SlideShare a Scribd company logo
1
School of Chemistry
CHY 8411 Final Report
Project
Title: Phosphido-Borane StabilisedTetrylenes
Student Name: Alexander Craig
Supervisor: Dr KeithIzod
May 2016
2
Contents
1. Abstract………………………………………………………………………………………………………………………………………....3
2. Introduction…………………………………………………………………………………………………………………………………...4
2.1 HeteroatomStabilisedTetrylenes…………………………………………………………………………………...4
2.2 Acyclic andCyclic Dialkyl StabilisedTetrylenes…………………………………………………………….....7
2.3 Phosphine-BoraneStabilisedTetrylenes………………………………………………………………………….8
3. Aimsofthe Project..............................................................................................................................11
4. ProposedApproach.............................................................................................................................12
5. Results&Discussion............................................................................................................................13
5.1 SynthesisandCharacterisationof[Mes2P(BH3)]Li(THF)2....................................................13
5.2 Hydrolysisof[Mes2P(BH3)]Li(THF)2.....................................................................................15
5.3 SynthesisandCharacterisationof [Mes2P(BH3)2]Li(THF)2..................................................16
5.4 AttemptedSynthesisof[Mes2P(BH3)]2Sn...........................................................................18
5.5 Synthesisof[Dipp2P(BH3)]Li................................................................................................19
5.6 AttemptedSynthesisof[Dipp2P(BH3)]2Sn..........................................................................20
5.7 Synthesisof[Ph2P(BH3)]Li...................................................................................................21
5.8 Synthesisof[Ph2P(BH3)2]Li..................................................................................................22
5.9 AttemptedSynthesisof[Ph2P(BH3)]2Sn..............................................................................23
5.10 DirectSynthesisand Characterisationof [(Ph2P(BH3))3Sn]Li(THF)2..................................24
5.11 Decompositionof[(Ph2P(BH3))3Sn]Li(THF)2......................................................................27
5.12 Synthesisof[Mes2P(BH3)CHPh]Li......................................................................................30
6. Conclusion...........................................................................................................................................31
7. Experimental.......................................................................................................................................33
8. References..........................................................................................................................................37
9. Acknowledgments..............................................................................................................................39
10. SupplementaryMaterial..................................................................................................................40
3
Abstract
The phosphine Mes2PH,24, (Mes = 2,4,6-trimethylphenyl),waspreparedbythe metathesisreaction
betweenPCl3 andMesMgBr,followedby hydridetransferwithLiAlH4.The dimesitylphosphido-borane
lithiumsalt,[Mes2P(BH3)]Li(THF)2, 26,wassuccessfullysynthesisedbyboronation of24withBH3.SMe2,
and subsequent metalation with n-BuLi. The dimesitylphosphido-bis-(borane) lithium salt,
[Mes2P(BH3)2]Li(THF)2,32, was successfully synthesised by metalation with n-BuLi, and subsequent
boronation, with two equivalents of BH3.SMe2,of 24. Both compounds were characterisedby single
crystal X-raydiffraction (XRD).Analysisof the molecularstructures of 26and32, confirms the number
of agostic-type interactions differsbetweenthe borane moietiesandthe coordinatedlithiumcation.
The phosphine Ph2PH,25, waspreparedby the reduction of Ph3P withsodium,followedbyquenching
withNH4Br. The diphenylphosphido-borane lithiumsalt,[Ph2P(BH3)]Li, 28, was synthesised in situ by
boronation of 25 withBH3.SMe2, followedby metalationwith n-BuLi. The attemptedsynthesisof the
phosphido-boranestabilisedstannylene,[(Ph2P(BH3))2]Sn,40,by the metathesisreactionbetween 28
andSnCl2,insteadgave thephosphido-boranesubstitutedstannate,[(Ph2P(BH3))3Sn]Li(THF), 41,which
wasisolated andcharacterisedby singlecrystal XRD.Compound 41wasthendirectlysynthesisedand
characterised by 1
H, 7
Li, 11
B, 31
P and 119
Sn NMR spectroscopy.
The molecularstructure of 41 contains agostic-type interactionsbetween the borane groups andthe
lithium cation, but the interactions are absent between the borane groups and the low valent tin
centre. The tin centre is instead stabilised through a combination of steric and electronic effects
provided by the ligands.
The phosphine-borane stabilised carbanion complex, [Mes2P(BH3)CHPh]Li, 44, was prepared by the
metathesis reaction between 26 and PhCH2Br, followed by metalation with n-BuLi. 31
P NMR
spectroscopy of the reactionmixture of 44 withstannocene, SnCp2, showsa signal indicativeof a tin-
containing compound, but this compound was not isolated.
31
P NMR spectroscopy revealed the attempted syntheses of [(Mes2P(BH3))2]Sn, 33, and
[(Dipp2P(BH3))2]Sn,34,(Dipp= 2,6-diisopropylphenyl), were unsuccessful due torapiddecomposition
and hydrolysis of the products.
4
Introduction
Group 14 elements favour the formal +II and +IV oxidation states, with the +II oxidation state
becomingincreasinglymore favourable and accessibleforthe heavierelements.Forexample, Pb, the
heaviestelementof group14, the +IV oxidationstate ishighlyunstablewhereasthe+IIoxidationstate
isreadilyaccessible.1,2
Inthisregard,the +IIoxidationstate of the heaviergroup14 elements(Ge,Sn,
Pb) is the state that is to be stabilised. To disfavour the dimerisation of various ligand stabilised
tetrylenes,E[R]2 whereR= NR’2,PR’2,CR’3 , R’2C{P(BH3)R’2} (Figure 1), three principle ideasneedtobe
considered. Firstly, the use of amido (NR2) and phosphido (PR2) heteroatom ligands to stabilise the
lowoxidationstate metal centre,3-5
anda comparisonof bothheteroatomgroupswill be discussed.6
The use of stericallybulky acyclicandcyclichydrocarbyl ligands will follow,7-9
concludingwiththe use
of phosphido-borane ligands to stabilise the E(II) centre through agostic-type interactions of the
borane substituents and E. This is a new area of interest uncovered by Izod and co-workers with
promising results obtained in recent years.10-13
Figure 1. Generic structures of E[R]2, where R = NR’2, PR’2, CR’3, R’2C{P(BH3)R’2}.
Phosphido-borane stabilised tetrylenes [R2P(BH3)]2E, where E = Sn, Pb, are uncommon complexes
whichis surprisingbecauseof the isoelectronicrelationshipphosphido-boraneligandsshare withsilyl
ligands, [R3Si]-
, and their use as key intermediates in a number of important reactions.14-16
The basis
of the research is to isolate and deepen understanding of examples of this type.
Heteroatom Stabilised Tetrylenes
The chemistry involved withheavier group 14 metals and amido (NR2) ligandsis comprehensive and
well developed.Diaminocarbenes [(R2N)2C]andtheircycliccounterpartsN-heterocycliccarbeneshave
been widely studied since they were first isolated in 1991 by Arduengo.17
The stability of these
compounds can be attributed to the very efficient overlap of the heteroatom lone pairs with the
vacant pπ-orbital on the carbon. This mitigates the electron deficiency at carbon thereby stabilising
5
the singlet state relative to the triplet state.The efficient overlapcauses the diaminocarbenes to be
strongly nucleophilic but only weakly electrophilic.
For diphosphinocarbenesandsilylenes, [(R2P)2E],whereEcorresponds toC or Si respectively,there is
a decreased n-pπ-orbital overlap and thus significantly reduced stability.18
Limited examples of
diphosphinocarbenesare available.A notablebulkyexampleof [(R2P)ArC]where Ar=2,4,6-Me3C6H2.19
Comparedto NR2 ligandspecies,PR2 ligandshave beenlessextensivelyexplored.One reasonforthis
is that there is a higher energetic barrier to inversion from the trigonal pyramidal configuration to
planar configuration, resulting in a stereo chemically active lone pair on phosphorus. This causes a
tendencytoformoligomericbridgingarrangementswhenboundtometal centres.Earliercomparison
of phosphide ligands [P(SiMe3)2] to amido ligands [N(SiMe3)2] by Goel et al.2
and Matchett et al.6
concluded that the phosphide ligands, 1-4, exhibit higher molecularities and coordination numbers
with inherentlystronger bridge forming capabilities than the amido ligands (Figure 2). This can be
rationalised by the combination of the larger size and the lower electronegativity of phosphorus
versus nitrogen. If the phosphide ligands are sterically protected they can offer advantageous
electroniceffectsoveramido ligandsthatcanleadtonovel low coordinatemetal centredmonomeric
systems with potentially unprecedented bonding schemes.
Figure 2. Structure of high molecularity [E{P(R)2}2]2 where E = Sn, ,Pb, R = SiMe3, tBu, 1-4.
Crystals were isolated of the novel, extremely bulky Sn(II)-diarylphosphide, [Armes2
P(Ph)]2Sn, 5, by
Power et al.3
(Figure 3) that was monomeric in both solution and the solid state.
Figure 3. 5, where Armes2 = C6H3-2,6(C6H2-2,4,6-Me3).
Diaminogermylenes,[(R2N)2Ge],have beenknownsincethe 1970’sbecause of the ease ofaccessibility
of electron deficient Ge(II) metal centres from readily available starting materials, for example GeI2
and GeCl2.(1,4-dioxane). Diphosphinogermylenes,[(R2P)2Ge], are farlesswell knownasthe lone pair-
pπ-orbital, n-pπ bonding interactions are likelyto be very weak. Before 2005, there was only one
6
monomericcrystallographicallycharacterisedGe(II)compoundbyDriess etal.4
butthe structural data
was found to be too poor for detailed analysis.
In2005 Izod etal.5
isolatedseveral novelGe(II) complexeswhichincludedtwounusual ‘ate’complexes
andan intramolecularlybase-stabiliseddiphosphagermylene,[{(Me3Si)2CH}P(C6H4-2-CH2NMe2)]2Ge,6
(Equation 1).
Equation 1. Synthesis of 6 from the reaction of [{(Me3Si)2CH}P(C6H4-2-CH2NMe2)]K with 0.5 equivalents of GeI2.
Treatment of [{(Me3Si)2CH}P(C6H4-2-CH2NMe2)]K with 0.5 equivalents of GeI2 in THF gave the
intramolecularly base-stabilised diphosphagermylene, 6. The structure was established by X-ray
crystallographyandelemental analysis.The Ge(II) centre isboundby one P atom and one N atom of
one of the phosphide ligandstoforma six-memberedchelate ringandisalsoboundbyone Patomof
the secondphosphideligand.Thisarrangementgivesathree-coordinate,trigonalpyramidalGe metal
centre with a stereochemically active lone pair.The N atom on the secondligandwas shownto not
have any contactswithGe. The Ge-Pbond lengthswere comparabletothe Ge-Plengthsreportedfor
[(R2P)2Ge(II)]. Both P atoms are distinctly pyramidal, which suggests that there is poor n-pπ-orbital
overlap, consistentwithanintramolecularbase stabilisedGe(II) centre.The monomerischiral at the
two P atoms and also at Ge.
When [{(Me3Si)2CH}P(C6H4-2-CH2NMe2)]Li is treated with 0.5 equivalents of GeI2, the novel ‘ate’
complex [{(Me3Si)2CH}P(C6H4-2-CH2NMe2)]2GeLi2I2(OEt2)3 was formed, as confirmed by X-ray
crystallography.The terminalN atomisboundto the Li2I2 fragmentbutas the coordinationgeometry
of the Ge(II) centre is very similar to 6, the fact that the Li2I2 is bound has little significance.
Izod et al.20
reported the synthesis of a relatively bulky phosphide ligand,{(Me3Si)2CH}(Ph)PH, 7, the
preparation of its lithium, 8, sodium and potassium derivatives, and with the reaction of these
derivatives with ECl2, where E = Ge, Sn, the formation of either diphosphatetrylenes or ‘ate’
complexes.
7
Scheme 1. Synthesis of 9 from the reaction of the prepared ligand, 8, with SnCl2.
Reaction of 8 with SnCl2 yields the ate complex, [{(Me3Si)2CH}(Ph)P]3SnLi(THF), 9, unexpectedly,
irrespective of the reaction stoichiometry (it would only be expected with a 3:1 ratio of 8:SnCl2)
(Scheme 1). The expected homoleptic complex [{(Me3Si)2CH}(Ph)P]2Snis not observed even at 0.5
equivalents of SnCl2.
Similarlythe reactionof GeCl2(1,4-dioxane)with3equivalentsof 8yieldsthe Ge analogue, 10.Both 9
and 10 retain their structure in toluene but form their respective separated ion pair complexes on
crystallisation from hexanes/THF.
Single crystals of 10 suitable for X-ray crystallography were isolated from cold hexanes/THF which
showedthatateachP atomwas a chiral centre.The three Patomsformμ-bridgesbetweenthe Li and
Ge centres creating a trigonal bipyramidal GeP3Li core with a trigonal pyramidal geometry at Ge.
Acyclic and Cyclic Dialkyl Stabilised Tetrylenes
Dialkyltetrylenesare limitedtoonlya few examplesinthe literature. Alkyl ligandsprincipally provide
kinetic stabilisation to group 14 tetrylenes by sterically hindering the electron deficient E(II) centre,
preventingattack fromnucleophilicspecies.21
Thereisnothermodynamicstabilisationbecauseof the
lackof electronegative heteroatomsavailabletostabilisethe sp2
lonepairinthe singletstate.Inrecent
years, there have been numerous reports of diarylstannylenes but only very few cases of
dialkylstannylenes.7-9,22,23
The former generally allowsfor increased steric hindrance of the heavier
tetrylenes therefore decreasing the tendency to dimerise further than for dialkylstannylenes.
Lappert et al.7
in 1973 reported the archetypal dialkylstannylene, Sn[CH(SiMe3)2]2, 11, which is
monomericinbenzenesolutionbutfavoursdimerisationinthesolidstate because of thelackof steric
bulkaroundthe Sn(II) centre (Figure4).The dimerwasalso the firsttimeformalmultiplebondingwas
observed between the heavier main group elements, row 3 and heavier.
8
Figure 4. Dimerisation of 11 in benzene.
The first dialkylstannylene to be shown categorically to be a monomer in the solid state,
{(Me3Si)2CCH2}2Sn,12,wasisolatedbyKiraetal.8
(Figure5) in1991 as 12 providessufficientstericbulk
to disfavour dimerisation.
The only other monomeric dialkylstannylene, {(Me3Si)2C(SiMe2CH2)}2Sn, 13, that has been fully
structurally characterised and isolated was by Eaborn et al.9
in 2000 (Figure 6).
The dialkylplumbylene analogue, {(Me3Si)2C(SiMe2CH2)}2Pb, 14, was also characterised by Eaborn et
al. in 1997,22
becomingthe firstdialkylleadspeciestobe isolated. Both 13 and 14 are composedof a
sterically bulky seven-membered ring surrounding the E(II) centre. Jutzi et al.23
in 1991 were able to
characterise the first unsymmetrically substituted acyclic dialkylgermylene, (Me3Si)3CGeCH(SiMe3)2,
15, inthe solidstate (Figure7).The molecule hassimilaritiestothatof 13 withthe exceptionof having
three SiMe3 substituents on one of the alkyl ligands. This creates enough steric bulk to disfavour
dimerisation of the monomer.
Figures 5, 6 and 7. 12, 13 and 15 isolated by Kira, Eaborn and Jutzi et al. respectively.
Phosphine-Borane Stabilised Tetrylenes
Phosphine-borane substitutedcarbanionligandsystems,[R2P(BH3)CR’2]-
have beenshowntostabilise
low valent tetrylene compounds through agostic-type interactions.11,12,13
Significant interactions
between the vacant 5pπ- and 6pπ-orbitals in Sn and Pb respectively, and the B-H σ-orbitals of the
ligandhave been observed.Substantial delocalisationof the B-H σ-bondingelectrondensityintothe
vacant 5pπ-orbital of Sn and the 6pπ-orbital of Pb stabilise the low valent tetrylene centres.
Given the relatively straightforward synthesis of phosphido-borane ligands, [R2P(BH3)]-
, and their
potential utilityit’ssurprisingtheyhave received verylittle attention.Phosphido-boraneshave been
noted to be key intermediates in the synthesis of chiral phosphines and are used in the catalytic
9
dehydrocouplingtogive polymericmaterials.15
Theyhave alsobeenshowntobe precatalystsforthe
formationof P-C sp bondswhenboundto Cu(I).16
Inthese applicationsthe intermediatesare usually
generated in situ with very few being isolated and characterised in the solid state. The isolated
examples are bound as monomers, dimers or polymers to Li, Na or K metals.
As noted earlier, [R2P(BH3)]-
ligands are isoelectronic with [R3Si]-
. Izod et al.10
reacted
[{nPr2P(BH3)}(Me3Si)CCH2][Li(THF)2]2 with SnCl2 in THF to produce the novel dialkylstannylene,
[{nPr2P(BH3)}(Me3Si)CCH2]2Sn, 16,as air sensitive yellow crystals(Figure 8).Itwasnotedthe similarity
