SlideShare a Scribd company logo
1 of 6
Download to read offline
LECTURES FOR WEEK 11

Stratified Random Sampling:

So far, we have discussed random and systematic location of cruise plots in the context of simple

random sampling. These methods work well when the area sampled is homogeneous. Foresters,

however, often cruise areas with different forest cover types (i.e., stands). These different stands

make the area heterogeneous in terms of cover types. In this case, stratified random sampling

can be used to calculate a more precise cruise.



In stratified random sampling, the units of the population (e.g., stands) are grouped together

based on similar criterion (e.g., overstory tree type). Each unit (stratum) or stand is then cruised

and the stratum estimates are combined to give an estimate for the entire area. We will illustrate

this methodology with an example.



EXAMPLE: You cruise a 500 acre tract using variable radius plots and determine the following

cubic foot volumes per acre for cruise points in three timber types:



I. Black Cherry – Maple (SAF Cover Type 28)

                          PLOT VOLUMES (cubic foot volume per acre)

570                 640                  480                  560                 510

590                 670                  600                  780                 700




                                                                                                       1
II. Yellow-Poplar – White Oak – Northern Red Oak (SAF Cover Type 59)

                             PLOT VOLUMES (cubic foot volume per acre)

520                    710               770                     840         630

760                    890               810                     580         860



III. White Oak – Black Oak – Northern Red Oak (SAF Cover Type 52)

                             PLOT VOLUMES (cubic foot volume per acre)

200                    420               210                     290         350

540                    180               260                     320         270



Mean: First, calculate the mean cubic foot volume per acre (CFV/A) for each stratum using the

simple random procedure we used earlier:

       X I = 6100 / 10 = 610 cfv/a

       X II = 7370 / 10 = 737 cfv/a

       X III = 3040 / 10 = 304 cfv/a

The mean of the stratified sample can now be computed by:
                 L

                ∑N     h   ∗ Xh
       X ST =   h =1
                                  ,
                       N

where: L = The number of strata

       Nh = The size of stratum h (h = 1, 2, …, L) in acres.

                                                      L
       N = The total size of the tract in acres ( N = ∑ N h ).
                                                     h =1




                                                                                                2
If the strata sizes are:

        NI = 250 acres

        NII = 100 acres

        NIII = 150 acres

        Total Acres: N = 500 acres.

Then the stratified sample mean cubic volume per acre is:

                 250 *610 + 100 * 737 + 150 * 304
        X ST =                                    = 543.6 cfv/a
                              500

If you used the simple random sampling formula to calculate the mean, you would get:

               16,510
        XS =          = 550.3 cfv/a
                 30

which is close to the stratified mean.



Standard Errors: Next, calculate the variance ( s 2 ) of cubic foot volume per acre (CFV/A) for

each stratum using the simple random methodology we used earlier:

        s 2 = 8111.1 cfv/a
          I



        s 2 = 15,556.7 cfv/a
          II



        s 2 = 12,204.4 cfv/a
          III


With these variances, calculate the stratified standard error of cubic foot volume per acre for the

sample by:

                    L
                          ⎛           sh   ⎞
        SE ST =    ∑⎜w
                    ⎜
                              2
                              h   ∗        ⎟,
                                           ⎟
                   h =1   ⎝           nh   ⎠

where nh = number of cruise plots

        wh = weight factor = Nh / N.

                                                                                                      3
So, the stratified standard error for this example is:

                            2                         2                   2
                  ⎛ 250 ⎞ 8111.1 ⎛ 100 ⎞ 15,556.7 ⎛ 150 ⎞ 12,204.4
        SE SR   = ⎜     ⎟ ∗     +⎜     ⎟ ∗       +⎜     ⎟ ∗        = 19.4 cfv/a ,
                  ⎝ 500 ⎠   10   ⎝ 500 ⎠    10    ⎝ 500 ⎠    10



If you used the simple random sampling formula to calculate the standard error, you would get:

        SES = 38.9 cfv/a,

which is greater than the stratified standard error. Thus, stratifying the sample will improve our

overall cruise precision in this example (why?).



