SlideShare a Scribd company logo
An	
  Analysis	
  on	
  the	
  Combina0on	
  of	
  CSA	
  Cement	
  and	
  Vaterite	
  	
  
Emmanuel	
  Flores,	
  Craig	
  W.	
  Hargis,	
  and	
  Paulo	
  J.	
  M.	
  Monteiro,	
  Ph.	
  D.	
  
	
  Department	
  of	
  Civil	
  and	
  Environmental	
  Engineering,	
  University	
  of	
  California,	
  Berkeley,	
  94720	
  
CSA_G0	
   CSA_G0_C10	
   CSA_G0_V10	
  
Time	
  (Days)	
   1	
   7	
   1	
   7	
   1	
   7	
  
Mean	
  (lbs.)	
   8787	
   12617	
   7657	
   10433	
   7313	
   8617	
  
Standard	
  
DeviaTon	
  (lbs.)	
   710	
   777	
   332	
   751	
   379	
   580	
  
RSD	
  (%)	
   8.08	
   6.16	
   4.33	
   7.19	
   5.18	
   6.73	
  
CSA_G0	
   CSA_G0_C10	
   CSA_G0_V10	
  
Time	
  
(min.)	
  
PenetraTon	
  
(mm)	
  
Time	
  
(min.)	
  
PenetraTon	
  
(mm)	
  
Time	
  
(min.)	
  
PenetraTon	
  
(mm)	
  
5	
   40	
  (boWom)	
   5	
   40	
  (boWom)	
   5	
   40	
  (boWom)	
  
10	
   40	
  (boWom)	
   10	
   40	
  (boWom)	
   10	
   40	
  (boWom)	
  
15	
   40	
  (boWom)	
   15	
   40	
  (boWom)	
   15	
   40	
  (boWom)	
  
20	
   34	
   20	
   40	
  (boWom)	
   20	
   40	
  (boWom)	
  
25	
   14	
   25	
   32	
   25	
   30	
  
30	
   3	
   30	
   21	
   30	
   15	
  
35	
   10	
   35	
   2	
  
Final	
  Set	
  
(min.)	
   36	
   42	
   43	
  
Compression	
  Strength	
  
Table	
  1.	
  	
  The	
  staTsTcs	
  for	
  the	
  compressive	
  strength	
  of	
  concrete	
  samples.	
  	
  
3	
  concrete	
  mixes	
  were	
  tested.	
  
Isothermal	
  Calorimetry	
  
Figure	
  5.	
  	
  Results	
  of	
  this	
  test	
  provide	
  the	
  amount	
  of	
  heat	
  released	
  by	
  the	
  
specimens	
  over	
  the	
  course	
  of	
  Tme.	
  This	
  was	
  done	
  on	
  6	
  different	
  
concrete	
  mixes.	
  
Calcium	
  sulphoaluminate	
  cement	
  (CSA	
  cement)	
  has	
  become	
  a	
  
possible	
  low-­‐CO2	
  and	
  economically	
  viable	
  alterna0ve	
  to	
  the	
  
commonly-­‐used	
  portland	
  cement.	
  	
  This	
  is	
  the	
  result	
  of	
  the	
  differences	
  
found	
  in	
  each	
  cement	
  in	
  how	
  it	
  is	
  extracted	
  and	
  processed.	
  	
  CSA	
  
cement	
  has	
  significantly	
  lower	
  CO2	
  emissions	
  because	
  it	
  can	
  be	
  made	
  
from	
  industrial	
  by-­‐products	
  and	
  requires	
  a	
  lower	
  processing	
  
temperature	
  than	
  portland	
  cement.	
  	
  Another	
  alternaTve	
  that	
  is	
  being	
  
explored	
  is	
  the	
  use	
  of	
  vaterite	
  as	
  filler	
  which	
  parTally	
  replaces	
  the	
  
cement	
  for	
  concrete	
  mixes.	
  	