of thiscompoundwiththat of 12. 16 was prepared inexcellentyieldafterasimple work-upwhereas
12 was only isolated in low yields after a difficult work-up. This can be attributed to the increased
charge delocalisation away from the carbanion in the ligand used to produce 16 than for the ligand
used to produce 12 due to the increasing charge delocalising ability of phosphine-borane ligands
versus silyl ligands. This therefore makes the dicarbanion less nucleophilic, causing a decreased
tendency to reduce Sn(II) to Sn(0). If heated to 60 ° in hexanes or left in light for a week, 16 will
decompose to elemental tin and the phosphine-borane alkyl ligand.
Figure 8. 16 isolated by Izod et al.
1
H, 11
B{1
H}, 31
P{1
H} and 119
Sn NMR spectra of 16 shows that it is a 1:1 mixture of the two possible
diastereoisomers. Pure rac-16 or meso-16 isomers can be obtained by selective crystallisations. The
X-ray crystal structures of bothdiastereoisomersof 16 show short agostic-type B-H…
Sncontacts, not
seen before for dialkylstannylene compounds but reported for a few cases of the transition metals.
Rac-16 has one interaction either side of the five-membered ring with one H atom from each BH3
group in close proximity to that of the electron-deficient Sn(II). The meso- isomer has both BH3
substituents on the same side of the heterocycle but only one short B-H…
Sn contact is observed,
althoughit is significantlyshorter thanthe correspondingdistancesin rac-16; well withinthe sumof
the Van der Waal radii of Sn and H atoms.
Compound 16 was the firstexample of a B-H…
E interaction thatinvolvedalow oxidationmaingroup
metal centre and these interactions mitigate the electron deficiency of the Sn(II) centre allowingthe
monomeric form to persist in solution.
The Pb analogue,[{nPr2P(BH3)}(Me3Si)CCH2]2Pb, 17, was also characterised in 2008 by Izod et al.11
to
extend the general principles of the phenomenon of agostic-type phosphine-borane interactions,
10
whichwasonlythe seconddialkylplumbylenetoeverhave beenstructurallycharacterised. Usingthe
same methodology that was used for the Sn compound, extensive reduction of Pb occurred to
elemental lead. By using 1 equivalent of the dilithium salt [{nPr2P(BH3)}(Me3Si)CCH2][Li(THF)2]2 with
Cp2Pb, 17 formed in excellent yields after a simple work-up. Both rac- and meso- diastereoisomers
couldbe crystallised asdiscrete dialkylplumbylenes. The solidstate structuresconfirmthatthere are
twoB-H…
Pb contactsforthe rac-isomerwiththe meso-isomerhavingone contactslightlystronger.As
Pb is a larger atom, it enables a second, weaker Pb…
H interaction in the meso-isomer that is not
observed for the Sn(II) analogue.
Figure 9. rac-[{Me2P(BH3)}(Me3Si)C{(SiMe2)(CH2)}]2E, where E = Sn, 18, Pb, 19.
Two novel compounds were synthesised, a dialkylstannylene and a dialkylplumbylene, rac-
[{Me2P(BH3)}(Me3Si)C{(SiMe2)(CH2)}]2E where E = Sn, 18, Pb, 19, by Izod et al.12
in 2009 (Figure 9). In
bothcasesa dominance of the rac-isomerwasobserved,aconsequenceof the increasedstabilisation
associatedwithtwoagostic-typeinteractionscomparedtothe meso-isomerwhich onlyhasone.Both
compounds 18 and19 crystallise asdiscretemolecularspeciesfrom Et2OwithSnorPb coordinatedto
the two carbanion centres of the ligand, generating a puckered seven-membered ring. From DFT
calculations, the HOMOineachcase isthe lone paironE of essentiallyscharacterwhereasthe LUMO
ineachcase isthe essentiallypure,vacantpπ-orbitalonE,therefore,thereissignificantdelocalisation
of B-H σ-bonding electron density into the vacant pπ-orbital. As Pb has a larger, more diffuse 6pπ-
orbital than Sn’s 5pπ-orbital, Pb has a poorer overlap, thereby a decreased energy interaction.
Figure 10. rac-[(RMe2Si){Me2P(BH3)}CH]2E, where E = Sn, Pb, R = Me, Ph, 20-23.
Acyclic dialkyltetrylenes have been prepared that are direct isoelectronic analogues of 11, which
favoured dimerisation, that was first reported by Lappert et al. in the 1970’s. The cyclic
dialkyltetrylenes, 18-19, are stabilised in the monomeric state12
, by a combination of agostic-type
interactions and because of the steric bulk of the ligands used. The acyclic phosphine-borane
11
analogues, 20-21, were isolatedinthe monomericform (Figure 10), providingevidence thatagostic-
type interactions are sufficiently stabilising, without the need for steric bulk.
[(RMe2Si){Me2P(BH3)}CH]Li lithium salts were prepared in situ by the reaction between
Me2P(BH3)CH2Li andRMe2SiCl,followedbytreatmentwith n-BuLiinTHF,where R=Me, Ph.By adding
0.5 equivalents of Cp2E in toluene, rac-[(Me3Si){Me2P(BH3)}CH]2E, where E = Sn, 20, Pb, 21,
respectively, were obtained as single crystal structures. rac-[(PhMe2Si){Me2P(BH3)}CH]2E, where E =
Sn, 22, Pb, 23, respectively,werealsoobtained (Figure10).13
The meso-diastereomerwasnotisolated
which can be attributed to the stabilisation afforded by rac-20-23 having two agostic-type B-H…
E
interactions instead of only one. 20-23 are all unambiguously monomeric in structure, showingthat
the twoagostic-type B-H…
Einteractionsare sufficiently stabilisingtodisfavourdimerisationwhichwas
also supported by DFT calculations. For the dimerisation of 20, the energy calculated was +30.5 kcal
mol-1
which clearly suggests that the energy gained on the formation of the Sn=Sn double bond is
insufficient versus the loss of the two B-H…
Sn agostic-type interactions.These interactions therefore
provide a substantial barrier toward dimerisation.
Aims
To investigate phosphido-borane ligands, [R2P(BH3)]-
, in the stabilisation of low oxidation states of
heavy group 14 metal centres by agostic-type interactions. To provide evidence that agostic-type
interactionsbetweenB-H…
Ecansupportthe monomeric+IIoxidationstateof germanium,tinandlead
metal centres by disfavouring dimerisation. The research will be carried out in relation to gaining
knowledge and further insight into the fundamental science being observed regarding the agostic-
type interactions in these novel bis-phosphido-borane stabilised group 14 metal tetrylene
compounds.If +IImetal centrescanbe stabilisedthroughagostic-typeinteractions,the nextquestion
is how this unique feature can be exploited, for example, in catalysis.
12
Approach
The precursorphosphines, R2PH,where R= Mes, Dipp,Ph, will be synthesised accordingtoSchemes
2 and 3.
The synthesis of Mes2PH, 24, involves the metathesisreaction of two equivalentsof the Grignard
reagentMesMgBr, andone equivalentof PCl3,toproduce Mes2PCl,followedby hydride transferwith
LiAlH4 (Scheme 2).
Scheme 2. Proposed synthesis of 24.
The synthesis of Ph2PH, 25, involves the reduction of Ph3P by sodium, followed by quenching with
NH4Br (Scheme 3).
Scheme 3. Proposedsynthesisof 25.
Boronationof the phosphine withBH3.SMe2,followedbymetalation of the product,R2P(BH3)H,with
n-BuLi, gives the phosphido-borane ligand, [R2P(BH3)]Li (Scheme 4).
Scheme 4. Proposed synthesis of [R2P(BH3)]Li.
The synthesis of novel phosphido-borane stabilised tetrylenes, [R2P(BH3)]2E, where E = Ge, Sn, Pb,
involvesthe metathesisreactionbetweentwoequivalentsof the phosphido-borane ligandsandECl2
(Equation 2). The compounds [R2P(BH3)]2E, will be isolated and characterised by XRD and NMR
spectroscopy.
Equation 2. Proposed synthesis of [R2P(BH3)]2E.
13
Results & Discussion
Synthesis and Characterisation of [Mes2P(BH3)]Li(THF)2 (26)
The research began with the methodology already in use by Izod et al. to afford dialkylphosphido-
borane lithiumsalts, [R2P(BH3)]Li, where R = Mes, 26, Dipp, 27, Ph, 28. Compounds 26-28 couldthen
be used as metathesis reagents for reaction with tin dichloride, SnCl2, with the aim to isolate and
characterise bis-(dialkylphosphido-borane) stannylenes, [R2P(BH3)]2Sn.
Dimesitylphosphine, Mes2PH, 24, was synthesised, as shown in Scheme 5, as the precursor to the
dimesitylphosphido-borane lithium salt, [Mes2P(BH3)]Li(THF)2, 26.
Scheme 5. Synthesis of 24.
The reaction of one equivalent of 24 with one equivalent of BH3.SMe2 solution in THF, afforded
complete conversion to dimesitylphosphine borane, Mes2P(BH3)H, 29, after one hour at room
temperature. The 31
P NMR spectrum of the isolated crystalline product is shown in Figure 11, which
contains a broad doublet at -28.3 ppm (JPH = 387.6 Hz).
Figure 11. 31P NMR spectrum of 29 in CDCl3.
14
One equivalentof n-butyllithiumsolutionin n-hexanewasaddedtoaffordcompleteconversion of 29
to 26, shown in the 31
P NMR spectrum of the isolated product (Figure 12) which contains a single,
broad doublet at -55.9 ppm (JPH = 47.2 Hz). The 11
B{1
H} NMR spectrum contains a broad doublet at -
31.9 ppm (JPB = 36.7 Hz) (Figure S8).
Figure 12. 31P NMR spectrum of 26 in THF-d8/toluene-d8.
The volatile THF was evaporated in vacuo, before diethyl ether was added, where upon pale yellow
crystalsof 26 precipitatedoutof solutionatroom temperature.XRDconfirmedthe structure as that
of 26, shown in Figure 13.
Figure 13. X-ray crystal structure of 26 with
carbon bound hydrogen atoms omitted for
clarity. Selected bond lengths (Å) and angles (°):
P-B 1.967(2), B…Li 2.426(3), P-Li(1A) 2.645(3), P-
C(1) 1.8505(16), P-C(10) 1.8504(16), P-B…Li
139.76(12).
Compound 26 crystallisesasa cyclical dimericstructure, whereineachphosphorusatomisboundto
a borane group and a lithiumcation.Twoof the borane hydrogenatoms have contacts witha
lithiumion,inanagostic-type interaction,stabilisingthe compound.Twomoleculesof the donor
tetrahydrofuransolventare coordinatedtoeachlithiumatom.
15
The bond lengthsof P-C(1) andP-C(10) are 1.8505(16) Å. The P-B bondlengthis 1.967(2) Å,similarto
a phosphido-borane lithiumsalt, [{Ph2P(BH3)}CHPiPr2]Li(tmeda), 30,characterised byIzod et al.13
,
whichhas a slightlysmallerP-Blengthof 1.933(2) Å (Figure 14). The B…
Li distances in26 are 2.426(3)
Å,the same lengthasthe B…
Li distances in30 of 2.442(4) Å.24
Figure 14. X-raycrystal structure of 30 withcarbon
bound hydrogen atoms omitted for clarity. Selected
bond lengths (Å):P-B 1.933(2), B…Li 2.442(4).
The P-Li1
contacts within26 are 2.645(3) Å.Comparedto the P-Li distancesof
2.479(11) Å and 2.483(1) Å inthe phosphide lithiumsaltdimer,
[(Mes2P)Li(OEt2)]2,31,crystallisedbyPoweretal.25
(Figure 15),thisisa longer
distance thanexpected. Figure 15. Structure of 31.
Hydrolysis of 26 to [Mes2P(BH3)2]Li(THF)2(32)and 24
Itwasfoundthat26 can decompose throughahydrolysispathway todimesitylphosphido-bis-(borane)
lithiumsalt, [Mes2P(BH3)2]Li(THF)2, 32,andthe startingphosphine24.The proposedmechanismisthe
nucleophilicattackof 26 on the borane of a molecule of 29, to afford 32 and 24 (Scheme 6).Thiscan
be attributed to the increased nucleophilicity of 32 with respect to 29.
Scheme 6. The hydrolysis mechanism of 26 to 32 and 24.
16
Integration of the peaks in the 31
P NMR spectrum gave the ratio of the products, 26:32:24, as 8:1:1
(Figure 16). As the ratio of 32 and 24 are equal, this suggests the proposed hydrolysispathway is
correct. The sample was re-analysed by 31
P NMR spectroscopy after three days, with an increase in
the hydrolysis products observed, at a ratio of 26:32:24 of 5:1:1.
Figure 16. 31P NMR spectrum of 26 and the corresponding hydrolysis products 32 and 24 in THF-d8/toluene-d8.
A broad unresolvedseptet,due tothe couplingof phosphorustotwo 11
B quadrupolaractive nuclei(I
= 3/2), can be seenat-10.8 ppm inthe 31
PNMR spectrum, andalsoa sharp doubletat -93.4 ppm(JPH
= 228.3 Hz), which correspond to 32 and 24 respectively.
Synthesis and Characterisation of 32
Compound 32 was isolated to confirm the identity of the decomposition product by comparison of
the signals observed in the 31
P NMR spectra. Two equivalents of BH3.SMe2 in n-hexane solution was
addedto one equivalentof 29 inTHF, to yield 32, shownin the 31
P{1
H} NMR spectrumof the product
(Figure 17),whichcontainsa broad singlet at-21.2 ppm. The change of solventfromTHF-d8/toluene-
d8 to CDCl3 has a pronounced effect on the chemical shift but the multiplet observed unequivocally
corresponds to that of 32.
17
Figure 17. 31P{1H} NMR spectrum of 32 in CDCl3.
The THF wasremoved in vacuo,beforediethyletherwasadded,whereuponpaleyellowcrystalsof 32
precipitated out of solution. XRD confirmed the structure as that of 32 (Figure 18).
Figure 18. X-raycrystal structure of 32 with
carbon boundhydrogen atoms omitted for
clarity. Selected bond lengths (Å) and
angles (°): P-B(1) 1.9655(19), P-B(2)
1.9619(18), B(1)…Li 2.455(4), B(2)…Li
2.505(4), P-C(1) 1.8419(16), P-C(10)
1.8464(16), P-B(1)…Li 89.70(11), P-B(2)…Li
88.33(10).
Compound 32 crystallisesasamonomerwithtwo coordinated disorderedTHFsolventmolecules. The
phosphorus atom is bound to two mesityl groups and to two borane groups.The borane groups are
coordinated to lithium through B-H…
Li contacts with different hapticities. Interestingly,two B-H…
Li
contacts are observed for one borane group whereas the second borane group only has one B-H…
Li
contact.
The P-C(1) and P-C(10) bond lengths are 1.8419(16) Å and 1.8464(16) Å respectively,equal in length
to that of the P-C(1) andP-C(10) bondlengthsin 26, of 1.8505(16) Å. The P-B(1) and P-B(2) bonds are
18
of essentially identical lengths of 1.9655(19) Å and 1.9619(18) Å respectively. The P-B bond lengths
are similar to that of 26.
The B(1)…
Li distance,withtwoB-H…
Li contacts, hasa lengthof 2.455(4) Å comparedto the distance of
B(2)…
Li, with only one B-H…
Li contact of 2.505(4) Å. The B(1)-H…
Li contact can be said to be slightly
strongerbecause of the increasedhapticity versusthatof the B(2)-H…
Li contact. Compound 26, with
two B-H…
Li contacts, has a smaller B...
Li distance of 2.426(3) Å, implying the interactions in 26 are
slightlystrongerstill,asthere is onlyone borane group in the molecule able toadd stabilitythrough
agostic-type interactions.
Attempted Synthesis of [Mes2P(BH3)]2Sn (33)
Inan attempttosynthesisebis-(dimesitylphosphido-borane) stannylene,[Mes2P(BH3)]2Sn,33purified
and isolated crystals of 26 were used as metathesis reagents for reaction with SnCl2.
A solution of two equivalentsof 26 in THF was added dropwise to SnCl2 at -78 °C in THF, and the
resulting solution was slowly warmed to room temperature. After three hours, elemental tin
particulates were observed in the reaction mixture. The observed species in the 31
P NMR spectrum
suggest that the reaction material contained none of the desired compound and had completely
decomposed. A mechanism of radical-based reductive elimination followed by a hydrogen radical
beingremovedfromthe solventwaspostulatedforthe decompositionof 33to elementaltinandthe
corresponding products observed below in Figure 19.
Figure 19. 31P NMR spectrum of the reaction between two equivalents of 26 and SnCl2 in THF.
19
The characteristic broad signals for tin-containing phosphido-borane compounds with 119
Sn satellite
peaksare absentfrom the 31
PNMR spectrum.The hydrolysisproductsof 26are once again observed,
in the ratio of 26:32:24 of 1:1:1.
The rapid decomposition can be attributed to three factors: (i) The P-Sn bond is weaker and more
easily reduced than a C-Sn bond (ii) The lack of a lone pair on phosphorus means it cannot stabilise
the electron deficient Sn(II) centre by pπ-pπ interactions26
(iii) Mesityl aromatic rings, with three
methyl substituents, causes the rings to be very electron rich. Electron density is pushed to
phosphorus, increasing the nucleophilicity of the ligand. This effect increases the likelihood of
reduction of the Sn(II) centre to Sn(0).
Synthesis of [Dipp2P(BH3)]Li (27)
DippR groups are stericallybulkierthanmesityl Rgroups,decreasingthe tendency of the phosphido-
borane ligands to dimerise. The fact that there are only two alkyl chains on the dipp aromatic ring
compared to three methyl groups on the mesityl aromatic ring also means the ring is relatively less
electronrich.Lesselectrondensitycantherefore be centredonthe phosphorusatom.The effectisa
less nucleophilic phosphorus atom, which corresponds to a decreasing
likelihood of the stannylene, [Dipp2P(BH3)]2Sn, 34, being reduced from the
stabilised +2 oxidation state to elemental tin with the production of
diphosphine borane, Dipp2P(BH3)-P(BH3)Dipp2. Compound 27 was
synthesised for metalationwith SnCl2, to investigate the stabilisationeffect
of these ligands on the low valent Sn(II)centre.
Figure 20. Structure of Dipp2PH, 35.
One equivalentof BH3.SMe2 solutionwas addedtoone equivalentof 35 indiethyl etherto
