a mezzanine floor in first
span then the others span used for factory. The factory designed as a portal frame with span 6m
and inaccessible roof. The factory located in Egypt.
6.2.1 Loads
In mezzanine floor a concrete slab with thickness 10cm, dead load is 0.85t/m’ and live load
0.8t/m’. There is a wind load with q=70kg/m2. Horizontal bracing and vertical bracing in
structure to resist wind load.
6.2.2 Structural Analysis
In this portal frame SAP2000 program used to analysis. 2D frames used for analysis by assigning
frame loads. Egyptian code used for design from straining action found from max load
combinations. All frames are designed as hot rolled and haunch attached in negative bending
moment.
6.2.2.1 Portal frame with mezzanine floor
By designing secondary beams and main beams of mezzanine floor and convert reaction of
frames on them.
Figure 97-Portal Frame with mezzanine
195
Figure 98-Maximum positive moment on Rafter
 Normal force on column is 13.78t
6.2.2.2 Portal frame with crane
In the frames with crane girders on it, bending moment on column and rafter increase due to
loads of crane and wind. Load combinations in this frame increase and scenarios could happen
(Figure 100).
Figure 99-Portal Frame with crane
196
Figure 100-Load combinations
Figure 101-Bending moment on column
197
Figure 102-Straining action on Rafter
Chapter 7
Design and Calculation Sheet for Additional Project
7.1 Design of Secondary Beam and Main Beam Mezzanine
198
199
200
201
202
203
204
205
7.2 Loads and Design of Portal Frame of Mezzanine
206
207
208
209
210
211
212
213
214
215
216
7.3 Design of Portal Frame with Crane
217
218
219
220
221
222
223
7.4 Design of Connection
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
7.6 Design of Crane Girder
239
240
241
242
243
244
245
7.7 Design of Purlins
246
247
248
249
250
Chapter 8
Drawings and detailing for additional project
In step of create drawing and detailing, general layout are formed using Autocad. After that
Tekla is used for modeling structure as 3D (Figure 103) then create elevation drawings and
detailings with some changes using Autocad.
Figure 103-3D of factory "Tekla"
251
Figure 104-General Layout
252
Figure 105- General layout 2
253
Figure 106- Portal Frame with Crane
254
Figure 107- Rafter of PF with Crane and Connection
255
Figure 108- Portal Frame with mezzanine
256
Figure 109- Rafter in PF with mezzanine
257
Chapter 9
Conclusion
As it was previously stated, the research center building needs a special design due to its
specifications and requirements. In this building some large areas found and tall columns could
make some problems but by using some innovative solution and computer aid, the structure will
match and fulfill architectural vision. Design team must coordinate responsibilities among the
architect, building frame engineer, façade engineer, general contractor, steel fabricator, steel
erector and façade subcontractor(s).
As in some special project, choosing best type for design building help to match economic and
safety required due to loads. In this project a roof has special requirement that sun light should
enter building, best solution to achieve this is to use space truss with double laminated glass.
Design structure as a frame type is better than beam-column type especially in large areas that
reduce sections weight and this will reduce cost of building. Using some 3D programs help to
maintain time of designing and drawing.
258
References
 ECP 205-2001
 ECP 201
 JAMES C. PARKER, P.E. (2008). Façade Attachments to Steel-Framed Buildings
 ALUMCO KSA Sharing Knowledge Series Seminar# 02. Architectural Glass and
Glazing
259
Aknowlegment
I wish to express my sicere thanks to [Dr. Amr Shaat], for providing me with all the necessary
facilities for the research and for the continuos encouragement. I am also grateful to [Engineer
Ahmed], in the Department of [Civil Engineering]. I am extremly thankful and indebted to him for
sharing expertise, and sincere and valuable guidance and encouragement extended to me.
I take this opportunity to express gratitude to all of the Department faculty members for their help
and support. I also thank my parents for the unceasin encouragement, support and attention. I am
also grateful to my partner [Heba Ahmed] who supported me throught this venture.
I also place on record, my sense of gratitude to one and all, who directly or indirectly, have lemt
their hand in this venture.

More Related Content

Viewers also liked

Guide To Development Process In Fairfax County
Guide To Development Process In Fairfax CountyGuide To Development Process In Fairfax County
Guide To Development Process In Fairfax CountyMichael Masciola
 
Phan 1- 22tcn 272-05
Phan 1- 22tcn 272-05Phan 1- 22tcn 272-05
Phan 1- 22tcn 272-05longphamvan09
 
News Media - DuPage Airport Authority
News Media - DuPage Airport AuthorityNews Media - DuPage Airport Authority
News Media - DuPage Airport AuthorityMichael Masciola
 
2011-2016 Loveland Region Industry Profile Across Other Colorado Regions
2011-2016 Loveland Region Industry Profile Across Other Colorado Regions2011-2016 Loveland Region Industry Profile Across Other Colorado Regions
2011-2016 Loveland Region Industry Profile Across Other Colorado RegionsMichael Masciola
 
Marketing - DuPage Airport Authority Full
Marketing - DuPage Airport Authority FullMarketing - DuPage Airport Authority Full
Marketing - DuPage Airport Authority FullMichael Masciola
 
UNIVERSIDAD TECNICA DEL NORTE
UNIVERSIDAD TECNICA DEL NORTEUNIVERSIDAD TECNICA DEL NORTE
UNIVERSIDAD TECNICA DEL NORTEel12056te
 
Dissertation - James Turner
Dissertation - James TurnerDissertation - James Turner
Dissertation - James TurnerJames Turner
 
Subtitles for YouTube Videos
Subtitles for YouTube Videos Subtitles for YouTube Videos
Subtitles for YouTube Videos Kirby Shannon
 
CITY OF EVANS BUSINESS EXPANSION & RETENTION REPORT & PLAN 2015
CITY OF EVANS BUSINESS EXPANSION & RETENTION REPORT & PLAN 2015CITY OF EVANS BUSINESS EXPANSION & RETENTION REPORT & PLAN 2015
CITY OF EVANS BUSINESS EXPANSION & RETENTION REPORT & PLAN 2015Michael Masciola
 
Centrigugal pump by GAURAV DHADSE
Centrigugal pump by GAURAV DHADSECentrigugal pump by GAURAV DHADSE
Centrigugal pump by GAURAV DHADSEGaurav Dhadse
 
Magnetic materials , NIT Calicut
Magnetic materials , NIT CalicutMagnetic materials , NIT Calicut
Magnetic materials , NIT CalicutSujith Varghese
 

Viewers also liked (15)

Guide To Development Process In Fairfax County
Guide To Development Process In Fairfax CountyGuide To Development Process In Fairfax County
Guide To Development Process In Fairfax County
 
