AI Robotics KR study
Sensor Fusion Study
Ch6. Alternative Kalman FILTER formulations
Alternative Kalman filters overview
1. Sequential Kalman filter 2. Information filtering
4. U-D filtering3. Square root filtering
๐œŽ2
๐‘† = ๐œ† ๐‘† ๐‘‡
๐‘†
๐‘ƒ = ๐‘†๐‘† ๐‘‡
๐‘ƒ = ๐‘ˆ๐ท๐‘ˆ ๐‘‡(U-D factorization)
Sequential Kalman filter overview
๐‘… ๐‘˜ =
๐‘…1๐‘˜ โ‹ฏ 0
โ‹ฎ โ‹ฑ โ‹ฎ
0 โ‹ฏ ๐‘… ๐‘Ÿ๐‘˜
<Comparison on Kalman filter and sequential Kalman filter>
์‹์˜ ๋ณ€์ˆ˜๋“ค์ด ์ „๋ถ€ scalar๋กœ
ํ‘œํ˜„๋˜๋ฏ€๋กœ matrix
inversion์ด ํ•„์š”ํ•˜์ง€ ์•Š์Œ.
Assume that
Sequential Kalman filter process
1. ์•„๋ž˜์™€ ๊ฐ™์€ dynamic system์ด ์ฃผ์–ด์กŒ๋‹ค๊ณ  ๊ฐ€์ •ํ•˜์ž.
2. Kalman filter initialization
3. Time-update equations
4. Measurement-update equation
4-1) priori estimate and covariance initialization
4-2) 1๋ถ€ํ„ฐ r๊นŒ์ง€ ๋ฐ˜๋ณต์ ์œผ๋กœ ๊ณ„์‚ฐ์„ ์ˆ˜ํ–‰.
4-3) 1๋ถ€ํ„ฐ r๊นŒ์ง€ ๋ฐ˜๋ณต์ ์œผ๋กœ ๊ณ„์‚ฐ์„ ์ˆ˜ํ–‰.
Sequential Kalman filter process
R์ด diagonalํ•˜์ง€ ์•Š๋‹ค๋ฉด ๋Œ€๊ฐํ™”. ์•„๋ž˜์˜ ์‹์—์„œ yk ๋Œ€์‹ ์— ๐‘ฆ ๐‘˜, Hk ๋Œ€์‹ ์— ๐ป ๐‘˜, ๐‘…์„ ์‚ฌ์šฉ.
์œ„์™€ ๊ฐ™์€ R์ด time-varyingํ•˜๋‹ค๋ฉด ๋Œ€๊ฐํ™”๋ฅผ ์œ„ํ•ด ๋งค๋ฒˆ ๋งŽ์€ ์–‘์˜ ๊ณ„์‚ฐ์ด ํ•„์š”ํ•จ. R์ด constantํ•˜๋‹ค๋ฉด
์ด ๊ณผ์ •์—์„œ ํ•„ํ„ฐ๊ฐ€ ์ž‘๋™ํ•˜๊ธฐ ์ „์— offline์œผ๋กœ Jordan ๋ถ„ํ•ด๊ฐ€ ๊ฐ€๋Šฅํ•จ.
์ •๋ฆฌํ•˜์ž๋ฉด sequential Kalman filter๋Š” ๋‹ค์Œ์˜ ๋‘๊ฐ€์ง€ ์กฐ๊ฑด์—์„œ ์‚ฌ์šฉํ•˜๊ธฐ์— ์ข‹์Œ.
1. Measurement noise covariance์ธ ๐‘… ๐‘˜๊ฐ€ diagonal.
2. Measurement noise covariance์ธ ๐‘… ๐‘˜์ด ์ƒ์ˆ˜๋กœ ์ฃผ์–ด์ง.
Information filtering derivation
์ด ๋ฐฉ์‹์€ P๊ฐ€ ์•„๋‹Œ P์˜ ์—ญํ–‰๋ ฌ์„ propagationํ•˜๋Š” ๋ฐฉ์‹์ž„.