synthesisethe phosphine borane, Dipp2P(BH3)H,36.Subsequently,one equivalentof n-butyllithium
was thenadded tothe resultingsolution toform27 in situ. Thisis showninthe 31
P{1
H} NMR
spectrumof the productwhichcontainsa broad, quartetat -73.5 ppm (JPB = 36.4 Hz) (Figure 21).
20
Figure 21. 31P{1H} NMR spectrum of in situ generated 27 in diethyl ether.
An excessof the borane solutionwasadded accidently,whichaccountsfor the largerthan expected
broad,unresolvedseptetsignal at -24.1 ppmwhichcorrespondstothe bis-phosphido-borane lithium
salt, [Dipp2P(BH3)2]Li, 37. A small sharp singlet at -102.1 ppm corresponding to 35 is also noted.
Attempted Synthesis of 34
The reaction mixture described above was added dropwise to tin dichloride, at -78 °C, and slowly
warmedtoroomtemperature (Figure22).The resultingorange-yellowsolutiondecomposedinunder
an hour to produce a black solutionandlarge amountsof fine elemental tinparticulates.Thiscanbe
attributedtothe rapidreduction of 34to elemental tin.The factthatthe expectedreductionproduct,
Dipp2(BH3)P-P(BH3)Dipp2, is not observed, leads to the conclusion that the compound is highly
unstable,due tothe largesterichindrancewithinthe molecule.Thiscausesthefurtherdecomposition
to the less hindered Dipp2P-PDipp2, and free borane in solution, the former corresponding to the
insignificant singlet at -37.6 ppm.
The 31
P{1
H} NMR spectrum shows no evidence of any tin-containing phosphido-borane compounds.
Compound 36 can be seenasa broad,unresolvedquartetat-32.2 ppm. The hydrolysisproductsof 37
and 35, due to the broad, unresolved septet at -24.1 ppm and the sharp singlet at -102.9 ppm,
respectively, provide further evidence for this decomposition pathway.
21
Figure 22. 31P{1H} NMR spectrum of the reaction of 27 with SnCl2 after one hour in diethyl ether.
Synthesis of [Ph2P(BH3)]Li (28)
To investigate more fully the hypothesis that the large steric bulk of the mesityl and dipp R groups
were the major cause of the rapid decomposition of bis-(dialkylphosphido-borane) stannylenes, the
smaller diphenylphosphido-borane lithium salt, [Ph2P(BH3)]Li, 28, was synthesised in situ for the
metathesis reaction with SnCl2.
Compound 25 was synthesised as the precursor to 28 (Scheme 7).
Scheme 7. Synthesis of 25.
The reaction of one equivalent of 25 with one equivalent of BH3.SMe2 solution in THF afforded
diphenylphosphine borane, Ph2P(BH3)H, 38, after one hour at room temperature (Figure 23).
Figure 23. 31P NMR spectrum of 38 in CDCl3.
22
The 31
P NMR spectrum of the product contains a broad doublet at 1.9 ppm (JPH = 389.17 Hz).
To the resulting solution,one equivalent of n-butyllithiumsolution was added and this mixture was
stirred for 1 h to afford a red solution of 28 in situ. This is shown in the 31
P NMR spectrum of the
product, which contains a single, broad quartet at -32.6 ppm (JPB = 21.5 Hz) (Figure 24).
Figure 24. 31P NMR spectrum of in situ generated 28 in THF.
Attemptstocrystallise 28were unsuccessful due tothe oil-like nature of the productinTHF,toluene,
methylcyclohexane and dimethoxyethane solvents.
Synthesis of [Ph2P(BH3)2]Li (39)
One equivalent of n-butyllithium solution was added to one equivalent of 25 in THF to afford a red
solutionof [Ph2P]Li in situ.Subsequentadditionof twoequivalentsof BH3.SMe2 solutionafforded the
diphenylphosphido-bis-(borane) lithium salt, [Ph2P(BH3)2]Li, 39, in situ (Figure 25).
Figure 25. 31P{1H} NMR spectrum of in situ generated 39 in THF.
The 31
P{1
H} NMR spectrumof the product containsa single,broadmultipletat -7.2 ppm. Attemptsto
crystallise 39 were unsuccessful due to the oil-like nature of the product in a number of solvents.
23
Attempted Synthesis of [Ph2P(BH3)]2Sn (40)
In an attempt to synthesise bis-(diphenylphosphido-borane) stannylene, [Ph2P(BH3)]2Sn, 40, the
reaction solution of 39 described above was used in the metathesis reaction with SnCl2.
Two equivalents of 39 were added dropwise to one equivalent of SnCl2 in THF, at -78 °C, and this
mixture was slowly warmed to room temperature.
The 31
P{1
H} NMR spectrum of the reactionmixture (Figure 26), shows twotin-containingproductsof
the metathesisreaction;abroadsingletat -10.1 ppmwith 119
Snsatellitepeaks(JSnP = 1632 Hz) andan
unidentified broad singlet at -6.7 ppm with 119
Sn satellite peaks (JSnP = 1690 Hz). Later experiments
concluded that the signal at -10.1 ppm corresponds to the unexpected product tris-
(diphenylphosphido-borane) stannate, [(Ph2P(BH3))3Sn]Li(THF), 41.
Figure 26. 31P{1H} NMR spectrum of twoSn compounds one hour after the reactionof in situ generated 39 andSnCl2 inTHF.
The volatileswereremoved in vacuo.Toluenewasaddedandthe solutionwasfilteredthrough celite.
Consequently,only 41 was observed in the 31
P NMR spectrum (Figure 27). The unidentified product
therefore was stable in THF solvent but not in toluene.
JSnP = 1632 Hz
24
Figure 27. 31P{1H} NMR spectrum of 41 in THF-d8/toluene-d8.
The 31
P{1
H} NMR spectrum of the reaction mixture contains a broad singlet at -16.6 ppm,
correspondingto 41 withbroad 119
Snsatellite peaks(JSnP =1632 Hz).Other minorproducts observed
inthe reactionmixture are thatof 38, the broad multipletat -0.6 ppm,and 28, the broadmultipletat
-10.8 ppm.
Direct Synthesis and Characterisation of 41
A directed synthesis of this compound was undertaken to get a clean sample of 41 to confidently
assign the peaks observed in the NMR spectra. To isolate 41, three equivalents of 28 were added
dropwise to one equivalent of SnCl2 in THF, at -78 °C, and this mixture was warmed slowly to room
temperature. The volatile THF was removed in vacuo. Toluene was added to the resulting solidand
the pale solids were removed by filtration. Crystals suitable for X-ray crystallographywere obtained
from a concentrated solution of 41 in toluene, stored at -25 °C.
The 31
P NMR spectrum of the isolated crystals contains a broad singlet at -12.4 ppm (JSnP = 1632 Hz),
due to 41, along with a small unidentified broad multiplet at -18.7 ppm (Figure 28).
JSnP = 1632 Hz
25
Figure 28. 31P NMR spectrum of 41 in THF-d8/toluene-d8.
The 119
Sn NMR spectrum (Figure 29) contains a single sharp quartet at 59 ppm (JSnP = 1632 Hz)
confirming that the product is 41.
Figure 29. 119Sn NMR spectrum of 41 in THF-d8/Toluene-d8.
Compound 41 crystallises as a monomer with one disordered THF solvent molecule (Figure 30).The
centre tin atom is bound to three phosphorus atoms. The borane groups all have agostic-type
interactions with the lithium cation. Interestingly, two of the borane hydrogens of two BH3 groups
have contacts withlithiumbutin the thirdborane group,there is only one B-H…
Li contact. The P-Sn
bondsare of differinglengths;Sn-P2isthe longest bond at 2.6444(13) Å compared to Sn-P1 and Sn-
P3 lengthsof 2.6097(14) Å and2.6288(13) Å,respectively.ThebondsbetweenP-Bare allof statistically
equal lengths with an average of 1.954(6) Å, equal to the lengths shown previously in 26 and 32.
JSnP = 1632 Hz
26
Figure 30. X-ray crystal structure of 41 with
carbon bound hydrogen atoms omitted for
clarity. Selectedbond lengths (Å) andangles (°)
shown in Table 1.
The lengthof the B2…
Li distance israther long at 2.798(14) Å, comparedto the lengthsof the B(1)…
Li
and B(3)…
Li distances at 2.470(13) Å and 2.477(14) Å, respectively. This is explained by the reduced
hapticity of the B(2)-H…
Li contact versus the hapticity observed in both the B(1)-H…
Li and B(3)-H…
Li
contacts. The B(1)-H…
Li and B(3)-H…
Li contact lengths are similar to 26 and 32.
Izod et al.27
synthesised the only other known compound of this nature, tris-(diisopropylphosphido-
borane) stannate, [({(CH3)2CH}2P(BH3))3Sn]Li(THF)3, 42 (Figure 31) Whereas in 41, all three borane
groups are coordinated to lithium, in 42 only one of the borane groups is, with the other two
remaininguncoordinated.The bondlengthsof Sn to P(1), P(2), and P(3) are 2.6349(6) Å, 2.6219(6) Å
and 2.6241(6) Å, respectively. All P-B bond lengths are equal at 1.957(3) Å. The length of the B(1)…
Li
distance in 42 is smaller than the B…
Li
distances in 41 at 2.381(5) Å, because the
agostic-type interactions are spread over
only one BH3 group with two B-H…
Li
contacts in 42, whereas in 41, the
interactions are spread over three BH3
groups with five B-H…
Li contacts.
Figure 31. X-raycrystal structure of42 withcarbon bound hydrogen atoms omittedfor clarity. Selectedbonglengths (Å) and
angles (°) shown in Table 1.
27
The bond angle of P(1)-B(1)…
Li is extremely large at 148.32(18)° compared to 41’s P(1, 2, 3)-B(1, 2,
3)…
Li bondanglesof 114.8(4)°, 97.0(3)° and108.4(4)°, respectively.Thisisattributedtothe constraint
of all three BH3 groups coordinated through B-H…
Li contacts in 41.
In 2010, Izod et al.28
synthesised
[[{(Me3Si)2CH}(Ph)P]3Sn]Li(THF)4, 43,withSn-Pbondlengthsof
2.649(2) Å and P-Sn-P bond angles of 91.41(6)° (Figure 32).
These are significantly smaller than the bond angles of 41 at
93.60(4)°, 95.17(5)° and 95.56(5)°. This is explained by the
requirementof the bondanglesin 41 to widentoincorporate
the BH3 groups.
Figure 32. Structure of 43.
Bond Length (Å)/
Bond Angle (°)
[(Ph2P(BH3))3Sn]-
Li(THF), 41
[({(CH3)2P(BH3))3Sn]-
Li(THF)3, 42
[[{(Me3Si)2CH}(Ph)P]3Sn]-
Li(THF)4, 43
Sn-P 2.6097(14)
2.6444(13)
2.6288(13)
2.6349(6)
2.6219(6)
2.6241(6)
2.649(2)
B-Li 2.470(13)
2.798(14)
2.477(14)
2.381(5) n/a
P-B-Li 114.8(4)
97.0(3)
108.4(4)
148.32(18) n/a
P-Sn-P 95.17(5)
93.60(4)
95.56(5)
103.459(19)
104.400(19)
103.853(18)
91.41(6)
Table 1. Selected bond lengths (Å) and angles (°) of 41, 42, and 43.
28
Decomposition of 41
Analysisby 31
P{1
H}and119
Sn{1
H}NMRspectroscopy of the sample showninFigure 27,conducted after
two days in THF-d8/toluene-d8 solvent, shows the partial decomposition of 41 (Figures 33 and 34).
Notable identified peaks in the 31
P{1
H} NMR spectrum are for 41 at -15.4 ppm and the hydrolysis
products 39, at -10.1 ppmand 25, at -41.2* ppm. A large broadmultipletisobservedat1.9ppmwhich
correspondsto 38, a consequence of 41 beinghighlyunstable insolution.One of the majorproducts
observed is not for 41, but instead for an unidentified tin-containing compound, due to the broad
multiplet at 70.6 ppm. The 119
Sn satellites were not fully resolved but the broad multiplet signal is
characteristic of tin- compounds.
Figure 33. 31P{1H} NMR spectrum of the partial decomposition of 41 in THF-d8/toluene-d8.
Figure 34. 119Sn{1H} NMR spectrum of the partial decomposition of 41 in THF-d8/toluene-d8.
29
The 119
Sn{1
H} NMR spectrumof the solution containsasharpquartetat -75 ppmdue to 41. A second,
sharp triplet signal at -32 ppm is also observed, due to a compound of the general formula
[{Ph2P(BH3)}2Sn(X)]-
.Itisreasonabletoconclude thatthe signalobservedinthe 31
P{1
H} NMRspectrum
at 70.6 ppm and the signal observed in the 119
Sn{1
H} NMR spectrum at -32 ppm are for the same
compound, [{Ph2P(BH3)}2Sn(X)]-
. The broad nature of the 31
P signal and the triplet multiplicity of the
119
Sn signal provide the evidence for this statement.
Afterfive daysina sealedNMR tube inTHF-d8/toluene-d8 solvent,the complete decompositionof 41
was observed (Figure 35).
Figure 35. 31P{1H} NMR spectrum of the complete decomposition of 41 after five days in THF-d8/toluene-d8.
Elemental tin particulates were observed throughout the now colourless solution, along with the
insignificant sharp singlet at 20.1 ppm due to Ph2P-PPh2, providing evidence that reduction had
occurred. The major product is 38, the broad multiplet seen at 0.71 ppm, along with a substantial
amount of the unidentified [{Ph2P(BH3)}2Sn(X)]-
compound, corresponding to the broad multiplet at
70.5 ppm. This productwas neverisolated,butitcan be concludedthat[{Ph2P(BH3)}2Sn(X)]-
isinfact
the thermodynamic stable product versus 41.
AromaticRgroups,beingelectronrich,whenboundtophosphoruspushelectrondensityontoP.Alkyl
groups connected to the aromatic ring further increase the electron density in the ring, in turn,
increasingthe electrondensitycentralisedonphosphorus. The more electronrichP is,the increased
likelihoodof decomposition of [R2P(BH3)]2Sn.Thisinvestigationhasshownthatcompoundscontaining
dippgroups(twoalkylchains)are the mostprone to decomposition,followedbymesitylgroups(three
methyl groups), with phenyl groups being the most stable.
Twodiphenylphosphido-boraneligands are toosmall topreventattackof athirdligand. The electron-
poor Sn(II) centre readily accepts a further phosphido-borane ligand to become electron-precise.
Technically this is not a phosphido-borane stabilised stannylene as a stannylene is defined as a
30
stabilised low valent Sn centre. This leads to the conclusion that aromatic diphosphido-borane
substituted stannylenes are too unstable to be isolated.
Synthesis of [Mes2P(BH3)CHPh]Li (44)
The investigation into synthesising bis-dialkylphosphido-borane stannylenes was shown to be
unsuccessful.The classof compoundsare highlythermallyand photochemically unstable,andprone
to decomposition through reduction and hydrolysis pathways. Dialkylphosphido-borane carbanion
ligands have been previously synthesised by Izod et al. and have been used to stabilise low valent
heavy group 14 metal centres (E = Sn, Pb) through agostic-type interactions.11-13
Compound 44 was
synthesisedasaderivative of thisclassof carbanionligandstobe usedinthe metathesisreactionwith
stannocene, SnCp2.
One equivalent of n-butyllithium was added to one equivalent of Mes2P(BH3)CH2Ph, 45, in THF to
afford 44 in situ. This is shown in the 31
P NMR spectrum of the product (Figure 36) which contains a
broad multiplet at -0.6 ppm, the major product 44.
Figure 36. 31P NMR spectrum of in situ generated 44 in THF.
The volatile THF was removed in vacuo before toluene was added to the resulting pale solid. Two
equivalents of 44 in situ were added to SnCp2 in toluene at room temperature to afford an orange-
yellow solution after one hour (Figure 37).
31
Figure 37. 31P NMR spectrum of the reaction of 44 and SnCp2 in toluene.
The 31
P NMR spectrum of the solution contains two broad signals at 14.4 ppm and 19.1 ppm,
potentiallydiastereoisomersof eachother,aswasobservedforthe compoundsisolatedbyIzod etal.
previous.10-12
The broad shape of the signals are expected for tin-containing phosphido-borane
compounds. The 119
Sn satellites are not resolved because of the poor signal to noise ratio. Current
work by Izod et al. is on-going to isolate and characterise the products contained in the reaction
mixture.
There are a small number of dialkyltetrylenesthat have been synthesised and characterised by Izod
et al. over recent years (Figures 8-10). The electron-deficient Sn(II) centres are stabilised through
agostic-type interactionswiththe BH3 substituents.Asthe phosphine-borane groupisan extra atom
furtherfromthe Sn(II)centre, theinteractionbetweenB-H…
Snisinamore favourableorientationthan
for phosphido-borane ligands,where the phosphorusatomisadjacent to the Sn(II) centre.The tight
angle in the latter forces the agostic-type interactions into unfavourable orientationsand therefore
cannotefficientlystabilise the Sn(II)centre.Fromthe crystal structure dataanalysed of 41,noagostic-
type B-H…
Sn contacts were observed leading to the conclusion that the bite angle is too small for
effective stabilisation.
Conclusion
Compounds 26 and 32 were synthesisedandisolated.The molecularstructuresof 26 and 32 contain
agostic-type interactions between the borane moieties and the lithium cation, providing effective
32
stabilisationof these compounds.Somewhatunexpectedly,differenthapticitiesof these interactions
are observed.
The investigation into the synthesis and consequent isolation of phosphido-borane stabilised
stannylenes, [R2P(BH3)]2Sn, where R = Mes, Dipp, Ph, was unsuccessful, due to the rapid
decomposition of the products to elemental tin, among other ligand side products.
The weaker P-Sn bonds are a major factor in their instability versus the C-Sn bonds in phosphine-
borane substituted alkyl stannylenes, [R2P(BH3)CR’2]2Sn, because the P-Sn bond has an increased
tendencytobe reduced.Inpart,the decompositionof 40can be attributedtothe factthe phosphorus
lone pairisboundtothe borane moietyandthereforethereisnopπ-pπoverlapbetweenphosphorus
and the low valent Sn(II) centre.
Phosphine-borane stabilised alkyl ligands have been shown to have a favourable orientation of the