  Vaterite	
  is	
  a	
  more	
  reac0ve	
  form	
  of	
  CaCO3	
  
and	
  was	
  designed	
  to	
  capture	
  CO2.	
  
	
  
This	
  study	
  examined	
  the	
  performance	
  of	
  concrete	
  specimens	
  that	
  
combined	
  CSA	
  cement	
  and	
  vaterite,	
  as	
  a	
  filler,	
  through	
  compression	
  
strength,	
  set	
  Tme,	
  and	
  isothermal	
  calorimetry	
  tests.	
  	
  Vaterite	
  was	
  
compared	
  with	
  the	
  performance	
  of	
  calcite	
  and	
  gypsum	
  fillers.	
  
Abstract	
  
•  Using	
  the	
  concrete	
  mix	
  which	
  had	
  no	
  fillers	
  as	
  a	
  reference,	
  the	
  addiTon	
  
of	
  calcite	
  or	
  vaterite	
  causes	
  a	
  slight	
  slowing	
  in	
  the	
  set	
  Tme	
  of	
  concrete.	
  
•  The	
  addiTon	
  of	
  calcite	
  or	
  vaterite	
  results	
  in	
  lower	
  compressive	
  strengths	
  
when	
  compared	
  to	
  concrete	
  mixes	
  that	
  had	
  no	
  filler.	
  	
  This	
  was	
  true	
  for	
  
24	
  hours	
  (1	
  day)	
  and	
  7	
  days.	
  
•  Despite	
  the	
  differences	
  in	
  size	
  of	
  parTcles	
  and	
  energy	
  states	
  between	
  
calcite	
  and	
  vaterite,	
  there	
  are	
  no	
  real	
  differences	
  in	
  performance	
  
between	
  the	
  two	
  in	
  terms	
  of	
  set	
  Tmes,	
  compression	
  strength,	
  and	
  	
  heat	
  
evoluTon	
  at	
  early	
  ages.	
  
Conclusions	
  
•  Perform	
  compressive	
  strength	
  tests	
  on	
  concrete	
  mixes	
  that	
  combine	
  
CSA	
  cement,	
  gypsum,	
  and	
  either	
  calcite	
  or	
  vaterite.	
  
•  Referencing	
  the	
  performance	
  of	
  CSA	
  concrete	
  with	
  concrete	
  specimens	
  
made	
  with	
  portland	
  cement.	
  
Future	
  Direc0ons	
  
A	
  special	
  thanks	
  to:	
  
	
  
	
  
	
  
•  Professor	
  Paulo	
  J.	
  M.	
  Monteiro	
  
•  Craig	
  W.	
  Hargis	
  
•  Cal	
  NERDS:	
  Diana	
  Lizarraga,	
  Michele	
  De	
  Coteau,	
  Chris	
  Noble	
  
Acknowledgements	
  
Set	
  Times	
  
Table	
  2.	
  	
  Results	
  from	
  this	
  test	
  for	
  3	
  different	
  concrete	
  mixes.	
  	
  The	
  final	
  set	
  
Tme	
  was	
  interpolated	
  using	
  the	
  last	
  two	
  data	
  points	
  of	
  each	
  mix.	
  
Preliminary	
  Results	
  (cont.)	
  
References	
  
•  Images	
  used	
  to	
  design	
  the	
  poster	
  (sidebar)	
  were	
  taken	
  from	
  (Aug.	
  7,	
  2012):	
  
hWp://publish.neTtor.com/photos/schools/cal/nonsport/faciliTes/memorial-­‐stadium.jpg	
  
hWp://us.123rf.com/400wm/400/400/rcpphoto/rcpphoto0812/
rcpphoto081200073/3951192-­‐reinforced-­‐steel-­‐-­‐concrete-­‐building-­‐skyscraper.jpg	
  
hWp://www.inhabitat.com/wp-­‐content/uploads/sollewit-­‐jeff-­‐ed01.jpg	
  
hWp://www.designboom.com/cms/images/ridnew/toyocon04.jpg	
  
hWp://www.sutmundo.com/wp-­‐content/uploads/2010/10/concrete.jpg	
  
	
  
•  Figure	
  3	
  was	
  taken	
  from	
  (Aug.	
  7,	
  2012)	
  :	
  
hWp://media.americanlaboratory.com/m/20/ArTcle/36163-­‐fig2.jpg	
  
Methods	
  
Test	
  1:	
  Compressive	
  Strength	
  
	
  
	
  
	
  
	
  
	
  
Figure	
  1.	
  