Pโ†’0, Iโ†’โˆž means perfect knowledge of x,
Pโ†’โˆž, Iโ†’0 means zero knowledge of x
๐‘ƒ๐‘˜
+
= (๐‘ƒ๐‘˜
โˆ’
)โˆ’1 + ๐ป ๐‘˜
๐‘‡
๐‘… ๐‘˜
โˆ’1
๐ป ๐‘˜
โˆ’1
(measurement update equation)
๐‘ƒ๐‘˜
โˆ’
= ๐น๐‘˜โˆ’1 ๐‘ƒ๐‘˜โˆ’1
+
๐น๐‘˜โˆ’1
๐‘‡
+ ๐‘„ ๐‘˜โˆ’1 (time-update equation)
From kalman filter equationsโ€ฆ
Information filter process
1. ์•„๋ž˜์™€ ๊ฐ™์€ dynamic system์ด ์ฃผ์–ด์กŒ๋‹ค๊ณ  ๊ฐ€์ •ํ•˜์ž.
3. ๊ฐ time step์— ๋Œ€ํ•ด equation ์ ์šฉ.
2. Kalman filter initialization
r โ‰ซ ๐‘›์ผ ๋•Œ์— ๊ณ„์‚ฐ์ ์ธ ๋ฉด์—์„œ information
filter๊ฐ€ ๊ธฐ์กด ์นผ๋งŒ ํ•„ํ„ฐ์— ๋น„ํ•ด ํšจ์œจ์ ์ž„.
Initial uncertaintyโ†’โˆž, ๐‘ƒ0
+
= โˆž, ๐ผ0
+
= 0
Initial uncertaintyโ†’0, ๐‘ƒ0
+
= 0, ๐ผ0
+
= โˆž
๐พ๐‘˜ = ๐‘ƒ๐‘˜
+
๐ป ๐‘˜
๐‘‡
๐‘… ๐‘˜
โˆ’1
r x r inversion?
Square root filtering derivation
Condition number: ๐œ… ๐‘ƒ =
๐œŽ ๐‘š๐‘Ž๐‘ฅ ๐‘ƒ
๐œŽ ๐‘š๐‘–๐‘› ๐‘ƒ
โ‰ฅ 1
Singular value: ๐œŽ2
๐‘ƒ = ๐œ† ๐‘ƒ ๐‘‡
๐‘ƒ = ๐œ†(๐‘ƒ๐‘ƒ ๐‘‡
)
P ํ–‰๋ ฌ์ด n x n ํ–‰๋ ฌ๋กœ n๊ฐœ์˜ singular value ๐œŽ๋ฅผ ๊ฐ–๋Š”๋‹ค๋ฉด,
๐œ… ๐‘ƒ โ†’ โˆž, poorly(ill) conditinoned, P ๊ฐ€ singular matrix๊ฐ€ ๋จ.
Basic idea of square filtering: ๐‘ƒ = ๐‘†๐‘† ๐‘‡
(ex)
Square root filtering โ€“ time update
n-state discrete LTI system,
๐‘† ๐‘˜โˆ’1
+
๊ฐ€ ๐‘ƒ๐‘˜โˆ’1
+
์˜ square root์ด๋ฏ€๋กœ ์•„๋ž˜ ์‹์ด ์„ฑ๋ฆฝ.
Square root filtering โ€“ measurement update
์‹ (5.19)์—์„œ๋ถ€ํ„ฐ ์œ ๋„๋œ measurement update equation
6.1์—์„œ ์œ ๋„๋œ sequential Kalman filter ์‹์„ ์ด์šฉ. P๋ฅผ square root๋กœ ์น˜ํ™˜ํ•œ๋‹ค๋ฉด ์šฐ์ธก์˜ ์‹์„ ์–ป์Œ.
Measurement-update algorithm
1. Initialize.
2. ๊ฐ measurement์— ๋Œ€ํ•ด ๊ณผ์ •์„ ๋ฐ˜๋ณต.
2-1) ๐ป๐‘–๐‘˜, ๐‘ฆ๐‘–๐‘˜, ๐‘…๐‘–๐‘˜๋ฅผ ์ •์˜.
2-2) ๐‘–์งธ ๊ณ„์‚ฐ์ด process๋œ ํ›„์— ๋‹ค์Œ์˜ ๊ฐ’๋“ค์„ ๊ณ„์‚ฐ.
2-3) Kalman gain์„ ๊ณ„์‚ฐ.
2-4) i๋ฒˆ์งธ measurement์— ๋Œ€ํ•œ state estimate๋ฅผ ๊ณ„์‚ฐ.
3. Posteriori estimate์™€ covariance square root๋ฅผ ์—…๋ฐ์ดํŠธ
Alternate method - triangularization
Find orthogonal (n+r) x (n+r)matrix ๐‘‡
=
๐‘‡๋ฅผ ์ฐพ์„ ์ˆ˜ ์žˆ๋‹ค๋ฉด, ๐‘ƒ๐‘˜
+
์˜ square root๋ฅผ ์ฐพ์„ ์ˆ˜ ์žˆ์Œ.