borane moieties with the electron-poor tin centre that allows for efficient overlap of B-H σ-orbitals
with the pπ-orbital of Sn. The agostic-type interactionsstabilise the low valent Sn(II) centre through
donation of electrondensityintothetinpπ-orbital.Thisinteractioncannotoccurinphosphido-borane
substituted stannylenes as phosphorus is adjacent to the tin centre causing the unfavourable
orientation of the tin centre with the borane moieties due to the constrained angle. The low valent
tin centre therefore is not stabilised by agostic-type interactions in phosphido-borane substituted
stannylenes.
Compound 41 was isolateddue tothe smallernature of phenyl groupscomparedtomesityl anddipp
groups. The X-raycrystal structure of 41 contains noagostic-type interactionsbetweenB-Hσ-orbitals
and Sn pπ-orbitals.The electron-precise tincentre isinsteadstabilisedthroughacombinationof the
favourable steric and electronic effects of the ligands.
The investigation into bis-(phosphido-borane) stannylenesand the consequent absence of evidence
of theirsynthesisby 11
B, 31
Pand 119
SnNMR spectroscopydemonstratesthe highlyunstable natureof
this class of compounds. Future work will therefore not focus on the isolationof phosphido-borane
substituted tetrylenes.Instead,the synthesisandisolationof furtherstericallydemanding phosphine-
borane substituted alkyl tetrylenes, [R2P(BH3)CR’2]2E, will be explored. Characterisation by XRD will
provide furtherevidenceforthe stabilisationof low valentgroup14 tetrylene centresdue toagostic-
type interactions.
33
Experimental
All manipulations were carried out using standard Schlenk techniques under an atmosphere of dry
argon. Diethyl ether, THF and light petroleum (b.p. 40-60 °
C) were dried prior to use by distillation
under nitrogen from sodium or sodium/potassium alloy and were stored over a potassium film.
Deuterated toluene was distilled from potassium and stored over activated 4Å molecular sieves.
Borane dimethyl sulphideand n-butyllithiumwere preparedasstocksolutionsin n-hexaneortoluene
and were dried prior to use over activated 4Å molecular sieves. All other compounds were used as
supplied by the manufacturer.
1
H, 11
Band 31
PNMR spectrawere recordedona BrukerAvance III300 spectrometeroperatingat300,
96.25 and 121.44 MHz, respectively, a Bruker Avance II 400 spectrometer operating at 400, 128.34
and 161.92 MHz, respectively,ora BrukerAvance III500 spectrometeroperatingat500, 160.42 and
202.40 MHz, respectively; chemical shifts are quoted in ppm relative to tetramethylsilane, external
BF3.Et2Oand 85% H3PO4.
7
Li, 13
C{1
H} and 119
Sn{1
H} NMR spectrawere recordedon a Bruker Avance III
500 spectrometeroperatingat194.32, 125.73 and 186.45 Hz,respectively;chemical shiftsare quoted
in ppm relative to 9.7 MLiCl, tetramethylsilane and Me4Sn, respectively.
Mes2PH (24)
To a solutionof PCl3 (3.43 g, 25 mmol) indiethyl ether(50 mL) wasaddeda solutionof MesMgBr (50
mL, 1.0 M, 50 mmol) in diethyl ether (50 mL) at -78 °C. The resulting yellow solution was warmed
slowlytoroomtemperatureandfiltered. The filtratewascooled(0°C) beforeLiAlH4 (0.95g,25 mmol)
was addedinportions.The mixture wasstirredfor 30 min and slowlywarmedtoroom temperature.
The reaction was quenched with degassed H2O (50 mL). The organic layer was decanted and further
extractedwithcoldpetrol (3x 30 mL). The combinedorganiclayersweredriedovermolecularsieves.
The volatileswere removed in vacuo togive ayellow solid,whichwasheatedat70°C in vacuo toyield
24 as a pale yellowcrystalline solid. Yield 5.78 g, 85.6%. 1
H NMR (CDCl3, 25 °C): δ 2.22 (s,6H, p-CH3),
2.24 (s, 12H, o-CH3),5.23 (d, JPC = 232.90 Hz, 1H, PH),6.80 (m, 4H, ArH). 31
P{1
H} NMR (CDCl3,25 °C):δ
-93.1 (s).
Mes2P(BH3)H (29)
To a solutionof Mes2PH(0.08 g, 0.30 mmol) inTHF (10 mL) was addeda solutionof BH3.SMe2 in THF
(0.18 mL,1.68 M, 0.30 mmol) andthe solutionwasstirredfor1h.The volatileswereremoved in vacuo
34
to give 29 asa pale yellowsolid,whichwassufficientlycleanforuse withoutfurtherpurification.Yield
0.07 g, 83.3%. 1
H{11
B} NMR (CDCl3,25 °C): δ 1.23, (dd, JPH = 14.55 Hz, JHH = 7.25 Hz, 3H, BH3),2.25 (s,
6H, p-CH3),2.36 (s,12H, o-CH3),6.60 (dq, JPH = 383.94 Hz, JHH = 7.63Hz, 1H, PH),6.85 (m, 4H, m-ArH).
13
C{1
H} NMR (CDCl3, 25 °C): δ 21.16 (CH3), 21.99 (d, JPC = 6.16 Hz, CH3), 122.05 (d, JPC = 51.20 Hz, Ar),
130.37 (d, JPC = 8.22 Hz, Ar), 141.17 (Ar), 142.55 (d, JPC = 8.47 Hz, Ar). 11
B{1
H} NMR (CDCl3, 25 °C): δ -
34.7 (s, br). 31
P{1
H} NMR (CDCl3, 25 °C): δ -28.3 (m, br).
[Mes2P(BH3)]Li(THF)2 (26)
To a solution of Mes2P(BH3)H (0.71 g, 2.50 mmol) in THF (20 mL) was added a solution of n-BuLi in
hexanes(1.0 mL, 2.49 M, 2.50 mmol) and the resultingredsolutionwasstirredfor 1 h. The volatiles
were removed in vacuo.Diethylether(20mL) was addedtothe resultingpale solid.The solutionwas
reducedto10 mLand storedat -25 °C overnight.CrystalssuitableforX-raycrystallographyof 26were
obtained. Isolated yield: 0.50 g, 66.2%. 1
H{11
B} NMR (THF-d8/toluene-d8,25 °C): δ 1.13 (d, JPH = 7.13
Hz, 3H, BH3), 1.76 (m,THF), 2.17 (s,6H, p-CH3),2.50 (s,12H, o-CH3), 3.74 (m, THF), 6.68 (s,4H, m-ArH).
13
C{1
H} NMR(THF-d8/toluene-d8,25°C):δ 20.37 (CH3),23.42 (d, JPC = 12.43 Hz,CH3), 25.33 (THF), 67.23
(THF), 128.17 (d, JPC = 2.24 Hz, Ar),132.40 (Ar),141.08 (d, JPC = 10.61 Hz, Ar),143.23 (d, JPC = 25.86 Hz,
Ar). 7
Li NMR (THF-d8/toluene-d8,25 °C): δ -0.7 (s,br). 11
B{1
H} NMR (THF-d8/toluene-d8,25 °C): δ -31.9
(d, JPB = 37 Hz). 31
P{1
H} NMR (THF-d8/toluene-d8, 25 °C): δ -55.9 (s, br).
[Mes2P(BH3)2]Li(THF)2 (32)
To a solution of Mes2P(BH3)H (0.21 g, 0.73 mmol) in THF (20 mL) was added a solution of n-BuLi in
hexanes (0.3 mL, 2.49 M, 0.75 mmol) and the solution was stirredfor 1 h. A solution of BH3.SMe2 in
THF (0.4 mL, 2M, 0.73 mmol) was added and the mixture was stirred for 1 h. The volatiles were
removed in vacuo. Diethyl ether (20 mL) was added to the resulting pale solid. The solution was
reducedto10 mLand storedat -25 °C overnight.CrystalssuitableforX-raycrystallographyof 32were
obtained.Isolatedyield:0.37g,94.5%. 1
H{11
B} NMR(CDCl3,25°C):δ 1.06 (d, JPH =7.6 Hz,6H, BH3), 1.76
(m,THF), 2.18 (s,6H, p-CH3),2.30 (s, 12H, o-CH3), 3.61 (m, THF), 6.70 (s, m-ArH). 13
C{1
H} NMR (CDCl3,
25 °C): δ 20.79 (CH3),23.19 (CH3), 25.87 (THF),67.65 (THF), 129.91 (d, JPC = 7.59 Hz, Ar) , 141.70 (d, JPC
= 7.34 Hz, Ar). 7
Li NMR (CDCl3,25 °C): δ 0.0 (m, br). 11
B{1
H} NMR (CDCl3,25 °C): δ -29.0 (m, br). 31
P{1
H}
NMR (CDCl3, 25 °C): δ -21.2 (s, br).
35
Dipp2P(BH3)H (36)
To a solutionof Dipp2PH(0.18g,0.51 mmol) indiethyl ether(20mL) wasaddedasolutionof BH3.SMe2
in THF (0.3 mL, 1.68 M, 0.51 mmol) and the solutionwasstirredfor 1 h. The volatileswere removed
in vacuo to give 36 as a pale yellow solid, which was sufficiently clean for use without further
purification.Yield0.16 g, 85.3%. 1
H{11
B} NMR (CDCl3, 25 °C): δ 0.93 (d, JHH = 6.90 Hz, 12H, CH3), 0.99
(d, JHH = 6.74 Hz, 12H, CH3),1.38 (m,3H, BH3).3.47 (m, 4H, CHMe2),6.70 (dq, JPH = 313.35 Hz, JHH = 6.65
Hz, 1H, PH),7.08 (m,4H, m-ArH),7.28 (m, 2H, p-ArH). 13
C{1
H} NMR(CDCl3, 25 °C): δ 23.89 (CH3), 24.46
(CH3), 31.62 (CH), 124.88 (d, JPC = 7.90 Hz, Ar), 125.27 (d, JPC = 51.63 Hz, Ar), 131.45 (d, JPC = 1.86 Hz,
Ar),152.71 (d, JPC = 8.48 Hz,Ar). 11
B{1
H} NMR (CDCl3,25 °C):δ -32.1 (s,br). 31
P{1
H} NMR (CDCl3,25 °C):
δ -33.9 (s, br).
Ph2PH (25)
Solidsodium(4.09 g, 178.0 mmol) wasaddedinportionsto NH3(l) (200 mL) and stirredfor 10 min.To
the resulting solution, Ph3P (23.3 g, 88.9 mmol) was added and the mixture was stirred for 30 min
before pre-driedNH4Br (17.4 g, 178.0 mmol) was added. The organic material was extracted with
diethyl ether (4 x 30 mL). The volatiles were removed in vacuo to give a pale yellow mixture. The
mixture was distilled to give 25 as a colourless liquid at 80 °C (10-2
mmHg). Yield 12.30 g, 74.4%. 1
H
NMR (CDCl3, 25 °C): δ 5.12 (d, JPH = 218.05 Hz, 1H, PH), 7.10 (m, 6H, ArH), 7.30 (m, 4H, ArH). 31
P{1
H}
NMR (CDCl3, 25 °C): δ -40.2 (s).
Ph2P(BH3)H (38)
To a solutionof Ph2PH(7.5g, 34 mmol) inTHF (100 mL) was addeda solutionof BH3.SMe2 inTHF (8.5
mL, 2.0 M, 17 mmol) andthe solutionwasstirredfor1 h.The volatileswere removed in vacuo togive
38 as a pale yellow solid, which was sufficientlyclean for use without further purification.Yield 3.74
g, 55.0%. 1
H{11
B} NMR (CDCl3, 25 °C): δ 1.29 (d, JPH = 16.24 Hz, 3H, BH3), 6.31 (dq, JPH = 378.11, JHH =
7.24 Hz, 1H, PH),7.46 (m,6H, ArH),7.68 (m, 4H, ArH). 11
B{1
H} NMR (CDCl3,25 °C): δ -40.2 (d, JPB = 45.8
Hz). 31
P{1
H} NMR (CDCl3, 25 °C): δ 1.2 (m, br).
36
[(Ph2P(BH3))3Sn]Li(THF) (41)
To a solution of Ph2PH (1.27 g, 6.83 mmol) in THF (30 mL) was added a solution of BH3.SMe2 in THF
(4.1 mL, 1.68 M, 6.83 mmol) andthe solutionwasstirredfor1 h. A solutionof n-BuLi inhexanes(3.0
mL, 2.3 M, 6.83 mmol) was added andthe mixture was stirredfor1 h. The resultingredsolutionwas
added dropwise to a suspension of SnCl2 (0.43 g, 2.3 mmol) in THF (10 mL) at -78 °C. The resulting
yellow solution was warmed slowly to room temperature and the volatiles were removed in vacuo.
Toluene (20 mL) was addedto the resultingsolidtogive a yellow solutionwithpale solidsthatwere
removedbyfiltration.The filtrate wasreducedto10 mL and was storedat -25 °C overnight.Crystals
suitable forX-raycrystallography of 41were obtained. Isolatedyield:0.82g,45.6%. 1
H{11
B} NMR(THF-
d8/toluene-d8,25°C): δ 1.54 (d, JPH = 9.1 Hz, 9H, BH3),6.98 (m, 12H, o-ArH),7.00 (m, 6H, p-ArH),7.61
(m, m-ArH). 13
C{1
H} NMR (THF-d8/toluene-d8, 25 °C): δ 127.69 (m, Ar), 128.00 (Ar), 134.31 (m, Ar),
136.67 (m, Ar). 7
Li NMR(THF-d8/toluene-d8,25°C):-0.6(s,br). 11
B{1
H} NMR(THF-d8/toluene-d8,25°C):
δ -32.6 (m, br). 31
P{1
H} NMR (THF-d8/toluene-d8, 25 °C): δ -12.4 (s, br, JSnP = 1632 Hz). 119
Sn{1
H} NMR
(THF-d8/toluene-d8, 25 °C): δ -59 (q, JSnP = 1632 Hz).
Mes2P(BH3)CH2Ph (45)
To a solutionof Mes2PH (1.44 g, 5.33 mmol) inTHF (30 mL) was addeda solutionof BH3.SMe2 inTHF
(3.2 mL, 1.68 M, 5.33 mmol) andthe solutionwasstirredfor1 h. A solutionof n-BuLi inhexanes(2.3
mL, 2.3 M, 5.33 mmol) was addedand the mixture was stirredfor1 h. The resultingredsolutionwas
added to a solution of Ph2CH2Br (0.91 g, 5.33 mmol) in THF (20 mL). The volatiles were removed in
vacuo togive apale yellowsolidwhichwasextractedintodichloromethane(50mL),filteredanddried
overmolecularsieves.The solventwasremoved in vacuo fromthe filtrate togive 45 as a pale yellow
solid. Yield1.53g, 76.7%. 1
H{11
B} NMR (CDCl3, 25 °C): δ 1.43 (d, JPH = 12.9 Hz, 3H, BH3),2.16 (s,12H, o-
CH3),2.26 (s, 6H, p-CH3),3.95 (d, JPH = 11.03 Hz, 2H, CH2),6.77 (s, m-ArH),6.90 (d, JHH = 7.66 Hz,2H, o-
ArH),7.04 (m, ArH),7.13 (m, ArH). 13
C{1
H} NMR (CDCl3,25°C): δ 21.04 (d, JPC = 1.13 Hz, CH3),23.51 (d,
JPC = 4.55 Hz, CH3),37.25 (d, JPC = 29.96 Hz, CH2), 126.93 (d, JPC = 3.67 Hz, Ar),127.52 (d, JPC = 3.19 Hz,
Ar),131.01 (d, JPC = 9.17 Hz, Ar),131.38 (d, JPC = 4.59 Hz, Ar),132.64 (d, JPC = 3.30 Hz, Ar),140.18 (d, JPC
= 2.25 Hz,Ar),141.68 (Ar),141.77 (Ar). 11
B{1
H} NMR(CDCl3,25 °C):δ -30.1 (s,br). 31
P{1
H} NMR(CDCl3,
25°C): δ 17.9 (s, br).
37
References
1. D. M. Giolando,R.A. Jones,C.M. Nunn,J.M. Powerand A.H. Cowley, polyhedron, 1988, 7, 1909-
1910.
2. M. Y. Chiang, D. J. Rauscher, W. E. Buhro and S. C. Goel, J. Am. Chem. Soc., 1993, 115, 160-169.
3. E. Rivard, A. D. Sutton, J. C. Fettinger and P. P. Power, Inorg. Chim. Acta., 2007, 360, 1278-1286.
4. U. Winkler,S.Rell,H.Pritzkow,R.Janoschekand M. Driess, Angew.Chem.,Int. Ed. Engl., 1995, 34,
1614-1616.
5. R. W. Harrington, W. Clegg, B. Allen, W. Mcfarlane and K. Izod, Organometallics, 2005, 24, 2157-
2167.
6. W. E. Buhro, M. Y. Chiang and M. A. Matchett, Inorg. Chem., 1994, 33, 1109-1114.
7. P. J. Davidson and M. F. Lappert, J. Chem. Soc., Chem. Commun., 1973, 9, 317.
8. H. Sakurai,C.Kabuto,R.Hirano,R.YauchibaraandM.Kira, J.Am.Chem.Soc.,1991, 113, 7785-7787.
9. M. S. Hill,P. B. Hitchcock, D. Patel,J. D. Smith,S. Zhang and C. Eaborn, Organometallics,2000, 19,
49.
10. R. W. Harrington, W. Clegg, J. M. Watson and K. Izod, Inorg. Chem., 2013, 52, 1466-1475.
11. R. W. Harrington, W. Clegg, C. Wills, W. Mcfarlane and K. Izod, Organometallics, 2008, 27, 4386-
4394.
12. R. W. Harrington, W. Clegg, C. Wills and K. Izod, Organometallics, 2009, 28, 2211-2217.
13. R. W. Harrington, W. Clegg, C. Wills and K. Izod, Organometallics, 2009, 28, 5661-5668.
14. S. Herold,A.Mezzetti,A.Albinati,F.Lianza,T.Gerfin,V.Gramlichand L. M. Venanzi, Inorg.Chim.
Acta., 1995, 235, 215-231.
15. S. J. Coles, M. B. Hursthouse, A. Gaumont and J. M. Brown, Chem. Commun., 1999, 1, 63-64.
16. C. Lepetit, L. Toupet, C. Alayrac, J. Lohier, E. Bernoud and I. Abdellah and A. Gaumont, Chem.
Commun., 2012, 48, 4088-4090.
17. R. L. Harlow, M. Kline and A. J. Arduengo, J. Am. Chem. Soc., 1991, 113, 361-363.
18. L. Nyulaszi and A. Fekete, J. Organomet. Chem., 2002, 643-644, 278-284.
38
19. E. Despagnet,H.Gornitzka,A.B.Rozhenko,W.W.Schoeller, D.BourissouandG.Bertrand, Angew.
Chem., Int. Ed., 2002, 41, 2835-2837.
20. R. W. Harrington, W. Clegg, E. R. Clark, J. Stewart and K. Izod, Inorg. Chem., 2010, 49, 4698-4707.
21. R. W. Harrington,W. Clegg,I. Carr, B. V. Tyson,W. Mcfarlane and K.Izod, Organometallics, 2006,
25, 1135-1143.
22. S.E. Sozerli,J.D.Smith,P.B. Hitchcock,T. Ganiczand C. Eaborn, Organometallics, 1997, 16, 5621-
5622.
23. B. Neumann, H. G. Stammler, A. Becker and P. Jutzi, Organometallics, 1991, 10, 1647-1648.
24. C. Wills,E.Anderson,R. W. Harrington, M. R. Probertand K. Izod, organometallics, 2014, 33(19),
5283-5294.
25. R. A. Bartlett, M. M. Olmstead, G. A. Sigel and P. P. Power, Inorg. Chem., 1987, 26, 1941-1946.
26. D. G. Rayner, S. M. El-Hamruni, R. W. Harrington, U. Baisch and K. Izod, Angew. Chem. Int. Ed.,
2014, 53, 3636-3640.
27. K. Izod et al, unpublished.
28. J. Stewart, E. R. Clark, W. Clegg, R. W. Harrington and K. Izod, Inorg. Chem, 2010, 49, 4698-4707.
39
Acknowledgments
I would like to thank supervisor Dr Keith Izod and his postgraduate students Peter Evans and Claire
Jones for their invaluable help and advice, not to mention their patience and commitment to
furthering my understanding of all aspects within the project. I would also like to thank Dr Paul
Waddell for his time and expert knowledge of X-ray crystallography, and Richard Wardle for his
insightful discussions on all matters related to the project.
40
Supplementary Material
NMR Spectra
Figure S1. 1H NMR spectrum of Mes2PH, 24, in CDCl3.
41
Figure S2. 31P{1H} NMR spectrum of Mes2PH, 24, in CDCl3.
Figure S3. 1H{11B} NMR spectrum of Mes2P(BH3)H, 29, in CDCl3.
42
Figure S4. 13C{1H} NMR spectrum of Mes2P(BH3)H, 29, in CDCl3.
Figure S5. 11B{1H} NMR spectrum of Mes2P(BH3)H 29, in CDCl3.
43
Figure S6. 1H{11B} NMR spectrum of [Mes2P(BH3)]Li(THF)2, 26, in THF-d8/toluene-d8.
Figure S7. 7Li NMR spectrum of [Mes2P(BH3)]Li(THF)2, 26, in THF-d8/toluene-d8.
44
Figure S8. 11B{1H} NMR spectrum of [Mes2P(BH3)]Li(THF)2, 26, in THF-d8/toluene-d8.
Figure S9. 13C{1H} NMR spectrum of [Mes2P(BH3)]Li(THF)2, 26, in THF-d8/toluene-d8.
45
Figure S10. 1H{11B} NMR spectrum of [Mes2P(BH3)2]Li(THF)2, 32, in CDCl3.
Figure S11. 7Li NMR spectrum of [Mes2P(BH3)2]Li(THF)2, 32, in CDCl3.
46
Figure S12. 11B NMR spectrum of [Mes2P(BH3)2]Li(THF)2, 32, in CDCl3.
Figure S13. 13C{1H} NMR spectrum of [Mes2P(BH3)2]Li(THF)2, 32, in CDCl3.
47
Figure S14. 1H{11B} NMR spectrum of Dipp2P(BH3)H, 36, in CDCl3.
Figure S15. 11B{1H} NMR spectrum of Dipp2P(BH3)H, 36, in CDCl3.
48
Figure S16. 13C{1H} NMR spectrum of Dipp2P(BH3)H, 36, in CDCl3.
Figure S17. 31P{1H} NMR spectrum of Dipp2P(BH3)H, 36, in CDCl3.
49
Figure S18. 1H NMR spectrum of Ph2PH, 25, in CDCl3.
Figure S19. 31P NMR spectrum of Ph2PH, 25, in CDCl3.
50
Figure S20. 1H{11B} NMR spectrum of Ph2P(BH3)H, 38, in CDCl3.
Figure S21. 11B{1H} NMR spectrum of Ph2P(BH3)H, 38, in CDCl3.
51
Figure S22. 1H{11B} NMR spectrum of [(Ph2P(BH3))3Sn]Li(THF), 41, in THF-d8/toluene-d8.
Figure S23. 7Li NMR spectrum of [(Ph2P(BH3))3Sn]Li(THF), 41, in THF-d8/toluene-d8.
52
Figure S24. 11B{1H} NMR spectrum of [(Ph2P(BH3))3Sn]Li(THF), 41, in THF-d8/toluene-d8.
Figure S25. 13C{1H} NMR spectrum of [(Ph2P(BH3))3Sn]Li(THF), 41, in THF-d8/toluene-d8.
53
Figure S26. 1H{11B} NMR spectrum of Mes2P(BH3)CH2Ph, 45, in CDCl3.
Figure S27. 11B NMR spectrum of Mes2P(BH3)CH2Ph, 45, in CDCl3.
54
Figure S28. 13C{1H} NMR spectrum of Mes2P(BH3)CH2Ph, 45, in CDCl3.