95% Confidence Interval: Calculate the 95% confidence interval for cubic foot volume per

acre:

        X ST ± t0.05,n-1=29 * SEST ⇒ 543.6 ± 2.045*19.4 or 543.6 ± 39.7 cfv/a



Cruise Precision: Calculate the cruise precision for this stratified cruise:

                       SE ST * t 0.05, 29       19.4 ∗ 2.045
        Pr ecision =                        =                ∗ 100 ≅ 7%
                                X ST               543.6

        Pr ecision (SRS) ≅ 15%



Sample Size: You can calculate the number of plots needed in each stratum that are necessary to

achieve a specified statistical objective. First, determine the total number of plots necessary by:

                                       2
               ⎛ L            ⎞
           t * ⎜ ∑ w h * s xh ⎟
                2


        n=     ⎝ h =1         ⎠ ,
                      E2

                                                                                                      4
where: E = allowable error in absolute units

        all other variables defined as before.



So, for our example, we want to find the number of plots needed to be 95% confident that we are

within plus or minus 10% of the true cubic foot volume per acre. In absolute units, E = 543.6

cfv/a * (0.10) = 54.4 cfv/a.

                                                                      2
                ⎛ 250            100              150            ⎞
           22 * ⎜     * 8111.1 +     * 15,556.7 +     * 12,204.4 ⎟
        n=      ⎝ 500            500              500            ⎠ ≅ 15 plots
                                          2
                                     54.4

For our example, we actually collected more sample points than necessary to achieve this

statistical objective.



Continuing with our example, we can now allocate (i.e., optimum allocation) these 15 plots to

the three strata with the formula:

                 w h * s xh
        nh =    L
                                   *n
               ∑w
               h =1
                      h   * s xh


So,

                          ⎛ 250 ⎞
                          ⎜     ⎟ * 8111.1
nI =                      ⎝ 500 ⎠                               * 15 =
                                                                        45.03
                                                                              * 15 ≅ 7 plots
     ⎛ 250 ⎞            ⎛ 100 ⎞              ⎛ 150 ⎞                   103.12
     ⎜     ⎟ * 8111.1 + ⎜     ⎟ * 15,556.7 + ⎜     ⎟ * 12,204.4
     ⎝ 500 ⎠            ⎝ 500 ⎠              ⎝ 500 ⎠

       ⎛ 100 ⎞
       ⎜     ⎟ * 15,556.7
n II = ⎝ 500 ⎠            *15 ≅ 4 plots
             103.12




                                                                                                5
⎛ 150 ⎞
          ⎜     ⎟ * 12,204.4
n III   = ⎝ 500 ⎠            * 15 ≅ 5 plots
                103.12



You will notice that the total number of plots equals 16 if you add up the strata plot numbers.

This number is greater than 15 because you should always round up the result when calculating

sample size.



You should also know that if you had an estimate of variability and you defined your strata

before the cruise, you can calculate your sample size before the cruise and allocate the plots to

each stratum with the same methodology.




                                                                                                    6

More Related Content

What's hot

Exponents and powers
Exponents and powersExponents and powers
Exponents and powersyadugopan
 
Capitulo 4, 7ma edición
Capitulo 4, 7ma ediciónCapitulo 4, 7ma edición
Capitulo 4, 7ma ediciónSohar Carr
 
Pile capacity equations
Pile capacity equationsPile capacity equations
Pile capacity equationsPrionath Roy
 
Simulated annealing
Simulated annealing Simulated annealing
Simulated annealing Hamid Reza
 
Capitulo 12, 7ma edición
Capitulo 12, 7ma ediciónCapitulo 12, 7ma edición
Capitulo 12, 7ma ediciónSohar Carr
 
10-design of singly reinforced beams
10-design of singly reinforced beams10-design of singly reinforced beams
10-design of singly reinforced beamsyadipermadi
 
The Bird's Poop
The Bird's PoopThe Bird's Poop
The Bird's Poopbenchoun
 
Gauss Divergence Therom
Gauss Divergence TheromGauss Divergence Therom
Gauss Divergence TheromVC Infotech
 