Test	
  3:	
  Isothermal	
  
Calorimetry	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Figure	
  3.	
  
Test	
  2:	
  Set	
  Time	
  
	
  
	
  
	
  
	
  
	
  
Figure	
  2.	
  
	
  
	
  
•  Figure	
  1.	
  	
  Half-­‐inch	
  concrete	
  
cube	
  being	
  compressed.	
  
•  Figure	
  2.	
  	
  Freshly-­‐made	
  
concrete	
  being	
  subjected	
  to	
  
Vicat	
  test.	
  
	
  
•  Figure	
  3.	
  Isothermal	
  conducTon	
  
calorimetry	
  machine.	
  
Preliminary	
  Results	
  
ParTcle	
  Size	
  Analysis	
  
Figure	
  4.	
  	
  Results	
  from	
  this	
  analysis	
  reveal	
  the	
  range	
  of	
  the	
  diamaters	
  for	
  
the	
  parTcles	
  found	
  in	
  CSA	
  cement	
  and	
  the	
  fillers.	
  

More Related Content

Viewers also liked

From Waste to Traffic Fuel, 2012
From Waste to Traffic Fuel, 2012From Waste to Traffic Fuel, 2012
From Waste to Traffic Fuel, 2012
Anne Menert
 
TEUK XII, 2010
TEUK XII, 2010TEUK XII, 2010
TEUK XII, 2010
Anne Menert
 
Microcalorimetric monitoring Riga seminar, 2005
Microcalorimetric monitoring Riga seminar, 2005Microcalorimetric monitoring Riga seminar, 2005
Microcalorimetric monitoring Riga seminar, 2005
Anne Menert
 
7th International Conference ORBIT, 2010
7th International Conference ORBIT, 20107th International Conference ORBIT, 2010
7th International Conference ORBIT, 2010
Anne Menert
 
XIVth International Society for Biological Calorimetry Conference, 2006
XIVth International Society for Biological Calorimetry Conference, 2006XIVth International Society for Biological Calorimetry Conference, 2006
XIVth International Society for Biological Calorimetry Conference, 2006
Anne Menert
 
12th Nordic-Baltic IHSS Symposium, 2009
12th Nordic-Baltic IHSS Symposium, 200912th Nordic-Baltic IHSS Symposium, 2009
12th Nordic-Baltic IHSS Symposium, 2009
Anne Menert
 
Biogas project report
Biogas project reportBiogas project report
Biogas project report
Ujjwal Joshi
 

Viewers also liked (7)

From Waste to Traffic Fuel, 2012
From Waste to Traffic Fuel, 2012From Waste to Traffic Fuel, 2012
From Waste to Traffic Fuel, 2012
 
TEUK XII, 2010
TEUK XII, 2010TEUK XII, 2010
TEUK XII, 2010
 
Microcalorimetric monitoring Riga seminar, 2005
Microcalorimetric monitoring Riga seminar, 2005Microcalorimetric monitoring Riga seminar, 2005
Microcalorimetric monitoring Riga seminar, 2005
 
7th International Conference ORBIT, 2010
7th International Conference ORBIT, 20107th International Conference ORBIT, 2010
7th International Conference ORBIT, 2010
 
XIVth International Society for Biological Calorimetry Conference, 2006
XIVth International Society for Biological Calorimetry Conference, 2006XIVth International Society for Biological Calorimetry Conference, 2006
XIVth International Society for Biological Calorimetry Conference, 2006
 