Phan 1- 22tcn 272-05
Phan 1- 22tcn 272-05Phan 1- 22tcn 272-05
Phan 1- 22tcn 272-05
 
News Media - DuPage Airport Authority
News Media - DuPage Airport AuthorityNews Media - DuPage Airport Authority
News Media - DuPage Airport Authority
 
2011-2016 Loveland Region Industry Profile Across Other Colorado Regions
2011-2016 Loveland Region Industry Profile Across Other Colorado Regions2011-2016 Loveland Region Industry Profile Across Other Colorado Regions
2011-2016 Loveland Region Industry Profile Across Other Colorado Regions
 
Marketing - DuPage Airport Authority Full
Marketing - DuPage Airport Authority FullMarketing - DuPage Airport Authority Full
Marketing - DuPage Airport Authority Full
 
UNIVERSIDAD TECNICA DEL NORTE
UNIVERSIDAD TECNICA DEL NORTEUNIVERSIDAD TECNICA DEL NORTE
UNIVERSIDAD TECNICA DEL NORTE
 
AppsTec Profile
AppsTec ProfileAppsTec Profile
AppsTec Profile
 
Dissertation - James Turner
Dissertation - James TurnerDissertation - James Turner
Dissertation - James Turner
 
Subtitles for YouTube Videos
Subtitles for YouTube Videos Subtitles for YouTube Videos
Subtitles for YouTube Videos
 
shakespeare plays
shakespeare playsshakespeare plays
shakespeare plays
 
shakespeare plays
shakespeare playsshakespeare plays
shakespeare plays
 
Data collection
Data collectionData collection
Data collection
 
CITY OF EVANS BUSINESS EXPANSION & RETENTION REPORT & PLAN 2015
CITY OF EVANS BUSINESS EXPANSION & RETENTION REPORT & PLAN 2015CITY OF EVANS BUSINESS EXPANSION & RETENTION REPORT & PLAN 2015
CITY OF EVANS BUSINESS EXPANSION & RETENTION REPORT & PLAN 2015
 
Centrigugal pump by GAURAV DHADSE
Centrigugal pump by GAURAV DHADSECentrigugal pump by GAURAV DHADSE
Centrigugal pump by GAURAV DHADSE
 
Magnetic materials , NIT Calicut
Magnetic materials , NIT CalicutMagnetic materials , NIT Calicut
Magnetic materials , NIT Calicut
 

Similar to THESIS HASSAN3-1

Architectural And Structural Design Of Blast Resistant Buildings
Architectural And Structural Design Of Blast Resistant BuildingsArchitectural And Structural Design Of Blast Resistant Buildings
Architectural And Structural Design Of Blast Resistant BuildingsPaul Jomy
 
Analysis of Extrusion Metal Forming Defects
Analysis of Extrusion Metal Forming DefectsAnalysis of Extrusion Metal Forming Defects
Analysis of Extrusion Metal Forming DefectsAtef Mahmoud
 
CFD-Assignment_Ramji_Amit_10241445
CFD-Assignment_Ramji_Amit_10241445CFD-Assignment_Ramji_Amit_10241445
CFD-Assignment_Ramji_Amit_10241445Amit Ramji ✈
 
GauravGururajShenoy_Dissert_Final
GauravGururajShenoy_Dissert_FinalGauravGururajShenoy_Dissert_Final
GauravGururajShenoy_Dissert_FinalGaurav Shenoy
 
Thomas_Dorman_x00105369_3rd_year_Final_Report
Thomas_Dorman_x00105369_3rd_year_Final_ReportThomas_Dorman_x00105369_3rd_year_Final_Report
Thomas_Dorman_x00105369_3rd_year_Final_ReportThomas Dorman
 
Architectural And Structural Design Of Blast Resistant Buildings - REPORT
Architectural And Structural Design Of Blast Resistant Buildings - REPORTArchitectural And Structural Design Of Blast Resistant Buildings - REPORT
Architectural And Structural Design Of Blast Resistant Buildings - REPORTPaul Jomy
 
Sew drive calculation
Sew drive calculationSew drive calculation
Sew drive calculationMartin Doss
 
Computer aided achitecture design
Computer aided achitecture design Computer aided achitecture design
Computer aided achitecture design Chhay Teng
 
Basics of Air cooler design and inspection
Basics of Air cooler design and inspectionBasics of Air cooler design and inspection
Basics of Air cooler design and inspectionAekachai Ngernsomthong
 
Mini CNC (Router Machine)
Mini CNC (Router Machine)Mini CNC (Router Machine)
Mini CNC (Router Machine)Amir Dawa
 
Fire Safety Compliance Report
Fire Safety Compliance ReportFire Safety Compliance Report
Fire Safety Compliance ReportPaul Coyle
 
Last paper 1 edited1
Last paper 1 edited1Last paper 1 edited1
Last paper 1 edited1shushay hailu
 
Parabolic Trough Collector Project Report
Parabolic Trough Collector Project ReportParabolic Trough Collector Project Report
Parabolic Trough Collector Project Reportasad urrehman
 

Similar to THESIS HASSAN3-1 (20)

Architectural And Structural Design Of Blast Resistant Buildings
Architectural And Structural Design Of Blast Resistant BuildingsArchitectural And Structural Design Of Blast Resistant Buildings
Architectural And Structural Design Of Blast Resistant Buildings
 
Analysis of Extrusion Metal Forming Defects
Analysis of Extrusion Metal Forming DefectsAnalysis of Extrusion Metal Forming Defects
Analysis of Extrusion Metal Forming Defects
 
CFD-Assignment_Ramji_Amit_10241445
CFD-Assignment_Ramji_Amit_10241445CFD-Assignment_Ramji_Amit_10241445
CFD-Assignment_Ramji_Amit_10241445
 
FinalReport-1
FinalReport-1FinalReport-1
FinalReport-1
 
Rail gun Seminar report
Rail gun Seminar reportRail gun Seminar report
Rail gun Seminar report
 
Final Report (Group 5)
Final Report (Group 5)Final Report (Group 5)
Final Report (Group 5)
 
GauravGururajShenoy_Dissert_Final
GauravGururajShenoy_Dissert_FinalGauravGururajShenoy_Dissert_Final
GauravGururajShenoy_Dissert_Final
 
Fabrication of mosfets
Fabrication of mosfetsFabrication of mosfets
Fabrication of mosfets
 
Thomas_Dorman_x00105369_3rd_year_Final_Report
Thomas_Dorman_x00105369_3rd_year_Final_ReportThomas_Dorman_x00105369_3rd_year_Final_Report
Thomas_Dorman_x00105369_3rd_year_Final_Report
 