Orthogonal transformation algorithms
1. Householder algorithm
1-1) ๐‘‡๐ด 1
=
๐‘Š
0
, W๋ฅผ ์ฐพ๋Š”๋‹ค.
1-2) 1๋ถ€ํ„ฐ n๊นŒ์ง€ ๋‹ค์Œ์˜ ๊ณผ์ •์„ ๋ฐ˜๋ณต.
(a) (b)
(c) 1๋ถ€ํ„ฐ 2n๊นŒ์ง€ ๋ฐ˜๋ณต. (d) 1๋ถ€ํ„ฐ n๊นŒ์ง€ ๋ฐ˜๋ณต.
(e) 2n x n ํ–‰๋ ฌ์„ ๊ณ„์‚ฐ.
1-3) ๐ด ๐‘›+1
=
๐‘Š
0
2. Modified Gram-Schmidt algorithm
2-1) ๐‘‡๐ด 1 =
๐‘Š
0
, W๋ฅผ ์ฐพ๋Š”๋‹ค.
2-2) 1๋ถ€ํ„ฐ n๊นŒ์ง€ ๋‹ค์Œ์˜ ๊ณผ์ •์„ ๋ฐ˜๋ณต.
(a) (b)
(c)
(d) If (k<n),
U-D filtering derivation (measurement)
๐‘ƒ = ๐‘ˆ๐ท๐‘ˆ ๐‘‡
(U-D factorization)
๐‘ƒ๐‘˜
+
= ๐ผ โˆ’ ๐พ๐‘˜ ๐ป ๐‘˜ ๐‘ƒ๐‘˜
โˆ’
(measurement update equation)
๐‘ƒ๐‘˜
โˆ’
= ๐น๐‘˜โˆ’1 ๐‘ƒ๐‘˜โˆ’1
+
๐น๐‘˜โˆ’1
๐‘‡
+ ๐‘„ ๐‘˜โˆ’1 (time-update equation)
where ๐พ๐‘˜ = ๐‘ƒ๐‘˜
โˆ’
๐ป ๐‘˜
๐‘‡
๐ป ๐‘˜ ๐‘ƒ๐‘˜
โˆ’
๐ป ๐‘˜
๐‘‡
+ ๐‘… ๐‘˜
โˆ’1
๐‘ˆ๐‘– = ๐‘ˆ๐‘–โˆ’1 ๐‘ˆ
๐ท๐‘– = ๐ท
U-D filtering derivation (time-update)
๐‘ƒ๐‘˜
+
= ๐ผ โˆ’ ๐พ๐‘˜ ๐ป ๐‘˜ ๐‘ƒ๐‘˜
โˆ’
(measurement update equation)
๐‘ƒ๐‘˜
โˆ’
= ๐น๐‘˜โˆ’1 ๐‘ƒ๐‘˜โˆ’1
+
๐น๐‘˜โˆ’1
๐‘‡
+ ๐‘„ ๐‘˜โˆ’1 (time-update equation)
where ๐พ๐‘˜ = ๐‘ƒ๐‘˜
โˆ’
๐ป ๐‘˜
๐‘‡
๐ป ๐‘˜ ๐‘ƒ๐‘˜
โˆ’
๐ป ๐‘˜
๐‘‡
+ ๐‘… ๐‘˜
โˆ’1
๐‘ˆโˆ’
๐ทโˆ’
๐‘ˆโˆ’ ๐‘‡
= ๐‘Š ๐ท๐‘Š ๐‘‡
๐‘Š ๐‘‡ = [๐‘ค1
๐‘‡
โ‹ฏ ๐‘ค ๐‘›
๐‘‡]
U-D filtering process โ€“ measurement
1. Start with a priori estimation ๐‘ƒ0 = ๐‘ƒโˆ’
2. ๊ฐ measurement์— ๋Œ€ํ•ด ๊ณผ์ •์„ ๋ฐ˜๋ณต.
2-1) ๐ป๐‘–, ๐‘…๐‘–๋ฅผ ์ •์˜. ๐›ผ๐‘– = ๐ป๐‘– ๐‘ƒ๐‘–โˆ’1 ๐ป๐‘–
๐‘‡
+ ๐‘…๐‘–
2-2) Uiโˆ’1, Diโˆ’1์„ ๊ตฌํ•˜๊ธฐ ์œ„ํ•ด ๐‘ƒ๐‘–โˆ’1์˜ factorization
2-3)
2-4) ๐‘ˆ๐‘–์™€ ๐ท๐‘–๋ฅผ ๊ตฌํ•œ๋‹ค.