12th Nordic-Baltic IHSS Symposium, 2009
12th Nordic-Baltic IHSS Symposium, 200912th Nordic-Baltic IHSS Symposium, 2009
12th Nordic-Baltic IHSS Symposium, 2009
 
Biogas project report
Biogas project reportBiogas project report
Biogas project report
 

Similar to ResearchPoster

Mateosetal2017 bcoa interface
Mateosetal2017 bcoa interfaceMateosetal2017 bcoa interface
Mateosetal2017 bcoa interface
jjogs
 
Experimental Investigation on Concrete with coarse Aggregate Replaced with Wa...
Experimental Investigation on Concrete with coarse Aggregate Replaced with Wa...Experimental Investigation on Concrete with coarse Aggregate Replaced with Wa...
Experimental Investigation on Concrete with coarse Aggregate Replaced with Wa...
IRJET Journal
 
A04610108
A04610108A04610108
A04610108
IOSR-JEN
 
4page summary
4page summary4page summary
4page summary
Dulan Nakandala
 
STRENGTH OF SILICA FUME CEMENT CONCRETE
STRENGTH OF SILICA FUME CEMENT CONCRETE STRENGTH OF SILICA FUME CEMENT CONCRETE
STRENGTH OF SILICA FUME CEMENT CONCRETE
Farhan Hussain
 
A fracture mechanics based method for prediction of
A fracture mechanics based method for prediction ofA fracture mechanics based method for prediction of
A fracture mechanics based method for prediction of
SAJITH GEORGE
 
CFRP Surface Coatings in Bridge Design
CFRP Surface Coatings in Bridge DesignCFRP Surface Coatings in Bridge Design
CFRP Surface Coatings in Bridge Design
Michael Wampler
 
Frgc products for_undergound_infrastructure
Frgc products for_undergound_infrastructureFrgc products for_undergound_infrastructure
Frgc products for_undergound_infrastructure
zaqqy
 
IRJET- VStudy on Strength and Durability Properties of Concrete using Steel S...
IRJET- VStudy on Strength and Durability Properties of Concrete using Steel S...IRJET- VStudy on Strength and Durability Properties of Concrete using Steel S...
IRJET- VStudy on Strength and Durability Properties of Concrete using Steel S...
IRJET Journal
 
IRJET- Experimental Study of Structural Behaviour of Double Skin Hollow –...
IRJET-  	  Experimental Study of Structural Behaviour of Double Skin Hollow –...IRJET-  	  Experimental Study of Structural Behaviour of Double Skin Hollow –...
IRJET- Experimental Study of Structural Behaviour of Double Skin Hollow –...
IRJET Journal
 
TRAC Project Workshop 2 Presentation 6
TRAC Project Workshop 2 Presentation 6TRAC Project Workshop 2 Presentation 6
TRAC Project Workshop 2 Presentation 6
Shanshan Cheng
 
Recycling Dumped Concrete for Making Concrete Paving Blocks
Recycling Dumped Concrete for Making Concrete Paving BlocksRecycling Dumped Concrete for Making Concrete Paving Blocks
Recycling Dumped Concrete for Making Concrete Paving Blocks
drboon
 
A Nautiyal article in JECS
A Nautiyal article in JECSA Nautiyal article in JECS
A Nautiyal article in JECS
ANOOP NAUTIYAL
 
Fly Ash as a Partial Replacement of Cement in Concrete and Durability Study o...
Fly Ash as a Partial Replacement of Cement in Concrete and Durability Study o...Fly Ash as a Partial Replacement of Cement in Concrete and Durability Study o...
Fly Ash as a Partial Replacement of Cement in Concrete and Durability Study o...
IJERD Editor
 
Aci structural concrete_design
Aci structural concrete_designAci structural concrete_design
Aci structural concrete_design
Hammam El Meseiry
 