Architectural And Structural Design Of Blast Resistant Buildings - REPORT
Architectural And Structural Design Of Blast Resistant Buildings - REPORTArchitectural And Structural Design Of Blast Resistant Buildings - REPORT
Architectural And Structural Design Of Blast Resistant Buildings - REPORT
 
Sew drive calculation
Sew drive calculationSew drive calculation
Sew drive calculation
 
DNV Liquified Gas Terminal
DNV Liquified Gas TerminalDNV Liquified Gas Terminal
DNV Liquified Gas Terminal
 
Computer aided achitecture design
Computer aided achitecture design Computer aided achitecture design
Computer aided achitecture design
 
Basics of Air cooler design and inspection
Basics of Air cooler design and inspectionBasics of Air cooler design and inspection
Basics of Air cooler design and inspection
 
Internship report
Internship reportInternship report
Internship report
 
Mini CNC (Router Machine)
Mini CNC (Router Machine)Mini CNC (Router Machine)
Mini CNC (Router Machine)
 
Modu part 6_e-jan12
Modu part 6_e-jan12Modu part 6_e-jan12
Modu part 6_e-jan12
 
Fire Safety Compliance Report
Fire Safety Compliance ReportFire Safety Compliance Report
Fire Safety Compliance Report
 
Last paper 1 edited1
Last paper 1 edited1Last paper 1 edited1
Last paper 1 edited1
 
Parabolic Trough Collector Project Report
Parabolic Trough Collector Project ReportParabolic Trough Collector Project Report
Parabolic Trough Collector Project Report
 