๐‘ˆ๐‘– = ๐‘ˆ๐‘–โˆ’1 ๐‘ˆ
๐ท๐‘– = ๐ท
3. Posteriori estimation covariance
๐‘ƒ+
= ๐‘ˆ๐‘Ÿ ๐ท๐‘Ÿ ๐‘ˆ๐‘Ÿ
๐‘‡
โ€ข U-D filtering ๊ณผ์ •์—์„œ sequential
filtering์— ์˜์กดํ•˜๋ฏ€๋กœ ๐‘… ๐‘˜๊ฐ€
diagonalํ•˜๊ฑฐ๋‚˜ constant์—ฌ์•ผ ํ•œ๋‹ค.
U-D filtering process โ€“ time update
1. Start with measurement update equation
2. ํ–‰๋ ฌ์„ ์ •์˜.
3. ๐ท๊ณผ orthogonalํ•œ ๐‘ฃ๐‘–๋ฅผ ๋งŒ๋“ค๊ธฐ ์œ„ํ•ด Gram-Schmidt
orthogonalization ์ง„ํ–‰.
๐‘Š = ๐‘ˆโˆ’
๐‘‰
๐‘ƒ+
= ๐‘ˆ+
๐ท+
๐‘ˆ+ ๐‘‡ 4. ๐‘ฃ๐‘–๋ฅผ ์—ด๋กœ ๊ฐ–๋Š” V ํ–‰๋ ฌ์„ ์ •์˜.
5. ๐ท์„ ์ด์šฉํ•ด upper triangular matrix, ๐‘ˆโˆ’๋ฅผ ๊ตฌํ•œ๋‹ค.
6. ๐ทโˆ’ = ๐‘‰ ๐ท๐‘‰ ๐‘‡
โ€ข Standard kalman filter์— ๋น„ํ•ด 2๋ฐฐ์ •๋„
์ •ํ™•ํ•˜์ง€๋งŒ, square root filter์™€ ๋น„๊ตํ–ˆ์„
๋•Œ์—๋Š” ๊ณ„์‚ฐ๋Ÿ‰์ด ์ ์Œ.
Summary
โ€ข Sequential Kalman filter: matrix inversion์„ ํ”ผํ•˜๋ฏ€๋กœ ๊ณ„์‚ฐ๋Ÿ‰๊ณผ ๊ณ„์‚ฐ ์‹œ๊ฐ„์ด ์ค„์–ด๋“ฌ.
(embedded system์— ์ ์ ˆ.) ํ•˜์ง€๋งŒ noise covariance๊ฐ€ diagonalํ•˜๊ฑฐ๋‚˜ ์ƒ์ˆ˜์—ฌ์•ผ
์‚ฌ์šฉํ•˜๊ธฐ ์ ์ ˆํ•จ.
โ€ข Information filtering: Covariance์˜ inverse๋ฅผ ์ด์šฉํ•˜๋ฏ€๋กœ state์— ๋น„ํ•ด
measurement๊ฐ€ ๋งŽ์„ ๋•Œ์— ์‚ฌ์šฉํ•˜๊ธฐ ์ ์ ˆํ•จ.
โ€ข Square root filtering๊ณผ U-D filtering: ๊ณ„์‚ฐ๋Ÿ‰์ด ๋งŽ์ง€๋งŒ, ์ •ํ™•๋„๊ฐ€ ์ƒ์Šน๋˜๊ธฐ ๋•Œ๋ฌธ์—
divergence๋‚˜ instability ๋ฌธ์ œ๋ฅผ ๊ฐœ์„ ํ•  ์ˆ˜ ์žˆ์Œ.
โ€ข ์ด ๋ฐฉ์‹๋“ค ์™ธ์— Kalman filter๋ฅผ ์œ ๋„ํ•˜๊ธฐ ์œ„ํ•œ ๋‹ค๋ฅธ ๋ฐฉ์‹๋“ค์ด ๋งŽ์ด ์กด์žฌํ•จ.

Sensor Fusion Study - Ch6. Alternate Kalman filter formulations [Jinhyuk Song]

  • 1.
    AI Robotics KRstudy Sensor Fusion Study Ch6. Alternative Kalman FILTER formulations
  • 2.