Figure S29. 31P NMR spectrum of Mes2P(BH3)CH2Ph, 45, in CDCl3.
55
Figure S30. 11B{1H} NMR spectrum of [Ph2P(BH3)]Li, 28, reaction mixture after one hour in THF.
Figure S31. 11B{1H} NMR spectrum of [Ph2P(BH3)2]Li, 39, reaction mixture after one hour in THF.
56
Figure S32. 31P NMR spectrum of [Mes2P(BH3)]Li(THF)2, 26, andthe corresponding hydrolysis products, 32 and24 after three
days in THF-d8/toluene-d8.
57
X-ray Crystallography Data
[Mes2P(BH3)]Li(THF)2
Table 1 : Crystal data and structure refinement for [Mes2P(BH3)]Li(THF)2 (26)
Identification code kji160011
Empirical formula C52H82B2Li2O4P2
Formula weight 868.61
Temperature/K 150.0(2)
Crystal system triclinic
Space group P-1
a/Å 9.8199(4)
b/Å 11.2010(3)
c/Å 13.0590(4)
α/° 72.190(3)
β/° 69.572(4)
γ/° 74.325(3)
Volume/Å3 1259.87(9)
Z 1
ρcalcg/cm3 1.145
μ/mm-1 1.095
F(000) 472.0
Crystal size/mm3 0.27 × 0.21 × 0.15
Radiation CuKα (λ = 1.54184)
2Θ range for data collection/° 7.43 to 133.902
Index ranges -11 ≤ h ≤ 11, -13 ≤ k ≤ 13, -15 ≤ l ≤ 15
Reflections collected 34155
Independent reflections 4453 [Rint = 0.0474, Rsigma = 0.0244]
Data/restraints/parameters 4453/0/295
Goodness-of-fit on F2 1.057
Final R indexes [I>=2σ (I)] R1 = 0.0363, wR2 = 0.0883
Final R indexes [all data] R1 = 0.0466, wR2 = 0.0953
Largest diff. peak/hole / e Å-3 0.33/-0.23
Table 2 Fractional Atomic Coordinates (×104) and Equivalent Isotropic Displacement
Parameters (Å2×103) for kji160011. Ueq is defined as 1/3 of of the trace of the
orthogonalised UIJ tensor.
Atom x y z U(eq)
P1 5205.0(5) 7072.2(4) 3281.7(3) 26.74(12)
O1 6045.9(14) 5700.9(11) 7341.4(10) 36.8(3)
O2 8268.5(13) 3887.7(11) 5756.4(9) 34.5(3)
C1 7037.3(18) 7327.2(15) 2287.7(13) 27.2(3)
C2 7958.7(19) 6313.2(15) 1799.1(13) 29.6(4)
C3 9380.5(19) 6436.6(16) 1098.0(14) 33.7(4)
58
C4 9947(2) 7533.2(17) 854.5(13) 34.3(4)
C5 9040(2) 8519.9(16) 1341.8(14) 34.2(4)
C6 7611.3(19) 8441.3(15) 2051.4(13) 30.0(4)
C7 7448(2) 5077.7(16) 2010.3(15) 36.7(4)
C8 11494(2) 7643.4(19) 108.6(16) 43.5(5)
C9 6741(2) 9561.8(16) 2557.4(15) 36.9(4)
C10 3900.1(18) 8570.2(14) 2952.3(13) 26.1(3)
C11 3709.9(19) 8956.9(15) 1861.8(13) 28.4(4)
C12 2584.6(19) 9947.9(15) 1615.9(14) 31.4(4)
C13 1584.4(19) 10587.4(15) 2414.4(14) 32.1(4)
C14 1792.4(19) 10222.8(15) 3472.0(14) 31.1(4)
C15 2923.9(18) 9253.9(14) 3756.5(13) 28.1(3)
C16 4699(2) 8301.3(17) 937.6(14) 36.2(4)
C17 329(2) 11623.1(18) 2148.8(17) 44.7(5)
C18 3040(2) 9020.2(17) 4928.5(14) 38.8(4)
C19 5408(2) 7020.5(17) 7364.3(16) 42.1(5)
C20 5671(2) 7246.0(18) 8352.1(17) 45.9(5)
C21 6853(3) 6142(2) 8646.7(18) 53.7(5)
C22 6557(3) 5105.6(19) 8309.9(18) 56.4(6)
C23 9134(2) 3078.8(16) 6495.8(15) 36.5(4)
C24 10434(2) 2321.5(17) 5781.8(16) 41.8(4)
C25 10638(2) 3203.6(16) 4617.6(15) 36.9(4)
C26 9061(2) 3776.3(18) 4618.9(15) 39.5(4)
B1 5684(2) 6669.5(19) 4706.0(16) 34.2(4)
Li1 6208(3) 4838(3) 6180(2) 32.2(6)
Table 3 Anisotropic Displacement Parameters (Å2×103) for kji160011. The Anisotropic
displacement factor exponent takes the form: -2π2[h2a*2U11+2hka*b*U12+…].
Atom U11 U22 U33 U23 U13 U12
P1 28.2(2) 22.5(2) 26.7(2) -4.95(15) -4.28(16) -5.93(16)
O1 46.9(8) 29.8(6) 35.4(6) -12.4(5) -14.0(6) -1.7(5)
O2 31.8(7) 33.5(6) 31.9(6) -6.1(5) -6.2(5) -2.0(5)
C1 28.7(9) 27.7(8) 23.2(8) -2.9(6) -7.0(6) -6.3(6)
C2 30.3(9) 30.6(8) 26.1(8) -4.9(6) -7.8(7) -5.2(7)
C3 31.3(10) 37.3(9) 29.1(8) -7.9(7) -7.6(7) -2.4(7)
C4 29.9(10) 43.8(10) 25.2(8) 0.3(7) -8.6(7) -9.1(8)
C5 36.5(10) 34.0(9) 31.5(9) 1.4(7) -11.9(7) -13.3(7)
C6 32.4(10) 29.3(8) 27.6(8) -1.6(6) -10.2(7) -8.3(7)
C7 35.4(10) 31.4(9) 40.1(10) -14.4(7) -3.0(8) -4.7(7)
C8 33.3(11) 52.5(11) 36.9(10) 0.1(8) -6.7(8) -11.9(8)
C9 40.2(11) 28.6(9) 42.9(10) -7.4(7) -9.9(8) -12.0(7)
C10 28.8(9) 23.9(7) 26.3(8) -5.0(6) -6.4(6) -9.2(6)
C11 33.2(9) 27.9(8) 26.5(8) -6.0(6) -6.3(7) -12.7(7)
59
C12 36.5(10) 32.9(8) 27.6(8) -1.2(7) -12.5(7) -13.6(7)
C13 32.5(10) 27.8(8) 37.0(9) -4.4(7) -11.9(7) -8.4(7)
C14 31.6(10) 28.6(8) 31.9(9) -10.0(7) -5.4(7) -5.3(7)
C15 32.4(9) 25.2(8) 27.0(8) -5.3(6) -8.0(7) -7.6(7)
C16 41.8(11) 42.5(10) 26.5(8) -11.0(7) -9.1(8) -8.9(8)
C17 41.3(12) 43(1) 49.0(11) -7.0(8) -20.1(9) -1.6(8)
C18 43.3(11) 39.4(10) 29.9(9) -13.2(7) -10.0(8) 3.2(8)
C19 49.4(12) 32.3(9) 44.7(11) -17.3(8) -13.9(9) 2.0(8)
C20 54.7(13) 41.1(10) 46.4(11) -19.7(9) -12.7(9) -7.5(9)
C21 59.4(15) 62.6(13) 45.2(12) -17.5(10) -20.3(10) -8.8(11)
C22 84.0(17) 42.4(11) 44.8(11) -14.0(9) -31.5(11) 6.7(11)
C23 36.2(10) 34.6(9) 35.6(9) -1.5(7) -11.9(8) -7.4(7)
C24 34.1(11) 36.4(10) 48.4(11) -5.3(8) -10.9(8) -2.7(8)
C25 32.9(10) 35.1(9) 40.6(10) -12.8(8) -3.9(8) -7.2(7)
C26 38.2(11) 45.8(10) 33.8(9) -13.2(8) -8.3(8) -5.0(8)
B1 34.9(12) 32.8(10) 27.4(10) -0.7(8) -8.5(8) -2.4(8)
Li1 35.5(16) 28.2(14) 31.4(14) -6.5(11) -9.1(12) -4.8(11)
Table 4 Bond Lengths for kji160011.
Atom Atom Length/Å Atom Atom Length/Å
P1 C1 1.8505(16) C6 C9 1.509(2)
P1 C10 1.8504(16) C10 C11 1.420(2)
P1 B1 1.967(2) C10 C15 1.415(2)
P1 Li11 2.645(3) C11 C12 1.387(2)
O1 C19 1.446(2) C11 C16 1.509(2)
O1 C22 1.429(2) C12 C13 1.388(2)
O1 Li1 1.976(3) C13 C14 1.387(2)
O2 C23 1.448(2) C13 C17 1.505(2)
O2 C26 1.443(2) C14 C15 1.393(2)
O2 Li1 1.987(3) C15 C18 1.512(2)
C1 C2 1.415(2) C19 C20 1.504(3)
C1 C6 1.412(2) C20 C21 1.506(3)
C2 C3 1.393(2) C21 C22 1.487(3)
C2 C7 1.513(2) C23 C24 1.512(3)
C3 C4 1.388(2) C24 C25 1.518(2)
C4 C5 1.386(3) C25 C26 1.507(3)
C4 C8 1.506(2) B1 Li1 2.426(3)
C5 C6 1.395(2) Li1 P11 2.645(3)
1
1-X,1-Y,1-Z
Table 5 Bond Angles for kji160011.
60
Atom Atom Atom Angle/˚ Atom Atom Atom Angle/˚
C1 P1 B1 99.22(8) C15 C10 C11 117.34(15)
C1 P1 Li11 130.60(8) C10 C11 C16 121.70(15)
C10 P1 C1 106.01(7) C12 C11 C10 120.64(15)
C10 P1 B1 117.47(8) C12 C11 C16 117.66(14)
C10 P1 Li11 107.43(8) C11 C12 C13 122.30(15)
B1 P1 Li11 96.42(9) C12 C13 C17 121.70(16)
C19 O1 Li1 126.68(13) C14 C13 C12 116.81(16)
C22 O1 C19 108.47(13) C14 C13 C17 121.49(16)
C22 O1 Li1 124.85(13) C13 C14 C15 123.21(15)
C23 O2 Li1 127.90(13) C10 C15 C18 123.91(15)
C26 O2 C23 109.06(13) C14 C15 C10 119.61(15)
C26 O2 Li1 122.55(13) C14 C15 C18 116.46(14)
C2 C1 P1 118.13(12) O1 C19 C20 106.45(15)
C6 C1 P1 123.70(12) C19 C20 C21 104.74(15)
C6 C1 C2 118.00(15) C22 C21 C20 102.23(17)
C1 C2 C7 121.90(15) O1 C22 C21 106.34(16)
C3 C2 C1 120.05(15) O2 C23 C24 106.10(14)
C3 C2 C7 118.05(14) C23 C24 C25 102.59(14)
C4 C3 C2 122.24(16) C26 C25 C24 101.77(14)
C3 C4 C8 121.56(17) O2 C26 C25 105.72(14)
C5 C4 C3 117.36(16) P1 B1 Li1 139.76(12)
C5 C4 C8 121.07(16) O1 Li1 P11 119.94(13)
C4 C5 C6 122.56(16) O1 Li1 O2 107.33(15)
C1 C6 C9 122.34(15) O1 Li1 B1 100.33(12)
C5 C6 C1 119.78(15) O2 Li1 P11 98.67(11)
C5 C6 C9 117.88(14) O2 Li1 B1 112.84(14)
C11 C10 P1 117.70(11) B1 Li1 P11 117.82(13)
C15 C10 P1 124.28(12)
1
1-X,1-Y,1-Z
Table 6 Torsion Angles for kji160011.
A B C D Angle/˚ A B C D Angle/˚
P1 C1 C2 C3
-
176.23(12)
C11 C12C13C142.4(2)
P1 C1 C2 C7 3.9(2) C11 C12C13C17
-
177.31(16)
P1 C1 C6 C5 176.13(12) C12 C13C14C15-0.9(2)
P1 C1 C6 C9 -2.8(2) C13 C14C15C10-1.8(2)
P1 C10C11C12169.51(12) C13 C14C15C18177.07(16)
P1 C10C11C16-9.6(2) C15 C10C11C12-1.5(2)
P1 C10C15C14
-
167.45(12)
C15 C10C11C16179.42(14)
P1 C10C15C1813.8(2) C16 C11C12C13177.92(15)
61
O1 C19C20C2116.5(2) C17 C13C14C15178.80(16)
O2 C23C24C2528.08(18) C19 O1 C22C21-24.9(2)
C1 P1 C10C1161.60(14) C19 C20C21C22-30.5(2)
C1 P1 C10C15
-
128.10(14) C20 C21C22O1 34.3(2)
C1 C2 C3 C4 0.2(3) C22 O1 C19C204.9(2)
C2 C1 C6 C5 0.9(2) C23 O2 C26C25-17.40(18)
C2 C1 C6 C9
-
178.03(15) C23 C24C25C26-37.56(18)
C2 C3 C4 C5 0.2(2) C24 C25C26O2 34.27(17)
C2 C3 C4 C8 179.08(16) C26 O2 C23C24-6.96(18)
C3 C4 C5 C6 0.0(2) B1 P1 C1 C2 98.76(14)
C4 C5 C6 C1 -0.5(2) B1 P1 C1 C6 -76.48(15)
C4 C5 C6 C9 178.43(16) B1 P1 C10C11171.31(12)
C6 C1 C2 C3 -0.7(2) B1 P1 C10C15-18.39(17)
C6 C1 C2 C7 179.46(15) Li11 P1 C1 C2 -8.00(18)
C7 C2 C3 C4 180.00(16) Li11 P1 C1 C6 176.76(13)
C8 C4 C5 C6
-
178.91(16) Li11 P1 C10C11-81.51(14)
C10P1 C1 C2
-
139.04(13) Li11 P1 C10C1588.79(15)
C10P1 C1 C6 45.72(15) Li1 O1 C19C20
-
174.92(16)
C10C11C12C13-1.2(2) Li1 O1 C22C21154.89(17)
C11C10C15C142.9(2) Li1 O2 C23C24165.03(15)
C11C10C15C18
-
175.85(15) Li1 O2 C26C25170.09(14)
1
1-X,1-Y,1-Z
Table 7 Hydrogen Atom Coordinates (Å×104) and Isotropic Displacement Parameters
(Å2×103) for kji160011.
Atom x y z U(eq)
H3 9983 5747 776 40
H5 9407 9279 1186 41
H7A 7218 4669 2815 55
H7B 8233 4507 1587 55
H7C 6562 5256 1766 55
H8A 12083 7728 545 65
H8B 11462 8396 -516 65
H8C 11945 6878 -189 65
H9A 6002 10048 2166 55
H9B 7412 10113 2480 55
H9C 6243 9253 3356 55
H12 2495 10198 875 38
H14 1131 10655 4030 37
62
H16A 5710 8444 743 54
H16B 4339 8650 274 54
H16C 4691 7384 1196 54
H17A 626 12066 1354 67
H17B 76 12233 2617 67
H17C -534 11245 2302 67
H18A 2962 8133 5326 58
H18B 2239 9594 5337 58
H18C 3995 9182 4882 58
H19A 4335 7184 7452 50
H19B 5885 7593 6658 50
H20A 4757 7258 8992 55
H20B 6011 8066 8148 55
H21A 7854 6332 8218 64
H21B 6751 5920 9461 64
H22A 7470 4468 8128 68
H22B 5796 4671 8926 68
H23A 8537 2501 7124 44
H23B 9480 3602 6811 44
H24A 10208 1504 5802 50
H24B 11326 2146 6032 50
H25A 11199 3866 4514 44
H25B 11149 2724 4024 44
H26A 9005 4625 4090 47
H26B 8643 3217 4396 47
H1A 4720(20) 6349(19) 5464(17) 51
H1B 6590(20) 5800(20) 4587(16) 51
H1C 6120(20) 7440(20) 4824(17) 51
63
[Mes2P(BH3)2]Li(THF)2 (32)
Table 1 : Crystal data and structure refinement for [Mes2P(BH3)2]Li(THF)2
Identification code kji160019_sa
Empirical formula C26H44B2LiO2P
Formula weight 448.14
Temperature/K 150.0(2)
Crystal system monoclinic
Space group P21/c
a/Å 8.85840(10)
b/Å 17.3236(2)
c/Å 17.7774(2)
α/° 90
β/° 93.8780(10)
γ/° 90
Volume/Å3 2721.86(5)
Z 4
ρcalcg/cm3 1.094
μ/mm-1 1.020
F(000) 976.0
Crystal size/mm3 0.25 × 0.21 × 0.15
Radiation CuKα (λ = 1.54184)
2Θ range for data collection/° 7.132 to 133.778
Index ranges -10 ≤ h ≤ 10, -20 ≤ k ≤ 20, -18 ≤ l ≤ 21
Reflections collected 38178
Independent reflections 4841 [Rint = 0.0421, Rsigma = 0.0238]
Data/restraints/parameters 4841/7/328
Goodness-of-fit on F2 1.041
Final R indexes [I>=2σ (I)] R1 = 0.0423, wR2 = 0.1114
Final R indexes [all data] R1 = 0.0484, wR2 = 0.1171
Largest diff. peak/hole / e Å-3 0.30/-0.28
Table 2 Fractional Atomic Coordinates (×104) and Equivalent Isotropic Displacement
Parameters (Å2×103) for kji160019_sa. Ueq is defined as 1/3 of of the trace of the
orthogonalised UIJ tensor.
Atom x y z U(eq)
P1 5440.3(4) 1993.3(2) 3368.2(2) 25.81(13)
O1 8765.4(14) 3325.6(8) 4953.0(7) 43.9(3)
O2 9147.2(15) 3860.0(8) 3325.3(7) 47.4(3)
C1 4192.2(17) 1521.0(9) 4016.6(8) 27.4(3)
C2 4752.5(18) 1188.2(9) 4704.7(9) 29.3(3)
C3 3743(2) 886.0(9) 5191.7(9) 32.6(4)
64
C4 2192(2) 913.5(10) 5040.9(10) 35.4(4)
C5 1651.9(19) 1235.9(10) 4364.3(10) 35.0(4)
C6 2610.8(18) 1544.2(9) 3850.6(9) 30.7(3)
C7 6412(2) 1164.5(11) 4958.5(10) 38.0(4)
C8 1141(2) 634.9(12) 5618.3(11) 47.0(5)
C9 1869.1(19) 1902.7(11) 3143.6(10) 37.9(4)
C10 4839.8(16) 1597.3(9) 2431.1(9) 27.0(3)
C11 4502.6(18) 2071.2(10) 1799.6(10) 33.3(4)
C12 4042.5(19) 1736.9(11) 1109.4(10) 38.2(4)
C13 3911(2) 947.3(12) 1016.4(10) 40.2(4)
C14 4306(2) 483.6(10) 1633.3(10) 37.9(4)
C15 4769.8(17) 788.6(9) 2336.5(9) 30.8(3)
C16 4616(3) 2937.1(11) 1832.6(11) 49.1(5)
C17 3334(3) 598.5(15) 274.4(11) 60.6(6)
C18 5151(2) 218.9(9) 2963.4(10) 36.7(4)
C19 7943(3) 3624.4(16) 5550.9(12) 63.7(6)
C21 9947(3) 2928(2) 6101.7(16) 88.6(10)
C22 9985(3) 2857.4(18) 5278.4(14) 68.2(7)
B1 5202(2) 3087.6(11) 3627.2(12) 35.8(4)
B2 7638(2) 1834.8(11) 3422.2(11) 32.3(4)
Li1 7947(3) 3186.3(19) 3909.5(17) 41.2(7)
C20A8389(4) 3152(2) 6229.5(16) 65.3(8)
C23A8696(4) 4151(2) 2573.6(19) 47.9(8)
C24A9767(4) 4838(3) 2505(4) 63.2(13)
C25A11234(5) 4570(3) 2946(3) 66.9(11)
C26A10618(3) 4146(2) 3584(2) 50.1(8)
C20B9050(17) 3515(9) 6269(7) 65.3(8)
C23B9080(13) 3916(7) 2524(6) 47.9(8)
C24B9238(17) 4789(9) 2384(12) 63.2(13)
C25B10780(17) 4791(9) 2896(9) 66.9(11)
C26B10196(11) 4434(6) 3586(6) 50.1(8)
Table 3 Anisotropic Displacement Parameters (Å2×103) for kji160019_sa. The
Anisotropic displacement factor exponent takes the form: -
2π2[h2a*2U11+2hka*b*U12+…].
Atom U11 U22 U33 U23 U13 U12
P1 23.0(2) 26.9(2) 27.2(2) 0.33(14) -0.79(15) -0.26(14)
O1 42.5(7) 54.8(8) 33.7(6) -3.4(5) -1.7(5) -0.6(6)
O2 45.5(7) 56.1(8) 39.8(7) 7.1(6) -4.0(6) -16.2(6)
C1 27.6(8) 27.5(7) 27.1(7) -2.0(6) 1.4(6) 0.4(6)
C2 33.5(8) 27.1(8) 26.8(7) -3.6(6) -1.1(6) 1.0(6)
C3 43.1(9) 30.0(8) 24.7(7) -1.0(6) 1.0(7) 0.4(7)
C4 40.8(9) 31.9(8) 34.5(9) -2.9(7) 9.5(7) -1.8(7)
C5 27.2(8) 38.6(9) 39.6(9) -2.0(7) 5.6(7) -0.1(7)
65
C6 28.4(8) 33.1(8) 30.7(8) -1.3(6) 1.7(6) 0.5(6)
C7 38.2(9) 41.5(9) 33.2(9) 5.2(7) -6.7(7) 0.6(7)
C8 49.4(11) 49.9(11) 43.6(10) 3.0(8) 15.8(9) -3.2(9)
C9 24.5(8) 49.8(10) 39.1(9) 7.4(8) -0.7(7) 0.9(7)
C10 22.7(7) 30.7(8) 27.4(7) 1.2(6) 0.9(6) -1.3(6)
C11 28.3(8) 37.6(9) 33.6(8) 5.6(7) -1.1(6) -1.2(6)
C12 33.3(9) 50.7(10) 29.8(8) 9.5(7) -3.2(7) -2.4(7)
C13 37.2(9) 52.9(11) 29.8(9) -2.9(7) -1.7(7) -6.7(8)
C14 40.7(9) 35.9(9) 37.1(9) -4.5(7) 1.9(7) -5.5(7)
C15 29.0(8) 33.3(8) 29.9(8) -0.8(6) 1.3(6) -2.3(6)
C16 67.0(13) 38(1) 40.8(10) 13.8(8) -6.8(9) -1.7(9)
C17 69.4(14) 75.4(15) 35.5(10) -8.7(10) -8.7(10) -14.1(12)
C18 46.8(10) 26.4(8) 36.5(9) 0.1(7) -0.9(7) 1.1(7)
C19 73.2(15) 76.0(16) 41.6(11) -10.1(10) 1.9(11) 22.2(12)
C21 70.1(17) 138(3) 56.3(15) 23.7(16) -7.2(13) 20.3(18)
C22 46.2(12) 98.4(19) 57.4(13) -16.3(13) -15.3(10) 20.7(12)
B1 32.1(10) 29.6(9) 45.2(11) -5.6(8) -0.7(8) 0.3(7)
B2 23.1(8) 37.7(10) 35.8(10) -1.7(8) -0.3(7) 0.2(7)
Li1 39.7(16) 46.1(17) 37.5(16) 2.6(13) -0.8(13) -7.3(13)
C20A72(2) 81(2) 43.4(14) 6.6(14) 9.9(14) -7.5(16)
C23A39(2) 62(2) 42.5(12) 8.4(15) 5.3(13) 9.1(13)
C24A56(3) 70.2(18) 66(3) 19.0(17) 24(3) 6(2)
C25A51(3) 63(3) 89(2) 1(2) 27(2) -5.0(16)
C26A32.7(17) 62(2) 55.1(14) 0.7(17) -3.7(14) -6.6(13)
C20B72(2) 81(2) 43.4(14) 6.6(14) 9.9(14) -7.5(16)
C23B39(2) 62(2) 42.5(12) 8.4(15) 5.3(13) 9.1(13)
C24B56(3) 70.2(18) 66(3) 19.0(17) 24(3) 6(2)
C25B51(3) 63(3) 89(2) 1(2) 27(2) -5.0(16)
C26B32.7(17) 62(2) 55.1(14) 0.7(17) -3.7(14) -6.6(13)
Table 4 Bond Lengths for kji160019_sa.
Atom Atom Length/Å Atom Atom Length/Å
P1 C1 1.8419(16) C10 C15 1.412(2)
P1 C10 1.8464(16) C11 C12 1.393(2)
P1 B1 1.9655(19) C11 C16 1.504(3)
P1 B2 1.9619(18) C12 C13 1.382(3)
O1 C19 1.426(3) C13 C14 1.385(3)
O1 C22 1.440(3) C13 C17 1.508(3)
O1 Li1 1.960(3) C14 C15 1.393(2)
O2 Li1 1.929(3) C15 C18 1.510(2)
O2 C23A 1.458(3) C19 C20A1.489(4)
O2 C26A 1.440(3) C19 C20B1.567(12)
O2 C23B 1.425(10) C21 C22 1.471(4)
66
O2 C26B 1.418(10) C21 C20A1.466(4)
C1 C2 1.412(2) C21 C20B1.336(13)
C1 C6 1.413(2) B1 Li1 2.455(4)
C2 C3 1.388(2) B2 Li1 2.505(4)
C2 C7 1.509(2) C23AC24A1.533(5)
C3 C4 1.383(3) C24AC25A1.543(5)
C4 C5 1.382(2) C25AC26A1.486(5)
C4 C8 1.511(2) C23B C24B1.540(15)
C5 C6 1.395(2) C24B C25B1.589(14)
C6 C9 1.512(2) C25B C26B1.497(14)
C10 C11 1.406(2)
Table 5 Bond Angles for kji160019_sa.
Atom Atom Atom Angle/˚ Atom Atom Atom Angle/˚
C1 P1 C10 104.54(7) C12 C11 C10 119.62(16)
C1 P1 B1 101.74(8) C12 C11 C16 117.64(15)
C1 P1 B2 122.87(8) C13 C12 C11 122.31(16)
C10 P1 B1 122.73(8) C12 C13 C14 117.68(16)
C10 P1 B2 102.51(7) C12 C13 C17 121.47(18)
B2 P1 B1 104.20(8) C14 C13 C17 120.84(18)
C19 O1 C22 108.18(16) C13 C14 C15 122.27(16)
C19 O1 Li1 125.12(16) C10 C15 C18 123.71(14)
C22 O1 Li1 122.00(16) C14 C15 C10 119.40(15)
C23AO2 Li1 125.13(19) C14 C15 C18 116.88(15)
C26AO2 Li1 123.74(18) O1 C19 C20A 106.5(2)
C26AO2 C23A111.1(2) O1 C19 C20B 103.9(5)
C23BO2 Li1 126.3(5) C20AC21 C22 105.2(2)
C26BO2 Li1 128.4(5) C20BC21 C22 109.8(6)
C26BO2 C23B105.1(7) O1 C22 C21 106.6(2)
C2 C1 P1 122.20(12) P1 B1 Li1 89.70(11)
C2 C1 C6 118.57(14) P1 B2 Li1 88.33(10)
C6 C1 P1 119.04(12) O1 Li1 B1 119.99(15)
C1 C2 C7 123.26(14) O1 Li1 B2 117.85(15)
C3 C2 C1 119.40(15) O2 Li1 O1 104.65(15)
C3 C2 C7 117.30(14) O2 Li1 B1 120.42(16)
C4 C3 C2 122.64(15) O2 Li1 B2 115.50(15)
C3 C4 C8 120.48(16) B1 Li1 B2 77.33(11)
C5 C4 C3 117.62(15) C21 C20AC19 102.8(2)
C5 C4 C8 121.84(16) O2 C23AC24A 102.1(3)
C4 C5 C6 122.30(15) C23AC24AC25A 103.3(4)
C1 C6 C9 123.67(14) C26AC25AC24A 101.4(3)
C5 C6 C1 119.45(15) O2 C26AC25A 107.3(3)
C5 C6 C9 116.87(14) C21 C20BC19 105.1(8)
67
C11 C10 P1 122.41(12) O2 C23BC24B 103.4(11)
C11 C10 C15 118.62(14) C23BC24BC25B 89.6(12)
C15 C10 P1 118.92(11) C26BC25BC24B 97.9(12)
C10 C11 C16 122.75(16) O2 C26BC25B 106.1(10)
Table 6 Torsion Angles for kji160019_sa.
A B C D Angle/˚ A B C D Angle/˚
P1 C1 C2 C3 175.78(12) C13 C14 C15 C18 179.31(16)
P1 C1 C2 C7 -2.1(2) C15 C10 C11 C12 3.0(2)
P1 C1 C6 C5
-
175.52(12)
C15 C10 C11 C16
-
177.03(16)
