SlideShare a Scribd company logo
1 of 8
Download to read offline
Contributions to Tobacco & Nicotine Research
formerly: Beiträge zur Tabakforschung International
Volume 32 @ No. 1 @ March 2023
DOI: 10.2478/cttr-2023-0003
Selected Phenolic Compounds in Mainstream
Cigarette Smoke, CORESTA Collaborative Study
and Recommended Method *
by
Rana Tayyarah 1
, Douglas Knepper 2
, and Alexander Hauleithner 3
1
Labstat International Inc., 262 Manitou Dr, Kitchener, Ontario, N2C 1L3, Canada
2
ITG Brands LLC, PO BOX 21688 Greensboro, NC, USA 27420
3
JTI Ökolab, Hasnerstraße 127, 1160 Vienna, Austria
SUMMARY
A collaborative study among 20 participating laboratories
was conducted in an effort to publish a recommended
method for determination of phenols in mainstreamcigarette
smoke. The study was conducted using 10 test samples
includingreferencecigarettesandcommercialproductsfrom
various regions (ISO 3308 total particulate matter 1–16
mg/cig) smoked under two regimes (ISO 3308 and ISO
20778). Health Canada method T-114 was chosen as a basis
for the analytical methodology and therefore mainstream
cigarette smoke was trapped on 44-mmglass fiber filter pads
which were subsequently extracted with 1% aqueous acetic
acidforanalysisbyhighperformanceliquidchromatography
with fluorescence detection. Statistical analysis was carried
out following ISO 5725 to generate repeatability (r) and
reproducibility (R) data for results from linear and rotary
smoking. For reproducibility (R) expressed as a percentage
of mean yield across all of the studied products and both
smoking regimes, values ranged from 17–150%. The lowest
“tar” yielding products had the most variable data. Results
trended as expected for total particulate matter, blend type,
regime, and relative analyte yields. Results supporting a
robust method for hydroquinone, resorcinol, catechol,
phenol, o-cresol, m-cresol, and p-cresol are reported herein
and support establishment of CRM 78, ISO 23904 and ISO
23905 standardized methods. [Contrib. Tob. Nicotine Res.
32 (2023) 18–25]
KEYWORDS
Cigarette; harmful and potentially harmful constituents;
HPHC; smoke; hydroquinone; resorcinol; catechol; phenol;
o-cresol; m-cresol; p-cresol, CORESTA
ZUSAMMENFASSUNG
Es wurde eine Vergleichsstudie mit 20 teilnehmenden
Laboren mit dem Ziel durchgeführt, eine Empfehlung
bezüglich einer Methode zur Bestimmung von Phenolen im
Hauptstromrauch von Zigaretten auszusprechen. In die
Studiewurden10Probeneingeschlossen,darunterReferenz-
zigaretten sowie handelsübliche Produkte aus verschiedenen
Regionen (ISO 3308 Gesamtpartikelmasse 1–16 mg/cig).
Diese wurden nach zwei Abrauchprotokollen (ISO 3308 und
ISO 20778) geraucht. Als Grundlage für die analytische
Methodik wurde das Verfahren T-114 von Health Canada
ausgewählt. Hierbei wurde der Hauptstromrauch der Ziga-
retten auf Glasfaserfilterpads (44-mm) aufgefangen. Diese
wurdenanschließendmit1%EssigsäureinwässrigerLösung
extrahiertundmittelsHochleistungsflüssigkeitschromatogra-
phie mit Fluoreszenzdetektion analysiert. Es wurde eine
statistische Analyse nach ISO 5725 durchgeführt, um Daten
zur Wiederholbarkeit (r) und Reproduzierbarkeit (R) für die
Ergebnisse des linearen und rotierenden Abrauchens zu
ermitteln. Bei der Reproduzierbarkeit (R) - ausgedrückt in
*Received: 24th
June 2022 – accepted: 31th
January 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0).
© 2023 Authors who publish with this journal retain all copyrights and agree to the terms of the above-mentioned CC BY-NC-SA 4.0 license.
Table 1. Participating laboratories and product volunteers.
Testing participants
Altria Client Services ITC Ltd.
ARISTA Laboratories ITG, France
BAT Souza Cruz SA – Brazil ITL – Reemtsma Cigarettenfabriken
British American Tobacco Japan Tobacco Inc.
China National Tobacco Corp. Beijing Cigarette Factory Japan Tobacco International
CNTC – Zhengzhou Tobacco Research Institute KT&G Corp.
CNTC QC Labstat International Inc.
Enthalpy Analytical, Inc. Philip Morris International – Brazil
Essentra Scientific Services Philip Morris International – Indonesia
Global Laboratory Services, Inc. R.J. Reynolds Tobacco Co.
Product Volunteers
British American Tobacco Germany GmbH Japan Tobacco – Japan
China National Tobacco Corp. Beijing Cigarette Factory Philip Morris International – Neuchatel, Switzerland
ITG Altadis Shanghai Tobacco Group Co. Ltd
Prozent der mittleren Ausbeute aus allen untersuchten
Produkten und beiden Abrauchprotokollen - lagen die
Werte zwischen 17 und 150%. Die größten Schwankungen
traten bei den Daten der Produkte mit der niedrigsten
“Teerausbeute”auf.Beiden Ergebnissen bestätigte sichdie
erwartete Tendenz in Bezug auf die Gesamtpartikelmasse,
denMischungstyp,dasProtokollunddierelative Analyten-
ausbeute. In diesemArtikel wird über Ergebnisse berichtet,
die für die Anwendung einer robusten Methode bei Hydro-
chinon, Resorcin, Catechin, Phenol, o-Kresol, m-Kresol
und p-Kresol sprechen und damit für die Einführung von
CRM 78 und standardisierten Methoden nach ISO 23904
und ISO 23905. [Contrib. Tob. Nicotine Res. 32 (2023)
18–25]
RESUME
Une étude conjointe rassemblant 20 laboratoires partici-
pants entendait concourir à la publication d’une recom-
mandation méthodologique concernant le dosage des
composés phénoliques dans la fumée principale de ciga-
rettes. Cette analyse reposa sur l’utilisation de 10 échan-
tillons pour essai incluant des cigarettes de référence et des
produits du commerce en provenance de différentes
régions (ISO 3308 Matière particulaire totale 1–16 mg/cig)
fumées suivant deux régimes de fumage (ISO 3308 et ISO
20778). La méthode T-114 de Santé Canada fut retenue en
guise de socle à la méthodologie analytique et donc, la
fumée principale de cigarette fut piégée dans des disques
filtrants en fibre de verre de 44-mm qui furent ensuite
soumis à une extraction par une solution d’acide acétique
à 1% en vue d’une analyse par chromatographie liquide à
haute performance(CLHP)avec détecteur de fluorescence.
Une analyse statistique fut réalisée conformément à la
norme ISO 5725 afin de générer des données de répétabili-
té (r) et de reproductibilité (R) relatives aux résultats
obtenus par machine à fumer linéaire et machine rotative.
Eu égard à la reproductibilité (R) exprimée en un pourcen-
tage du rendement moyen sur la totalité des produits
analysés et les deux régimes de fumage, les valeurs
oscillèrent entre 17 et 150%. Les produits présentant le
rendement en “goudron” le plus faible affichèrent les
données les plus variables. Les résultats évoluèrent dans la
plage de nos attentes concernant la matière particulaire
totale, le type de mélange, le régime de fumage et les
rendements relatifs de l’analyte. Les résultats étayant
l’emploi d’une méthode solide pour l’hydroquinone, le
résorcinol, le catéchol, le phénol, l’ o-crésol, l’ m-crésol et
le p-crésol sont présentés dans le présent article et appuient
l’établissement des méthodes normalisées CRM 78, ISO
23904 et ISO 23905. [Contrib. Tob. Nicotine Res. 32
(2023) 18–25]
INTRODUCTION
Smoking cigarettes is a cause of serious diseases in smok-
ers including lung cancer, heart disease, and emphysema.
Phenolic compounds catechol, hydroquinone, resorcinol,
phenol, and/or o-, m-, and p-cresol are often among harmful
and potentially harmful chemicals (HPHCs) of regulatory
interest (1–5).
Phenols have been measured by various methods at least
since the 1960s for research, product characterization, and
selective filtration purposes (6–13). In particular, Health
Canada’s T-114 was treated as a starting point for the study
reported here (14). The scope of T-114 is limited to pheno-
lic determination using intense smoking regime T-115 (15).
The purpose of this study was to establish a method with a
broader scope and to establish repeatability and
reproducibility estimates for the determination of phenolic
compounds using cigarettes and test pieces across a wide
range of “tar” yield and cigarette designs.
Thus, a collaborative study was conducted involving 20
laboratories from 11 countries, smoking 10 samples from
the world-wide market. The samples had a range of blend
styles (Virginia, American blend, and dark air-cured) and
ISO 3308 “tar” yields between 1 and 13 mg. The cigarettes
were smoked under both the ISO 3308 and ISO 20778
smoking regimes (16–17).
Statistical evaluations were made according to ISO 5725
recommendationsandrepeatabilityandreproducibilitydata
are provided (18).
19
CTNR @ 32 (1) @ 2023
Table 2. Study samples.
Sample ID Blend description
Approximate TPM ISO 3308 regime
(mg/cig) a
Approximate TPM ISO 20778 regime
(mg/cig)
CM7 Virginia 16.1 43.4
KR 1R5F American 2.0 31.8
KR 3R4F American 9.9 44.1
Sample 1 Dark air-cured 13.5 44.1
Sample 2 American 8.9 40.2
Sample 3 American 10.2 45.1
Sample 4 Virginia 4.0 30.3
Sample 5 Virginia 1.8 20.6
Sample 6 Virginia 11.3 36.1
Sample 7 Charcoal filtered 1.2 25.8
a
Based on the average TPM values from the study reported in this report
Table 3. Fluorescence detector settings.
Time initial Excitation (nm) Emission (nm)
0.0 280 310
12.4 280 310
12.5 274 298
23.0 274 298
24.0 280 310
28.0 280 310
Table 4. Elution program. a
Time (min)
Composition
% A % B
0 78 22
8 78 22
8.5 55 45
21 55 45
22 0 100
28 0 100
(Equilibrate 6 min)
a
Linear gradient
EXPERIMENTAL
Participating laboratories
The laboratories that conducted the testing along with the
product volunteers are listed in alphabetical order in
Table 1. To ensure anonymity of the results, each
laboratory was given a unique study code for data
exchange and reporting.
Study protocol
Participating laboratories were asked to follow a supplied