THESIS HASSAN3-1

  • 1. 1 Faculty of Engineering and Material Science Bachelor Thesis “Structural design of a Research Centre A” Submitted by: Hasan Ahmed Gamal El-din Submitted to Department of Civil Engineering Major Structure Registration Number: 25-0294 Date of submission: 24/5/2015 Supervisor: Dr. Amr Shaat
  • 2. 2 Abstract The structural engineering has an essential role in the construction of a steel structure as Research Center. Project includes five main phases, which are proposing a general layout, assuming reasonable loads, structural analyzing, designing, drawing and detailing. After that building could be constructed. Assumption of the loads is done with the aid of Egyptian code. Normally, the structural analysis is performed utilizing computer software. Afterwards, the designing is carried out as per standard codes. Last but not least, drawing and detailing are done to present the designs on sheets to be implemented later on. The purpose of this paper is to design and implement a research center steel structure with all information and provide all details need to construct the project. Key words: Structure, Design, Steel, Research center
  • 3. 3 Contents Abstract...................................................................................................................................................2 Chapter 1.................................................................................................................................................9 Introduction.............................................................................................................................................9 1.1 Aim and motivation .......................................................................................................................9 1.2 Background ...................................................................................................................................9 Chapter 2...............................................................................................................................................12 Glass types and application....................................................................................................................12 2.1Glass types and production overview: ...........................................................................................12 2.2Glass usage and applications:........................................................................................................14 Chapter 3...............................................................................................................................................15 Structural design of Research ................................................................................................................15 3.1 Building loads.............................................................................................................................. 15 3.1.1 Dead load.............................................................................................................................. 15 3.1.2 Live Load ............................................................................................................................. 15 3.1.3 Wind Load............................................................................................................................15 3.1.3.1 Wind West .....................................................................................................................15 3.1.3.2 Wind East.......................................................................................................................15 3.1.3.3 Wind North ....................................................................................................................15 3.1.3.4 Wind South ....................................................................................................................16 3.2 Structural analysis........................................................................................................................16 3.2.1 Defining Sections and Assigning Loads.................................................................................16 3.2.2 Straining Actions ..................................................................................................................22 3.2.2.1 Secondary Beams ...........................................................................................................22 3.2.2.1.1 Secondary Beams B1 ............................................................................................... 22 3.2.2.1.2 Secondary Beams B2 ............................................................................................... 22 3.2.2.2 Main Girders ..................................................................................................................23 3.2.2.2.1 Main Girders G1......................................................................................................23 3.2.2.2.2 Main Girders G2......................................................................................................23 3.2.2.2.3 Main Girders G3......................................................................................................24 3.2.2.2.4 Main Girders G4......................................................................................................24 3.2.2.3 Vertical Bracing .............................................................................................................25
  • 4. 4 3.2.2.3.1 Vertical Bracing Column 5m....................................................................................25 3.2.2.3.2 Vertical Bracing Column 6.25m...............................................................................26 3.2.2.3.2.1 Diagonal member.............................................................................................. 26 3.2.2.3.2.2 Horizontal member ...........................................................................................26 3.2.2.3.3 Vertical Bracing Column 7.5m.................................................................................27 3.2.2.3.3.1 Diagonal member.............................................................................................. 27 3.2.2.3.3.2 Horizontal member ...........................................................................................27 3.2.2.3.4 Vertical Bracing for Column 8.75m .........................................................................28 3.2.2.3.4.1 Diagonal member.............................................................................................. 28 3.2.2.3.4.2 Horizontal member ...........................................................................................28 3.2.2.4 Horizontal Bracing .........................................................................................................29 3.2.2.5 Columns.........................................................................................................................29 3.2.2.5.1 Columns 5m edge C5............................................................................................... 29 3.2.2.5.2 Columns 5m not edge C6.........................................................................................30 3.2.2.5.3 Column 6.25 edge C1 .............................................................................................. 31 3.2.2.5.4 Column 6.25 not edge C2.........................................................................................32 3.2.2.5.5 Column 7.5 edge C2’ ............................................................................................... 33 3.2.2.5.6 Column 7.5 not edge C4...........................................................................................34 3.2.2.5.7 Column 8.75m edge C7 ...........................................................................................35 3.2.2.5.8 Column 8.75m not edge C3......................................................................................36 3.2.2.5.9 Column 6.25m between 10m spans ..........................................................................37 3.2.2.5.10 Column 8.75m between 10m spans ........................................................................38 3.2.2.5 Space Truss....................................................................................................................39 Chapter 4...............................................................................................................................................40 Design and Calculation sheet.................................................................................................................40 4.1 Building Loads ............................................................................................................................40 4.2 Design of Secondary Beams and Main Beams..............................................................................44 4.3 Design of Columns ......................................................................................................................66 4.4 Design of Bracing......................................................................................................................106 4.5 Design of Space Truss.................................................................................................................120 4.6 Design of Connections...............................................................................................................124 Chapter 5.............................................................................................................................................147