Cracking tendency of alkali-activated slag concrete
Cracking tendency of alkali-activated slag concreteCracking tendency of alkali-activated slag concrete
Cracking tendency of alkali-activated slag concrete
frank collins
 
20620130101004
2062013010100420620130101004
20620130101004
IAEME Publication
 
Optimization of Compressive Strength of Concrete Made with Partial Replacemen...
Optimization of Compressive Strength of Concrete Made with Partial Replacemen...Optimization of Compressive Strength of Concrete Made with Partial Replacemen...
Optimization of Compressive Strength of Concrete Made with Partial Replacemen...
ijtsrd
 
“EXPERIMENTAL STUDY ON PARTIAL REPLACEMENT OF CEMENT BY SEWAGE SLUDGE ASH AND...
“EXPERIMENTAL STUDY ON PARTIAL REPLACEMENT OF CEMENT BY SEWAGE SLUDGE ASH AND...“EXPERIMENTAL STUDY ON PARTIAL REPLACEMENT OF CEMENT BY SEWAGE SLUDGE ASH AND...
“EXPERIMENTAL STUDY ON PARTIAL REPLACEMENT OF CEMENT BY SEWAGE SLUDGE ASH AND...
IRJET Journal
 
Mhosole Powerpoint 210723.pptx
Mhosole Powerpoint 210723.pptxMhosole Powerpoint 210723.pptx
Mhosole Powerpoint 210723.pptx
MemphisEmma
 

Similar to ResearchPoster (20)

Mateosetal2017 bcoa interface
Mateosetal2017 bcoa interfaceMateosetal2017 bcoa interface
Mateosetal2017 bcoa interface
 
Experimental Investigation on Concrete with coarse Aggregate Replaced with Wa...
Experimental Investigation on Concrete with coarse Aggregate Replaced with Wa...Experimental Investigation on Concrete with coarse Aggregate Replaced with Wa...
Experimental Investigation on Concrete with coarse Aggregate Replaced with Wa...
 
A04610108
A04610108A04610108
A04610108
 
4page summary
4page summary4page summary
4page summary
 
STRENGTH OF SILICA FUME CEMENT CONCRETE
STRENGTH OF SILICA FUME CEMENT CONCRETE STRENGTH OF SILICA FUME CEMENT CONCRETE
STRENGTH OF SILICA FUME CEMENT CONCRETE
 
A fracture mechanics based method for prediction of
A fracture mechanics based method for prediction ofA fracture mechanics based method for prediction of
A fracture mechanics based method for prediction of
 
CFRP Surface Coatings in Bridge Design
CFRP Surface Coatings in Bridge DesignCFRP Surface Coatings in Bridge Design
CFRP Surface Coatings in Bridge Design
 
Frgc products for_undergound_infrastructure
Frgc products for_undergound_infrastructureFrgc products for_undergound_infrastructure
Frgc products for_undergound_infrastructure
 
IRJET- VStudy on Strength and Durability Properties of Concrete using Steel S...
IRJET- VStudy on Strength and Durability Properties of Concrete using Steel S...IRJET- VStudy on Strength and Durability Properties of Concrete using Steel S...
IRJET- VStudy on Strength and Durability Properties of Concrete using Steel S...
 
IRJET- Experimental Study of Structural Behaviour of Double Skin Hollow –...
IRJET-  	  Experimental Study of Structural Behaviour of Double Skin Hollow –...IRJET-  	  Experimental Study of Structural Behaviour of Double Skin Hollow –...
IRJET- Experimental Study of Structural Behaviour of Double Skin Hollow –...
 
