SlideShare a Scribd company logo
1 of 13
Robot Navigation
Introduction
• In the first step we get familiar with basic concepts of 2D geometry
• Then we apply our perspective to obtain practical results to obtain
robots motion and pose
• And finally we present the most basic robot problem and how to
approach and solving it
2D Geometry
• Cartesian coordinates: 𝒙 =
𝑥
𝑦
• Augmented vector: 𝒙 =
𝑥
𝑦
1
• Homogeneous coordinates: 𝒙 =
𝑥
𝑦
𝜔
= 𝜔
𝑥
𝜔
𝑦
𝜔
1
• Points at 𝜔 = 0 represent infinity
Primitive operations in 2D geometry
• To represent a line we need an offset from the origin and a direction
• Mathematical representation is in the following form:
• 𝐼 = ( 𝑎 𝑏 𝑐) 𝑇
• 𝑥. 𝐼 = ax + by + c =0
Intersection of two
lines
Line joining two points : 𝐼 = 𝑥1 x 𝑥2
Point of intersection : 𝑥 = 𝐼1 x 𝐼2
2D transformation
We see how the homogeneous
coordinate system simplifies the
transformation operations
Robot Example
Robot is located somewhere in space
Position : x , y
Orientation : 𝜓 (yaw angle)
X =
𝑅 𝑡
0 1
=
cos 𝜓 − sin 𝜓 𝑥
sin 𝜓 cos 𝜓 𝑦
0 0 1
Robot pose
Robot is located in
X = 0.7
Y = 0.5
𝜓 = 45 𝜊
Position matrix:
X =
cos 45 − sin 45 0.7
sin 45 cos 45 0.5
0 0 1
=
0.71 −0.71 0.7
0.71 0.71 0.5
0 0 1
What happens if we
move the robot 1m
forward?
The resulting coordinate on global frame is:
𝑃𝑔𝑙𝑜𝑏𝑎𝑙 = X 𝑃𝑙𝑜𝑐𝑎𝑙 =>
0.71 −0.71 0.7
0.71 0.71 0.5
0 0 1
1
0
1
=
1.41
1.21
1
From homogeneous coordinates we
have:
𝑃𝑙𝑜𝑐𝑎𝑙 =
1
0
1
What happens if robot
moves 0.2m forward ,
0.1m sideward and turn
by 10 degrees
We obtain transformation matrix in previous manner
U =
cos 10 − sin 10 0.2
sin 10 cos 10 0.1
0 0 1
=
0.98 −0.17 0.2
0.17 0.98 0.1
0 0 1
Now multiplying by pose matrix
𝑥 = XU =
0.71 −0.71 0.7
0.71 0.71 0.5
0 0 1
0.98 −0.17 0.2
0.17 0.98 0.1
0 0 1
Estimating robots motion(Odometry)
• We know what commands are issued to the robot
• Based on our commands we predict the robots motion
• Three main methods are used depending on robots application
• 1.control based :models predict the estimated motion
• 2.odometry based :distance sensors estimate the motion(e.g.,
wheeled robots)
• 3.velocity based : velocity sensors estimate the motion(flying robots)
Motion models
• Integrating IMU readings results in motion
of robot
• IMU readings are sensor outputs with a
certain frequency (e.g., 200hz).
• Estimating robot pose 𝑥 𝑡 based on issued
controls (IMU readings) 𝑢 𝑡 and the
previous location 𝑥 𝑡−1
• Motion model 𝑥 𝑡 = f(𝑥 𝑡−1 , 𝑢 𝑡)

More Related Content

Viewers also liked

As I Forever Had Her Support.
As I Forever Had Her Support.As I Forever Had Her Support.
As I Forever Had Her Support.Nikhil Parekh
 
Fastwich noviembre 2010 grupo B MIM-ESP2010
Fastwich noviembre 2010 grupo B MIM-ESP2010Fastwich noviembre 2010 grupo B MIM-ESP2010
Fastwich noviembre 2010 grupo B MIM-ESP2010vclarembaux
 
Introduccion de contaduria_ (3)
Introduccion de contaduria_ (3)Introduccion de contaduria_ (3)
Introduccion de contaduria_ (3)adrocro
 
