𝒑𝒈 𝟏𝟎𝟑 − 𝟏𝟎𝟒
≥ 29
We are looking for integer values of x and y in the feasible region
where z has the greatest value.
We could substitute all the possible (x , y) values in the feasible
region into z to get the largest value but that would be too long
and tedious.
linear objective function
① Determine the gradient for the line
representing the solution
② Construct parallel lines within the
feasible region to find the solution
𝒑𝒈 𝟏𝟎𝟗 linear objective function
𝑅
𝒑𝒈 𝟏𝟎𝟗 linear objective function
𝑅
𝒑𝒈 𝟏𝟏𝟎 linear objective function
𝑅
𝒑𝒈 𝟏𝟏𝟎 linear objective function
𝑅
𝒑𝒈 𝟏𝟎𝟒 − 𝟏𝟎𝟔 linear objective function
𝒑𝒈 𝟏𝟏𝟏 linear objective function
When feeding buckwheat species, need to supply at
least 11 units, 13 units, 15 units of the 3 nutrients each
day.
There are 2 kinds of feed, A and B.
Price per kg for A = 300 yuan.
Price per kg for B = 400 yuan.
The unit quantity of each nutrien contained in each kg of
A and B is shown in the table below. Min feeding cost = ?
𝒑𝒈 𝟏𝟏𝟏 linear objective function
300
400
𝑦𝑢𝑎𝑛
11 13 15
𝑚𝑖𝑛
𝑥
𝑦
𝑥 + 2𝑦 ≥ 11
3𝑥 + 𝑦 ≥ 13
2𝑥 + 2𝑦 ≥ 15
𝑥 ≥ 0
𝑦 ≥ 0
𝑅
𝑧 = 300𝑥 + 400𝑦
𝑧𝑚𝑖𝑛 = 300(4) + 400(3.5)
= 2,600 𝑦𝑢𝑎𝑛
𝒑𝒈 𝟏𝟎𝟔 − 𝟏𝟎𝟕 linear objective function
𝒑𝒈 𝟏𝟏𝟏 linear objective function
𝒑𝒈 𝟏𝟎𝟕 − 𝟏𝟎𝟖 linear objective function
𝒑𝒈 𝟏𝟎𝟗 linear objective function
𝒑𝒈 𝟏𝟎𝟗 linear objective function
A transportation company can load good for 2 factories,
A and B.
Factory A box = 2 * 40 kg charge per box = 2.20 yuan
Factory B box = 3 * 50 kg charge per box = 3.00 yuan
Truck max weight = 37,000 kg
Truck max volume = 2,000 boxes
Max charge = ?
A B max
Weight 40 50 37,000
Volume (box) 2 3 2,000
Charge per box
(yuan)
2.20 3.00 ?
4𝑥 + 5𝑦 ≤ 3,700
2𝑥 + 3𝑦 ≤ 2,000
𝑥 ≥ 0
𝑦 ≥ 0
𝑅
𝑧 = 2.20𝑥 + 3𝑦
𝑧𝑚𝑎𝑥 = 2.20(550) + 3(300)
= 2,110 𝑦𝑢𝑎𝑛
𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑦 𝑡ℎ𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛
𝒑𝒈 𝟏𝟎𝟗 − 𝟏𝟏𝟏 linear objective function
𝒑𝒈 𝟏𝟎𝟗 − 𝟏𝟏𝟏 linear objective function

SUEC 高中 Adv Maths (Linear Programming).pptx

  • 1.
    𝒑𝒈 𝟏𝟎𝟑 −𝟏𝟎𝟒 ≥ 29 We are looking for integer values of x and y in the feasible region where z has the greatest value. We could substitute all the possible (x , y) values in the feasible region into z to get the largest value but that would be too long and tedious. linear objective function ① Determine the gradient for the line representing the solution ② Construct parallel lines within the feasible region to find the solution
  • 2.
    𝒑𝒈 𝟏𝟎𝟗 linearobjective function 𝑅
  • 3.
    𝒑𝒈 𝟏𝟎𝟗 linearobjective function 𝑅
  • 4.
    𝒑𝒈 𝟏𝟏𝟎 linearobjective function 𝑅
  • 5.
    𝒑𝒈 𝟏𝟏𝟎 linearobjective function 𝑅
  • 6.
    𝒑𝒈 𝟏𝟎𝟒 −𝟏𝟎𝟔 linear objective function
  • 7.
    𝒑𝒈 𝟏𝟏𝟏 linearobjective function
  • 8.
    When feeding buckwheatspecies, need to supply at least 11 units, 13 units, 15 units of the 3 nutrients each day. There are 2 kinds of feed, A and B. Price per kg for A = 300 yuan. Price per kg for B = 400 yuan. The unit quantity of each nutrien contained in each kg of A and B is shown in the table below. Min feeding cost = ? 𝒑𝒈 𝟏𝟏𝟏 linear objective function 300 400 𝑦𝑢𝑎𝑛 11 13 15 𝑚𝑖𝑛 𝑥 𝑦 𝑥 + 2𝑦 ≥ 11 3𝑥 + 𝑦 ≥ 13 2𝑥 + 2𝑦 ≥ 15 𝑥 ≥ 0 𝑦 ≥ 0 𝑅 𝑧 = 300𝑥 + 400𝑦 𝑧𝑚𝑖𝑛 = 300(4) + 400(3.5) = 2,600 𝑦𝑢𝑎𝑛
  • 9.
    𝒑𝒈 𝟏𝟎𝟔 −𝟏𝟎𝟕 linear objective function
  • 10.
    𝒑𝒈 𝟏𝟏𝟏 linearobjective function
  • 11.
    𝒑𝒈 𝟏𝟎𝟕 −𝟏𝟎𝟖 linear objective function
  • 12.
    𝒑𝒈 𝟏𝟎𝟗 linearobjective function
  • 13.
    𝒑𝒈 𝟏𝟎𝟗 linearobjective function A transportation company can load good for 2 factories, A and B. Factory A box = 2 * 40 kg charge per box = 2.20 yuan Factory B box = 3 * 50 kg charge per box = 3.00 yuan Truck max weight = 37,000 kg Truck max volume = 2,000 boxes Max charge = ? A B max Weight 40 50 37,000 Volume (box) 2 3 2,000 Charge per box (yuan) 2.20 3.00 ? 4𝑥 + 5𝑦 ≤ 3,700 2𝑥 + 3𝑦 ≤ 2,000 𝑥 ≥ 0 𝑦 ≥ 0 𝑅 𝑧 = 2.20𝑥 + 3𝑦 𝑧𝑚𝑎𝑥 = 2.20(550) + 3(300) = 2,110 𝑦𝑢𝑎𝑛 𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑦 𝑡ℎ𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛
  • 14.
    𝒑𝒈 𝟏𝟎𝟗 −𝟏𝟏𝟏 linear objective function
  • 15.
    𝒑𝒈 𝟏𝟎𝟗 −𝟏𝟏𝟏 linear objective function

Editor's Notes

  • #2 https://www.onlinemathlearning.com/linear-programming-example.html