  • 5. 5 Drawing and implementation...............................................................................................................147 Chapter 6.............................................................................................................................................194 Additional Project ............................................................................................................................... 194 6.2 Background ............................................................................................................................... 194 6.2.1 Loads..................................................................................................................................194 6.2.2 Structural Analysis..............................................................................................................194 6.2.2.1 Portal frame with mezzanine floor ................................................................................194 6.2.2.2 Portal frame with crane.................................................................................................195 Chapter 7.............................................................................................................................................197 Design and Calculation Sheet for Additional Project............................................................................197 7.1 Design of Secondary Beam and Main Beam Mezzanine............................................................. 197 7.2 Loads and Design of Portal Frame of Mezzanine........................................................................205 7.3 Design of Portal Frame with Crane ............................................................................................216 7.4 Design of Connections...............................................................................................................223 7.6 Design Of Crane Girder .............................................................................................................238 7.7 Design of Purlins........................................................................................................................245 Chapter 8.............................................................................................................................................250 Drawings and detailing for additional project.......................................................................................250 Chapter 9.............................................................................................................................................257 Conclusion ..........................................................................................................................................257 References...........................................................................................................................................258
  • 6. 6 Table of Figures Figure 1-Location Building....................................................................................................................10 Figure 2-3D view ..................................................................................................................................10 Figure 3-Sky Light ................................................................................................................................ 11 Figure 4-Define Sections .......................................................................................................................16 Figure 5-Define Load Patterns...............................................................................................................17 Figure 6-Define Load Combinations......................................................................................................18 Figure 7-3D modeling ........................................................................................................................... 19 Figure 8- Plan 0 level ............................................................................................................................ 20 Figure 9-Vertical Bracing ......................................................................................................................20 Figure 10-D.L on Secondary Beam........................................................................................................21 Figure 11-Wind West ............................................................................................................................ 21 Figure 12-Straining action B1................................................................................................................22 Figure 13-Straining Action B2...............................................................................................................22 Figure 14-Straining Action G1...............................................................................................................23 Figure 15-Straining Actions G2 .............................................................................................................23 Figure 16-Straining Action G3...............................................................................................................24 Figure 17-Bending moment & Shear Stress G4......................................................................................24 Figure 18-Axial Force G4......................................................................................................................25 Figure 19-Axial Force column 5m .........................................................................................................25 Figure 20-Diagonal member Column 6.25m .......................................................................................... 26 Figure 21-Horizontal member Column 6.25m........................................................................................ 26 Figure 22-Diagonal member 7.5m .........................................................................................................27 Figure 23-Horizontal member Column 7.5m.......................................................................................... 27 Figure 24-Diagonal member Column 8.75m .......................................................................................... 28 Figure 25-Horizontal member Column 8.75m........................................................................................ 28 Figure 26-Axial Force Horizontal Bracing............................................................................................. 29 Figure 27-Bending moment C5..............................................................................................................29 Figure 28-Axial Force C5......................................................................................................................30 Figure 29-Bending Moment C6 .............................................................................................................30 Figure 30-Axial Force C6......................................................................................................................31 Figure 31-Bending Moment C1 .............................................................................................................31 Figure 32-Axial Force C1......................................................................................................................31 Figure 33-Bending Moment C2 .............................................................................................................32 Figure 34-Axial Force C2......................................................................................................................32 Figure 35-Bending Moment C2'.............................................................................................................33 Figure 36-Axial Force C2' .....................................................................................................................33 Figure 37-Bending Moment C4 .............................................................................................................34 Figure 38-Axial Force C4......................................................................................................................34
  • 7. 7 Figure 39-Bending Moment C7 .............................................................................................................35 Figure 40-Axial Force C7......................................................................................................................35 Figure 41-Bending Moment C3 .............................................................................................................36 Figure 42-Axial Force C3......................................................................................................................36 Figure 43-Bending Moment C 6.25m between 10m spans......................................................................37 Figure 44-Axial Force C 6.25m between 10m spans ..............................................................................37 Figure 45-Bending Moment C 8.75m between 10m spans......................................................................38 Figure 46-Axial Force C 8.75m between 10m spans ..............................................................................38 Figure 47- Space Truss.......................................................................................................................... 39 Figure 48- Axial force of chords ............................................................................................................39 Figure 49-3D model "Tekla"................................................................................................................ 147 Figure 50-Vertical Bracing "Tekla" ..................................................................................................... 148 Figure 51-Connections "Tekla"............................................................................................................ 148 Figure 52-Create drawings "Tekla"...................................................................................................... 149 Figure 53-Drawing List ....................................................................................................................... 150 Figure 54-Base Plate............................................................................................................................ 151 Figure 55-Level +0.............................................................................................................................. 