P1 C1 C6 C9 3.2(2) C16 C11 C12 C13 179.58(18)
P1 C10 C11 C12
-
179.43(12) C17 C13 C14 C15
-
176.72(18)
P1 C10 C11 C16 0.6(2) C19 O1 C22 C21 -4.1(3)
P1 C10 C15 C14 179.46(12) C22 O1 C19 C20A -16.4(3)
P1 C10 C15 C18 0.4(2) C22 O1 C19 C20B 17.2(7)
O1 C19 C20AC21 30.3(3) C22 C21 C20AC19 -32.3(4)
O1 C19 C20B C21 -25.5(11) C22 C21 C20B C19 23.6(11)
O2 C23AC24AC25A 34.2(4) B1 P1 C1 C2 -98.30(14)
O2 C23BC24B C25B 55.8(12) B1 P1 C1 C6 76.64(14)
C1 P1 C10 C11 129.53(13) B1 P1 C10 C11 14.91(16)
C1 P1 C10 C15 -52.90(13) B1 P1 C10 C15
-
167.52(12)
C1 C2 C3 C4 -1.7(2) B2 P1 C1 C2 17.34(16)
C2 C1 C6 C5 -0.4(2) B2 P1 C1 C6
-
167.72(12)
C2 C1 C6 C9 178.37(15) B2 P1 C10 C11
-
101.27(14)
C2 C3 C4 C5 2.1(2) B2 P1 C10 C15 76.30(13)
C2 C3 C4 C8
-
174.98(16) Li1 O1 C19 C20A 139.5(2)
C3 C4 C5 C6 -1.6(3) Li1 O1 C19 C20B 173.1(7)
C4 C5 C6 C1 0.8(3) Li1 O1 C22 C21 -160.9(2)
C4 C5 C6 C9
-
178.04(16) Li1 O2 C23AC24A 161.8(3)
C6 C1 C2 C3 0.8(2) Li1 O2 C26AC25A 173.9(2)
C6 C1 C2 C7
-
177.07(15) Li1 O2 C23B C24B 140.4(7)
C7 C2 C3 C4 176.31(15) Li1 O2 C26B C25B -179.0(6)
C8 C4 C5 C6 175.40(16) C20AC21 C22 O1 23.3(4)
C10P1 C1 C2 133.06(13) C23AO2 C26AC25A -6.4(4)
C10P1 C1 C6 -52.00(14) C23AC24AC25AC26A -38.0(5)
C10C11 C12 C13 -0.4(3) C24AC25AC26AO2 27.5(4)
C11C10 C15 C14 -2.9(2) C26AO2 C23AC24A -17.8(3)
C11C10 C15 C18 178.09(15) C20B C21 C22 O1 -13.5(9)
68
C11C12 C13 C14 -2.2(3) C23B O2 C26B C25B -2.8(9)
C11C12 C13 C17 176.82(18) C23B C24BC25B C26B -54.3(12)
C12C13 C14 C15 2.3(3) C24B C25BC26B O2 38.4(12)
C13C14 C15 C10 0.2(3) C26B O2 C23B C24B -35.9(10)
Table 7 Hydrogen Atom Coordinates (Å×104) and Isotropic Displacement Parameters
(Å2×103) for kji160019_sa.
Atom x y z U(eq)
H3 4126 656 5637 39
H5 613 1248 4247 42
H7A 6967 934 4571 57
H7B 6551 865 5412 57
H7C 6773 1680 5053 57
H8A 1359 105 5739 71
H8B 112 680 5416 71
H8C 1284 943 6066 71
H9A 2358 2383 3044 57
H9B 818 1994 3212 57
H9C 1960 1558 2726 57
H12 3816 2056 697 46
H14 4260 -50 1576 45
H16A 3963 3131 2199 74
H16B 4315 3149 1347 74
H16C 5641 3084 1973 74
H17A 2248 607 237 91
H17B 3681 75 246 91
H17C 3706 892 -132 91
H18A 6053 382 3248 55
H18B 5311 -282 2752 55
H18C 4330 194 3289 55
H19A 6863 3584 5426 76
H19B 8195 4163 5641 76
H19C 7012 3339 5597 76
H19D 7702 4165 5470 76
H21A 10201 2440 6346 106
H21B 10655 3318 6296 106
H21C 9570 2452 6308 106
H21D 10961 3016 6325 106
H22A 10947 3038 5116 82
H22B 9849 2323 5125 82
H1A 5580(30) 3054(13) 4268(13) 54
H1B 4020(30) 3306(13) 3556(13) 54
H1C 6010(30) 3449(13) 3305(13) 54
69
H2A 8130(20) 2069(13) 3970(12) 48
H2B 8000(20) 1250(13) 3329(12) 48
H2C 7910(20) 2215(13) 2935(12) 48
H20A 8348 3453 6688 78
H20B 7743 2702 6260 78
H23A 7646 4314 2537 58
H23B 8845 3765 2190 58
H24A 9365 5299 2727 76
H24B 9942 4942 1981 76
H25A 11825 4234 2644 80
H25B 11850 5005 3122 80
H26A 11280 3720 3739 60
H26B 10536 4488 4012 60
H20C 9638 3979 6373 78
H20D 8493 3393 6705 78
H23C 8123 3723 2302 58
H23D 9899 3631 2319 58
H24C 8445 5096 2586 76
H24D 9359 4920 1861 76
H25C 11552 4477 2684 80
H25D 11163 5309 2989 80
H26C 11018 4205 3898 60
H26D 9703 4820 3880 60
Table 8 Atomic Occupancy for kji160019_sa.
Atom Occupancy Atom Occupancy Atom Occupancy
H19A 0.8238 H19B 0.8238 H19C 0.1762
H19D 0.1762 H21A 0.8238 H21B 0.8238
H21C 0.1762 H21D 0.1762 C20A 0.8238
H20A 0.8238 H20B 0.8238 C23A 0.7342
H23A 0.7342 H23B 0.7342 C24A 0.7342
H24A 0.7342 H24B 0.7342 C25A 0.7342
H25A 0.7342 H25B 0.7342 C26A 0.7342
H26A 0.7342 H26B 0.7342 C20B 0.1762
H20C 0.1762 H20D 0.1762 C23B 0.2658
H23C 0.2658 H23D 0.2658 C24B 0.2658
H24C 0.2658 H24D 0.2658 C25B 0.2658
H25C 0.2658 H25D 0.2658 C26B 0.2658
H26C 0.2658 H26D 0.2658
70
[(Ph2P(BH3))3Sn]Li(THF) (41)
Table 1 : Crystal data and structure refinement for [(Ph2P(BH3))3Sn]Li(THF)
Identification code kji160027_fa
Empirical formula C40H47B3LiOP3Sn
Formula weight 794.74
Temperature/K 150.0(2)
Crystal system orthorhombic
Space group P212121
a/Å 12.0937(3)
b/Å 17.3507(5)
c/Å 19.0102(6)
α/° 90
β/° 90
γ/° 90
Volume/Å3 3988.99(19)
Z 4
ρcalcg/cm3 1.323
μ/mm-1 0.791
F(000) 1632.0
Crystal size/mm3 0.2 × 0.16 × 0.11
Radiation MoKα (λ = 0.71073)
2Θ range for data collection/° 5.78 to 52.04
Index ranges -14 ≤ h ≤ 14, -20 ≤ k ≤ 21, -23 ≤ l ≤ 21
Reflections collected 21477
Independent reflections 7674 [Rint = 0.0472, Rsigma = 0.0604]
Data/restraints/parameters 7674/71/484
Goodness-of-fit on F2 1.043
Final R indexes [I>=2σ (I)] R1 = 0.0370, wR2 = 0.0655
Final R indexes [all data] R1 = 0.0527, wR2 = 0.0717
Largest diff. peak/hole / e Å-3 0.76/-0.43
Flack parameter -0.047(16)
Table 2 Fractional Atomic Coordinates (×104) and Equivalent Isotropic Displacement
Parameters (Å2×103) for kji160027_fa. Ueq is defined as 1/3 of of the trace of the
orthogonalised UIJ tensor.
Atom x y z U(eq)
Sn1 5013.0(4) 3701.4(2) 2638.2(2) 21.78(10)
P1 7144.7(11) 3695.6(8) 2851.3(8) 27.7(3)
71
P2 4673.7(11) 4894.3(7) 3476.6(7) 23.8(3)
P3 5091.5(15) 4519.0(6) 1475.2(6) 24.5(3)
C1 7736(4) 3104(3) 2149(3) 27.3(13)
C2 8381(5) 3441(3) 1634(3) 35.4(15)
C3 8825(5) 3001(3) 1092(3) 41.7(16)
C4 8624(5) 2225(3) 1062(3) 40.3(16)
C5 7980(6) 1886(3) 1562(4) 46.8(18)
C6 7533(5) 2320(3) 2104(3) 38.8(15)
C7 7304(5) 3129(3) 3661(3) 32.5(14)
C8 6618(5) 2511(3) 3812(3) 35.7(15)
C9 6736(6) 2094(3) 4435(3) 43.4(17)
C10 7549(6) 2291(4) 4904(4) 47.3(18)
C11 8225(6) 2912(4) 4763(4) 51.8(19)
C12 8108(5) 3331(3) 4148(4) 42.1(16)
C13 5265(4) 4588(3) 4312(3) 24.5(13)
C14 5999(4) 5062(3) 4672(3) 28.0(13)
C15 6439(5) 4834(3) 5309(3) 34.0(14)
C16 6151(5) 4142(3) 5600(3) 35.3(15)
C17 5413(5) 3666(3) 5251(3) 33.9(13)
C18 4992(6) 3884(2) 4610(2) 30.1(11)
C19 3197(4) 4834(3) 3646(3) 23.5(12)
C20 2457(5) 4706(3) 3095(3) 30.2(15)
C21 1328(5) 4737(3) 3210(3) 31.3(14)
C22 913(5) 4892(3) 3862(3) 33.3(14)
C23 1628(5) 5016(4) 4410(3) 41.1(16)
C24 2762(5) 4988(3) 4305(3) 36.6(14)
C25 3609(4) 4610(3) 1329(3) 26.2(13)
C26 3108(5) 5324(3) 1401(3) 33.4(14)
C27 1976(5) 5404(3) 1331(3) 38.0(15)
C28 1333(5) 4771(3) 1203(3) 39.1(15)
C29 1813(5) 4059(3) 1132(3) 38.6(15)
C30 2945(5) 3973(3) 1187(3) 33.0(14)
C31 5591(4) 3898(3) 769(3) 24.2(12)
C32 5620(5) 3097(3) 815(3) 30.5(14)
C33 6055(5) 2652(3) 282(3) 34.5(14)
C34 6462(5) 2999(3) -315(3) 36.4(15)
C35 6425(5) 3796(3) -382(3) 32.9(14)
C36 5990(5) 4234(3) 155(3) 26.9(13)
B1 7920(7) 4673(4) 2900(5) 39(2)
B2 4995(8) 5992(3) 3330(3) 30.2(13)
B3 5798(7) 5527(4) 1382(4) 35.6(17)
Li1 6854(9) 5793(5) 2472(6) 48(3)
O1A 8015(16) 6537(12) 2450(20) 39(3)
C37A7810(15) 7305(13) 2248(13) 67(5)
C38A8888(17) 7669(12) 2116(13) 75(5)
72
C39A9744(14) 7059(10) 2195(17) 62(4)
C40A9175(15) 6453(9) 2584(17) 47(3)
O1B 7836(16) 6637(11) 2330(20) 39(3)
C37B7620(15) 7296(13) 1922(13) 67(5)
C38B8641(16) 7682(12) 1800(13) 75(5)
C39B9508(14) 7326(10) 2233(16) 62(4)
C40B8947(14) 6685(9) 2599(15) 47(3)
Table 3 Anisotropic Displacement Parameters (Å2×103) for kji160027_fa. The
Anisotropic displacement factor exponent takes the form: -
2π2[h2a*2U11+2hka*b*U12+…].
Atom U11 U22 U33 U23 U13 U12
Sn1 16.65(15) 25.15(15) 23.54(17) -1.39(14) -0.4(2) -1.3(2)
P1 17.8(7) 26.4(6) 38.7(9) -6.1(7) -3.4(6) -0.1(6)
P2 20.4(8) 28.6(6) 22.4(7) -2.3(6) 0.8(6) 0.5(6)
P3 22.9(7) 27.6(5) 23.0(6) -0.6(5) 2.1(9) -2.7(8)
C1 16(3) 30(3) 35(4) -2(2) -5(3) 3(2)
C2 28(3) 32(3) 46(4) -2(3) 0(3) -2(3)
C3 36(4) 47(4) 43(4) -3(3) 10(3) 0(3)
C4 33(4) 43(3) 45(4) -13(3) 5(3) 3(3)
C5 51(4) 30(3) 60(5) -12(3) 3(4) 3(3)
C6 40(4) 32(3) 45(4) -4(3) 11(3) -4(3)
C7 26(3) 36(3) 35(4) -11(3) -8(3) 10(3)
C8 38(4) 31(3) 38(4) -2(3) -5(3) 7(3)
C9 50(4) 37(3) 43(4) -3(3) 0(4) 16(3)
C10 54(5) 47(4) 41(4) -3(4) -5(4) 26(4)
C11 52(5) 66(5) 37(4) -13(4) -20(4) 21(4)
C12 35(4) 42(3) 49(4) -11(3) -10(3) 9(3)
C13 21(3) 27(2) 25(3) -4(2) 1(2) 0(2)
C14 21(3) 33(3) 29(3) -3(3) 0(3) -5(3)
C15 25(3) 49(3) 28(3) -5(3) -5(3) -2(3)
C16 30(3) 46(3) 30(4) 3(3) -4(3) 3(3)
C17 35(3) 34(3) 33(3) 0(3) -2(3) 5(3)
C18 28(3) 31(2) 32(3) -5(2) 5(4) -5(4)
C19 19(3) 28(3) 24(3) -3(2) 2(3) -1(2)
C20 27(3) 39(3) 24(4) 0(3) 3(3) 5(3)
C21 24(3) 40(3) 30(3) -8(3) -5(3) 1(3)
C22 15(3) 46(3) 38(4) -3(3) 2(3) 3(3)
C23 32(4) 67(4) 25(3) -2(3) 7(3) 8(3)
C24 24(3) 62(4) 24(3) -4(3) -2(3) 3(3)
C25 24(3) 35(3) 19(3) 5(2) 5(2) -3(2)
C26 33(4) 35(3) 32(3) 8(3) -2(3) 4(3)
C27 35(4) 41(3) 38(4) 9(3) 2(3) 15(3)
C28 23(3) 59(4) 35(4) 7(3) -1(3) 7(3)
73
C29 23(3) 49(4) 44(4) -6(3) -3(3) -3(3)
C30 29(3) 37(3) 32(3) -3(3) -5(3) 3(3)
C31 20(3) 35(3) 18(3) 1(2) -2(2) 0(2)
C32 30(3) 34(3) 27(3) 3(3) 3(3) -3(3)
C33 43(4) 28(3) 33(4) 0(3) 2(3) -2(3)
C34 34(4) 45(3) 31(3) -11(3) 4(3) 1(3)
C35 33(3) 43(3) 23(3) 2(3) 5(3) -10(3)
C36 24(3) 27(3) 30(3) -1(3) -4(3) 2(2)
B1 26(4) 30(3) 62(6) -12(4) -6(4) -6(3)
B2 32(3) 26(2) 33(3) -3(2) 4(5) 1(4)
B3 42(4) 30(3) 35(4) -3(3) 8(4) -16(3)
Li1 35(6) 37(5) 72(9) -4(5) 15(6) -8(4)
O1A 27(5) 33(4) 58(10) 5(4) -3(5) 0(4)
C37A50(6) 42(4) 110(16) 10(9) -22(7) 11(4)
C38A66(8) 47(4) 113(14) 31(8) -22(8) -6(5)
C39A43(6) 62(9) 80(6) 19(9) -15(6) -10(5)
C40A32(6) 41(8) 69(5) 10(7) -17(6) -4(5)
O1B 27(5) 33(4) 58(10) 5(4) -3(5) 0(4)
C37B50(6) 42(4) 110(16) 10(9) -22(7) 11(4)
C38B66(8) 47(4) 113(14) 31(8) -22(8) -6(5)
C39B43(6) 62(9) 80(6) 19(9) -15(6) -10(5)
C40B32(6) 41(8) 69(5) 10(7) -17(6) -4(5)
Table 4 Bond Lengths for kji160027_fa.
Atom Atom Length/Å Atom Atom Length/Å
Sn1 P1 2.6097(14) C20 C21 1.384(8)
Sn1 P2 2.6444(13) C21 C22 1.365(8)
Sn1 P3 2.6288(13) C22 C23 1.372(8)
P1 C1 1.830(6) C23 C24 1.387(8)
P1 C7 1.836(6) C25 C26 1.387(8)
P1 B1 1.940(7) C25 C30 1.392(7)
P2 C13 1.821(5) C26 C27 1.382(8)
P2 C19 1.818(5) C27 C28 1.368(8)
P2 B2 1.963(5) C28 C29 1.371(8)
P3 C25 1.821(6) C29 C30 1.380(8)
P3 C31 1.825(5) C31 C32 1.393(7)
P3 B3 1.954(6) C31 C36 1.391(7)
C1 C2 1.381(8) C32 C33 1.377(8)
C1 C6 1.384(7) C33 C34 1.376(8)
C2 C3 1.391(8) C34 C35 1.389(7)
C3 C4 1.369(8) C35 C36 1.376(8)
C4 C5 1.363(9) B1 Li1 2.470(13)
C5 C6 1.386(8) B2 Li1 2.798(14)
74
C7 C8 1.386(8) B3 Li1 2.477(14)
C7 C12 1.388(8) Li1 O1A 1.908(15)
C8 C9 1.394(8) Li1 O1B 1.904(15)
C9 C10 1.371(9) O1A C37A1.408(16)
C10 C11 1.380(10) O1A C40A1.433(14)
C11 C12 1.384(9) C37AC38A1.470(16)
C13 C14 1.390(7) C38AC39A1.488(19)
C13 C18 1.386(6) C39AC40A1.459(15)
C14 C15 1.382(8) O1B C37B1.409(14)
C15 C16 1.367(8) O1B C40B1.438(15)
C16 C17 1.385(8) C37B C38B1.424(16)
C17 C18 1.375(7) C38B C39B1.469(18)
C19 C20 1.394(8) C39B C40B1.477(15)
C19 C24 1.385(7)
Table 5 Bond Angles for kji160027_fa.
Atom Atom Atom Angle/˚ Atom Atom Atom Angle/˚
P1 Sn1 P2 93.60(4) C21 C20 C19 120.5(5)
P1 Sn1 P3 95.56(5) C22 C21 C20 120.9(6)
P3 Sn1 P2 95.17(4) C21 C22 C23 119.3(5)
C1 P1 Sn1 105.94(18) C22 C23 C24 120.5(5)
C1 P1 C7 105.7(2) C19 C24 C23 120.9(6)
C1 P1 B1 109.6(3) C26 C25 P3 119.5(4)
C7 P1 Sn1 103.6(2) C26 C25 C30 118.4(5)
C7 P1 B1 112.2(3) C30 C25 P3 122.0(4)
B1 P1 Sn1 118.8(2) C27 C26 C25 120.8(6)
C13 P2 Sn1 103.66(15) C28 C27 C26 120.0(6)
C13 P2 B2 109.2(3) C27 C28 C29 120.0(6)
C19 P2 Sn1 102.33(17) C28 C29 C30 120.7(6)
C19 P2 C13 102.4(2) C29 C30 C25 120.1(5)
C19 P2 B2 106.0(3) C32 C31 P3 123.4(4)
B2 P2 Sn1 130.0(2) C36 C31 P3 119.0(4)
C25 P3 Sn1 98.04(17) C36 C31 C32 117.6(5)
C25 P3 C31 105.3(2) C33 C32 C31 121.4(5)
C25 P3 B3 109.8(3) C34 C33 C32 119.9(5)
C31 P3 Sn1 108.19(16) C33 C34 C35 119.9(5)
C31 P3 B3 108.5(3) C36 C35 C34 119.7(5)
B3 P3 Sn1 125.1(2) C35 C36 C31 121.5(5)
C2 C1 P1 120.0(4) P1 B1 Li1 114.8(4)
C2 C1 C6 118.2(5) P2 B2 Li1 97.0(3)
C6 C1 P1 121.8(4) P3 B3 Li1 108.4(4)
C1 C2 C3 120.7(5) B1 Li1 B2 108.9(5)
C4 C3 C2 120.1(6) B1 Li1 B3 113.4(5)
75
C5 C4 C3 119.8(6) B3 Li1 B2 95.5(4)
C4 C5 C6 120.4(5) O1A Li1 B1 99.0(8)
C1 C6 C5 120.7(6) O1A Li1 B2 121.5(13)
C8 C7 P1 121.7(5) O1A Li1 B3 119.0(12)
C8 C7 C12 118.5(6) O1B Li1 B1 109.0(8)
C12 C7 P1 119.8(5) O1B Li1 B2 119.1(12)
C7 C8 C9 121.0(6) O1B Li1 B3 110.4(11)
C10 C9 C8 119.8(6) C37AO1A Li1 121.1(13)
C9 C10 C11 119.5(7) C37AO1A C40A 108.5(9)
C10 C11 C12 120.9(6) C40AO1A Li1 130.3(14)
C11 C12 C7 120.2(6) O1A C37AC38A 107.3(11)
C14 C13 P2 120.5(4) C37AC38AC39A 107.1(11)
C18 C13 P2 121.3(4) C40AC39AC38A 103.6(11)
C18 C13 C14 118.2(5) O1A C40AC39A 107.2(10)
C15 C14 C13 120.6(5) C37BO1B Li1 125.9(14)
C16 C15 C14 120.5(5) C37BO1B C40B 108.7(9)
C15 C16 C17 119.7(6) C40BO1B Li1 125.4(12)
C18 C17 C16 119.9(5) O1B C37BC38B 108.2(10)
C17 C18 C13 121.1(5) C37BC38BC39B 109.2(10)
C20 C19 P2 120.4(4) C38BC39BC40B 104.7(10)
C24 C19 P2 121.4(4) O1B C40BC39B 107.9(10)
C24 C19 C20 117.8(5)
Table 6 Torsion Angles for kji160027_fa.
A B C D Angle/˚ A B C D Angle/˚
Sn1 P1 C1 C2 111.8(4) C19 P2 C13 C18 55.8(5)
Sn1 P1 C1 C6 -66.5(5) C19 C20 C21 C22 0.0(9)
Sn1 P1 C7 C8 34.6(5) C20 C19 C24 C23 -0.1(9)
Sn1 P1 C7 C12-143.5(4) C20 C21 C22 C23 -0.3(9)
Sn1 P2 C13C14130.2(4) C21 C22 C23 C24 0.3(9)
Sn1 P2 C13C18-50.4(5) C22 C23 C24 C19 -0.1(10)
Sn1 P2 C19C20-46.0(4) C24 C19 C20 C21 0.2(8)
Sn1 P2 C19C24140.6(4) C25 P3 C31 C32 -88.2(5)
Sn1 P3 C25C26111.4(4) C25 P3 C31 C36 93.3(4)
Sn1 P3 C25C30-64.6(5) C25 C26 C27 C28 1.4(9)
Sn1 P3 C31C3215.8(5) C26 C25 C30 C29 -1.0(8)
Sn1 P3 C31C36-162.7(4) C26 C27 C28 C29 -1.2(9)
P1 C1 C2 C3 -179.2(5) C27 C28 C29 C30 -0.1(9)
P1 C1 C6 C5 179.3(5) C28 C29 C30 C25 1.2(9)
P1 C7 C8 C9 -178.8(4) C30 C25 C26 C27 -0.3(9)
P1 C7 C12C11179.3(5) C31 P3 C25 C26 -137.2(5)
P2 C13C14C15179.3(4) C31 P3 C25 C30 46.8(5)
P2 C13C18C17-177.9(4) C31 C32 C33 C34 -0.6(9)
76
P2 C19C20C21-173.5(4) C32 C31 C36 C35 -1.6(8)
P2 C19C24C23173.4(5) C32 C33 C34 C35 -0.6(9)
P3 C25C26C27-176.5(5) C33 C34 C35 C36 0.7(9)
P3 C25C30C29175.1(5) C34 C35 C36 C31 0.5(9)
P3 C31C32C33-176.8(5) C36 C31 C32 C33 1.7(8)
P3 C31C36C35176.9(4) B1 P1 C1 C2 -17.5(6)
C1 P1 C7 C8 -76.6(5) B1 P1 C1 C6 164.2(5)
C1 P1 C7 C12105.4(5) B1 P1 C7 C8 164.0(5)
C1 C2 C3 C4 0.1(10) B1 P1 C7 C12 -14.1(6)
C2 C1 C6 C5 1.0(9) B2 P2 C13 C14 -11.5(5)
C2 C3 C4 C5 0.5(10) B2 P2 C13 C18 167.9(5)
C3 C4 C5 C6 -0.3(10) B2 P2 C19 C20 92.3(5)
C4 C5 C6 C1 -0.4(10) B2 P2 C19 C24 -81.1(5)
C6 C1 C2 C3 -0.8(9) B3 P3 C25 C26 -20.6(6)
C7 P1 C1 C2 -138.7(5) B3 P3 C25 C30 163.4(5)
C7 P1 C1 C6 43.0(6) B3 P3 C31 C32 154.2(5)
C7 C8 C9 C10-0.7(9) B3 P3 C31 C36 -24.3(5)
C8 C7 C12C111.1(9) Li1 O1A C37A C38A-166(2)
C8 C9 C10C111.7(9) Li1 O1A C40A C39A154(3)
C9 C10C11C12-1.3(10) Li1 O1B C37B C38B -165(3)
C10C11C12C7 -0.1(10) Li1 O1B C40B C39B 166(3)
C12C7 C8 C9 -0.7(8) O1A C37AC38A C39A4(3)
C13P2 C19C20-153.2(4) C37AO1A C40A C39A-24(3)
C13P2 C19C2433.4(5) C37AC38AC39A C40A-18(3)
C13C14C15C16-0.7(9) C38AC39AC40A O1A 25(3)
C14C13C18C171.5(8) C40AO1A C37A C38A12(3)
C14C15C16C170.1(9) O1B C37B C38B C39B -9(3)
C15C16C17C181.3(9) C37BO1B C40B C39B -11(3)
C16C17C18C13-2.1(9) C37BC38B C39B C40B 2(3)
C18C13C14C15-0.1(8) C38BC39B C40B O1B 5(3)
C19P2 C13C14-123.6(4) C40BO1B C37B C38B 12(3)
Table 7 Hydrogen Atom Coordinates (Å×104) and Isotropic Displacement Parameters
(Å2×103) for kji160027_fa.
Atom x y z U(eq)
H2 8523 3979 1651 42
H3 9268 3240 741 50
H4 8932 1925 693 48
H5 7838 1348 1540 56
H6 7082 2078 2448 47
H8 6058 2369 3486 43
H9 6254 1676 4533 52
H10 7647 2001 5323 57
77
H11 8779 3055 5092 62
H12 8579 3758 4059 50
H14 6200 5547 4477 34
H15 6946 5161 5548 41
H16 6455 3988 6038 42
H17 5198 3189 5455 41
H18 4505 3547 4367 36
H20 2731 4598 2637 36
H21 835 4649 2829 38
H22 137 4914 3935 40
H23 1344 5122 4866 49
H24 3247 5076 4689 44
H26 3548 5765 1501 40
H27 1645 5899 1372 46
H28 553 4824 1164 47
H29 1363 3621 1044 46
H30 3270 3479 1127 40
H32 5334 2852 1223 37
H33 6073 2107 327 41
H34 6769 2694 -681 44
H35 6698 4037 -795 39
H36 5962 4778 105 32
H1A 7780(50) 4920(30) 2330(40) 59
H1B 7460(60) 5010(40) 3270(40) 59
H1C 8760(60) 4600(30) 3010(40) 59
H2A 4690(50) 6270(30) 3820(30) 45
H2B 4500(50) 6170(30) 2910(30) 45
H2C 5910(50) 6060(30) 3250(30) 45
H3A 6690(60) 5410(40) 1410(40) 53
H3B 5510(50) 5760(30) 870(30) 53
H3C 5520(50) 5880(30) 1840(30) 53
H37A 7413 7581 2628 80
H37B 7350 7319 1817 80
H38A 9019 8089 2459 90
H38B 8911 7889 1636 90
H39A 9994 6871 1730 74
H39B 10391 7253 2460 74
H40A 9434 5940 2427 57
H40B 9324 6504 3094 57
H37C 7102 7642 2173 80
H37D 7280 7145 1470 80
H38C 8568 8235 1921 90
H38D 8842 7644 1296 90
H39C 9810 7701 2575 74
H39D 10119 7132 1936 74
78
H40C 9344 6195 2511 57
H40D 8936 6780 3112 57
Table 8 Atomic Occupancy for kji160027_fa.
Atom Occupancy Atom Occupancy Atom Occupancy
O1A 0.4909 C37A 0.4909 H37A 0.4909
H37B 0.4909 C38A 0.4909 H38A 0.4909
H38B 0.4909 C39A 0.4909 H39A 0.4909
H39B 0.4909 C40A 0.4909 H40A 0.4909
H40B 0.4909 O1B 0.5091 C37B 0.5091
H37C 0.5091 H37D 0.5091 C38B 0.5091
H38C 0.5091 H38D 0.5091 C39B 0.5091
H39C 0.5091 H39D 0.5091 C40B 0.5091
H40C 0.5091 H40D 0.5091