Assignment applied hydrology
Assignment applied hydrologyAssignment applied hydrology
Assignment applied hydrologyAtif Satti
 
Capitulo 5, 7ma edición
Capitulo 5, 7ma ediciónCapitulo 5, 7ma edición
Capitulo 5, 7ma ediciónSohar Carr
 
Numerical Problem and solution on Bearing Capacity ( Terzaghi and Meyerhof T...
Numerical Problem and solution on Bearing Capacity  ( Terzaghi and Meyerhof T...Numerical Problem and solution on Bearing Capacity  ( Terzaghi and Meyerhof T...
Numerical Problem and solution on Bearing Capacity ( Terzaghi and Meyerhof T...Make Mannan
 
Capitulo 1, 7ma edición
Capitulo 1, 7ma ediciónCapitulo 1, 7ma edición
Capitulo 1, 7ma ediciónSohar Carr
 

What's hot (20)

Exponents and powers
Exponents and powersExponents and powers
Exponents and powers
 
Capitulo 4, 7ma edición
Capitulo 4, 7ma ediciónCapitulo 4, 7ma edición
Capitulo 4, 7ma edición
 
Pile capacity equations
Pile capacity equationsPile capacity equations
Pile capacity equations
 
Simulated annealing
Simulated annealing Simulated annealing
Simulated annealing
 
boyd 3.1
boyd 3.1boyd 3.1
boyd 3.1
 
Capitulo 12, 7ma edición
Capitulo 12, 7ma ediciónCapitulo 12, 7ma edición
Capitulo 12, 7ma edición
 
Veer 5
Veer 5Veer 5
Veer 5
 
10-design of singly reinforced beams
10-design of singly reinforced beams10-design of singly reinforced beams
10-design of singly reinforced beams
 
The Bird's Poop
The Bird's PoopThe Bird's Poop
The Bird's Poop
 
surface area & volume
surface area & volumesurface area & volume
surface area & volume
 
Gauss Divergence Therom
Gauss Divergence TheromGauss Divergence Therom
Gauss Divergence Therom
 
Notes 4-7
Notes 4-7Notes 4-7
Notes 4-7
 
Directional derivative and gradient
Directional derivative and gradientDirectional derivative and gradient
Directional derivative and gradient
 
Computing F-blowups
Computing F-blowupsComputing F-blowups
Computing F-blowups
 
Assignment applied hydrology
Assignment applied hydrologyAssignment applied hydrology
Assignment applied hydrology
 
Chapter 01
Chapter 01Chapter 01
Chapter 01
 
Capitulo 5, 7ma edición
Capitulo 5, 7ma ediciónCapitulo 5, 7ma edición
Capitulo 5, 7ma edición
 
Numerical Problem and solution on Bearing Capacity ( Terzaghi and Meyerhof T...
Numerical Problem and solution on Bearing Capacity  ( Terzaghi and Meyerhof T...Numerical Problem and solution on Bearing Capacity  ( Terzaghi and Meyerhof T...
Numerical Problem and solution on Bearing Capacity ( Terzaghi and Meyerhof T...
 
Lemh106
Lemh106Lemh106
Lemh106
 
Capitulo 1, 7ma edición
Capitulo 1, 7ma ediciónCapitulo 1, 7ma edición
Capitulo 1, 7ma edición
 

Viewers also liked

Afstudeerproject Bram Hurkens TU/e 2006
Afstudeerproject Bram Hurkens TU/e 2006Afstudeerproject Bram Hurkens TU/e 2006
Afstudeerproject Bram Hurkens TU/e 2006Bram Hurkens
 
CSL In Session - Engaging Customer Curiosity
CSL In Session - Engaging Customer CuriosityCSL In Session - Engaging Customer Curiosity
CSL In Session - Engaging Customer Curiosity Colorado State Library
 
12 s1 inggris_sitimitasari
12 s1 inggris_sitimitasari12 s1 inggris_sitimitasari
12 s1 inggris_sitimitasariITeunx Kabayan
 
Ext Go To Story Customer Facing Presentation
Ext  Go To Story Customer Facing PresentationExt  Go To Story Customer Facing Presentation
Ext Go To Story Customer Facing Presentationsnobelen
 