study protocol, a draft of a CORESTA Recommended
Method (CRM), and Health Canada T-114 (14) analytical
method for the determinationof phenols. Samples analyzed
for the study are listed in Table 2 with a range of blend and
cigarette designs that represent the market and a wide
range of total particulate matter (TPM) and analyte yields.
In accordance with the study protocol, participating
laboratories were asked to obtain reference cigarettes and
monitor test pieces directly from suppliers (19–20). Other
samples were commercial products from various regions
provided by the study volunteers listed in Table 1. Five
replicates of each product with each smoking regime were
requested to be generated. Reportable measures included
puff count, TPM, hydroquinone, resorcinol, catechol,
phenol, o-cresol, m-cresol, and p-cresol.
The yields of phenols collected under ISO 3308 (non-
intense) and ISO 20778 (intense) smoking regimes were
reported in units of microgram per cigarette (µg/cig) in the
templates provided to participants.
Smoke collection and sample preparation
Following the recommended method, conditioned ciga-
rettes were smoked using an automated 20-port constant
volumesmokingmachine, onto a conditioned, pre-weighed
glass fiber filter disc (pad).
TPM was determined gravimetrically and puff counts were
as recorded. The pads were extracted using 40 mL of 1%
aqueous acetic acid with 30 min of agitation using a wrist-
action shaker. Extracts were diluted using 1% acetic acid
based on total TPM. Samples below 15 mg TPM were
tested undiluted. Samples with 15–60 mg TPM were
diluted 2:5 and samples with 60–100 mg TPM were diluted
1:5 prior to analysis.
Analytical method
Samples were analyzed within 24 hours of collection and
extraction as hydroquinone is subject to rapid oxidation.
Samples were analyzed using high performance liquid
chromatography with selective fluorescence detection
(HPLC-FLD).
Detector settings are included in Table 3.
The mobile phase consisted of: 1% acetic acid (HOAC)
(aqueous; solvent A); 1% HOAC (in methanol; solvent B)
with a flow rate of 0.8 mL/min and an elution gradient as
noted in Table 4.
Sample injection volume was 10 µL to 20 µL onto a
pentafluorophenylpropyl analytical column (4.6 mm ×
150 mm × 3 µm).
20 CTNR @ 32 (1) @ 2023
Data analysis
Data consistency was verified using graphical and
numerical outlier detection techniques. Mandel’s h
plot and Grubbs test were used to evaluate between-
laboratories consistency.
Mandel’s k plot and Cochran’s test were used to
evaluate within-laboratory consistency. Grubbs and
Cochran tests are less likely to qualify data points as
outliers than their corresponding graphical methods
and to avoid excessive data exclusion. Thus, the final
decision on straggling (0.95) and outlying (0.99) data
was made using Cochran’s and single-iteration Grubbs
tests.
Straggling data were retained in the dataset but out-
lying data were removed for descriptive statistics
reporting. Overall mean, standard deviation, repeat-
ability (r), and reproducibility (R) values were deter-
mined according to ISO 5725-216 (18).
RESULTS AND DISCUSSION
Study design
The study design allowed for evaluation of the
robustness of the method across the linear range for
analytes of interest and confirmed the method’s
effectiveness with a variety of products.
Thus, the study samples chosen represented a wide
variety of TPM yields, tobacco blends, and product
construction parameters including varied filter
ventilation level and inclusion of a filter additive for
one study sample. Non-intense and intense smoking
regimes were used to verify applicability with the
recommended method.
General trending
Smoking related measures, including puff count and
TPM, had low variability for both smoking regimes
and across all products. Sample 7 (activated charcoal
filter and high filter ventilation) showed the highest
variability among the products tested. Additionally, no
significant differences in results were noted based on
choice of smoking machine type (i.e., linear or rotary).
The method appears to distinguish samples appropri-
ately. As expected of particulate phase and pad-
trapped semi-volatile constituents, the analyte yields
were directly correlated to TPM yields. When normal-
ized to TPM, phenols showed predictable trending
based on blend type. For example, Virginia (i.e., flue-
cured) products had higher phenolic:TPM values
compared to American blend samples containing
Burley tobacco.
In general, CM7 had the highest phenolic:TPM values.
This is consistent with previous research indicating
that flue-cured tobacco may generate higher levels of
some phenolic HPHCs (10, 21).
Data below the limits of quantification (LOQ)
Several data sets included non-numeric (i.e., < LOQ)
reporting for resorcinol, phenol, and the cresol compounds.
These values were excluded from outlier evaluation and
calculation of descriptive statistics and repeatability (r), and
reproducibility (R) values.
Outlier detection
Results of graphical outlier detection methods (Mandel’s h
and k plots) are not displayed in this report. During the first
iteration, there were 10 stragglers and 8 outliers for the non-
intense regime, and 13 stragglers and 7 outliers for the
intense regime. A second iteration of the test did not reveal
any further outliers. Grubbs single outlier test was employed
on the lab means and identified the following outliers and
stragglers. There were 4 stragglers and 8 outliers in the non-
intense regime, and 10 stragglers and 13 outliers for the
intense regime. All outliers were removed from the dataset.
All straggling data was retained.
Determination of inter-laboratory repeatability and repro-
ducibility variance
Mean, r, and R results with outliers removed are displayed
in Table 5 and Table 6. Values are typically above limits
established in ISO 8243 (22) for “tar”, nicotine, and carbon
monoxide (TNCO). This is not unexpected given the much
lower levels for phenols (µg) than TNCO measures (mg).
Additionally, the highest values for r and R noted in the
study were for results near LOQ at limits of the method’s
capabilities.
CONCLUSION
Through this study, a robust method CRM Nº 78 (23) and
ISO standards ISO 23904 (24) and ISO 23905 (25) were
established for the determination of mainstream cigarette
smoke phenolics.
The scope of the study included 20 laboratories testing 10
cigarette samples across a range of blends types. The
products tested included a range of TPM values between
1 mg and 16 mg (ISO 3308) and 32 mg and 51 mg (ISO
20778) and two smoking machine designs. The analytes
tested were from a 4-fold to a 60-fold range in of the
analytesofinterest.Reproducibility(R)values,expressedas
a percentage of mean yield, ranged from 17–150%.
ACKNOWLEDGEMENTS
The authors wish to acknowledge Steve Purkis, Michael
Intorp, and the participating laboratories and product
volunteers noted in Table 1. Without the work and support
provided, the objectives of the CORESTA Smoke Analytes
subgroup and this project could not have been completed.
21
CTNR @ 32 (1) @ 2023
Table 5. Non-intense smoking regime – Inter-laboratory mean yields, repeatability (r) and reproducibility (R) data.
CM7 1R5F 3R4F Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7
Puff count Mean a
8.45 6.90 8.28 5.66 7.88 6.91 5.19 4.54 6.82 6.16
STD b
0.35 0.27 0.33 0.27 0.36 0.34 2.35 1.10 1.65 0.25
TPM Mean 16.12 1.96 9.85 13.46 8.85 10.24 3.26 1.69 10.64 1.17
STD 1.07 0.32 0.78 1.78 0.75 0.84 1.71 0.52 2.90 0.31
Hydroquinone Mean 91.82 8.45 32.84 42.78 36.98 46.88 20.38 * 9.30 46.69 8.09
STD 7.47 1.33 2.78 3.85 3.43 3.60 3.26 1.19 4.08 0.96
r c
12.14 1.58 4.27 8.92 5.97 6.72 2.89 1.78 6.31 1.41
R d
23.58 3.97 8.67 13.40 10.99 11.75 9.49 3.68 12.73 2.97
N e
18 17 18 14 18 18 14 18 16 18
Resorcinol Mean 1.79 * 0.13 * 0.63 * 0.66 * 0.80 * 0.97 * 0.51 0.35 1.19 * 0.12 *
STD 0.30 0.04 0.15 0.21 0.16 0.18 0.09 0.05 0.21 0.03 *
r 0.52 0.09 0.19 0.37 0.29 0.29 0.18 0.14 0.22 0.10
R 0.95 0.14 0.46 0.67 0.51 0.58 0.30 0.17 0.63 0.13
N 17 13 15 12 16 16 13 15 15 12
Catechol Mean 96.39 8.13 36.77 35.30 39.87 42.61 24.17 12.89 58.19 7.84
STD 4.13 0.62 1.72 1.53 2.45 2.16 2.41 0.68 3.09 0.59
r 13.39 1.60 5.02 7.32 6.84 4.91 4.77 1.98 7.58 1.88
R 16.65 2.25 6.60 7.83 9.19 7.46 7.99 2.61 11.00 2.35
N 18 17 18 14 18 17 15 18 16 18
Phenol Mean 27.60 * 0.93 7.06 19.97 9.64 12.47 4.58 1.21 * 13.91 0.49 *
STD 2.94 0.19 0.80 1.49 1.28 1.15 1.11 0.25 1.42 0.11
r 4.17 0.44 1.59 4.12 2.43 2.52 1.24 0.36 3.04 0.29
R 9.05 0.65 2.64 5.57 4.20 3.93 3.30 0.77 4.81 0.39
N 16 14 18 14 18 18 15 16 16 13
o-Cresol Mean 5.63 0.38 2.33 5.75 2.62 3.30 1.34 0.42 * 3.40 0.21
STD 0.68 0.08 0.27 0.65 0.37 0.35 0.26 0.10 0.43 0.07
r 0.96 0.15 0.54 1.22 0.63 0.67 0.29 0.15 0.66 0.12
R 2.08 0.25 0.90 2.11 1.18 1.14 0.78 0.31 1.35 0.23
N 18 15 18 14 18 18 15 16 16 13
m-Cresol Mean 4.57 0.32 1.83 3.73 2.03 2.50 1.10 0.38 2.78 0.24
STD 0.67 0.10 0.18 0.45 0.33 0.29 0.22 0.07 0.28 0.12
r 0.69 0.12 0.37 0.77 0.42 0.43 0.23 0.11 0.53 0.10
R 1.98 0.29 0.61 1.43 0.99 0.90 0.64 0.23 0.92 0.36
N 17 13 17 13 17 17 14 17 16 13
p-Cresol Mean 12.45 0.73 4.56 10.40 5.44 6.49 2.49 0.88 6.25 0.44
STD 1.24 0.14 0.51 0.87 0.71 0.60 0.50 0.13 0.73 0.13
r 1.63 0.27 0.75 2.24 1.19 1.07 0.47 0.20 1.02 0.16
R 3.76 0.46 1.58 3.16 2.26 1.93 1.47 0.40 2.24 0.39
N 17 16 17 13 17 17 14 17 16 17
a
Mean: mean yield (μg/cig) except TPM (mg/cig) and puff count (pc)
b
STD: overall standard deviation
c
r: repeatability (μg/cig at 95% confidence interval)
d
R: reproducibility (μg/cig at 95% confidence interval)
e
N: number of datasets used for r and R determination after removal of outliers and non-quantifiable values