TRAC Project Workshop 2 Presentation 6
TRAC Project Workshop 2 Presentation 6TRAC Project Workshop 2 Presentation 6
TRAC Project Workshop 2 Presentation 6
 
Recycling Dumped Concrete for Making Concrete Paving Blocks
Recycling Dumped Concrete for Making Concrete Paving BlocksRecycling Dumped Concrete for Making Concrete Paving Blocks
Recycling Dumped Concrete for Making Concrete Paving Blocks
 
A Nautiyal article in JECS
A Nautiyal article in JECSA Nautiyal article in JECS
A Nautiyal article in JECS
 
Fly Ash as a Partial Replacement of Cement in Concrete and Durability Study o...
Fly Ash as a Partial Replacement of Cement in Concrete and Durability Study o...Fly Ash as a Partial Replacement of Cement in Concrete and Durability Study o...
Fly Ash as a Partial Replacement of Cement in Concrete and Durability Study o...
 
Aci structural concrete_design
Aci structural concrete_designAci structural concrete_design
Aci structural concrete_design
 
Cracking tendency of alkali-activated slag concrete
Cracking tendency of alkali-activated slag concreteCracking tendency of alkali-activated slag concrete
Cracking tendency of alkali-activated slag concrete
 
20620130101004
2062013010100420620130101004
20620130101004
 
Optimization of Compressive Strength of Concrete Made with Partial Replacemen...
Optimization of Compressive Strength of Concrete Made with Partial Replacemen...Optimization of Compressive Strength of Concrete Made with Partial Replacemen...
Optimization of Compressive Strength of Concrete Made with Partial Replacemen...
 
“EXPERIMENTAL STUDY ON PARTIAL REPLACEMENT OF CEMENT BY SEWAGE SLUDGE ASH AND...
“EXPERIMENTAL STUDY ON PARTIAL REPLACEMENT OF CEMENT BY SEWAGE SLUDGE ASH AND...“EXPERIMENTAL STUDY ON PARTIAL REPLACEMENT OF CEMENT BY SEWAGE SLUDGE ASH AND...
“EXPERIMENTAL STUDY ON PARTIAL REPLACEMENT OF CEMENT BY SEWAGE SLUDGE ASH AND...
 
Mhosole Powerpoint 210723.pptx
Mhosole Powerpoint 210723.pptxMhosole Powerpoint 210723.pptx
Mhosole Powerpoint 210723.pptx
 