152 Figure 56-Level +5m........................................................................................................................... 153 Figure 57-Level +6.25m...................................................................................................................... 154 Figure 58-Level +7.5m........................................................................................................................ 155 Figure 59-Level +8.75m...................................................................................................................... 156 Figure 60-Level +10m......................................................................................................................... 157 Figure 61-Level +11.25m.................................................................................................................... 158 Figure 62-Level +12.5m...................................................................................................................... 159 Figure 63-Level +13.75m.................................................................................................................... 160 Figure 64-Level +15m......................................................................................................................... 161 Figure 65-Level +16.25m.................................................................................................................... 162 Figure 66- Level +17.5m..................................................................................................................... 163 Figure 67-Level +18.75m.................................................................................................................... 164 Figure 68-GRID A .............................................................................................................................. 165 Figure 69-GRID B............................................................................................................................... 166 Figure 70-GRID C............................................................................................................................... 167 Figure 71-GRID D .............................................................................................................................. 168 Figure 72-GRID E............................................................................................................................... 169 Figure 73-GRID F............................................................................................................................... 170 Figure 74-GRID H .............................................................................................................................. 171 Figure 75-GRID I................................................................................................................................ 172 Figure 76-GRID J................................................................................................................................ 173 Figure 77-GRID K .............................................................................................................................. 174 Figure 78-GRID L............................................................................................................................... 175 Figure 79-GRID M.............................................................................................................................. 176 Figure 80-SIDE VIEW 13 ................................................................................................................... 177 Figure 81-SIDE VIEW 1 ..................................................................................................................... 178 Figure 82-HORIZONTAL BRACING................................................................................................. 179
  • 8. 8 Figure 83-COLUMN HEA320 C (5).................................................................................................... 180 Figure 84-COLUMN HEA360 C (1).................................................................................................... 181 Figure 85-COLUMN HEA400 C (6).................................................................................................... 182 Figure 86-COLUMN HEA 450 C (2) @ EDGE................................................................................... 183 Figure 87-COLUMN HEA 450 C (2)................................................................................................... 184 Figure 88-COLUMN HEA 500 C (4)................................................................................................... 185 Figure 89-COLUMN HEA 550 C (7)................................................................................................... 186 Figure 90-COLUMN HEA 650 C (3)................................................................................................... 187 Figure 91-COLUMN HEA 650 PL400*10 C (3')................................................................................. 188 Figure 92-IPE240................................................................................................................................ 189 Figure 93-IPE270................................................................................................................................ 190 Figure 94-IPE300................................................................................................................................ 191 Figure 95-IPE600................................................................................................................................ 192 Figure 96-IPE360................................................................................................................................ 193 Figure 97-Portal Frame with mezzanine............................................................................................... 194 Figure 98-Maximum positive moment on Rafter.................................................................................. 195 Figure 99-Portal Frame with crane....................................................................................................... 195 Figure 100-Load combinations ............................................................................................................ 196 Figure 101-Bending moment on column.............................................................................................. 196 Figure 102-Straining action on Rafter.................................................................................................. 197 Figure 103-3D of factory "Tekla" ........................................................................................................ 250 Figure 104-General Layout.................................................................................................................. 251 Figure 105- General layout 2 ............................................................................................................... 252 Figure 106- Portal Frame with Crane................................................................................................... 253 Figure 107- Rafter of PF with Crane and Connection........................................................................... 254 Figure 108- Portal Frame with mezzanine............................................................................................ 255 Figure 109- Rafter in PF with mezzanine............................................................................................. 256
  • 9. 9 Chapter 1 Introduction 1.1 Aim and motivation To construct a research center requirements have to be taken in consideration. First of all architectural plans done by engineers should take care that type of these buildings need large areas for labs, decrease number of columns to allow researchers moving from one office to the other easily, provide a place for eating and drinking where it is away from offices and labs. Also a research center need to be located in area with less pollution and sky lights to allow sun light from entering building. In addition, structural engineering choose best way and criteria for design to combine and gather information from plans of architecture and any of imagination of architectural engineering. Also, structural designer have to take care of electricity such as lightings and mechanical devices in the building. Finally, implementation done by forming drawings and details of design which help to build and construct any building. The purpose of this paper to design and implement a research center steel structure with all information taken from architectural plans and draw all details needed after that to construct that building if needed. Also, share information and experience gained from this project to other engineers. 1.2 Background The structure is steel frame to cover area of 60m*60m of a managerial building “Research Center”. The structure located in Cairo. Research Center consists of ground floor and 3 floors. Each floor has 4 levels with difference 1.25m between them except ground floor that has one level. The floors are typical in design as they are replicate from ground floor. In addition, the structure contains large areas especially in labs which better way for design is to use frame structure than beam-column. Moreover, outer area of building covered by glass façade to allow sun light to go into the building. There is a void in center of the building while offices and labs are around this void. The total height of building is 18.75m and a space truss for a sky light at roof. Frame type is used and other direction vertical bracing. Horizontal bracing used in building for wind load till pouring of concrete. Columns reached level -3m for garage usage. In columns will find that normal force and buckling length is the critical in design. Designs of columns in edge differ than between spans due to normal force. In labs main beams have high largest section due to its span. Also, the largest section of secondary beam found in cafeteria area. In this project hot rolled sections used in design except in one types of columns. The code used for loads ECP 2008 and for design ECP 205-2001. Steel used in design is Steel 37 mild steel. In this structure analysis are done using SAP2000 by adding load (Dead, Live and Wind) according to Egyptian code. After that designs using Egyptian code and calculation sheets are formed.
  • 10. 10 Research Center found in Cairo “Tagamo Elkhames” (Figure 1). Also building is characterized by its large areas and outer are is a square shape with 4 levels in each floor with sky light at roof and glass façade at the outer areas, void at center of building with a cafeteria inside that void with also a square shape. Figure 1-Location Building Figure 2-3D view