* Values calculated after removal of outlier (s)
22 CTNR @ 32 (1) @ 2023
Table 6. Intense smoking regime – Inter-laboratory mean yields, repeatability (r) and reproducibility (R) data.
CM7 1R5F 3R4F Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7
Puff count Mean a
11.78 6.40 10.39 7.00 9.74 7.62 5.81 5.02 9.31 6.54
STD b
0.56 0.36 0.51 0.40 0.51 0.52 2.63 1.25 2.33 0.37
TPM Mean 43.36 31.83 44.12 44.11 40.16 45.09 24.62 19.43 33.86 25.79
STD 6.09 4.07 3.97 4.80 4.62 4.87 12.32 5.91 9.33 3.76
Hydroquinone Mean 191.17 53.41 89.62 91.44 101.85 114.04 76.44 * 43.56 106.50 60.19
STD 15.16 5.08 7.49 7.99 8.60 6.30 5.32 4.30 9.49 5.47
r c
27.40 11.85 11.67 18.19 15.75 18.27 9.98 9.36 15.97 17.18
R d
49.02 17.74 23.43 27.67 27.88 24.05 17.37 14.67 30.16 21.70
N e
18 17 18 14 18 18 14 18 16 18
Resorcinol Mean 3.77 1.07 * 1.87 * 1.35 * 2.55 2.77 2.21 2.07 2.70 1.46
STD 0.79 0.15 0.40 0.41 0.68 0.79 0.48 0.44 0.39 0.42
r 0.70 0.38 0.45 0.60 0.65 0.75 0.80 0.68 0.71 0.57
R 2.31 0.55 1.18 1.27 1.99 2.32 1.52 1.39 1.26 1.27
N 18 14 15 11 17 18 15 17 16 17
Catechol Mean 198.81 41.73 90.24 76.29 100.18 96.21 79.79 * 54.38 127.00 * 51.10
STD 15.11 3.55 6.71 6.52 7.92 9.10 6.22 4.56 6.48 5.27
r 27.35 9.81 14.58 14.03 14.46 20.19 11.53 12.81 24.78 13.13
R 48.87 13.26 22.87 22.16 25.68 31.23 20.24 17.16 28.64 18.86
N 18 17 18 14 18 18 14 18 15 18
Phenol Mean 43.05 8.20 13.13 36.65 16.99 19.19 12.00 6.64 19.33 * 6.93
STD 3.59 0.91 1.05 1.20 1.46 1.59 1.33 0.63 1.35 0.57
r 8.93 1.88 3.30 8.39 4.14 4.82 2.96 1.74 4.59 3.13
R 12.83 3.05 4.17 8.22 5.51 6.21 4.56 2.34 5.58 3.23
N 18 17 18 14 18 18 15 18 15 18
o-Cresol Mean 8.67 2.53 4.15 10.88 4.66 5.22 3.14 * 1.90 4.53 * 1.97
STD 1.14 0.28 0.50 0.99 0.60 0.60 0.38 0.22 0.41 0.28
r 1.89 0.58 0.96 2.52 1.05 1.22 0.66 0.52 1.15 0.91
R 3.62 0.93 1.64 3.58 1.93 2.01 1.22 0.78 1.55 1.13
N 18 16 18 14 18 18 14 17 15 17
m-Cresol Mean 7.08 1.78 3.25 7.14 3.58 3.90 2.65 1.58 3.91 1.67
STD 1.07 0.22 0.45 0.74 0.51 0.37 0.43 0.22 0.37 0.35
r 1.27 0.48 0.72 1.49 0.68 0.90 0.64 0.45 0.84 0.69
R 3.22 0.76 1.42 2.47 1.55 1.31 1.34 0.74 1.28 1.16
N 17 16 17 13 17 16 14 17 16 17
p-Cresol Mean 20.16 * 5.53 8.54 * 21.25 9.99 * 10.77 * 6.49 4.14 9.08 * 4.12 *
STD 2.21 0.72 0.72 2.32 1.10 1.06 0.81 0.36 0.82 0.40
r 3.58 1.09 1.78 4.29 1.98 2.19 1.31 0.91 1.84 1.82
R 6.97 2.24 2.56 7.55 3.56 3.55 2.56 1.30 2.82 1.98
N 16 16 16 13 16 16 14 17 15 16
a
Mean: mean yield (μg/cig) except TPM (mg/cig) and puff count (pc)
b
STD: overall standard deviation
c
r: repeatability (μg/cig at 95% confidence interval)
d
R: reproducibility (μg/cig at 95% confidence interval)
e
N: number of datasets used for r and R determination after removal of outliers and non-quantifiable values
* Values calculated after removal of outlier (s)
REFERENCES
1. U.S. Food and Drug Administration: Harmful and
Potentially Harmful Constituents in Tobacco Products
and Tobacco Smoke; Established List; Fed Regist.
2012;77:20034–20037. Available at: https://www.
federalregister.gov/documents/2012/04/03/2012-772
7/harmful-and-potentially-harmful-constituents-in-
tobacco-products-and-tobacco-smoke-established-list
(accessed February 2023)
2. Rodgman, A. and T.A. Perfetti: The Chemical Compo-
nents of Tobacco and Tobacco Smoke; CRC Press, 2nd
Edition, Boca Raton, FL, USA (2013).
3. The Peoples Republic of China, The State Council:
State Tobacco Monopoly Administration. Available at:
https://english.www.gov.cn/state_council/2014/10/01/
23
CTNR @ 32 (1) @ 2023
content_281474991089748.htm (accessed February
2023)
4. Health Canada, Minister of Health: Tobacco Reporting
Regulations, SOR/2000-273. Available at:
https://laws-lois.justice.gc.ca/PDF/SOR-2000-273.p
df.2000 (accessed February 2023)
5. World Health Organization, WHO Study Group on
Tobacco Product Regulation: Report on the Scientific
Basis of Tobacco Product Regulation: Eighth Report
of a WHO Study Group; Technical Report Series
1029; World Health Organization, Geneva, Switzer-
land (2021). ISBN: 9789240022720
6. Carruthers, W. and R. Johnstone: Some Phenolic
Constituents of Cigarette Smoke; Nature 185 (1960)
762–763. DOI: 10.1038/185762a0
7. Spears, A.: Selective Filtration of Volatile Phenolic
Compounds from Cigarette Smoke; Tob. Sci. 7 (1963)
76–80. Available at: https://www.coresta.org/sites/
default/files/abstracts/Tobacco_Science_1963_7-17_
p._76-80_ISSN.0082-4523.pdf (accessed February
2023)
8. Smith, C.J., T.A. Perfetti, M.J. Morton, A. Rodgman,
R. Garg, C.D. Selassie, and C. Hansch: The Relative
Toxicity of Substituted Phenols Reported in Cigarette
Mainstream Smoke; Toxicol. Sci. 69 (2002) 265–278.
DOI: 10.1093/toxsci/69.1.265
9. Vaughan, C., S.B. Stanfill, G.M. Polzin, D.L. Ashley,
and C.H. Watson: Automated Determination of Seven
Phenolic Compounds in Mainstream Tobacco Smoke;
Nicotine Tob. Res. 10 (2008) 1261–1268.
DOI: 10.1080/14622200802123146
10. Dyakonov, A.J., R.T. Walker, and C.A. Brown:
Studies of the Formation of Smoke Phenols; Beitr.
Tabakforsch. Int. 23 (2008) 68–84.
DOI: 10.2478/cttr-2013-0850
11. Jiang, W., J. Wu, J. Shen, W. Liu, W. Xiao, L. Xu, J.
Sun, and Y. Zhang: Effect of Polylactic Acid (PLA)
Filter on Mainstream Cigarette Smoke and Deliveries
of Phenol; Paper ST18, presented at CORESTA
Smoke Science and Product Technology Joint Study
Groups Meeting, 2016, Berlin, Germany. Available at:
https://www.coresta.org/sites/default/files/abstracts/
2016_ST18_JiangWen.pdf (accessed February 2023)
12. Wilkinson, P.: A Preliminary Comparison of Fla-
voured Waterpipe Tobacco Aerosol with Cigarette
Smoke – Part 2: Hoffmann Analytes Machine Derived
Data; Poster STPOST 25, presented at CORESTA
Smoke Science and Product Technology Joint Study
Groups Meeting, 2019, Hamburg, Germany. Available
at:https://www.coresta.org/sites/default/files/abstracts/
2019_STPOST25_Wilkinson.pdf (accessed February
2023)
13. Jin, X.C., T.J. Hurst, and K.A. Wagner: Optimized
Method for Determination of Selective Phenolic
Compounds in Cigarette and Cigar Smoke by
UHPLC-FLD; Paper ST38, presented at CORESTA
Smoke Science and Product Technology Joint Study
Groups Meeting, 2019, Hamburg, Germany. Available
at: https://www.coresta.org/abstracts/optimized-
method-determination-selective-phenolic-compounds
-cigarette-and-cigar-smoke-0 (accessed February
2023)
14. Health Canada: Test Method T-114. Determination of
Phenolic Compounds in Mainstream Tobacco Smoke;
1999. Available at: https://health.canada.ca/apps/open
-information/tobacco/100PDF/T-114E.PDF (accessed
February 2023)
15. Health Canada: Test Method T-115. Determination of
“Tar”, Nicotine and Carbon Monoxide in Mainstream
Tobacco Smoke; 1999. Available at: https://health.
canada.ca/apps/open-information/tobacco/100PDF/
T-115E (accessed February 2023)
16. International Organization for Standardization (ISO):
ISO 3308:2012 Routine Analytical Cigarette-Smoking
Machine - Definitions and Standard Conditions; ISO,
Geneva, Switzerland, 2012. Available at:
https://www.iso.org/standard/60404.html (accessed
March, 2023)
17. International Organization for Standardization (ISO):
ISO 20778:2018 Cigarettes - Routine Analytical
Cigarette Smoking Machine - Definitions and Standard
Conditions With an Intense Smoking Regime; ISO,
Geneva, Switzerland, 2018. Available at:
https://www.iso.org/standard/69065.html (accessed
March, 2023)
18. International Organization for Standardization (ISO):
ISO 5725-2:2019. Accuracy (Trueness and Precision)
of Measurement Methods and Results – Part 2: Basic
Method for the Determination of Repeatability and
Reproducibility of a Standard Measurement Method;
2019, ISO, Geneva, Switzerland. Available at:
https://www.iso.org/standard/69419.html (accessed
February 2023)
19. University of Kentucky, College of Agriculture:Center
for Tobacco Reference Products. Available at:
https://ctrp.uky.edu/home (accessed February 2023)
20. Cooperation Centre for Scientific Research Relative to
Tobacco (CORESTA): CORESTA Monitors;
CORESTA, Paris, France. Available at: https://www.
coresta.org/coresta-monitors (accessed February 2023)
21. Davis, M.F., H.D. Mills, and S.C. Moldoveanu: Forma-
tion of Dihydroxybenzenes in Cigarette Smoke. Part 1.
Contribution from Chlorogenic Acid and Rutin; Beitr.
Tabakforsch. Int. 25 (2012) 396–408.
DOI: 10.2478/cttr-2013-0918
22. International Organization for Standardization (ISO):
ISO 8243:2013. Cigarettes – Sampling; 2019, ISO,
Geneva, Switzerland. Available at https://www.iso.
org/standard/60154.html (accessed February 2023)
23. Cooperation Centre for Scientific Research Relative to
Tobacco (CORESTA): CORESTA Recommended
Method No. 78 – Determination of Selected Phenolic
Compounds in Mainstream Cigarette Smoke by
HPLC-FLD; 2018, CORESTA, Paris, France. Avail-
able at: https://www.coresta.org/sites/default/files/
technical_documents/main/CRM_78-Dec2018.pdf
(accessed February 2023)
24. International Organization for Standardization (ISO):
ISO 23904. Cigarettes – Determination of Selected
Phenolic Compounds in Cigarette Mainstream Smoke
with an Intense Smoking Regime using HPLC-FLD;
2020, ISO, Geneva, Switzerland. Available at:
https://www.iso.org/standard/77341.html (accessed
February 2023)
24 CTNR @ 32 (1) @ 2023
25. International Organization for Standardization (ISO):
ISO 23905. Cigarettes – Determination of Selected
Phenolic Compounds in Cigarette Mainstream Smoke
Using HPLC-FLD; 2020, ISO, Geneva, Switzerland.
Available at: https://www.iso.org/standard/77342.html
(accessed February 2023)
Corresponding author:
Rana Tayyarah
Labstat International Inc.
Kitchener
Ontario
Canada
E-mail: rana.tayyarah@labstat.com
25
CTNR @ 32 (1) @ 2023

