Strides & Padding
D.COM
DEEP LEARNING STUDY
BAEK
Strides
Must have strides[0] = strides[3] = 1.
For the most common case of the same horizontal and vertices strides, strides = [1, stride, stride, 1].
•strides: A list of ints. 1-D tensor of length 4.
•The stride of the sliding window for each dimension of input.
•The dimension order is determined by the value of data_format
Strides
Strides =
[1,1,1,1]
Padding
Padding
5x5 > 32x32 to 28x28
5x5 > 36x36 to 32x32
Padding
If padding == "SAME":
output_spatial_shape[i] =
ceil(input_spatial_shape[i] / strides[i])
If padding == "VALID":
output_spatial_shape[i] =
ceil((input_spatial_shape[i] - (spatial_filter_shape[i]-1) * dilation_rate[i]) / strides[i]).
Pooling [ Max Pooling]
Down
sampling

Strides n padding

  • 1.
    Strides & Padding D.COM DEEPLEARNING STUDY BAEK
  • 2.
    Strides Must have strides[0]= strides[3] = 1. For the most common case of the same horizontal and vertices strides, strides = [1, stride, stride, 1]. •strides: A list of ints. 1-D tensor of length 4. •The stride of the sliding window for each dimension of input. •The dimension order is determined by the value of data_format
  • 3.
  • 4.
  • 5.
    Padding 5x5 > 32x32to 28x28 5x5 > 36x36 to 32x32
  • 6.
    Padding If padding =="SAME": output_spatial_shape[i] = ceil(input_spatial_shape[i] / strides[i]) If padding == "VALID": output_spatial_shape[i] = ceil((input_spatial_shape[i] - (spatial_filter_shape[i]-1) * dilation_rate[i]) / strides[i]).
  • 7.
    Pooling [ MaxPooling] Down sampling