Nueva propuesta regulatoria de la tarifa eléctrica
Nueva propuesta regulatoria de la tarifa eléctricaNueva propuesta regulatoria de la tarifa eléctrica
Nueva propuesta regulatoria de la tarifa eléctricaAERCE
 
Astoundingly Sensitive - Part 2
Astoundingly Sensitive -  Part 2Astoundingly Sensitive -  Part 2
Astoundingly Sensitive - Part 2Nikhil Parekh
 
3Com 3C95104M-FL1-ST
3Com 3C95104M-FL1-ST3Com 3C95104M-FL1-ST
3Com 3C95104M-FL1-STsavomir
 
6. Ejemplo interpretación nacional de estándares
6. Ejemplo interpretación nacional de estándares6. Ejemplo interpretación nacional de estándares
6. Ejemplo interpretación nacional de estándaresalhumeau
 

Viewers also liked (17)

As I Forever Had Her Support.
As I Forever Had Her Support.As I Forever Had Her Support.
As I Forever Had Her Support.
 
Fastwich noviembre 2010 grupo B MIM-ESP2010
Fastwich noviembre 2010 grupo B MIM-ESP2010Fastwich noviembre 2010 grupo B MIM-ESP2010
Fastwich noviembre 2010 grupo B MIM-ESP2010
 
Facedecimoa
FacedecimoaFacedecimoa
Facedecimoa
 
Taller 3 informatica
Taller 3 informaticaTaller 3 informatica
Taller 3 informatica
 
Doesnt Stop You
Doesnt Stop YouDoesnt Stop You
Doesnt Stop You
 
Introduccion de contaduria_ (3)
Introduccion de contaduria_ (3)Introduccion de contaduria_ (3)
Introduccion de contaduria_ (3)
 
Satyapaul
SatyapaulSatyapaul
Satyapaul
 
As Important
As ImportantAs Important
As Important
 
Nueva propuesta regulatoria de la tarifa eléctrica
Nueva propuesta regulatoria de la tarifa eléctricaNueva propuesta regulatoria de la tarifa eléctrica
Nueva propuesta regulatoria de la tarifa eléctrica
 
Astoundingly Sensitive - Part 2
Astoundingly Sensitive -  Part 2Astoundingly Sensitive -  Part 2
Astoundingly Sensitive - Part 2
 
Exposicion de informatik 1002
Exposicion de informatik 1002Exposicion de informatik 1002
Exposicion de informatik 1002
 
3Com 3C95104M-FL1-ST
3Com 3C95104M-FL1-ST3Com 3C95104M-FL1-ST
3Com 3C95104M-FL1-ST
 
El parque de las leyendas
El parque de las leyendasEl parque de las leyendas
El parque de las leyendas
 
6. Ejemplo interpretación nacional de estándares
6. Ejemplo interpretación nacional de estándares6. Ejemplo interpretación nacional de estándares
6. Ejemplo interpretación nacional de estándares
 
Dear Daddy
Dear DaddyDear Daddy
Dear Daddy
 
Conservacion ambiental
Conservacion ambientalConservacion ambiental
Conservacion ambiental
 
Disc golf grupo iii
Disc golf grupo iiiDisc golf grupo iii
Disc golf grupo iii
 

Similar to Robotics Navigation

inverse kinenatics problem
inverse kinenatics probleminverse kinenatics problem
inverse kinenatics problemVivek Kumar
 
Graphics6 bresenham circlesandpolygons
Graphics6 bresenham circlesandpolygonsGraphics6 bresenham circlesandpolygons
Graphics6 bresenham circlesandpolygonsThirunavukarasu Mani
 
Graphics6 bresenham circlesandpolygons
Graphics6 bresenham circlesandpolygonsGraphics6 bresenham circlesandpolygons
Graphics6 bresenham circlesandpolygonsKetan Jani
 
Computer graphic
Computer graphicComputer graphic
Computer graphicnusratema1
 
Robotics: Introduction to Kinematics
Robotics: Introduction to KinematicsRobotics: Introduction to Kinematics
Robotics: Introduction to KinematicsDamian T. Gordon
 
motion velocity accelaration and displacement
motion velocity accelaration and displacementmotion velocity accelaration and displacement
motion velocity accelaration and displacementjamesadam2001
 