  • 11. 11 Figure 3-Sky Light General layout formed with main elements and secondary elements, analysis using SAP2000 V16 where straining actions are taken and deflections, calculation sheets with design in it according Egyptian Code, 3D modeling, drawings and detailing using Tekla and Autocad programs.
  • 12. 12 Chapter 2 Glass types and application 2.1Glass types and production overview: Over decades, glass productions in terms of types and ingredients have witnessed great evolution. Including various compositions such as; Fused silica glass, Sodium borosilicate glass, Lead-oxide glass, Alumino-silicate glass, Oxide glass and the Soda-lime-silica glass and Soda- lime glass, also called soda-lime-silica glass. These types are considered to be the most known types of glass that are usually used for glass containers, windowpanes and other commodity items. Moving to the most common type of glass that have been developed over time to become the most important type of glass used in today's constructions which is the float glass. Float glass manufacturing consumes some of the earth’s most rich raw materials which are the silica sand, counting for 60 % (by weight) of the materials that are called the batch. Minerals and dolomite are added to assist in the enduring and weathering properties of the finished glass, while other components are added to help melting the sand such as soda ash and sulfate. The following figure illustrates the production process of the float glass including all the stages that the glass goes through for manufacturing. Moreover, there are many types of glass final products in terms of physical properties and appearance. First, the extra clear glass which is a final product derived from melted glass (float glass). This specific type of glass is made of very low quantities of iron component in order to its properties of sun and heat reflection. It is considered the most applicable option to use for solar energy applications where the heat is needed to be absorbed and reach the solar cells.
  • 13. 13 Another product is the mirrored glass which is coated with a metal layer to one of the sides of the glass the coating is mostly made of aluminum, silver, chrome or gold. Mirrored glass is widely used for architectural purposes and may be used for essential functional reasons as well as for the visual effect and even for privacy purposes. There is also the coated glass which is made to adjust its appearance and provide it with several advanced features and functions available in flat glass products, such as special reflection, scratch resistance, transmission and low maintenance. On the other hand there is the tinted glass which is made by small metal additions to the float glass in order to give the glass some colors such as green, bronze, grey or blue, however it does not affect the basic functions of the glass excluding some modifications in the solar energy transmission. Finally, the frosted or sandblasted glass, which is manufactured by acid engraving or sandblasting of clear sheet glass. It has the effect of sprinkling of light transmission, thus blurring images while still diffusing light.
  • 14. 14 2.2Glass usage and applications: There is a very specific design of glass that is commonly used for structural and architectural purposes which is "Glass-fiber-reinforced concrete (GFRC) panels". This system is light weight system that includes various colors and textures which make these panels very adaptable for many designs and architectural applications. GFRC can also be designed similarly to the precast concrete panels. These lightweight systems like GFRC, stone facings and thin brick are very beneficial as they are easy to construct and do not involve heavy steel structural support in the principal structure of the building. Therefore, GFRC and other lightweight systems are more cost- effective and reasonable steel frames. GFRC systems usually weight among 9 and 25 psf depending on the type of the panel shape and size, external finish, and back-up frame structure. Usual wall systems are embraced of the panel skin, anchors fastening the skin to the back-up frame, while the panel back-up frame and connectors are attaching the panel frame to the main building structure. GFRC generally are not load bearing and are not deliberated as a part of the lateral load resisting system. Thereby, the primary structure of the building must be designed with separate lateral force resisting system and requires the support for the weight and lateral loads from the panel system. So that it could be transferred from the panel skin to the main building structure. This system mechanism and components are illustrated in the following figure in more details.
  • 15. 15 Chapter 3 Structural design of Research 3.1 Building loads 3.1.1 Dead load Use R.C thickness 0.12m, specific weight for concrete 2.5t/m2 (ECP Table (3-1) P17), floor cover 0.2 t/m’ and spacing between secondary beams is 1.67m. Wd.l= (0.12*2.5+0.2)-1.67= 0.84t/m’ 3.1.2 Live Load Use Live load= 0.4t/m2 (ECP Table (4-1) P32) Wl.l= 0.4*1.67= 0.67t/m’ 3.1.3 Wind Load The building located at Cairo q=70kg/m2 and spacing between frames are 5m Ww= C*K*q*s 3.1.3.1 Wind West Ww1= 0.8*1*0.07*5= 0.28t/m’ Ww2= 0.5*1*0.07*5= 0.175t/m’ Ww3= -0.7*1*0.07*5= -0.245t/m’ Ww4= -0.7*1*0.07*5= -0.245t/m’ Ww5= -0.8*1*0.07*5= -0.28t/m’ 3.1.3.2 Wind East Ww1= -0.8*1*0.07*5= -0.28t/m’ Ww2= -0.5*1*0.07*5= -0.175t/m’ Ww3= -0.7*1*0.07*5= -0.245t/m’ Ww4= -0.7*1*0.07*5= -0.245t/m’ Ww5= -0.8*1*0.07*5= -0.28t/m’ 3.1.3.3 Wind North Ww1= 0.8*1*0.07*5= 0.28t/m’
  • 16. 16 Ww2= 0.5*1*0.07*5= 0.175t/m’ Ww3= -0.7*1*0.07*5= -0.245t/m’ Ww4= -0.7*1*0.07*5= -0.245t/m’ Ww5= -0.8*1*0.07*5= -0.28t/m’ 3.1.3.4 Wind South Ww1= 0.8*1*0.07*5= 0.28t/m’ Ww2= 0.5*1*0.07*5= 0.175t/m’ Ww3= -0.7*1*0.07*5= -0.245t/m’ Ww4= -0.7*1*0.07*5= -0.245t/m’ Ww5= -0.8*1*0.07*5= -0.28t/m’ 3.2 Structural analysis In step of structural analysis, SAP2000 V16 used to find out all straining actions needed for design and check for deflection. First of all, define material used in project which is St37, all sections needed in projects as I use hot rolled section as show in (Figure 4). Define load patterns which are Dead load, Live load and Wind load as in (Figure 5). 3.2.1 Defining Sections and Assigning Loads Figure 4-Define Sections
  • 17. 17 Figure 5-Define Load Patterns  Load combinations used in this project are D.L D.L+L.L D.L+L.L+W.E D.L+L.L+W.W D.L+L.L+W.S D.L+L.L+W.N D.L+W.E D.L+W.W D.L+W.S D.L+W.N MAX “Envelope”
  • 18. 18 Figure 6-Define Load Combinations  3D modeling and draw frames with all its aspects and importing 3D from Autocad (Figure 7)
  • 20. 20 Figure 8- Plan 0 level Figure 9-Vertical Bracing
  • 21. 21  Assign frame loads, dead load and live load on secondary beams and wind load on columns (Figure 9 & Figure 10) Figure 10-D.L on Secondary Beam Figure 11-Wind West
  • 22. 22 3.2.2 Straining Actions Axial force, bending moment, shear stress and deflection are gained 3.2.2.1 Secondary Beams 3.2.2.1.1 Secondary Beams B1 B1 is found in all frames of building with span 5 meters except in cafeteria Figure 12-Straining action B1 3.2.2.1.2 Secondary Beams B2 B2 is found in cafeteria area with span 10m Figure 13-Straining Action B2
  • 23. 23 3.2.2.2 Main Girders 3.2.2.2.1 Main Girders G1 G1 is not at edges and found in frames not having horizontal bracing. Figure 14-Straining Action G1 3.2.2.2.2 Main Girders G2 G2 is found at edges of frames, these girders have negative moment greater than other due to continuity of moment. Figure 15-Straining Actions G2
  • 24. 24 3.2.2.2.3 Main Girders G3 G3 are beams with span 10m long found at edges, these long members are for labs area, where negative moment value is close to positive moment value. Figure 16-Straining Action G3 3.2.2.2.4 Main Girders G4 G4 found in middle of frames of horizontal bracing where we find a great value of normal force which is formed due to wind load. Figure 17-Bending moment & Shear Stress G4
  • 25. 25 Figure 18-Axial Force G4 3.2.2.3 Vertical Bracing 3.2.2.3.1 Vertical Bracing Column 5m In Column 5m long there is vertical bracing which is cross designed as double angle. Figure 19-Axial Force column 5m
  • 26. 26 3.2.2.3.2 Vertical Bracing Column 6.25m In column 6.25m long bracing divide into two parts both 3.125m 3.2.2.3.2.1 Diagonal member Figure 20-Diagonal member Column 6.25m 3.2.2.3.2.2 Horizontal member Figure 21-Horizontal member Column 6.25m
  • 27. 27 3.2.2.3.3 Vertical Bracing Column 7.5m In column 6.25m long bracing divide into two parts both 3.75m 3.2.2.3.3.1 Diagonal member Figure 22-Diagonal member 7.5m 3.2.2.3.3.2 Horizontal member Figure 23-Horizontal member Column 7.5m
  • 28. 28 3.2.2.3.4 Vertical Bracing for Column 8.75m In column 6.25m long bracing divide into two parts both 4.375m 3.2.2.3.4.1 Diagonal member Figure 24-Diagonal member Column 8.75m 3.2.2.3.4.2 Horizontal member Figure 25-Horizontal member Column 8.75m
  • 29. 29 3.2.2.4 Horizontal Bracing Horizontal bracing designed as its maximum compression force Figure 26-Axial Force Horizontal Bracing 3.2.2.5 Columns Columns in this building have tall spans which increase value of buckling length. Also, normal forces are critical with highest value while bending moments doesn’t affect too much on design. 3.2.2.5.1 Columns 5m edge C5 These columns are found at edges of building with tall 5m Figure 27-Bending moment C5
  • 30. 30 Figure 28-Axial Force C5 3.2.2.5.2 Columns 5m not edge C6 These columns are found inside building not at edge with tall 5m. Figure 29-Bending Moment C6
  • 31. 31 Figure 30-Axial Force C6 3.2.2.5.3 Column 6.25 edge C1 These columns are found at edge of building with tall 6.25m Figure 31-Bending Moment C1 Figure 32-Axial Force C1
  • 32. 32 3.2.2.5.4 Column 6.25 not edge C2 These types of columns are found inside building not at edge with tall 6.25m. Figure 33-Bending Moment C2 Figure 34-Axial Force C2
  • 33. 33 3.2.2.5.5 Column 7.5 edge C2’ These columns are found in the edge of building with tall 7.5m. Figure 35-Bending Moment C2' Figure 36-Axial Force C2'
  • 34. 34 3.2.2.5.6 Column 7.5 not edge C4 These Columns are found inside building not at edge with tall 7.5m. Figure 37-Bending Moment C4 Figure 38-Axial Force C4
  • 35. 35 3.2.2.5.7 Column 8.75m edge C7 These columns are found at edge of research center with tall 8.75m Figure 39-Bending Moment C7 Figure 40-Axial Force C7