More Related Content

Similar to Selected Phenolic Compounds in Mainstream Cigarette Smoke, CORESTA Collaborative Study and Recommended Method

HPHC Testing of Tobacco and Smoke to Examine Cigarette Temporal Variability
HPHC Testing of Tobacco and Smoke to Examine Cigarette Temporal VariabilityHPHC Testing of Tobacco and Smoke to Examine Cigarette Temporal Variability
HPHC Testing of Tobacco and Smoke to Examine Cigarette Temporal Variability
Rana Tayyarah
 
Marini Electro 2006
Marini Electro 2006Marini Electro 2006
Marini Electro 2006
Jalal Hawari
 
SGSLSS_Migration_WONG_Poster_2014
SGSLSS_Migration_WONG_Poster_2014SGSLSS_Migration_WONG_Poster_2014
SGSLSS_Migration_WONG_Poster_2014
Kenneth Wong
 

Similar to Selected Phenolic Compounds in Mainstream Cigarette Smoke, CORESTA Collaborative Study and Recommended Method (20)

HPHC Testing of Tobacco and Smoke to Examine Cigarette Temporal Variability
HPHC Testing of Tobacco and Smoke to Examine Cigarette Temporal VariabilityHPHC Testing of Tobacco and Smoke to Examine Cigarette Temporal Variability
HPHC Testing of Tobacco and Smoke to Examine Cigarette Temporal Variability
 
Determination of % purity of a compound by by Using DSC
Determination of % purity of a compound by by Using DSCDetermination of % purity of a compound by by Using DSC
Determination of % purity of a compound by by Using DSC
 
Marini Electro 2006
Marini Electro 2006Marini Electro 2006
Marini Electro 2006
 
An Assessment of Indoor Air Quality before, during and after Unrestricted Use...
An Assessment of Indoor Air Quality before, during and after Unrestricted Use...An Assessment of Indoor Air Quality before, during and after Unrestricted Use...
An Assessment of Indoor Air Quality before, during and after Unrestricted Use...
 
PHARMACEUTICAL APPLICATIONS OF GAS CHROMATOGRAPHY(GC), PHARMACEUTICAL ANALYS...
 PHARMACEUTICAL APPLICATIONS OF GAS CHROMATOGRAPHY(GC), PHARMACEUTICAL ANALYS... PHARMACEUTICAL APPLICATIONS OF GAS CHROMATOGRAPHY(GC), PHARMACEUTICAL ANALYS...
PHARMACEUTICAL APPLICATIONS OF GAS CHROMATOGRAPHY(GC), PHARMACEUTICAL ANALYS...
 
O'connell et al 2016
O'connell et al 2016 O'connell et al 2016
O'connell et al 2016
 
Dr Konstantinos Farsalinos - E-Cigarette Summit 2014
Dr Konstantinos Farsalinos - E-Cigarette Summit 2014Dr Konstantinos Farsalinos - E-Cigarette Summit 2014
Dr Konstantinos Farsalinos - E-Cigarette Summit 2014
 
Nicotine Retention Following Use of E-Cigarettes
Nicotine Retention Following Use of E-CigarettesNicotine Retention Following Use of E-Cigarettes
Nicotine Retention Following Use of E-Cigarettes
 
Determination of Riociguat by Oxidative Coupling Using Visible Spectrophotometry
Determination of Riociguat by Oxidative Coupling Using Visible SpectrophotometryDetermination of Riociguat by Oxidative Coupling Using Visible Spectrophotometry
Determination of Riociguat by Oxidative Coupling Using Visible Spectrophotometry
 
Determination of Riociguat by Oxidative Coupling Using Visible Spectrophotometry
Determination of Riociguat by Oxidative Coupling Using Visible SpectrophotometryDetermination of Riociguat by Oxidative Coupling Using Visible Spectrophotometry
Determination of Riociguat by Oxidative Coupling Using Visible Spectrophotometry
 
Tobacco and cancer
Tobacco and cancerTobacco and cancer
Tobacco and cancer
 
Comments on “Tobacco-Specific Nitrosamines in the Tobacco and Mainstream Smok...
Comments on “Tobacco-Specific Nitrosamines in the Tobacco and Mainstream Smok...Comments on “Tobacco-Specific Nitrosamines in the Tobacco and Mainstream Smok...
Comments on “Tobacco-Specific Nitrosamines in the Tobacco and Mainstream Smok...
 
Meaningful public education by labelling on tobacco packages: Some elements o...
Meaningful public education by labelling on tobacco packages: Some elements o...Meaningful public education by labelling on tobacco packages: Some elements o...
Meaningful public education by labelling on tobacco packages: Some elements o...
 
SGSLSS_Migration_WONG_Poster_2014
SGSLSS_Migration_WONG_Poster_2014SGSLSS_Migration_WONG_Poster_2014
SGSLSS_Migration_WONG_Poster_2014
 
Campanella2017
Campanella2017Campanella2017
Campanella2017
 
Campanella2017
Campanella2017Campanella2017
Campanella2017
 
9 lattanzio myco_key_ws_multi-mycotoxin_screening
9 lattanzio myco_key_ws_multi-mycotoxin_screening9 lattanzio myco_key_ws_multi-mycotoxin_screening
9 lattanzio myco_key_ws_multi-mycotoxin_screening
 
International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)
 
Coresta presentation tayyarah st59_print version
Coresta presentation tayyarah st59_print versionCoresta presentation tayyarah st59_print version
Coresta presentation tayyarah st59_print version
 
Extractables and Leachables Analysis of Common Household Food Storage Product...
Extractables and Leachables Analysis of Common Household Food Storage Product...Extractables and Leachables Analysis of Common Household Food Storage Product...
Extractables and Leachables Analysis of Common Household Food Storage Product...
 