Lecture 1 trajectory generation
Lecture 1 trajectory generation Lecture 1 trajectory generation
Lecture 1 trajectory generation cairo university
 
lec 2 Robotics time & motion
lec 2 Robotics time & motionlec 2 Robotics time & motion
lec 2 Robotics time & motioncairo university
 
Erin catto numericalmethods
Erin catto numericalmethodsErin catto numericalmethods
Erin catto numericalmethodsoscarbg
 
simuliton of biped walkinng robot using kinematics
simuliton of biped walkinng robot using kinematicssimuliton of biped walkinng robot using kinematics
simuliton of biped walkinng robot using kinematicsReza Fazaeli
 
Ecuaciones lineal y homogena..
Ecuaciones lineal y homogena..Ecuaciones lineal y homogena..
Ecuaciones lineal y homogena..CarlisNuez
 
Kinematic models and constraints.ppt
Kinematic models and constraints.pptKinematic models and constraints.ppt
Kinematic models and constraints.pptssuser8698eb
 
L5_Bilinear Transformation.pdf
L5_Bilinear Transformation.pdfL5_Bilinear Transformation.pdf
L5_Bilinear Transformation.pdftemp2tempa
 
Supporting Vector Machine
Supporting Vector MachineSupporting Vector Machine
Supporting Vector MachineSumit Singh
 
7600088.ppt
7600088.ppt7600088.ppt
7600088.pptMUST
 
Centroid and Moment of Inertia from mechanics of material by hibbler related ...
Centroid and Moment of Inertia from mechanics of material by hibbler related ...Centroid and Moment of Inertia from mechanics of material by hibbler related ...
Centroid and Moment of Inertia from mechanics of material by hibbler related ...FREE LAUNCER
 

Similar to Robotics Navigation (20)

inverse kinenatics problem
inverse kinenatics probleminverse kinenatics problem
inverse kinenatics problem
 
Graphics6 bresenham circlesandpolygons
Graphics6 bresenham circlesandpolygonsGraphics6 bresenham circlesandpolygons
Graphics6 bresenham circlesandpolygons
 
Graphics6 bresenham circlesandpolygons
Graphics6 bresenham circlesandpolygonsGraphics6 bresenham circlesandpolygons
Graphics6 bresenham circlesandpolygons
 
Computer graphic
Computer graphicComputer graphic
Computer graphic
 
Robotics: Introduction to Kinematics
Robotics: Introduction to KinematicsRobotics: Introduction to Kinematics
Robotics: Introduction to Kinematics
 
Robotics lec 6
Robotics lec 6Robotics lec 6
Robotics lec 6
 
motion velocity accelaration and displacement
motion velocity accelaration and displacementmotion velocity accelaration and displacement
motion velocity accelaration and displacement
 
Trajectory
TrajectoryTrajectory
Trajectory
 
Lecture 1 trajectory generation
Lecture 1 trajectory generation Lecture 1 trajectory generation
Lecture 1 trajectory generation
 
lec 2 Robotics time & motion
lec 2 Robotics time & motionlec 2 Robotics time & motion
lec 2 Robotics time & motion
 
BIBO stability.pptx
BIBO stability.pptxBIBO stability.pptx
BIBO stability.pptx
 
Erin catto numericalmethods
Erin catto numericalmethodsErin catto numericalmethods
Erin catto numericalmethods
 
simuliton of biped walkinng robot using kinematics
simuliton of biped walkinng robot using kinematicssimuliton of biped walkinng robot using kinematics
simuliton of biped walkinng robot using kinematics
 
Ecuaciones lineal y homogena..
Ecuaciones lineal y homogena..Ecuaciones lineal y homogena..
Ecuaciones lineal y homogena..
 