CSL In Session - Playing Nice in the Sandbox of Life: Working on a Team
CSL In Session - Playing Nice in the Sandbox of Life: Working on a TeamCSL In Session - Playing Nice in the Sandbox of Life: Working on a Team
CSL In Session - Playing Nice in the Sandbox of Life: Working on a Team Colorado State Library
 
Lessons from SPELL: Supporting Parents in Early Literacy through Libraries
Lessons from SPELL: Supporting Parents in Early Literacy through LibrariesLessons from SPELL: Supporting Parents in Early Literacy through Libraries
Lessons from SPELL: Supporting Parents in Early Literacy through Libraries Colorado State Library
 
Engaging communities through social media
Engaging communities through social mediaEngaging communities through social media
Engaging communities through social media Colorado State Library
 
Six important factors to consider before choosing a technology jon solomon
Six important factors to consider before choosing a technology   jon solomonSix important factors to consider before choosing a technology   jon solomon
Six important factors to consider before choosing a technology jon solomon Colorado State Library
 

Viewers also liked (16)

Managing the Maze - Part 2
Managing the Maze - Part 2Managing the Maze - Part 2
Managing the Maze - Part 2
 
You CAN Write Well! Part 2 of 4
You CAN Write Well!  Part 2 of 4You CAN Write Well!  Part 2 of 4
You CAN Write Well! Part 2 of 4
 
12 s1 rrc_nenden_erna
12 s1 rrc_nenden_erna12 s1 rrc_nenden_erna
12 s1 rrc_nenden_erna
 
Highlyeffectiveschoollibraryprogram
HighlyeffectiveschoollibraryprogramHighlyeffectiveschoollibraryprogram
Highlyeffectiveschoollibraryprogram
 
OB4CO Webinar
OB4CO WebinarOB4CO Webinar
OB4CO Webinar
 
Afstudeerproject Bram Hurkens TU/e 2006
Afstudeerproject Bram Hurkens TU/e 2006Afstudeerproject Bram Hurkens TU/e 2006
Afstudeerproject Bram Hurkens TU/e 2006
 
CSL In Session - Engaging Customer Curiosity
CSL In Session - Engaging Customer CuriosityCSL In Session - Engaging Customer Curiosity
CSL In Session - Engaging Customer Curiosity
 
Managing the Maze - Part 3
Managing the Maze - Part 3Managing the Maze - Part 3
Managing the Maze - Part 3
 
12 s1 inggris_sitimitasari
12 s1 inggris_sitimitasari12 s1 inggris_sitimitasari
12 s1 inggris_sitimitasari
 
Ext Go To Story Customer Facing Presentation
Ext  Go To Story Customer Facing PresentationExt  Go To Story Customer Facing Presentation
Ext Go To Story Customer Facing Presentation
 
CSL In Session - Playing Nice in the Sandbox of Life: Working on a Team
CSL In Session - Playing Nice in the Sandbox of Life: Working on a TeamCSL In Session - Playing Nice in the Sandbox of Life: Working on a Team
CSL In Session - Playing Nice in the Sandbox of Life: Working on a Team
 
Unearthing seed money
Unearthing seed moneyUnearthing seed money
Unearthing seed money
 
Lessons from SPELL: Supporting Parents in Early Literacy through Libraries
Lessons from SPELL: Supporting Parents in Early Literacy through LibrariesLessons from SPELL: Supporting Parents in Early Literacy through Libraries
Lessons from SPELL: Supporting Parents in Early Literacy through Libraries
 
Engaging communities through social media
Engaging communities through social mediaEngaging communities through social media
Engaging communities through social media
 
Technology Proficiency Checklist
Technology Proficiency ChecklistTechnology Proficiency Checklist
Technology Proficiency Checklist
 
Six important factors to consider before choosing a technology jon solomon
Six important factors to consider before choosing a technology   jon solomonSix important factors to consider before choosing a technology   jon solomon
Six important factors to consider before choosing a technology jon solomon
 

Similar to Sampling theory

Phy i assign&answers_2011
Phy i assign&answers_2011Phy i assign&answers_2011
Phy i assign&answers_2011Sufi Sulaiman
 