More Related Content

What's hot

Review on recent progress in nitrogen doped graphene synthesis, characterizat...
Review on recent progress in nitrogen doped graphene synthesis, characterizat...Review on recent progress in nitrogen doped graphene synthesis, characterizat...
Review on recent progress in nitrogen doped graphene synthesis, characterizat...suresh899
 
Ch25
Ch25Ch25
Chapter 1 Organic Chem
Chapter 1 Organic ChemChapter 1 Organic Chem
Chapter 1 Organic Chemelfisusanti
 
Ch27
Ch27Ch27
Paper expo 1_2019
Paper expo 1_2019Paper expo 1_2019
Paper expo 1_2019
ROMARIOHUAMANILLANTO
 
Ch28
Ch28Ch28
Ch21
Ch21Ch21
Synlett 2014_25_2649-53
Synlett 2014_25_2649-53Synlett 2014_25_2649-53
Synlett 2014_25_2649-53Subrata Ghosh
 
Ch16
Ch16Ch16
Spectral studies of 5-({4-amino-2-[(Z)-(2-hydroxybenzylidene) amino] pyrimidi...
Spectral studies of 5-({4-amino-2-[(Z)-(2-hydroxybenzylidene) amino] pyrimidi...Spectral studies of 5-({4-amino-2-[(Z)-(2-hydroxybenzylidene) amino] pyrimidi...
Spectral studies of 5-({4-amino-2-[(Z)-(2-hydroxybenzylidene) amino] pyrimidi...
IOSR Journals
 
The DNA cleavage and antimicrobial studies of Co(II), Ni(II), Cu(II) and Zn(I...
The DNA cleavage and antimicrobial studies of Co(II), Ni(II), Cu(II) and Zn(I...The DNA cleavage and antimicrobial studies of Co(II), Ni(II), Cu(II) and Zn(I...
The DNA cleavage and antimicrobial studies of Co(II), Ni(II), Cu(II) and Zn(I...
IOSR Journals
 
Synthesis, Physicochemical Characterization and Structure Determination of So...
Synthesis, Physicochemical Characterization and Structure Determination of So...Synthesis, Physicochemical Characterization and Structure Determination of So...
Synthesis, Physicochemical Characterization and Structure Determination of So...
IOSR Journals
 
Ch23
Ch23Ch23

What's hot (16)

Review on recent progress in nitrogen doped graphene synthesis, characterizat...
Review on recent progress in nitrogen doped graphene synthesis, characterizat...Review on recent progress in nitrogen doped graphene synthesis, characterizat...
Review on recent progress in nitrogen doped graphene synthesis, characterizat...
 