    Alternative Kalman filtersoverview 1. Sequential Kalman filter 2. Information filtering 4. U-D filtering3. Square root filtering ๐œŽ2 ๐‘† = ๐œ† ๐‘† ๐‘‡ ๐‘† ๐‘ƒ = ๐‘†๐‘† ๐‘‡ ๐‘ƒ = ๐‘ˆ๐ท๐‘ˆ ๐‘‡(U-D factorization)
  • 3.
    Sequential Kalman filteroverview ๐‘… ๐‘˜ = ๐‘…1๐‘˜ โ‹ฏ 0 โ‹ฎ โ‹ฑ โ‹ฎ 0 โ‹ฏ ๐‘… ๐‘Ÿ๐‘˜ <Comparison on Kalman filter and sequential Kalman filter> ์‹์˜ ๋ณ€์ˆ˜๋“ค์ด ์ „๋ถ€ scalar๋กœ ํ‘œํ˜„๋˜๋ฏ€๋กœ matrix inversion์ด ํ•„์š”ํ•˜์ง€ ์•Š์Œ. Assume that
  • 4.
    Sequential Kalman filterprocess 1. ์•„๋ž˜์™€ ๊ฐ™์€ dynamic system์ด ์ฃผ์–ด์กŒ๋‹ค๊ณ  ๊ฐ€์ •ํ•˜์ž. 2. Kalman filter initialization 3. Time-update equations 4. Measurement-update equation 4-1) priori estimate and covariance initialization 4-2) 1๋ถ€ํ„ฐ r๊นŒ์ง€ ๋ฐ˜๋ณต์ ์œผ๋กœ ๊ณ„์‚ฐ์„ ์ˆ˜ํ–‰. 4-3) 1๋ถ€ํ„ฐ r๊นŒ์ง€ ๋ฐ˜๋ณต์ ์œผ๋กœ ๊ณ„์‚ฐ์„ ์ˆ˜ํ–‰.
  • 5.
    Sequential Kalman filterprocess R์ด diagonalํ•˜์ง€ ์•Š๋‹ค๋ฉด ๋Œ€๊ฐํ™”. ์•„๋ž˜์˜ ์‹์—์„œ yk ๋Œ€์‹ ์— ๐‘ฆ ๐‘˜, Hk ๋Œ€์‹ ์— ๐ป ๐‘˜, ๐‘…์„ ์‚ฌ์šฉ. ์œ„์™€ ๊ฐ™์€ R์ด time-varyingํ•˜๋‹ค๋ฉด ๋Œ€๊ฐํ™”๋ฅผ ์œ„ํ•ด ๋งค๋ฒˆ ๋งŽ์€ ์–‘์˜ ๊ณ„์‚ฐ์ด ํ•„์š”ํ•จ. R์ด constantํ•˜๋‹ค๋ฉด ์ด ๊ณผ์ •์—์„œ ํ•„ํ„ฐ๊ฐ€ ์ž‘๋™ํ•˜๊ธฐ ์ „์— offline์œผ๋กœ Jordan ๋ถ„ํ•ด๊ฐ€ ๊ฐ€๋Šฅํ•จ. ์ •๋ฆฌํ•˜์ž๋ฉด sequential Kalman filter๋Š” ๋‹ค์Œ์˜ ๋‘๊ฐ€์ง€ ์กฐ๊ฑด์—์„œ ์‚ฌ์šฉํ•˜๊ธฐ์— ์ข‹์Œ. 1. Measurement noise covariance์ธ ๐‘… ๐‘˜๊ฐ€ diagonal. 2. Measurement noise covariance์ธ ๐‘… ๐‘˜์ด ์ƒ์ˆ˜๋กœ ์ฃผ์–ด์ง.
  • 6.
    Information filtering derivation ์ด๋ฐฉ์‹์€ P๊ฐ€ ์•„๋‹Œ P์˜ ์—ญํ–‰๋ ฌ์„ propagationํ•˜๋Š” ๋ฐฉ์‹์ž„. Pโ†’0, Iโ†’โˆž means perfect knowledge of x, Pโ†’โˆž, Iโ†’0 means zero knowledge of x ๐‘ƒ๐‘˜ + = (๐‘ƒ๐‘˜ โˆ’ )โˆ’1 + ๐ป ๐‘˜ ๐‘‡ ๐‘… ๐‘˜ โˆ’1 ๐ป ๐‘˜ โˆ’1 (measurement update equation) ๐‘ƒ๐‘˜ โˆ’ = ๐น๐‘˜โˆ’1 ๐‘ƒ๐‘˜โˆ’1 + ๐น๐‘˜โˆ’1 ๐‘‡ + ๐‘„ ๐‘˜โˆ’1 (time-update equation) From kalman filter equationsโ€ฆ
  • 7.