Solutions Manual for Friendly Introduction To Numerical Analysis 1st Edition ...
Solutions Manual for Friendly Introduction To Numerical Analysis 1st Edition ...Solutions Manual for Friendly Introduction To Numerical Analysis 1st Edition ...
Solutions Manual for Friendly Introduction To Numerical Analysis 1st Edition ...Willowew
 
Sums on Rigid Pavement Design
Sums on Rigid Pavement DesignSums on Rigid Pavement Design
Sums on Rigid Pavement DesignArnabKarmakar18
 
Hugh_D_Young_&_Roger_A_Freedman_Física_Universitaria_12ed_Manual.pdf
Hugh_D_Young_&_Roger_A_Freedman_Física_Universitaria_12ed_Manual.pdfHugh_D_Young_&_Roger_A_Freedman_Física_Universitaria_12ed_Manual.pdf
Hugh_D_Young_&_Roger_A_Freedman_Física_Universitaria_12ed_Manual.pdfdavidriveroscanales2
 
Fisica_Universitaria_Sears_Zemansky_12va_Edicion_Solucionario.pdf
Fisica_Universitaria_Sears_Zemansky_12va_Edicion_Solucionario.pdfFisica_Universitaria_Sears_Zemansky_12va_Edicion_Solucionario.pdf
Fisica_Universitaria_Sears_Zemansky_12va_Edicion_Solucionario.pdfdavidriveroscanales2
 
Retaining wall design_example
Retaining wall design_exampleRetaining wall design_example
Retaining wall design_examplealibunar
 
Solucionário Introdução à mecânica dos Fluidos - Chapter 01
Solucionário Introdução à mecânica dos Fluidos - Chapter 01Solucionário Introdução à mecânica dos Fluidos - Chapter 01
Solucionário Introdução à mecânica dos Fluidos - Chapter 01Rodolpho Montavoni
 
presentation_41.pptx
presentation_41.pptxpresentation_41.pptx
presentation_41.pptxShathaTaha2
 
Capitulo 10, 7ma edición
Capitulo 10, 7ma ediciónCapitulo 10, 7ma edición
Capitulo 10, 7ma ediciónSohar Carr
 
Calculus notes ch 6
Calculus notes ch 6Calculus notes ch 6
Calculus notes ch 6debukks6
 
Resposta cap-1-halliday-8-edição
Resposta cap-1-halliday-8-ediçãoResposta cap-1-halliday-8-edição
Resposta cap-1-halliday-8-ediçãoKarine Felix
 

Similar to Sampling theory (20)

Phy i assign&answers_2011
Phy i assign&answers_2011Phy i assign&answers_2011
Phy i assign&answers_2011
 
Solutions Manual for Friendly Introduction To Numerical Analysis 1st Edition ...
Solutions Manual for Friendly Introduction To Numerical Analysis 1st Edition ...Solutions Manual for Friendly Introduction To Numerical Analysis 1st Edition ...
Solutions Manual for Friendly Introduction To Numerical Analysis 1st Edition ...
 
Ch01p
Ch01pCh01p
Ch01p
 
Chapter 04 answers
Chapter 04 answersChapter 04 answers
Chapter 04 answers
 
Input analysis
Input analysisInput analysis
Input analysis
 
Sums on Rigid Pavement Design
Sums on Rigid Pavement DesignSums on Rigid Pavement Design
Sums on Rigid Pavement Design
 
Hugh_D_Young_&_Roger_A_Freedman_Física_Universitaria_12ed_Manual.pdf
Hugh_D_Young_&_Roger_A_Freedman_Física_Universitaria_12ed_Manual.pdfHugh_D_Young_&_Roger_A_Freedman_Física_Universitaria_12ed_Manual.pdf
Hugh_D_Young_&_Roger_A_Freedman_Física_Universitaria_12ed_Manual.pdf
 