More from Rana Tayyarah

More from Rana Tayyarah (16)

Tayyarah_R_pubs_Mar2023.pdf
Tayyarah_R_pubs_Mar2023.pdfTayyarah_R_pubs_Mar2023.pdf
Tayyarah_R_pubs_Mar2023.pdf
 
Tayyarah_R_pubs_Sept2022.pdf
Tayyarah_R_pubs_Sept2022.pdfTayyarah_R_pubs_Sept2022.pdf
Tayyarah_R_pubs_Sept2022.pdf
 
Response to ‘Comments on “Tobacco-Specific Nitrosamines in the Tobacco and Ma...
Response to ‘Comments on “Tobacco-Specific Nitrosamines in the Tobacco and Ma...Response to ‘Comments on “Tobacco-Specific Nitrosamines in the Tobacco and Ma...
Response to ‘Comments on “Tobacco-Specific Nitrosamines in the Tobacco and Ma...
 
Advancements and Challenges of Cigar Science, Testing and Regulation: A Review
Advancements and Challenges of Cigar Science, Testing and Regulation: A ReviewAdvancements and Challenges of Cigar Science, Testing and Regulation: A Review
Advancements and Challenges of Cigar Science, Testing and Regulation: A Review
 
Tayyarah_R_pubs_Jun2022.pdf
Tayyarah_R_pubs_Jun2022.pdfTayyarah_R_pubs_Jun2022.pdf
Tayyarah_R_pubs_Jun2022.pdf
 
Method development for the analysis of mono-carbonyl compounds in e-vapor pro...
Method development for the analysis of mono-carbonyl compounds in e-vapor pro...Method development for the analysis of mono-carbonyl compounds in e-vapor pro...
Method development for the analysis of mono-carbonyl compounds in e-vapor pro...
 
Determination of dicarbonyls and crotonaldehyde in e-vapor products
Determination of dicarbonyls and crotonaldehyde in e-vapor productsDetermination of dicarbonyls and crotonaldehyde in e-vapor products
Determination of dicarbonyls and crotonaldehyde in e-vapor products
 
Analysis of organic acetates in e-vapor products by GC-MS/MS
Analysis of organic acetates in e-vapor products by GC-MS/MSAnalysis of organic acetates in e-vapor products by GC-MS/MS
Analysis of organic acetates in e-vapor products by GC-MS/MS
 
Analysis of organic acids in e-vapor products by ion chromatography
Analysis of organic acids in e-vapor products by ion chromatographyAnalysis of organic acids in e-vapor products by ion chromatography
Analysis of organic acids in e-vapor products by ion chromatography
 
Tayyarah, R external publications and presentations
Tayyarah, R external publications and presentationsTayyarah, R external publications and presentations
Tayyarah, R external publications and presentations
 
Tsrc 2015 45 tayyarah
Tsrc 2015 45 tayyarahTsrc 2015 45 tayyarah
Tsrc 2015 45 tayyarah
 
Cvar 119-cxp tobacco-product-analysis-tech-summit-2016-part1-cvar-tf
Cvar 119-cxp tobacco-product-analysis-tech-summit-2016-part1-cvar-tfCvar 119-cxp tobacco-product-analysis-tech-summit-2016-part1-cvar-tf
Cvar 119-cxp tobacco-product-analysis-tech-summit-2016-part1-cvar-tf
 
Coresta2017 tayyarah st04
Coresta2017 tayyarah st04Coresta2017 tayyarah st04
Coresta2017 tayyarah st04
 
Coresta2017 tayyarah st03
Coresta2017 tayyarah st03Coresta2017 tayyarah st03
Coresta2017 tayyarah st03
 
Evap 135-cxp gfn2017-evap-poster-170615
Evap 135-cxp gfn2017-evap-poster-170615Evap 135-cxp gfn2017-evap-poster-170615
Evap 135-cxp gfn2017-evap-poster-170615
 
Tsrc 2015 62 tayyarah
Tsrc 2015 62 tayyarahTsrc 2015 62 tayyarah
Tsrc 2015 62 tayyarah
 

Recently uploaded

Bacterial Identification and Classifications
Bacterial Identification and ClassificationsBacterial Identification and Classifications
Bacterial Identification and Classifications
Areesha Ahmad
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Sérgio Sacani
 
Conjugation, transduction and transformation
Conjugation, transduction and transformationConjugation, transduction and transformation
Conjugation, transduction and transformation
Areesha Ahmad
 
Module for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learningModule for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learning
levieagacer
 
dkNET Webinar "Texera: A Scalable Cloud Computing Platform for Sharing Data a...
dkNET Webinar "Texera: A Scalable Cloud Computing Platform for Sharing Data a...dkNET Webinar "Texera: A Scalable Cloud Computing Platform for Sharing Data a...
dkNET Webinar "Texera: A Scalable Cloud Computing Platform for Sharing Data a...
dkNET
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Sérgio Sacani
 

Recently uploaded (20)

Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticsPulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
 
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 60009654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)
 
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryFAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
 
pumpkin fruit fly, water melon fruit fly, cucumber fruit fly
pumpkin fruit fly, water melon fruit fly, cucumber fruit flypumpkin fruit fly, water melon fruit fly, cucumber fruit fly
pumpkin fruit fly, water melon fruit fly, cucumber fruit fly
 
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRLKochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
 
Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)
Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)
Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)
 
Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.
 
Bacterial Identification and Classifications
Bacterial Identification and ClassificationsBacterial Identification and Classifications
Bacterial Identification and Classifications
 
STS-UNIT 4 CLIMATE CHANGE POWERPOINT PRESENTATION
STS-UNIT 4 CLIMATE CHANGE POWERPOINT PRESENTATIONSTS-UNIT 4 CLIMATE CHANGE POWERPOINT PRESENTATION
STS-UNIT 4 CLIMATE CHANGE POWERPOINT PRESENTATION
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
 
Conjugation, transduction and transformation
Conjugation, transduction and transformationConjugation, transduction and transformation
Conjugation, transduction and transformation
 
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
 
PSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptxPSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptx
 
Module for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learningModule for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learning
 
GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)
 
Factory Acceptance Test( FAT).pptx .
Factory Acceptance Test( FAT).pptx       .Factory Acceptance Test( FAT).pptx       .
Factory Acceptance Test( FAT).pptx .
 
dkNET Webinar "Texera: A Scalable Cloud Computing Platform for Sharing Data a...
dkNET Webinar "Texera: A Scalable Cloud Computing Platform for Sharing Data a...dkNET Webinar "Texera: A Scalable Cloud Computing Platform for Sharing Data a...
dkNET Webinar "Texera: A Scalable Cloud Computing Platform for Sharing Data a...
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
 
Clean In Place(CIP).pptx .
Clean In Place(CIP).pptx                 .Clean In Place(CIP).pptx                 .
Clean In Place(CIP).pptx .
 

Selected Phenolic Compounds in Mainstream Cigarette Smoke, CORESTA Collaborative Study and Recommended Method