    Information filter process 1.์•„๋ž˜์™€ ๊ฐ™์€ dynamic system์ด ์ฃผ์–ด์กŒ๋‹ค๊ณ  ๊ฐ€์ •ํ•˜์ž. 3. ๊ฐ time step์— ๋Œ€ํ•ด equation ์ ์šฉ. 2. Kalman filter initialization r โ‰ซ ๐‘›์ผ ๋•Œ์— ๊ณ„์‚ฐ์ ์ธ ๋ฉด์—์„œ information filter๊ฐ€ ๊ธฐ์กด ์นผ๋งŒ ํ•„ํ„ฐ์— ๋น„ํ•ด ํšจ์œจ์ ์ž„. Initial uncertaintyโ†’โˆž, ๐‘ƒ0 + = โˆž, ๐ผ0 + = 0 Initial uncertaintyโ†’0, ๐‘ƒ0 + = 0, ๐ผ0 + = โˆž ๐พ๐‘˜ = ๐‘ƒ๐‘˜ + ๐ป ๐‘˜ ๐‘‡ ๐‘… ๐‘˜ โˆ’1 r x r inversion?
  • 8.
    Square root filteringderivation Condition number: ๐œ… ๐‘ƒ = ๐œŽ ๐‘š๐‘Ž๐‘ฅ ๐‘ƒ ๐œŽ ๐‘š๐‘–๐‘› ๐‘ƒ โ‰ฅ 1 Singular value: ๐œŽ2 ๐‘ƒ = ๐œ† ๐‘ƒ ๐‘‡ ๐‘ƒ = ๐œ†(๐‘ƒ๐‘ƒ ๐‘‡ ) P ํ–‰๋ ฌ์ด n x n ํ–‰๋ ฌ๋กœ n๊ฐœ์˜ singular value ๐œŽ๋ฅผ ๊ฐ–๋Š”๋‹ค๋ฉด, ๐œ… ๐‘ƒ โ†’ โˆž, poorly(ill) conditinoned, P ๊ฐ€ singular matrix๊ฐ€ ๋จ. Basic idea of square filtering: ๐‘ƒ = ๐‘†๐‘† ๐‘‡ (ex)
  • 9.
    Square root filteringโ€“ time update n-state discrete LTI system, ๐‘† ๐‘˜โˆ’1 + ๊ฐ€ ๐‘ƒ๐‘˜โˆ’1 + ์˜ square root์ด๋ฏ€๋กœ ์•„๋ž˜ ์‹์ด ์„ฑ๋ฆฝ.
  • 10.
    Square root filteringโ€“ measurement update ์‹ (5.19)์—์„œ๋ถ€ํ„ฐ ์œ ๋„๋œ measurement update equation 6.1์—์„œ ์œ ๋„๋œ sequential Kalman filter ์‹์„ ์ด์šฉ. P๋ฅผ square root๋กœ ์น˜ํ™˜ํ•œ๋‹ค๋ฉด ์šฐ์ธก์˜ ์‹์„ ์–ป์Œ.
  • 11.
    Measurement-update algorithm 1. Initialize. 2.๊ฐ measurement์— ๋Œ€ํ•ด ๊ณผ์ •์„ ๋ฐ˜๋ณต. 2-1) ๐ป๐‘–๐‘˜, ๐‘ฆ๐‘–๐‘˜, ๐‘…๐‘–๐‘˜๋ฅผ ์ •์˜. 2-2) ๐‘–์งธ ๊ณ„์‚ฐ์ด process๋œ ํ›„์— ๋‹ค์Œ์˜ ๊ฐ’๋“ค์„ ๊ณ„์‚ฐ. 2-3) Kalman gain์„ ๊ณ„์‚ฐ. 2-4) i๋ฒˆ์งธ measurement์— ๋Œ€ํ•œ state estimate๋ฅผ ๊ณ„์‚ฐ. 3. Posteriori estimate์™€ covariance square root๋ฅผ ์—…๋ฐ์ดํŠธ
  • 12.