Fisica_Universitaria_Sears_Zemansky_12va_Edicion_Solucionario.pdf
Fisica_Universitaria_Sears_Zemansky_12va_Edicion_Solucionario.pdfFisica_Universitaria_Sears_Zemansky_12va_Edicion_Solucionario.pdf
Fisica_Universitaria_Sears_Zemansky_12va_Edicion_Solucionario.pdf
 
draft5
draft5draft5
draft5
 
Retaining wall design_example
Retaining wall design_exampleRetaining wall design_example
Retaining wall design_example
 
BS2506 tutorial 2
BS2506 tutorial 2BS2506 tutorial 2
BS2506 tutorial 2
 
Solucionário Introdução à mecânica dos Fluidos - Chapter 01
Solucionário Introdução à mecânica dos Fluidos - Chapter 01Solucionário Introdução à mecânica dos Fluidos - Chapter 01
Solucionário Introdução à mecânica dos Fluidos - Chapter 01
 
presentation_41.pptx
presentation_41.pptxpresentation_41.pptx
presentation_41.pptx
 
Capitulo 10, 7ma edición
Capitulo 10, 7ma ediciónCapitulo 10, 7ma edición
Capitulo 10, 7ma edición
 
Capitulo 10 7 ed
Capitulo 10 7 edCapitulo 10 7 ed
Capitulo 10 7 ed
 
Evaluating definite integrals
Evaluating definite integralsEvaluating definite integrals
Evaluating definite integrals
 
Teknik Simulasi
Teknik SimulasiTeknik Simulasi
Teknik Simulasi
 
Calculus notes ch 6
Calculus notes ch 6Calculus notes ch 6
Calculus notes ch 6
 
Ch.4-Examples 2.pdf
Ch.4-Examples 2.pdfCh.4-Examples 2.pdf
Ch.4-Examples 2.pdf
 
Resposta cap-1-halliday-8-edição
Resposta cap-1-halliday-8-ediçãoResposta cap-1-halliday-8-edição
Resposta cap-1-halliday-8-edição
 