  • 1. Contributions to Tobacco & Nicotine Research formerly: Beiträge zur Tabakforschung International Volume 32 @ No. 1 @ March 2023 DOI: 10.2478/cttr-2023-0003 Selected Phenolic Compounds in Mainstream Cigarette Smoke, CORESTA Collaborative Study and Recommended Method * by Rana Tayyarah 1 , Douglas Knepper 2 , and Alexander Hauleithner 3 1 Labstat International Inc., 262 Manitou Dr, Kitchener, Ontario, N2C 1L3, Canada 2 ITG Brands LLC, PO BOX 21688 Greensboro, NC, USA 27420 3 JTI Ökolab, Hasnerstraße 127, 1160 Vienna, Austria SUMMARY A collaborative study among 20 participating laboratories was conducted in an effort to publish a recommended method for determination of phenols in mainstreamcigarette smoke. The study was conducted using 10 test samples includingreferencecigarettesandcommercialproductsfrom various regions (ISO 3308 total particulate matter 1–16 mg/cig) smoked under two regimes (ISO 3308 and ISO 20778). Health Canada method T-114 was chosen as a basis for the analytical methodology and therefore mainstream cigarette smoke was trapped on 44-mmglass fiber filter pads which were subsequently extracted with 1% aqueous acetic acidforanalysisbyhighperformanceliquidchromatography with fluorescence detection. Statistical analysis was carried out following ISO 5725 to generate repeatability (r) and reproducibility (R) data for results from linear and rotary smoking. For reproducibility (R) expressed as a percentage of mean yield across all of the studied products and both smoking regimes, values ranged from 17–150%. The lowest “tar” yielding products had the most variable data. Results trended as expected for total particulate matter, blend type, regime, and relative analyte yields. Results supporting a robust method for hydroquinone, resorcinol, catechol, phenol, o-cresol, m-cresol, and p-cresol are reported herein and support establishment of CRM 78, ISO 23904 and ISO 23905 standardized methods. [Contrib. Tob. Nicotine Res. 32 (2023) 18–25] KEYWORDS Cigarette; harmful and potentially harmful constituents; HPHC; smoke; hydroquinone; resorcinol; catechol; phenol; o-cresol; m-cresol; p-cresol, CORESTA ZUSAMMENFASSUNG Es wurde eine Vergleichsstudie mit 20 teilnehmenden Laboren mit dem Ziel durchgeführt, eine Empfehlung bezüglich einer Methode zur Bestimmung von Phenolen im Hauptstromrauch von Zigaretten auszusprechen. In die Studiewurden10Probeneingeschlossen,darunterReferenz- zigaretten sowie handelsübliche Produkte aus verschiedenen Regionen (ISO 3308 Gesamtpartikelmasse 1–16 mg/cig). Diese wurden nach zwei Abrauchprotokollen (ISO 3308 und ISO 20778) geraucht. Als Grundlage für die analytische Methodik wurde das Verfahren T-114 von Health Canada ausgewählt. Hierbei wurde der Hauptstromrauch der Ziga- retten auf Glasfaserfilterpads (44-mm) aufgefangen. Diese wurdenanschließendmit1%EssigsäureinwässrigerLösung extrahiertundmittelsHochleistungsflüssigkeitschromatogra- phie mit Fluoreszenzdetektion analysiert. Es wurde eine statistische Analyse nach ISO 5725 durchgeführt, um Daten zur Wiederholbarkeit (r) und Reproduzierbarkeit (R) für die Ergebnisse des linearen und rotierenden Abrauchens zu ermitteln. Bei der Reproduzierbarkeit (R) - ausgedrückt in *Received: 24th June 2022 – accepted: 31th January 2023 This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0). © 2023 Authors who publish with this journal retain all copyrights and agree to the terms of the above-mentioned CC BY-NC-SA 4.0 license.
  • 2. Table 1. Participating laboratories and product volunteers. Testing participants Altria Client Services ITC Ltd. ARISTA Laboratories ITG, France BAT Souza Cruz SA – Brazil ITL – Reemtsma Cigarettenfabriken British American Tobacco Japan Tobacco Inc. China National Tobacco Corp. Beijing Cigarette Factory Japan Tobacco International CNTC – Zhengzhou Tobacco Research Institute KT&G Corp. CNTC QC Labstat International Inc. Enthalpy Analytical, Inc. Philip Morris International – Brazil Essentra Scientific Services Philip Morris International – Indonesia Global Laboratory Services, Inc. R.J. Reynolds Tobacco Co. Product Volunteers British American Tobacco Germany GmbH Japan Tobacco – Japan China National Tobacco Corp. Beijing Cigarette Factory Philip Morris International – Neuchatel, Switzerland ITG Altadis Shanghai Tobacco Group Co. Ltd Prozent der mittleren Ausbeute aus allen untersuchten Produkten und beiden Abrauchprotokollen - lagen die Werte zwischen 17 und 150%. Die größten Schwankungen traten bei den Daten der Produkte mit der niedrigsten “Teerausbeute”auf.Beiden Ergebnissen bestätigte sichdie erwartete Tendenz in Bezug auf die Gesamtpartikelmasse, denMischungstyp,dasProtokollunddierelative Analyten- ausbeute. In diesemArtikel wird über Ergebnisse berichtet, die für die Anwendung einer robusten Methode bei Hydro- chinon, Resorcin, Catechin, Phenol, o-Kresol, m-Kresol und p-Kresol sprechen und damit für die Einführung von CRM 78 und standardisierten Methoden nach ISO 23904 und ISO 23905. [Contrib. Tob. Nicotine Res. 32 (2023) 18–25] RESUME Une étude conjointe rassemblant 20 laboratoires partici- pants entendait concourir à la publication d’une recom- mandation méthodologique concernant le dosage des composés phénoliques dans la fumée principale de ciga- rettes. Cette analyse reposa sur l’utilisation de 10 échan- tillons pour essai incluant des cigarettes de référence et des produits du commerce en provenance de différentes régions (ISO 3308 Matière particulaire totale 1–16 mg/cig) fumées suivant deux régimes de fumage (ISO 3308 et ISO 20778). La méthode T-114 de Santé Canada fut retenue en guise de socle à la méthodologie analytique et donc, la fumée principale de cigarette fut piégée dans des disques filtrants en fibre de verre de 44-mm qui furent ensuite soumis à une extraction par une solution d’acide acétique à 1% en vue d’une analyse par chromatographie liquide à haute performance(CLHP)avec détecteur de fluorescence. Une analyse statistique fut réalisée conformément à la norme ISO 5725 afin de générer des données de répétabili- té (r) et de reproductibilité (R) relatives aux résultats obtenus par machine à fumer linéaire et machine rotative. Eu égard à la reproductibilité (R) exprimée en un pourcen- tage du rendement moyen sur la totalité des produits analysés et les deux régimes de fumage, les valeurs oscillèrent entre 17 et 150%. Les produits présentant le rendement en “goudron” le plus faible affichèrent les données les plus variables. Les résultats évoluèrent dans la plage de nos attentes concernant la matière particulaire totale, le type de mélange, le régime de fumage et les rendements relatifs de l’analyte. Les résultats étayant l’emploi d’une méthode solide pour l’hydroquinone, le résorcinol, le catéchol, le phénol, l’ o-crésol, l’ m-crésol et le p-crésol sont présentés dans le présent article et appuient l’établissement des méthodes normalisées CRM 78, ISO 23904 et ISO 23905. [Contrib. Tob. Nicotine Res. 32 (2023) 18–25] INTRODUCTION Smoking cigarettes is a cause of serious diseases in smok- ers including lung cancer, heart disease, and emphysema. Phenolic compounds catechol, hydroquinone, resorcinol, phenol, and/or o-, m-, and p-cresol are often among harmful and potentially harmful chemicals (HPHCs) of regulatory interest (1–5). Phenols have been measured by various methods at least since the 1960s for research, product characterization, and selective filtration purposes (6–13). In particular, Health Canada’s T-114 was treated as a starting point for the study reported here (14). The scope of T-114 is limited to pheno- lic determination using intense smoking regime T-115 (15). The purpose of this study was to establish a method with a broader scope and to establish repeatability and reproducibility estimates for the determination of phenolic compounds using cigarettes and test pieces across a wide range of “tar” yield and cigarette designs. Thus, a collaborative study was conducted involving 20 laboratories from 11 countries, smoking 10 samples from the world-wide market. The samples had a range of blend styles (Virginia, American blend, and dark air-cured) and ISO 3308 “tar” yields between 1 and 13 mg. The cigarettes were smoked under both the ISO 3308 and ISO 20778 smoking regimes (16–17). Statistical evaluations were made according to ISO 5725 recommendationsandrepeatabilityandreproducibilitydata are provided (18). 19 CTNR @ 32 (1) @ 2023