    Alternate method -triangularization Find orthogonal (n+r) x (n+r)matrix ๐‘‡ = ๐‘‡๋ฅผ ์ฐพ์„ ์ˆ˜ ์žˆ๋‹ค๋ฉด, ๐‘ƒ๐‘˜ + ์˜ square root๋ฅผ ์ฐพ์„ ์ˆ˜ ์žˆ์Œ.
  • 13.
    Orthogonal transformation algorithms 1.Householder algorithm 1-1) ๐‘‡๐ด 1 = ๐‘Š 0 , W๋ฅผ ์ฐพ๋Š”๋‹ค. 1-2) 1๋ถ€ํ„ฐ n๊นŒ์ง€ ๋‹ค์Œ์˜ ๊ณผ์ •์„ ๋ฐ˜๋ณต. (a) (b) (c) 1๋ถ€ํ„ฐ 2n๊นŒ์ง€ ๋ฐ˜๋ณต. (d) 1๋ถ€ํ„ฐ n๊นŒ์ง€ ๋ฐ˜๋ณต. (e) 2n x n ํ–‰๋ ฌ์„ ๊ณ„์‚ฐ. 1-3) ๐ด ๐‘›+1 = ๐‘Š 0 2. Modified Gram-Schmidt algorithm 2-1) ๐‘‡๐ด 1 = ๐‘Š 0 , W๋ฅผ ์ฐพ๋Š”๋‹ค. 2-2) 1๋ถ€ํ„ฐ n๊นŒ์ง€ ๋‹ค์Œ์˜ ๊ณผ์ •์„ ๋ฐ˜๋ณต. (a) (b) (c) (d) If (k<n),
  • 14.
    U-D filtering derivation(measurement) ๐‘ƒ = ๐‘ˆ๐ท๐‘ˆ ๐‘‡ (U-D factorization) ๐‘ƒ๐‘˜ + = ๐ผ โˆ’ ๐พ๐‘˜ ๐ป ๐‘˜ ๐‘ƒ๐‘˜ โˆ’ (measurement update equation) ๐‘ƒ๐‘˜ โˆ’ = ๐น๐‘˜โˆ’1 ๐‘ƒ๐‘˜โˆ’1 + ๐น๐‘˜โˆ’1 ๐‘‡ + ๐‘„ ๐‘˜โˆ’1 (time-update equation) where ๐พ๐‘˜ = ๐‘ƒ๐‘˜ โˆ’ ๐ป ๐‘˜ ๐‘‡ ๐ป ๐‘˜ ๐‘ƒ๐‘˜ โˆ’ ๐ป ๐‘˜ ๐‘‡ + ๐‘… ๐‘˜ โˆ’1 ๐‘ˆ๐‘– = ๐‘ˆ๐‘–โˆ’1 ๐‘ˆ ๐ท๐‘– = ๐ท
  • 15.
    U-D filtering derivation(time-update) ๐‘ƒ๐‘˜ + = ๐ผ โˆ’ ๐พ๐‘˜ ๐ป ๐‘˜ ๐‘ƒ๐‘˜ โˆ’ (measurement update equation) ๐‘ƒ๐‘˜ โˆ’ = ๐น๐‘˜โˆ’1 ๐‘ƒ๐‘˜โˆ’1 + ๐น๐‘˜โˆ’1 ๐‘‡ + ๐‘„ ๐‘˜โˆ’1 (time-update equation) where ๐พ๐‘˜ = ๐‘ƒ๐‘˜ โˆ’ ๐ป ๐‘˜ ๐‘‡ ๐ป ๐‘˜ ๐‘ƒ๐‘˜ โˆ’ ๐ป ๐‘˜ ๐‘‡ + ๐‘… ๐‘˜ โˆ’1 ๐‘ˆโˆ’ ๐ทโˆ’ ๐‘ˆโˆ’ ๐‘‡ = ๐‘Š ๐ท๐‘Š ๐‘‡ ๐‘Š ๐‘‡ = [๐‘ค1 ๐‘‡ โ‹ฏ ๐‘ค ๐‘› ๐‘‡]
  • 16.