Sampling theory

  • 1. LECTURES FOR WEEK 11 Stratified Random Sampling: So far, we have discussed random and systematic location of cruise plots in the context of simple random sampling. These methods work well when the area sampled is homogeneous. Foresters, however, often cruise areas with different forest cover types (i.e., stands). These different stands make the area heterogeneous in terms of cover types. In this case, stratified random sampling can be used to calculate a more precise cruise. In stratified random sampling, the units of the population (e.g., stands) are grouped together based on similar criterion (e.g., overstory tree type). Each unit (stratum) or stand is then cruised and the stratum estimates are combined to give an estimate for the entire area. We will illustrate this methodology with an example. EXAMPLE: You cruise a 500 acre tract using variable radius plots and determine the following cubic foot volumes per acre for cruise points in three timber types: I. Black Cherry – Maple (SAF Cover Type 28) PLOT VOLUMES (cubic foot volume per acre) 570 640 480 560 510 590 670 600 780 700 1
  • 2. II. Yellow-Poplar – White Oak – Northern Red Oak (SAF Cover Type 59) PLOT VOLUMES (cubic foot volume per acre) 520 710 770 840 630 760 890 810 580 860 III. White Oak – Black Oak – Northern Red Oak (SAF Cover Type 52) PLOT VOLUMES (cubic foot volume per acre) 200 420 210 290 350 540 180 260 320 270 Mean: First, calculate the mean cubic foot volume per acre (CFV/A) for each stratum using the simple random procedure we used earlier: X I = 6100 / 10 = 610 cfv/a X II = 7370 / 10 = 737 cfv/a X III = 3040 / 10 = 304 cfv/a The mean of the stratified sample can now be computed by: L ∑N h ∗ Xh X ST = h =1 , N where: L = The number of strata Nh = The size of stratum h (h = 1, 2, …, L) in acres. L N = The total size of the tract in acres ( N = ∑ N h ). h =1 2
  • 3. If the strata sizes are: NI = 250 acres NII = 100 acres NIII = 150 acres Total Acres: N = 500 acres. Then the stratified sample mean cubic volume per acre is: 250 *610 + 100 * 737 + 150 * 304 X ST = = 543.6 cfv/a 500 If you used the simple random sampling formula to calculate the mean, you would get: 16,510 XS = = 550.3 cfv/a 30 which is close to the stratified mean. Standard Errors: Next, calculate the variance ( s 2 ) of cubic foot volume per acre (CFV/A) for each stratum using the simple random methodology we used earlier: s 2 = 8111.1 cfv/a I s 2 = 15,556.7 cfv/a II s 2 = 12,204.4 cfv/a III With these variances, calculate the stratified standard error of cubic foot volume per acre for the sample by: L ⎛ sh ⎞ SE ST = ∑⎜w ⎜ 2 h ∗ ⎟, ⎟ h =1 ⎝ nh ⎠ where nh = number of cruise plots wh = weight factor = Nh / N. 3
  • 4. So, the stratified standard error for this example is: 2 2 2 ⎛ 250 ⎞ 8111.1 ⎛ 100 ⎞ 15,556.7 ⎛ 150 ⎞ 12,204.4 SE SR = ⎜ ⎟ ∗ +⎜ ⎟ ∗ +⎜ ⎟ ∗ = 19.4 cfv/a , ⎝ 500 ⎠ 10 ⎝ 500 ⎠ 10 ⎝ 500 ⎠ 10 If you used the simple random sampling formula to calculate the standard error, you would get: SES = 38.9 cfv/a, which is greater than the stratified standard error. Thus, stratifying the sample will improve our overall cruise precision in this example (why?). 95% Confidence Interval: Calculate the 95% confidence interval for cubic foot volume per acre: X ST ± t0.05,n-1=29 * SEST ⇒ 543.6 ± 2.045*19.4 or 543.6 ± 39.7 cfv/a Cruise Precision: Calculate the cruise precision for this stratified cruise: SE ST * t 0.05, 29 19.4 ∗ 2.045 Pr ecision = = ∗ 100 ≅ 7% X ST 543.6 Pr ecision (SRS) ≅ 15% Sample Size: You can calculate the number of plots needed in each stratum that are necessary to achieve a specified statistical objective. First, determine the total number of plots necessary by: 2 ⎛ L ⎞ t * ⎜ ∑ w h * s xh ⎟ 2 n= ⎝ h =1 ⎠ , E2 4
  • 5. where: E = allowable error in absolute units all other variables defined as before. So, for our example, we want to find the number of plots needed to be 95% confident that we are within plus or minus 10% of the true cubic foot volume per acre. In absolute units, E = 543.6 cfv/a * (0.10) = 54.4 cfv/a. 2 ⎛ 250 100 150 ⎞ 22 * ⎜ * 8111.1 + * 15,556.7 + * 12,204.4 ⎟ n= ⎝ 500 500 500 ⎠ ≅ 15 plots 2 54.4 For our example, we actually collected more sample points than necessary to achieve this statistical objective. Continuing with our example, we can now allocate (i.e., optimum allocation) these 15 plots to the three strata with the formula: w h * s xh nh = L *n ∑w h =1 h * s xh So, ⎛ 250 ⎞ ⎜ ⎟ * 8111.1 nI = ⎝ 500 ⎠ * 15 = 45.03 * 15 ≅ 7 plots ⎛ 250 ⎞ ⎛ 100 ⎞ ⎛ 150 ⎞ 103.12 ⎜ ⎟ * 8111.1 + ⎜ ⎟ * 15,556.7 + ⎜ ⎟ * 12,204.4 ⎝ 500 ⎠ ⎝ 500 ⎠ ⎝ 500 ⎠ ⎛ 100 ⎞ ⎜ ⎟ * 15,556.7 n II = ⎝ 500 ⎠ *15 ≅ 4 plots 103.12 5
  • 6. ⎛ 150 ⎞ ⎜ ⎟ * 12,204.4 n III = ⎝ 500 ⎠ * 15 ≅ 5 plots 103.12 You will notice that the total number of plots equals 16 if you add up the strata plot numbers. This number is greater than 15 because you should always round up the result when calculating sample size. You should also know that if you had an estimate of variability and you defined your strata before the cruise, you can calculate your sample size before the cruise and allocate the plots to each stratum with the same methodology. 6