ResearchPoster

  • 1. An  Analysis  on  the  Combina0on  of  CSA  Cement  and  Vaterite     Emmanuel  Flores,  Craig  W.  Hargis,  and  Paulo  J.  M.  Monteiro,  Ph.  D.    Department  of  Civil  and  Environmental  Engineering,  University  of  California,  Berkeley,  94720   CSA_G0   CSA_G0_C10   CSA_G0_V10   Time  (Days)   1   7   1   7   1   7   Mean  (lbs.)   8787   12617   7657   10433   7313   8617   Standard   DeviaTon  (lbs.)   710   777   332   751   379   580   RSD  (%)   8.08   6.16   4.33   7.19   5.18   6.73   CSA_G0   CSA_G0_C10   CSA_G0_V10   Time   (min.)   PenetraTon   (mm)   Time   (min.)   PenetraTon   (mm)   Time   (min.)   PenetraTon   (mm)   5   40  (boWom)   5   40  (boWom)   5   40  (boWom)   10   40  (boWom)   10   40  (boWom)   10   40  (boWom)   15   40  (boWom)   15   40  (boWom)   15   40  (boWom)   20   34   20   40  (boWom)   20   40  (boWom)   25   14   25   32   25   30   30   3   30   21   30   15   35   10   35   2   Final  Set   (min.)   36   42   43   Compression  Strength   Table  1.    The  staTsTcs  for  the  compressive  strength  of  concrete  samples.     3  concrete  mixes  were  tested.   Isothermal  Calorimetry   Figure  5.    Results  of  this  test  provide  the  amount  of  heat  released  by  the   specimens  over  the  course  of  Tme.  This  was  done  on  6  different   concrete  mixes.   Calcium  sulphoaluminate  cement  (CSA  cement)  has  become  a   possible  low-­‐CO2  and  economically  viable  alterna0ve  to  the   commonly-­‐used  portland  cement.    This  is  the  result  of  the  differences   found  in  each  cement  in  how  it  is  extracted  and  processed.    CSA   cement  has  significantly  lower  CO2  emissions  because  it  can  be  made   from  industrial  by-­‐products  and  requires  a  lower  processing   temperature  than  portland  cement.    Another  alternaTve  that  is  being   explored  is  the  use  of  vaterite  as  filler  which  parTally  replaces  the   cement  for  concrete  mixes.    Vaterite  is  a  more  reac0ve  form  of  CaCO3   and  was  designed  to  capture  CO2.     This  study  examined  the  performance  of  concrete  specimens  that   combined  CSA  cement  and  vaterite,  as  a  filler,  through  compression   strength,  set  Tme,  and  isothermal  calorimetry  tests.    Vaterite  was   compared  with  the  performance  of  calcite  and  gypsum  fillers.   Abstract   •  Using  the  concrete  mix  which  had  no  fillers  as  a  reference,  the  addiTon   of  calcite  or  vaterite  causes  a  slight  slowing  in  the  set  Tme  of  concrete.   •  The  addiTon  of  calcite  or  vaterite  results  in  lower  compressive  strengths   when  compared  to  concrete  mixes  that  had  no  filler.    This  was  true  for   24  hours  (1  day)  and  7  days.   •  Despite  the  differences  in  size  of  parTcles  and  energy  states  between   calcite  and  vaterite,  there  are  no  real  differences  in  performance   between  the  two  in  terms  of  set  Tmes,  compression  strength,  and    heat   evoluTon  at  early  ages.   Conclusions   •  Perform  compressive  strength  tests  on  concrete  mixes  that  combine   CSA  cement,  gypsum,  and  either  calcite  or  vaterite.   •  Referencing  the  performance  of  CSA  concrete  with  concrete  specimens   made  with  portland  cement.   Future  Direc0ons   A  special  thanks  to:         •  Professor  Paulo  J.  M.  Monteiro   •  Craig  W.  Hargis   •  Cal  NERDS:  Diana  Lizarraga,  Michele  De  Coteau,  Chris  Noble   Acknowledgements   Set  Times   Table  2.    Results  from  this  test  for  3  different  concrete  mixes.    The  final  set   Tme  was  interpolated  using  the  last  two  data  points  of  each  mix.   Preliminary  Results  (cont.)   References   •  Images  used  to  design  the  poster  (sidebar)  were  taken  from  (Aug.  7,  2012):   hWp://publish.neTtor.com/photos/schools/cal/nonsport/faciliTes/memorial-­‐stadium.jpg   hWp://us.123rf.com/400wm/400/400/rcpphoto/rcpphoto0812/ rcpphoto081200073/3951192-­‐reinforced-­‐steel-­‐-­‐concrete-­‐building-­‐skyscraper.jpg   hWp://www.inhabitat.com/wp-­‐content/uploads/sollewit-­‐jeff-­‐ed01.jpg   hWp://www.designboom.com/cms/images/ridnew/toyocon04.jpg   hWp://www.sutmundo.com/wp-­‐content/uploads/2010/10/concrete.jpg     •  Figure  3  was  taken  from  (Aug.  7,  2012)  :   hWp://media.americanlaboratory.com/m/20/ArTcle/36163-­‐fig2.jpg   Methods   Test  1:  Compressive  Strength             Figure  1.   Test  3:  Isothermal   Calorimetry                 Figure  3.   Test  2:  Set  Time             Figure  2.       •  Figure  1.    Half-­‐inch  concrete   cube  being  compressed.   •  Figure  2.    Freshly-­‐made   concrete  being  subjected  to   Vicat  test.     •  Figure  3.  Isothermal  conducTon   calorimetry  machine.   Preliminary  Results   ParTcle  Size  Analysis   Figure  4.    Results  from  this  analysis  reveal  the  range  of  the  diamaters  for   the  parTcles  found  in  CSA  cement  and  the  fillers.