Kinematic models and constraints.ppt
Kinematic models and constraints.pptKinematic models and constraints.ppt
Kinematic models and constraints.ppt
 
L5_Bilinear Transformation.pdf
L5_Bilinear Transformation.pdfL5_Bilinear Transformation.pdf
L5_Bilinear Transformation.pdf
 
Supporting Vector Machine
Supporting Vector MachineSupporting Vector Machine
Supporting Vector Machine
 
7600088.ppt
7600088.ppt7600088.ppt
7600088.ppt
 
Centroid and Moment of Inertia from mechanics of material by hibbler related ...
Centroid and Moment of Inertia from mechanics of material by hibbler related ...Centroid and Moment of Inertia from mechanics of material by hibbler related ...
Centroid and Moment of Inertia from mechanics of material by hibbler related ...
 
Mk slides.ppt
Mk slides.pptMk slides.ppt
Mk slides.ppt
 

Robotics Navigation

  • 2. Introduction • In the first step we get familiar with basic concepts of 2D geometry • Then we apply our perspective to obtain practical results to obtain robots motion and pose • And finally we present the most basic robot problem and how to approach and solving it
  • 3. 2D Geometry • Cartesian coordinates: 𝒙 = 𝑥 𝑦 • Augmented vector: 𝒙 = 𝑥 𝑦 1 • Homogeneous coordinates: 𝒙 = 𝑥 𝑦 𝜔 = 𝜔 𝑥 𝜔 𝑦 𝜔 1 • Points at 𝜔 = 0 represent infinity
  • 4. Primitive operations in 2D geometry • To represent a line we need an offset from the origin and a direction • Mathematical representation is in the following form: • 𝐼 = ( 𝑎 𝑏 𝑐) 𝑇 • 𝑥. 𝐼 = ax + by + c =0
  • 5. Intersection of two lines Line joining two points : 𝐼 = 𝑥1 x 𝑥2 Point of intersection : 𝑥 = 𝐼1 x 𝐼2
  • 6. 2D transformation We see how the homogeneous coordinate system simplifies the transformation operations
  • 7.
  • 8. Robot Example Robot is located somewhere in space Position : x , y Orientation : 𝜓 (yaw angle) X = 𝑅 𝑡 0 1 = cos 𝜓 − sin 𝜓 𝑥 sin 𝜓 cos 𝜓 𝑦 0 0 1
  • 9. Robot pose Robot is located in X = 0.7 Y = 0.5 𝜓 = 45 𝜊 Position matrix: X = cos 45 − sin 45 0.7 sin 45 cos 45 0.5 0 0 1 = 0.71 −0.71 0.7 0.71 0.71 0.5 0 0 1
  • 10. What happens if we move the robot 1m forward? The resulting coordinate on global frame is: 𝑃𝑔𝑙𝑜𝑏𝑎𝑙 = X 𝑃𝑙𝑜𝑐𝑎𝑙 => 0.71 −0.71 0.7 0.71 0.71 0.5 0 0 1 1 0 1 = 1.41 1.21 1 From homogeneous coordinates we have: 𝑃𝑙𝑜𝑐𝑎𝑙 = 1 0 1
  • 11. What happens if robot moves 0.2m forward , 0.1m sideward and turn by 10 degrees We obtain transformation matrix in previous manner U = cos 10 − sin 10 0.2 sin 10 cos 10 0.1 0 0 1 = 0.98 −0.17 0.2 0.17 0.98 0.1 0 0 1 Now multiplying by pose matrix 𝑥 = XU = 0.71 −0.71 0.7 0.71 0.71 0.5 0 0 1 0.98 −0.17 0.2 0.17 0.98 0.1 0 0 1
  • 12. Estimating robots motion(Odometry) • We know what commands are issued to the robot • Based on our commands we predict the robots motion • Three main methods are used depending on robots application • 1.control based :models predict the estimated motion • 2.odometry based :distance sensors estimate the motion(e.g., wheeled robots) • 3.velocity based : velocity sensors estimate the motion(flying robots)
  • 13. Motion models • Integrating IMU readings results in motion of robot • IMU readings are sensor outputs with a certain frequency (e.g., 200hz). • Estimating robot pose 𝑥 𝑡 based on issued controls (IMU readings) 𝑢 𝑡 and the previous location 𝑥 𝑡−1 • Motion model 𝑥 𝑡 = f(𝑥 𝑡−1 , 𝑢 𝑡)