  • 3. Table 2. Study samples. Sample ID Blend description Approximate TPM ISO 3308 regime (mg/cig) a Approximate TPM ISO 20778 regime (mg/cig) CM7 Virginia 16.1 43.4 KR 1R5F American 2.0 31.8 KR 3R4F American 9.9 44.1 Sample 1 Dark air-cured 13.5 44.1 Sample 2 American 8.9 40.2 Sample 3 American 10.2 45.1 Sample 4 Virginia 4.0 30.3 Sample 5 Virginia 1.8 20.6 Sample 6 Virginia 11.3 36.1 Sample 7 Charcoal filtered 1.2 25.8 a Based on the average TPM values from the study reported in this report Table 3. Fluorescence detector settings. Time initial Excitation (nm) Emission (nm) 0.0 280 310 12.4 280 310 12.5 274 298 23.0 274 298 24.0 280 310 28.0 280 310 Table 4. Elution program. a Time (min) Composition % A % B 0 78 22 8 78 22 8.5 55 45 21 55 45 22 0 100 28 0 100 (Equilibrate 6 min) a Linear gradient EXPERIMENTAL Participating laboratories The laboratories that conducted the testing along with the product volunteers are listed in alphabetical order in Table 1. To ensure anonymity of the results, each laboratory was given a unique study code for data exchange and reporting. Study protocol Participating laboratories were asked to follow a supplied study protocol, a draft of a CORESTA Recommended Method (CRM), and Health Canada T-114 (14) analytical method for the determinationof phenols. Samples analyzed for the study are listed in Table 2 with a range of blend and cigarette designs that represent the market and a wide range of total particulate matter (TPM) and analyte yields. In accordance with the study protocol, participating laboratories were asked to obtain reference cigarettes and monitor test pieces directly from suppliers (19–20). Other samples were commercial products from various regions provided by the study volunteers listed in Table 1. Five replicates of each product with each smoking regime were requested to be generated. Reportable measures included puff count, TPM, hydroquinone, resorcinol, catechol, phenol, o-cresol, m-cresol, and p-cresol. The yields of phenols collected under ISO 3308 (non- intense) and ISO 20778 (intense) smoking regimes were reported in units of microgram per cigarette (µg/cig) in the templates provided to participants. Smoke collection and sample preparation Following the recommended method, conditioned ciga- rettes were smoked using an automated 20-port constant volumesmokingmachine, onto a conditioned, pre-weighed glass fiber filter disc (pad). TPM was determined gravimetrically and puff counts were as recorded. The pads were extracted using 40 mL of 1% aqueous acetic acid with 30 min of agitation using a wrist- action shaker. Extracts were diluted using 1% acetic acid based on total TPM. Samples below 15 mg TPM were tested undiluted. Samples with 15–60 mg TPM were diluted 2:5 and samples with 60–100 mg TPM were diluted 1:5 prior to analysis. Analytical method Samples were analyzed within 24 hours of collection and extraction as hydroquinone is subject to rapid oxidation. Samples were analyzed using high performance liquid chromatography with selective fluorescence detection (HPLC-FLD). Detector settings are included in Table 3. The mobile phase consisted of: 1% acetic acid (HOAC) (aqueous; solvent A); 1% HOAC (in methanol; solvent B) with a flow rate of 0.8 mL/min and an elution gradient as noted in Table 4. Sample injection volume was 10 µL to 20 µL onto a pentafluorophenylpropyl analytical column (4.6 mm × 150 mm × 3 µm). 20 CTNR @ 32 (1) @ 2023
  • 4. Data analysis Data consistency was verified using graphical and numerical outlier detection techniques. Mandel’s h plot and Grubbs test were used to evaluate between- laboratories consistency. Mandel’s k plot and Cochran’s test were used to evaluate within-laboratory consistency. Grubbs and Cochran tests are less likely to qualify data points as outliers than their corresponding graphical methods and to avoid excessive data exclusion. Thus, the final decision on straggling (0.95) and outlying (0.99) data was made using Cochran’s and single-iteration Grubbs tests. Straggling data were retained in the dataset but out- lying data were removed for descriptive statistics reporting. Overall mean, standard deviation, repeat- ability (r), and reproducibility (R) values were deter- mined according to ISO 5725-216 (18). RESULTS AND DISCUSSION Study design The study design allowed for evaluation of the robustness of the method across the linear range for analytes of interest and confirmed the method’s effectiveness with a variety of products. Thus, the study samples chosen represented a wide variety of TPM yields, tobacco blends, and product construction parameters including varied filter ventilation level and inclusion of a filter additive for one study sample. Non-intense and intense smoking regimes were used to verify applicability with the recommended method. General trending Smoking related measures, including puff count and TPM, had low variability for both smoking regimes and across all products. Sample 7 (activated charcoal filter and high filter ventilation) showed the highest variability among the products tested. Additionally, no significant differences in results were noted based on choice of smoking machine type (i.e., linear or rotary). The method appears to distinguish samples appropri- ately. As expected of particulate phase and pad- trapped semi-volatile constituents, the analyte yields were directly correlated to TPM yields. When normal- ized to TPM, phenols showed predictable trending based on blend type. For example, Virginia (i.e., flue- cured) products had higher phenolic:TPM values compared to American blend samples containing Burley tobacco. In general, CM7 had the highest phenolic:TPM values. This is consistent with previous research indicating that flue-cured tobacco may generate higher levels of some phenolic HPHCs (10, 21). Data below the limits of quantification (LOQ) Several data sets included non-numeric (i.e., < LOQ) reporting for resorcinol, phenol, and the cresol compounds. These values were excluded from outlier evaluation and calculation of descriptive statistics and repeatability (r), and reproducibility (R) values. Outlier detection Results of graphical outlier detection methods (Mandel’s h and k plots) are not displayed in this report. During the first iteration, there were 10 stragglers and 8 outliers for the non- intense regime, and 13 stragglers and 7 outliers for the intense regime. A second iteration of the test did not reveal any further outliers. Grubbs single outlier test was employed on the lab means and identified the following outliers and stragglers. There were 4 stragglers and 8 outliers in the non- intense regime, and 10 stragglers and 13 outliers for the intense regime. All outliers were removed from the dataset. All straggling data was retained. Determination of inter-laboratory repeatability and repro- ducibility variance Mean, r, and R results with outliers removed are displayed in Table 5 and Table 6. Values are typically above limits established in ISO 8243 (22) for “tar”, nicotine, and carbon monoxide (TNCO). This is not unexpected given the much lower levels for phenols (µg) than TNCO measures (mg). Additionally, the highest values for r and R noted in the study were for results near LOQ at limits of the method’s capabilities. CONCLUSION Through this study, a robust method CRM Nº 78 (23) and ISO standards ISO 23904 (24) and ISO 23905 (25) were established for the determination of mainstream cigarette smoke phenolics. The scope of the study included 20 laboratories testing 10 cigarette samples across a range of blends types. The products tested included a range of TPM values between 1 mg and 16 mg (ISO 3308) and 32 mg and 51 mg (ISO 20778) and two smoking machine designs. The analytes tested were from a 4-fold to a 60-fold range in of the analytesofinterest.Reproducibility(R)values,expressedas a percentage of mean yield, ranged from 17–150%. ACKNOWLEDGEMENTS The authors wish to acknowledge Steve Purkis, Michael Intorp, and the participating laboratories and product volunteers noted in Table 1. Without the work and support provided, the objectives of the CORESTA Smoke Analytes subgroup and this project could not have been completed. 21 CTNR @ 32 (1) @ 2023
  • 5. Table 5. Non-intense smoking regime – Inter-laboratory mean yields, repeatability (r) and reproducibility (R) data. CM7 1R5F 3R4F Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Puff count Mean a 8.45 6.90 8.28 5.66 7.88 6.91 5.19 4.54 6.82 6.16 STD b 0.35 0.27 0.33 0.27 0.36 0.34 2.35 1.10 1.65 0.25 TPM Mean 16.12 1.96 9.85 13.46 8.85 10.24 3.26 1.69 10.64 1.17 STD 1.07 0.32 0.78 1.78 0.75 0.84 1.71 0.52 2.90 0.31 Hydroquinone Mean 91.82 8.45 32.84 42.78 36.98 46.88 20.38 * 9.30 46.69 8.09 STD 7.47 1.33 2.78 3.85 3.43 3.60 3.26 1.19 4.08 0.96 r c 12.14 1.58 4.27 8.92 5.97 6.72 2.89 1.78 6.31 1.41 R d 23.58 3.97 8.67 13.40 10.99 11.75 9.49 3.68 12.73 2.97 N e 18 17 18 14 18 18 14 18 16 18 Resorcinol Mean 1.79 * 0.13 * 0.63 * 0.66 * 0.80 * 0.97 * 0.51 0.35 1.19 * 0.12 * STD 0.30 0.04 0.15 0.21 0.16 0.18 0.09 0.05 0.21 0.03 * r 0.52 0.09 0.19 0.37 0.29 0.29 0.18 0.14 0.22 0.10 R 0.95 0.14 0.46 0.67 0.51 0.58 0.30 0.17 0.63 0.13 N 17 13 15 12 16 16 13 15 15 12 Catechol Mean 96.39 8.13 36.77 35.30 39.87 42.61 24.17 12.89 58.19 7.84 STD 4.13 0.62 1.72 1.53 2.45 2.16 2.41 0.68 3.09 0.59 r 13.39 1.60 5.02 7.32 6.84 4.91 4.77 1.98 7.58 1.88 R 16.65 2.25 6.60 7.83 9.19 7.46 7.99 2.61 11.00 2.35 N 18 17 18 14 18 17 15 18 16 18 Phenol Mean 27.60 * 0.93 7.06 19.97 9.64 12.47 4.58 1.21 * 13.91 0.49 * STD 2.94 0.19 0.80 1.49 1.28 1.15 1.11 0.25 1.42 0.11 r 4.17 0.44 1.59 4.12 2.43 2.52 1.24 0.36 3.04 0.29 R 9.05 0.65 2.64 5.57 4.20 3.93 3.30 0.77 4.81 0.39 N 16 14 18 14 18 18 15 16 16 13 o-Cresol Mean 5.63 0.38 2.33 5.75 2.62 3.30 1.34 0.42 * 3.40 0.21 STD 0.68 0.08 0.27 0.65 0.37 0.35 0.26 0.10 0.43 0.07 r 0.96 0.15 0.54 1.22 0.63 0.67 0.29 0.15 0.66 0.12 R 2.08 0.25 0.90 2.11 1.18 1.14 0.78 0.31 1.35 0.23 N 18 15 18 14 18 18 15 16 16 13 m-Cresol Mean 4.57 0.32 1.83 3.73 2.03 2.50 1.10 0.38 2.78 0.24 STD 0.67 0.10 0.18 0.45 0.33 0.29 0.22 0.07 0.28 0.12 r 0.69 0.12 0.37 0.77 0.42 0.43 0.23 0.11 0.53 0.10 R 1.98 0.29 0.61 1.43 0.99 0.90 0.64 0.23 0.92 0.36 N 17 13 17 13 17 17 14 17 16 13 p-Cresol Mean 12.45 0.73 4.56 10.40 5.44 6.49 2.49 0.88 6.25 0.44 STD 1.24 0.14 0.51 0.87 0.71 0.60 0.50 0.13 0.73 0.13 r 1.63 0.27 0.75 2.24 1.19 1.07 0.47 0.20 1.02 0.16 R 3.76 0.46 1.58 3.16 2.26 1.93 1.47 0.40 2.24 0.39 N 17 16 17 13 17 17 14 17 16 17 a Mean: mean yield (μg/cig) except TPM (mg/cig) and puff count (pc) b STD: overall standard deviation c r: repeatability (μg/cig at 95% confidence interval) d R: reproducibility (μg/cig at 95% confidence interval) e N: number of datasets used for r and R determination after removal of outliers and non-quantifiable values * Values calculated after removal of outlier (s) 22 CTNR @ 32 (1) @ 2023