    U-D filtering processโ€“ measurement 1. Start with a priori estimation ๐‘ƒ0 = ๐‘ƒโˆ’ 2. ๊ฐ measurement์— ๋Œ€ํ•ด ๊ณผ์ •์„ ๋ฐ˜๋ณต. 2-1) ๐ป๐‘–, ๐‘…๐‘–๋ฅผ ์ •์˜. ๐›ผ๐‘– = ๐ป๐‘– ๐‘ƒ๐‘–โˆ’1 ๐ป๐‘– ๐‘‡ + ๐‘…๐‘– 2-2) Uiโˆ’1, Diโˆ’1์„ ๊ตฌํ•˜๊ธฐ ์œ„ํ•ด ๐‘ƒ๐‘–โˆ’1์˜ factorization 2-3) 2-4) ๐‘ˆ๐‘–์™€ ๐ท๐‘–๋ฅผ ๊ตฌํ•œ๋‹ค. ๐‘ˆ๐‘– = ๐‘ˆ๐‘–โˆ’1 ๐‘ˆ ๐ท๐‘– = ๐ท 3. Posteriori estimation covariance ๐‘ƒ+ = ๐‘ˆ๐‘Ÿ ๐ท๐‘Ÿ ๐‘ˆ๐‘Ÿ ๐‘‡ โ€ข U-D filtering ๊ณผ์ •์—์„œ sequential filtering์— ์˜์กดํ•˜๋ฏ€๋กœ ๐‘… ๐‘˜๊ฐ€ diagonalํ•˜๊ฑฐ๋‚˜ constant์—ฌ์•ผ ํ•œ๋‹ค.
  • 17.
    U-D filtering processโ€“ time update 1. Start with measurement update equation 2. ํ–‰๋ ฌ์„ ์ •์˜. 3. ๐ท๊ณผ orthogonalํ•œ ๐‘ฃ๐‘–๋ฅผ ๋งŒ๋“ค๊ธฐ ์œ„ํ•ด Gram-Schmidt orthogonalization ์ง„ํ–‰. ๐‘Š = ๐‘ˆโˆ’ ๐‘‰ ๐‘ƒ+ = ๐‘ˆ+ ๐ท+ ๐‘ˆ+ ๐‘‡ 4. ๐‘ฃ๐‘–๋ฅผ ์—ด๋กœ ๊ฐ–๋Š” V ํ–‰๋ ฌ์„ ์ •์˜. 5. ๐ท์„ ์ด์šฉํ•ด upper triangular matrix, ๐‘ˆโˆ’๋ฅผ ๊ตฌํ•œ๋‹ค. 6. ๐ทโˆ’ = ๐‘‰ ๐ท๐‘‰ ๐‘‡ โ€ข Standard kalman filter์— ๋น„ํ•ด 2๋ฐฐ์ •๋„ ์ •ํ™•ํ•˜์ง€๋งŒ, square root filter์™€ ๋น„๊ตํ–ˆ์„ ๋•Œ์—๋Š” ๊ณ„์‚ฐ๋Ÿ‰์ด ์ ์Œ.
  • 18.
    Summary โ€ข Sequential Kalmanfilter: matrix inversion์„ ํ”ผํ•˜๋ฏ€๋กœ ๊ณ„์‚ฐ๋Ÿ‰๊ณผ ๊ณ„์‚ฐ ์‹œ๊ฐ„์ด ์ค„์–ด๋“ฌ. (embedded system์— ์ ์ ˆ.) ํ•˜์ง€๋งŒ noise covariance๊ฐ€ diagonalํ•˜๊ฑฐ๋‚˜ ์ƒ์ˆ˜์—ฌ์•ผ ์‚ฌ์šฉํ•˜๊ธฐ ์ ์ ˆํ•จ. โ€ข Information filtering: Covariance์˜ inverse๋ฅผ ์ด์šฉํ•˜๋ฏ€๋กœ state์— ๋น„ํ•ด measurement๊ฐ€ ๋งŽ์„ ๋•Œ์— ์‚ฌ์šฉํ•˜๊ธฐ ์ ์ ˆํ•จ. โ€ข Square root filtering๊ณผ U-D filtering: ๊ณ„์‚ฐ๋Ÿ‰์ด ๋งŽ์ง€๋งŒ, ์ •ํ™•๋„๊ฐ€ ์ƒ์Šน๋˜๊ธฐ ๋•Œ๋ฌธ์— divergence๋‚˜ instability ๋ฌธ์ œ๋ฅผ ๊ฐœ์„ ํ•  ์ˆ˜ ์žˆ์Œ. โ€ข ์ด ๋ฐฉ์‹๋“ค ์™ธ์— Kalman filter๋ฅผ ์œ ๋„ํ•˜๊ธฐ ์œ„ํ•œ ๋‹ค๋ฅธ ๋ฐฉ์‹๋“ค์ด ๋งŽ์ด ์กด์žฌํ•จ.