  • 36. 36 3.2.2.5.8 Column 8.75m not edge C3 These types of column found inside building of research center not at edge between 5m spans. Figure 41-Bending Moment C3 . Figure 42-Axial Force C3
  • 37. 37 3.2.2.5.9 Column 6.25m between 10m spans These types of column with tall 6.2m are found in labs area which has span 10m. Figure 43-Bending Moment C 6.25m between 10m spans Figure 44-Axial Force C 6.25m between 10m spans
  • 38. 38 3.2.2.5.10 Column 8.75m between 10m spans These types of column with tall 8.75m are found in labs area which has span 10m. Figure 45-Bending Moment C 8.75m between 10m spans Figure 46-Axial Force C 8.75m between 10m spans
  • 39. 39 3.2.2.5 Space Truss Space truss used to hold double laminated glass at roof to allow sun light to enter building with area 30*30m2 and columns support it every 10m. Figure 47- Space Truss Figure 48- Axial force of chords
  • 40. 40 Chapter 4 Design and Calculation sheet 4.1 Building Loads
  • 41. 41
  • 42. 42
  • 43. 43
  • 44. 44 4.2 Design of Secondary Beams and Main Beams
  • 45. 45
  • 46. 46
  • 47. 47
  • 48. 48
  • 49. 49
  • 50. 50
  • 51. 51
  • 52. 52
  • 53. 53
  • 54. 54
  • 55. 55
  • 56. 56
  • 57. 57
  • 58. 58
  • 59. 59
  • 60. 60
  • 61. 61
  • 62. 62
  • 63. 63
  • 64. 64
  • 65. 65
  • 66. 66 4.3 Design of Columns
  • 67. 67
  • 68. 68
  • 69. 69
  • 70. 70
  • 71. 71
  • 72. 72
  • 73. 73
  • 74. 74
  • 75. 75
  • 76. 76
  • 77. 77
  • 78. 78
  • 79. 79
  • 80. 80
  • 81. 81
  • 82. 82
  • 83. 83
  • 84. 84
  • 85. 85
  • 86. 86
  • 87. 87
  • 88. 88
  • 89. 89
  • 90. 90
  • 91. 91
  • 92. 92
  • 93. 93
  • 94. 94
  • 95. 95
  • 96. 96
  • 97. 97
  • 98. 98
  • 99. 99
  • 100. 100
  • 101. 101
  • 102. 102
  • 103. 103
  • 104. 104
  • 105. 105
  • 106. 106 4.4 Design of Bracing
  • 107. 107
  • 108. 108
  • 109. 109
  • 110. 110
  • 111. 111
  • 112. 112
  • 113. 113
  • 114. 114
  • 115. 115
  • 116. 116
  • 117. 117
  • 118. 118
  • 119. 119
  • 120. 120 4.5 Design of Space Truss
  • 121. 121
  • 122. 122
  • 123. 123
  • 124. 124 4.6 Design of Connections
  • 125. 125
  • 126. 126
  • 127. 127
  • 128. 128
  • 129. 129
  • 130. 130
  • 131. 131
  • 132. 132
  • 133. 133
  • 134. 134
  • 135. 135
  • 136. 136
  • 137. 137
  • 138. 138
  • 139. 139
  • 140. 140
  • 141. 141
  • 142. 142
  • 143. 143
  • 144. 144
  • 145. 145
  • 146. 146
  • 147. 147 Chapter 5 Drawing and implementation In this chapter will talk about steps for drawing and implantation. First of all, I used Tekla program to draw actual section that I designed according to Egyptian code. 3D modeling using Tekla help to see building with its section and connections needed for building and if there any clash could happen. In Tekla one could draw and implement building as it will be constructed in reality (Figure 49). In addition, Tekla program helps to create drawings and import it to Autocad for any changes I want. Moreover, detailing and sections done easily with only some steps. Assembly and drawing parts for all section could be done easily, these drawing parts used to manufacturing of sections with its actual dimensions and actual connections with more details in factory. Also, Tekla doesn’t stop in those parts but they can calculate total weight of building from all parts and section. Engineers used this program for implementing and create drawings in easily way. In Autocad changes are done by adding some additional information and changing template box needed. Also, Autocad helps to add lines and erase it easily. Figure 49-3D model "Tekla"
  • 148. 148 Figure 50-Vertical Bracing "Tekla" Figure 51-Connections "Tekla"
  • 149. 149 Figure 52-Create drawings "Tekla"  Numbering and naming of drawings is important for good arrangement of drawings. Also, doing a drawing list is a key to facilitate process of searching and finding of drawings.
  • 150. 150 DWG LIST MADE BY Hassan Ahmed Number Name Notes ST-0 BASE PLATE ST-1 PLAN LEVEL +0 ST-2 PLAN LEVEL +5m ST-3 PLAN LEVEL +6.25m ST-4 PLAN LEVEL +7.5m ST-5 PLAN LEVEL +8.75m ST-6 PLAN LEVEL +10m ST-7 PLAN LEVEL +11.25m ST-8 PLAN LEVEL +12.5m ST-9 PLAN LEVEL +13.75m ST-10 PLAN LEVEL +15m ST-11 PLAN LEVEL +16.25m ST-12 PLAN LEVEL +17.5m ST-13 PLAN LEVEL +18.75m ST-14 ELEVATION GRID A ST-15 ELEVATION GRID B ST-16 ELEVATION GRID C ST-17 ELEVATION GRID D ST-18 ELEVATION GRID E ST-19 ELEVATION GRID F ST-20 ELEVATION GRID G ST-21 ELEVATION GRID H ST-22 ELEVATION GRID I ST-23 ELEVATION GRID J ST-24 ELEVATION GRID K ST-25 ELEVATION GRID L ST-26 ELEVATION GRID M ST-27 SIDE VIEW GRID 13 ST-28 SIDE VIEW GRID 1 ST-29 HORIZONTAL BRACING ST-30 IPE 240 A3 ST-31 IPE 270 A3 ST-32 IPE 300 A3 ST-33 IPE 600 A2 ST-34 IPE 360 A2 ST-35 COLUMN HEA 320 C(5) A3 ST-36 COLUMN HEA 360 C(1) A2 ST-37 COLUMN HEA 400 C(6) A2 ST-38 COLUMN HEA 450 C(2) @ EDGE A2 ST-39 COLUMN HEA 450 C(2) A2 ST-40 COLUMN HEA 500 C(4) A2 ST-41 COLUMN HEA 550 C(7) A2 ST-42 COLUMN HEA 650 C(3) A2 ST-43 COLUMN HEA 650 PL400*10 C(3') A3 PROJECT : RESEAECH CENTER Figure 53-Drawing List
  • 183. 183 Figure 86-COLUMN HEA 450 C (2) @ EDGE
  • 188. 188 Figure 91-COLUMN HEA 650 PL400*10 C (3')
  • 194. 194 Chapter 6 Additional Project 6.2 Background In this chapter a new project designed and implemented. The factory accommodates machine hall, welding area and end products. There is an overhead crane 20t capacity. This project is a factory with area 22*48m2 with height 10m. In this factory there is a mezzanine floor in first span then the others span used for factory. The factory designed as a portal frame with span 6m and inaccessible roof. The factory located in Egypt. 6.2.1 Loads In mezzanine floor a concrete slab with thickness 10cm, dead load is 0.85t/m’ and live load 0.8t/m’. There is a wind load with q=70kg/m2. Horizontal bracing and vertical bracing in structure to resist wind load. 6.2.2 Structural Analysis In this portal frame SAP2000 program used to analysis. 2D frames used for analysis by assigning frame loads. Egyptian code used for design from straining action found from max load combinations. All frames are designed as hot rolled and haunch attached in negative bending moment. 6.2.2.1 Portal frame with mezzanine floor By designing secondary beams and main beams of mezzanine floor and convert reaction of frames on them. Figure 97-Portal Frame with mezzanine
  • 195. 195 Figure 98-Maximum positive moment on Rafter  Normal force on column is 13.78t 6.2.2.2 Portal frame with crane In the frames with crane girders on it, bending moment on column and rafter increase due to loads of crane and wind. Load combinations in this frame increase and scenarios could happen (Figure 100). Figure 99-Portal Frame with crane
  • 196. 196 Figure 100-Load combinations Figure 101-Bending moment on column
  • 197. 197 Figure 102-Straining action on Rafter Chapter 7 Design and Calculation Sheet for Additional Project 7.1 Design of Secondary Beam and Main Beam Mezzanine
  • 198. 198
  • 199. 199
  • 200. 200
  • 201. 201
  • 202. 202
  • 203. 203
  • 204. 204
  • 205. 205 7.2 Loads and Design of Portal Frame of Mezzanine
  • 206. 206
  • 207. 207
  • 208. 208
  • 209. 209
  • 210. 210
  • 211. 211
  • 212. 212
  • 213. 213
  • 214. 214
  • 215. 215
  • 216. 216 7.3 Design of Portal Frame with Crane
  • 217. 217
  • 218. 218
  • 219. 219
  • 220. 220
  • 221. 221
  • 222. 222
  • 223. 223 7.4 Design of Connection
  • 224. 224
  • 225. 225
  • 226. 226
  • 227. 227
  • 228. 228
  • 229. 229
  • 230. 230
  • 231. 231
  • 232. 232
  • 233. 233
  • 234. 234
  • 235. 235
  • 236. 236
  • 237. 237
  • 238. 238 7.6 Design of Crane Girder
  • 239. 239
  • 240. 240
  • 241. 241
  • 242. 242
  • 243. 243
  • 244. 244
  • 245. 245 7.7 Design of Purlins
  • 246. 246
  • 247. 247
  • 248. 248
  • 249. 249
  • 250. 250 Chapter 8 Drawings and detailing for additional project In step of create drawing and detailing, general layout are formed using Autocad. After that Tekla is used for modeling structure as 3D (Figure 103) then create elevation drawings and detailings with some changes using Autocad. Figure 103-3D of factory "Tekla"
  • 253. 253 Figure 106- Portal Frame with Crane
  • 254. 254 Figure 107- Rafter of PF with Crane and Connection
  • 255. 255 Figure 108- Portal Frame with mezzanine
  • 256. 256 Figure 109- Rafter in PF with mezzanine
  • 257. 257 Chapter 9 Conclusion As it was previously stated, the research center building needs a special design due to its specifications and requirements. In this building some large areas found and tall columns could make some problems but by using some innovative solution and computer aid, the structure will match and fulfill architectural vision. Design team must coordinate responsibilities among the architect, building frame engineer, façade engineer, general contractor, steel fabricator, steel erector and façade subcontractor(s). As in some special project, choosing best type for design building help to match economic and safety required due to loads. In this project a roof has special requirement that sun light should enter building, best solution to achieve this is to use space truss with double laminated glass. Design structure as a frame type is better than beam-column type especially in large areas that reduce sections weight and this will reduce cost of building. Using some 3D programs help to maintain time of designing and drawing.
  • 258. 258 References  ECP 205-2001  ECP 201  JAMES C. PARKER, P.E. (2008). Façade Attachments to Steel-Framed Buildings  ALUMCO KSA Sharing Knowledge Series Seminar# 02. Architectural Glass and Glazing
  • 259. 259 Aknowlegment I wish to express my sicere thanks to [Dr. Amr Shaat], for providing me with all the necessary facilities for the research and for the continuos encouragement. I am also grateful to [Engineer Ahmed], in the Department of [Civil Engineering]. I am extremly thankful and indebted to him for sharing expertise, and sincere and valuable guidance and encouragement extended to me. I take this opportunity to express gratitude to all of the Department faculty members for their help and support. I also thank my parents for the unceasin encouragement, support and attention. I am also grateful to my partner [Heba Ahmed] who supported me throught this venture. I also place on record, my sense of gratitude to one and all, who directly or indirectly, have lemt their hand in this venture.