  • 6. Table 6. Intense smoking regime – Inter-laboratory mean yields, repeatability (r) and reproducibility (R) data. CM7 1R5F 3R4F Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Puff count Mean a 11.78 6.40 10.39 7.00 9.74 7.62 5.81 5.02 9.31 6.54 STD b 0.56 0.36 0.51 0.40 0.51 0.52 2.63 1.25 2.33 0.37 TPM Mean 43.36 31.83 44.12 44.11 40.16 45.09 24.62 19.43 33.86 25.79 STD 6.09 4.07 3.97 4.80 4.62 4.87 12.32 5.91 9.33 3.76 Hydroquinone Mean 191.17 53.41 89.62 91.44 101.85 114.04 76.44 * 43.56 106.50 60.19 STD 15.16 5.08 7.49 7.99 8.60 6.30 5.32 4.30 9.49 5.47 r c 27.40 11.85 11.67 18.19 15.75 18.27 9.98 9.36 15.97 17.18 R d 49.02 17.74 23.43 27.67 27.88 24.05 17.37 14.67 30.16 21.70 N e 18 17 18 14 18 18 14 18 16 18 Resorcinol Mean 3.77 1.07 * 1.87 * 1.35 * 2.55 2.77 2.21 2.07 2.70 1.46 STD 0.79 0.15 0.40 0.41 0.68 0.79 0.48 0.44 0.39 0.42 r 0.70 0.38 0.45 0.60 0.65 0.75 0.80 0.68 0.71 0.57 R 2.31 0.55 1.18 1.27 1.99 2.32 1.52 1.39 1.26 1.27 N 18 14 15 11 17 18 15 17 16 17 Catechol Mean 198.81 41.73 90.24 76.29 100.18 96.21 79.79 * 54.38 127.00 * 51.10 STD 15.11 3.55 6.71 6.52 7.92 9.10 6.22 4.56 6.48 5.27 r 27.35 9.81 14.58 14.03 14.46 20.19 11.53 12.81 24.78 13.13 R 48.87 13.26 22.87 22.16 25.68 31.23 20.24 17.16 28.64 18.86 N 18 17 18 14 18 18 14 18 15 18 Phenol Mean 43.05 8.20 13.13 36.65 16.99 19.19 12.00 6.64 19.33 * 6.93 STD 3.59 0.91 1.05 1.20 1.46 1.59 1.33 0.63 1.35 0.57 r 8.93 1.88 3.30 8.39 4.14 4.82 2.96 1.74 4.59 3.13 R 12.83 3.05 4.17 8.22 5.51 6.21 4.56 2.34 5.58 3.23 N 18 17 18 14 18 18 15 18 15 18 o-Cresol Mean 8.67 2.53 4.15 10.88 4.66 5.22 3.14 * 1.90 4.53 * 1.97 STD 1.14 0.28 0.50 0.99 0.60 0.60 0.38 0.22 0.41 0.28 r 1.89 0.58 0.96 2.52 1.05 1.22 0.66 0.52 1.15 0.91 R 3.62 0.93 1.64 3.58 1.93 2.01 1.22 0.78 1.55 1.13 N 18 16 18 14 18 18 14 17 15 17 m-Cresol Mean 7.08 1.78 3.25 7.14 3.58 3.90 2.65 1.58 3.91 1.67 STD 1.07 0.22 0.45 0.74 0.51 0.37 0.43 0.22 0.37 0.35 r 1.27 0.48 0.72 1.49 0.68 0.90 0.64 0.45 0.84 0.69 R 3.22 0.76 1.42 2.47 1.55 1.31 1.34 0.74 1.28 1.16 N 17 16 17 13 17 16 14 17 16 17 p-Cresol Mean 20.16 * 5.53 8.54 * 21.25 9.99 * 10.77 * 6.49 4.14 9.08 * 4.12 * STD 2.21 0.72 0.72 2.32 1.10 1.06 0.81 0.36 0.82 0.40 r 3.58 1.09 1.78 4.29 1.98 2.19 1.31 0.91 1.84 1.82 R 6.97 2.24 2.56 7.55 3.56 3.55 2.56 1.30 2.82 1.98 N 16 16 16 13 16 16 14 17 15 16 a Mean: mean yield (μg/cig) except TPM (mg/cig) and puff count (pc) b STD: overall standard deviation c r: repeatability (μg/cig at 95% confidence interval) d R: reproducibility (μg/cig at 95% confidence interval) e N: number of datasets used for r and R determination after removal of outliers and non-quantifiable values * Values calculated after removal of outlier (s) REFERENCES 1. U.S. Food and Drug Administration: Harmful and Potentially Harmful Constituents in Tobacco Products and Tobacco Smoke; Established List; Fed Regist. 2012;77:20034–20037. Available at: https://www. federalregister.gov/documents/2012/04/03/2012-772 7/harmful-and-potentially-harmful-constituents-in- tobacco-products-and-tobacco-smoke-established-list (accessed February 2023) 2. Rodgman, A. and T.A. Perfetti: The Chemical Compo- nents of Tobacco and Tobacco Smoke; CRC Press, 2nd Edition, Boca Raton, FL, USA (2013). 3. The Peoples Republic of China, The State Council: State Tobacco Monopoly Administration. Available at: https://english.www.gov.cn/state_council/2014/10/01/ 23 CTNR @ 32 (1) @ 2023
  • 7. content_281474991089748.htm (accessed February 2023) 4. Health Canada, Minister of Health: Tobacco Reporting Regulations, SOR/2000-273. Available at: https://laws-lois.justice.gc.ca/PDF/SOR-2000-273.p df.2000 (accessed February 2023) 5. World Health Organization, WHO Study Group on Tobacco Product Regulation: Report on the Scientific Basis of Tobacco Product Regulation: Eighth Report of a WHO Study Group; Technical Report Series 1029; World Health Organization, Geneva, Switzer- land (2021). ISBN: 9789240022720 6. Carruthers, W. and R. Johnstone: Some Phenolic Constituents of Cigarette Smoke; Nature 185 (1960) 762–763. DOI: 10.1038/185762a0 7. Spears, A.: Selective Filtration of Volatile Phenolic Compounds from Cigarette Smoke; Tob. Sci. 7 (1963) 76–80. Available at: https://www.coresta.org/sites/ default/files/abstracts/Tobacco_Science_1963_7-17_ p._76-80_ISSN.0082-4523.pdf (accessed February 2023) 8. Smith, C.J., T.A. Perfetti, M.J. Morton, A. Rodgman, R. Garg, C.D. Selassie, and C. Hansch: The Relative Toxicity of Substituted Phenols Reported in Cigarette Mainstream Smoke; Toxicol. Sci. 69 (2002) 265–278. DOI: 10.1093/toxsci/69.1.265 9. Vaughan, C., S.B. Stanfill, G.M. Polzin, D.L. Ashley, and C.H. Watson: Automated Determination of Seven Phenolic Compounds in Mainstream Tobacco Smoke; Nicotine Tob. Res. 10 (2008) 1261–1268. DOI: 10.1080/14622200802123146 10. Dyakonov, A.J., R.T. Walker, and C.A. Brown: Studies of the Formation of Smoke Phenols; Beitr. Tabakforsch. Int. 23 (2008) 68–84. DOI: 10.2478/cttr-2013-0850 11. Jiang, W., J. Wu, J. Shen, W. Liu, W. Xiao, L. Xu, J. Sun, and Y. Zhang: Effect of Polylactic Acid (PLA) Filter on Mainstream Cigarette Smoke and Deliveries of Phenol; Paper ST18, presented at CORESTA Smoke Science and Product Technology Joint Study Groups Meeting, 2016, Berlin, Germany. Available at: https://www.coresta.org/sites/default/files/abstracts/ 2016_ST18_JiangWen.pdf (accessed February 2023) 12. Wilkinson, P.: A Preliminary Comparison of Fla- voured Waterpipe Tobacco Aerosol with Cigarette Smoke – Part 2: Hoffmann Analytes Machine Derived Data; Poster STPOST 25, presented at CORESTA Smoke Science and Product Technology Joint Study Groups Meeting, 2019, Hamburg, Germany. Available at:https://www.coresta.org/sites/default/files/abstracts/ 2019_STPOST25_Wilkinson.pdf (accessed February 2023) 13. Jin, X.C., T.J. Hurst, and K.A. Wagner: Optimized Method for Determination of Selective Phenolic Compounds in Cigarette and Cigar Smoke by UHPLC-FLD; Paper ST38, presented at CORESTA Smoke Science and Product Technology Joint Study Groups Meeting, 2019, Hamburg, Germany. Available at: https://www.coresta.org/abstracts/optimized- method-determination-selective-phenolic-compounds -cigarette-and-cigar-smoke-0 (accessed February 2023) 14. Health Canada: Test Method T-114. Determination of Phenolic Compounds in Mainstream Tobacco Smoke; 1999. Available at: https://health.canada.ca/apps/open -information/tobacco/100PDF/T-114E.PDF (accessed February 2023) 15. Health Canada: Test Method T-115. Determination of “Tar”, Nicotine and Carbon Monoxide in Mainstream Tobacco Smoke; 1999. Available at: https://health. canada.ca/apps/open-information/tobacco/100PDF/ T-115E (accessed February 2023) 16. International Organization for Standardization (ISO): ISO 3308:2012 Routine Analytical Cigarette-Smoking Machine - Definitions and Standard Conditions; ISO, Geneva, Switzerland, 2012. Available at: https://www.iso.org/standard/60404.html (accessed March, 2023) 17. International Organization for Standardization (ISO): ISO 20778:2018 Cigarettes - Routine Analytical Cigarette Smoking Machine - Definitions and Standard Conditions With an Intense Smoking Regime; ISO, Geneva, Switzerland, 2018. Available at: https://www.iso.org/standard/69065.html (accessed March, 2023) 18. International Organization for Standardization (ISO): ISO 5725-2:2019. Accuracy (Trueness and Precision) of Measurement Methods and Results – Part 2: Basic Method for the Determination of Repeatability and Reproducibility of a Standard Measurement Method; 2019, ISO, Geneva, Switzerland. Available at: https://www.iso.org/standard/69419.html (accessed February 2023) 19. University of Kentucky, College of Agriculture:Center for Tobacco Reference Products. Available at: https://ctrp.uky.edu/home (accessed February 2023) 20. Cooperation Centre for Scientific Research Relative to Tobacco (CORESTA): CORESTA Monitors; CORESTA, Paris, France. Available at: https://www. coresta.org/coresta-monitors (accessed February 2023) 21. Davis, M.F., H.D. Mills, and S.C. Moldoveanu: Forma- tion of Dihydroxybenzenes in Cigarette Smoke. Part 1. Contribution from Chlorogenic Acid and Rutin; Beitr. Tabakforsch. Int. 25 (2012) 396–408. DOI: 10.2478/cttr-2013-0918 22. International Organization for Standardization (ISO): ISO 8243:2013. Cigarettes – Sampling; 2019, ISO, Geneva, Switzerland. Available at https://www.iso. org/standard/60154.html (accessed February 2023) 23. Cooperation Centre for Scientific Research Relative to Tobacco (CORESTA): CORESTA Recommended Method No. 78 – Determination of Selected Phenolic Compounds in Mainstream Cigarette Smoke by HPLC-FLD; 2018, CORESTA, Paris, France. Avail- able at: https://www.coresta.org/sites/default/files/ technical_documents/main/CRM_78-Dec2018.pdf (accessed February 2023) 24. International Organization for Standardization (ISO): ISO 23904. Cigarettes – Determination of Selected Phenolic Compounds in Cigarette Mainstream Smoke with an Intense Smoking Regime using HPLC-FLD; 2020, ISO, Geneva, Switzerland. Available at: https://www.iso.org/standard/77341.html (accessed February 2023) 24 CTNR @ 32 (1) @ 2023
  • 8. 25. International Organization for Standardization (ISO): ISO 23905. Cigarettes – Determination of Selected Phenolic Compounds in Cigarette Mainstream Smoke Using HPLC-FLD; 2020, ISO, Geneva, Switzerland. Available at: https://www.iso.org/standard/77342.html (accessed February 2023) Corresponding author: Rana Tayyarah Labstat International Inc. Kitchener Ontario Canada E-mail: rana.tayyarah@labstat.com 25 CTNR @ 32 (1) @ 2023