Ch25
Ch25Ch25
Ch25
 
Chapter 1 Organic Chem
Chapter 1 Organic ChemChapter 1 Organic Chem
Chapter 1 Organic Chem
 
Ch27
Ch27Ch27
Ch27
 
Paper expo 1_2019
Paper expo 1_2019Paper expo 1_2019
Paper expo 1_2019
 
Ch28
Ch28Ch28
Ch28
 
Ch21
Ch21Ch21
Ch21
 
Ch09
Ch09Ch09
Ch09
 
Synlett 2014_25_2649-53
Synlett 2014_25_2649-53Synlett 2014_25_2649-53
Synlett 2014_25_2649-53
 
Ch16
Ch16Ch16
Ch16
 
Spectral studies of 5-({4-amino-2-[(Z)-(2-hydroxybenzylidene) amino] pyrimidi...
Spectral studies of 5-({4-amino-2-[(Z)-(2-hydroxybenzylidene) amino] pyrimidi...Spectral studies of 5-({4-amino-2-[(Z)-(2-hydroxybenzylidene) amino] pyrimidi...
Spectral studies of 5-({4-amino-2-[(Z)-(2-hydroxybenzylidene) amino] pyrimidi...
 
Ch05
Ch05Ch05
Ch05
 
The DNA cleavage and antimicrobial studies of Co(II), Ni(II), Cu(II) and Zn(I...
The DNA cleavage and antimicrobial studies of Co(II), Ni(II), Cu(II) and Zn(I...The DNA cleavage and antimicrobial studies of Co(II), Ni(II), Cu(II) and Zn(I...
The DNA cleavage and antimicrobial studies of Co(II), Ni(II), Cu(II) and Zn(I...
 
Synthesis, Physicochemical Characterization and Structure Determination of So...
Synthesis, Physicochemical Characterization and Structure Determination of So...Synthesis, Physicochemical Characterization and Structure Determination of So...
Synthesis, Physicochemical Characterization and Structure Determination of So...
 
1
11
1
 
Ch23
Ch23Ch23
Ch23
 

Viewers also liked

Alec wisconsin-leg-members-2011
Alec wisconsin-leg-members-2011Alec wisconsin-leg-members-2011
Alec wisconsin-leg-members-2011DeepDude
 
שטחים תמורת שלום פרופלור נוגע בדם
שטחים תמורת שלום פרופלור נוגע בדםשטחים תמורת שלום פרופלור נוגע בדם
שטחים תמורת שלום פרופלור נוגע בדםmeirpail
 
EU 2016 - Novidades FME 2016
EU 2016 - Novidades FME 2016EU 2016 - Novidades FME 2016
EU 2016 - Novidades FME 2016
Inovação GIS - Tecnologia da Informação
 
EU 2016 - Automatização de Processos e Distribuição de Dados com FME Server
EU 2016 - Automatização de Processos e Distribuição de Dados com FME ServerEU 2016 - Automatização de Processos e Distribuição de Dados com FME Server
EU 2016 - Automatização de Processos e Distribuição de Dados com FME Server
Inovação GIS - Tecnologia da Informação
 
Business report.docx
Business report.docxBusiness report.docx
Business report.docxMax Lim
 
【20161126-27】ローカルジャーナリスト育成講座 取材で話を「聞き出す」力
【20161126-27】ローカルジャーナリスト育成講座 取材で話を「聞き出す」力【20161126-27】ローカルジャーナリスト育成講座 取材で話を「聞き出す」力
【20161126-27】ローカルジャーナリスト育成講座 取材で話を「聞き出す」力
Sachiko Kamakura
 
What happens next? Strategies for building and assessing the long-term impact...
What happens next? Strategies for building and assessing the long-term impact...What happens next? Strategies for building and assessing the long-term impact...
What happens next? Strategies for building and assessing the long-term impact...
Hazel Hall
 
県立図書館の再整備に向けた基本的な考え方 素案__に対する神奈川の県立図書館を考える会の意見
 県立図書館の再整備に向けた基本的な考え方 素案__に対する神奈川の県立図書館を考える会の意見 県立図書館の再整備に向けた基本的な考え方 素案__に対する神奈川の県立図書館を考える会の意見
県立図書館の再整備に向けた基本的な考え方 素案__に対する神奈川の県立図書館を考える会の意見
真 岡本
 
Endorsement of the Recommended Design Concept (Preferred Alternative) for Tra...
Endorsement of the Recommended Design Concept (Preferred Alternative) for Tra...Endorsement of the Recommended Design Concept (Preferred Alternative) for Tra...
Endorsement of the Recommended Design Concept (Preferred Alternative) for Tra...
Fairfax County
 
Observatoire automobile2015 - la valeur décryptée
Observatoire automobile2015 - la valeur décryptéeObservatoire automobile2015 - la valeur décryptée
Observatoire automobile2015 - la valeur décryptée
Prisma Media Solutions
 

Viewers also liked (10)

Alec wisconsin-leg-members-2011
Alec wisconsin-leg-members-2011Alec wisconsin-leg-members-2011
Alec wisconsin-leg-members-2011
 
שטחים תמורת שלום פרופלור נוגע בדם
שטחים תמורת שלום פרופלור נוגע בדםשטחים תמורת שלום פרופלור נוגע בדם
שטחים תמורת שלום פרופלור נוגע בדם
 
EU 2016 - Novidades FME 2016
EU 2016 - Novidades FME 2016EU 2016 - Novidades FME 2016
EU 2016 - Novidades FME 2016
 
EU 2016 - Automatização de Processos e Distribuição de Dados com FME Server
EU 2016 - Automatização de Processos e Distribuição de Dados com FME ServerEU 2016 - Automatização de Processos e Distribuição de Dados com FME Server
EU 2016 - Automatização de Processos e Distribuição de Dados com FME Server
 
Business report.docx
Business report.docxBusiness report.docx
Business report.docx
 
【20161126-27】ローカルジャーナリスト育成講座 取材で話を「聞き出す」力
【20161126-27】ローカルジャーナリスト育成講座 取材で話を「聞き出す」力【20161126-27】ローカルジャーナリスト育成講座 取材で話を「聞き出す」力
【20161126-27】ローカルジャーナリスト育成講座 取材で話を「聞き出す」力
 
What happens next? Strategies for building and assessing the long-term impact...
What happens next? Strategies for building and assessing the long-term impact...What happens next? Strategies for building and assessing the long-term impact...
What happens next? Strategies for building and assessing the long-term impact...
 
県立図書館の再整備に向けた基本的な考え方 素案__に対する神奈川の県立図書館を考える会の意見
 県立図書館の再整備に向けた基本的な考え方 素案__に対する神奈川の県立図書館を考える会の意見 県立図書館の再整備に向けた基本的な考え方 素案__に対する神奈川の県立図書館を考える会の意見
県立図書館の再整備に向けた基本的な考え方 素案__に対する神奈川の県立図書館を考える会の意見
 
Endorsement of the Recommended Design Concept (Preferred Alternative) for Tra...
Endorsement of the Recommended Design Concept (Preferred Alternative) for Tra...Endorsement of the Recommended Design Concept (Preferred Alternative) for Tra...
Endorsement of the Recommended Design Concept (Preferred Alternative) for Tra...
 
Observatoire automobile2015 - la valeur décryptée
Observatoire automobile2015 - la valeur décryptéeObservatoire automobile2015 - la valeur décryptée
Observatoire automobile2015 - la valeur décryptée
 

Similar to Report Final

Ph.D. Thesis overview_
Ph.D. Thesis overview_Ph.D. Thesis overview_
Ph.D. Thesis overview_Raj K Das
 
Synthesis, Structures, and Catalytic Properties of Late-Transition-Metal 2,6-...
Synthesis, Structures, and Catalytic Properties of Late-Transition-Metal 2,6-...Synthesis, Structures, and Catalytic Properties of Late-Transition-Metal 2,6-...
Synthesis, Structures, and Catalytic Properties of Late-Transition-Metal 2,6-...mariam1020
 
Inorganic Chem Pre 2r
Inorganic Chem Pre 2rInorganic Chem Pre 2r
Inorganic Chem Pre 2rmariam1020
 
Efficient buchwald hartwig reaction catalyzed by spions-bis(NHC)-Pd(II)
Efficient buchwald hartwig reaction catalyzed by spions-bis(NHC)-Pd(II)Efficient buchwald hartwig reaction catalyzed by spions-bis(NHC)-Pd(II)
Efficient buchwald hartwig reaction catalyzed by spions-bis(NHC)-Pd(II)
Iranian Chemical Society
 
Stability of Transition Metal Complexes Halides of the Nickel Metal
Stability of Transition Metal Complexes Halides of the Nickel MetalStability of Transition Metal Complexes Halides of the Nickel Metal
Stability of Transition Metal Complexes Halides of the Nickel Metal
ijtsrd
 
Literature Seminar on Expansion of Pd chains through Beta-Carotene & Tetrapho...
Literature Seminar on Expansion of Pd chains through Beta-Carotene & Tetrapho...Literature Seminar on Expansion of Pd chains through Beta-Carotene & Tetrapho...
Literature Seminar on Expansion of Pd chains through Beta-Carotene & Tetrapho...Nina Saraei
 
Tedros A Balema Senior Project-INDEPENDENT RESEARCH
Tedros A Balema Senior Project-INDEPENDENT RESEARCHTedros A Balema Senior Project-INDEPENDENT RESEARCH
Tedros A Balema Senior Project-INDEPENDENT RESEARCHTedros Addisalem Balema
 
SRP 2015 Moehring Final
SRP 2015 Moehring FinalSRP 2015 Moehring Final
SRP 2015 Moehring FinalGeorga Torres
 
ReidN_PosterKnox2014_rbb
ReidN_PosterKnox2014_rbbReidN_PosterKnox2014_rbb
ReidN_PosterKnox2014_rbbNellone Reid
 
C-C Cross Coupling Reactions in Organic chemistry by Anthony crasto
C-C Cross Coupling Reactions in Organic chemistry by Anthony crastoC-C Cross Coupling Reactions in Organic chemistry by Anthony crasto
C-C Cross Coupling Reactions in Organic chemistry by Anthony crasto
Anthony Melvin Crasto Ph.D
 
Heterocyclic Compounds Part-II (Pyridine) by Dr Pramod R Padole
Heterocyclic Compounds Part-II (Pyridine) by Dr Pramod R PadoleHeterocyclic Compounds Part-II (Pyridine) by Dr Pramod R Padole
Heterocyclic Compounds Part-II (Pyridine) by Dr Pramod R Padole
pramod padole
 
Poster Presentation
Poster PresentationPoster Presentation
Poster PresentationAshraf Faraj
 
Mixed a site cation higher-order ruddlesden-popper phase materials as interme...
Mixed a site cation higher-order ruddlesden-popper phase materials as interme...Mixed a site cation higher-order ruddlesden-popper phase materials as interme...
Mixed a site cation higher-order ruddlesden-popper phase materials as interme...
Mudasir11
 
2019 tp-cpp-poster sces
2019 tp-cpp-poster sces2019 tp-cpp-poster sces
2019 tp-cpp-poster sces
ThomasPhan17
 
A Review: Synthesis and characterization of metals complexes with paracetamol...
A Review: Synthesis and characterization of metals complexes with paracetamol...A Review: Synthesis and characterization of metals complexes with paracetamol...
A Review: Synthesis and characterization of metals complexes with paracetamol...
TaghreedHAlnoor
 
Synthesis, Spectroscopic Studies and Antibacterial Activity of Novel Schiff B...
Synthesis, Spectroscopic Studies and Antibacterial Activity of Novel Schiff B...Synthesis, Spectroscopic Studies and Antibacterial Activity of Novel Schiff B...
Synthesis, Spectroscopic Studies and Antibacterial Activity of Novel Schiff B...
IRJET Journal
 
Organometallics and Sustainable Chemistry of Pharmaceuticals.pptx
Organometallics and Sustainable Chemistry of Pharmaceuticals.pptxOrganometallics and Sustainable Chemistry of Pharmaceuticals.pptx
Organometallics and Sustainable Chemistry of Pharmaceuticals.pptx
KotwalBilal1
 
Synthesis and Application of C-Phenylcalix[4]resorcinarene in Adsorption of C...
Synthesis and Application of C-Phenylcalix[4]resorcinarene in Adsorption of C...Synthesis and Application of C-Phenylcalix[4]resorcinarene in Adsorption of C...
Synthesis and Application of C-Phenylcalix[4]resorcinarene in Adsorption of C...
Jacsonline.Org
 
Study of Substituent Effect on Properties of Platinum(II) Porphyrin Semicondu...
Study of Substituent Effect on Properties of Platinum(II) Porphyrin Semicondu...Study of Substituent Effect on Properties of Platinum(II) Porphyrin Semicondu...
Study of Substituent Effect on Properties of Platinum(II) Porphyrin Semicondu...
UniversitasGadjahMada
 

Similar to Report Final (20)

Ph.D. Thesis overview_
Ph.D. Thesis overview_Ph.D. Thesis overview_
Ph.D. Thesis overview_
 
Synthesis, Structures, and Catalytic Properties of Late-Transition-Metal 2,6-...
Synthesis, Structures, and Catalytic Properties of Late-Transition-Metal 2,6-...Synthesis, Structures, and Catalytic Properties of Late-Transition-Metal 2,6-...
Synthesis, Structures, and Catalytic Properties of Late-Transition-Metal 2,6-...
 
Inorganic Chem Pre 2r
Inorganic Chem Pre 2rInorganic Chem Pre 2r
Inorganic Chem Pre 2r
 
Efficient buchwald hartwig reaction catalyzed by spions-bis(NHC)-Pd(II)
Efficient buchwald hartwig reaction catalyzed by spions-bis(NHC)-Pd(II)Efficient buchwald hartwig reaction catalyzed by spions-bis(NHC)-Pd(II)
Efficient buchwald hartwig reaction catalyzed by spions-bis(NHC)-Pd(II)
 
Stability of Transition Metal Complexes Halides of the Nickel Metal
Stability of Transition Metal Complexes Halides of the Nickel MetalStability of Transition Metal Complexes Halides of the Nickel Metal
Stability of Transition Metal Complexes Halides of the Nickel Metal
 
Literature Seminar on Expansion of Pd chains through Beta-Carotene & Tetrapho...
Literature Seminar on Expansion of Pd chains through Beta-Carotene & Tetrapho...Literature Seminar on Expansion of Pd chains through Beta-Carotene & Tetrapho...
Literature Seminar on Expansion of Pd chains through Beta-Carotene & Tetrapho...
 
Tedros A Balema Senior Project-INDEPENDENT RESEARCH
Tedros A Balema Senior Project-INDEPENDENT RESEARCHTedros A Balema Senior Project-INDEPENDENT RESEARCH
Tedros A Balema Senior Project-INDEPENDENT RESEARCH
 
SRP 2015 Moehring Final
SRP 2015 Moehring FinalSRP 2015 Moehring Final
SRP 2015 Moehring Final
 
ReidN_PosterKnox2014_rbb
ReidN_PosterKnox2014_rbbReidN_PosterKnox2014_rbb
ReidN_PosterKnox2014_rbb
 
C-C Cross Coupling Reactions in Organic chemistry by Anthony crasto
C-C Cross Coupling Reactions in Organic chemistry by Anthony crastoC-C Cross Coupling Reactions in Organic chemistry by Anthony crasto
C-C Cross Coupling Reactions in Organic chemistry by Anthony crasto
 
Heterocyclic Compounds Part-II (Pyridine) by Dr Pramod R Padole
Heterocyclic Compounds Part-II (Pyridine) by Dr Pramod R PadoleHeterocyclic Compounds Part-II (Pyridine) by Dr Pramod R Padole
Heterocyclic Compounds Part-II (Pyridine) by Dr Pramod R Padole
 
Poster Presentation
Poster PresentationPoster Presentation
Poster Presentation
 
Mixed a site cation higher-order ruddlesden-popper phase materials as interme...
Mixed a site cation higher-order ruddlesden-popper phase materials as interme...Mixed a site cation higher-order ruddlesden-popper phase materials as interme...
Mixed a site cation higher-order ruddlesden-popper phase materials as interme...
 
2019 tp-cpp-poster sces
2019 tp-cpp-poster sces2019 tp-cpp-poster sces
2019 tp-cpp-poster sces
 
A Review: Synthesis and characterization of metals complexes with paracetamol...
A Review: Synthesis and characterization of metals complexes with paracetamol...A Review: Synthesis and characterization of metals complexes with paracetamol...
A Review: Synthesis and characterization of metals complexes with paracetamol...
 
Synthesis, Spectroscopic Studies and Antibacterial Activity of Novel Schiff B...
Synthesis, Spectroscopic Studies and Antibacterial Activity of Novel Schiff B...Synthesis, Spectroscopic Studies and Antibacterial Activity of Novel Schiff B...
Synthesis, Spectroscopic Studies and Antibacterial Activity of Novel Schiff B...
 
Organometallics and Sustainable Chemistry of Pharmaceuticals.pptx
Organometallics and Sustainable Chemistry of Pharmaceuticals.pptxOrganometallics and Sustainable Chemistry of Pharmaceuticals.pptx
Organometallics and Sustainable Chemistry of Pharmaceuticals.pptx
 
Synthesis and Application of C-Phenylcalix[4]resorcinarene in Adsorption of C...
Synthesis and Application of C-Phenylcalix[4]resorcinarene in Adsorption of C...Synthesis and Application of C-Phenylcalix[4]resorcinarene in Adsorption of C...
Synthesis and Application of C-Phenylcalix[4]resorcinarene in Adsorption of C...
 
01 pasynskii2014
01 pasynskii201401 pasynskii2014
01 pasynskii2014
 
Study of Substituent Effect on Properties of Platinum(II) Porphyrin Semicondu...
Study of Substituent Effect on Properties of Platinum(II) Porphyrin Semicondu...Study of Substituent Effect on Properties of Platinum(II) Porphyrin Semicondu...
Study of Substituent Effect on Properties of Platinum(II) Porphyrin Semicondu...
 

Report Final

  • 1. 1 School of Chemistry CHY 8411 Final Report Project Title: Phosphido-Borane StabilisedTetrylenes Student Name: Alexander Craig Supervisor: Dr KeithIzod May 2016
  • 2. 2 Contents 1. Abstract………………………………………………………………………………………………………………………………………....3 2. Introduction…………………………………………………………………………………………………………………………………...4 2.1 HeteroatomStabilisedTetrylenes…………………………………………………………………………………...4 2.2 Acyclic andCyclic Dialkyl StabilisedTetrylenes…………………………………………………………….....7 2.3 Phosphine-BoraneStabilisedTetrylenes………………………………………………………………………….8 3. Aimsofthe Project..............................................................................................................................11 4. ProposedApproach.............................................................................................................................12 5. Results&Discussion............................................................................................................................13 5.1 SynthesisandCharacterisationof[Mes2P(BH3)]Li(THF)2....................................................13 5.2 Hydrolysisof[Mes2P(BH3)]Li(THF)2.....................................................................................15 5.3 SynthesisandCharacterisationof [Mes2P(BH3)2]Li(THF)2..................................................16 5.4 AttemptedSynthesisof[Mes2P(BH3)]2Sn...........................................................................18 5.5 Synthesisof[Dipp2P(BH3)]Li................................................................................................19 5.6 AttemptedSynthesisof[Dipp2P(BH3)]2Sn..........................................................................20 5.7 Synthesisof[Ph2P(BH3)]Li...................................................................................................21 5.8 Synthesisof[Ph2P(BH3)2]Li..................................................................................................22 5.9 AttemptedSynthesisof[Ph2P(BH3)]2Sn..............................................................................23 5.10 DirectSynthesisand Characterisationof [(Ph2P(BH3))3Sn]Li(THF)2..................................24 5.11 Decompositionof[(Ph2P(BH3))3Sn]Li(THF)2......................................................................27 5.12 Synthesisof[Mes2P(BH3)CHPh]Li......................................................................................30 6. Conclusion...........................................................................................................................................31 7. Experimental.......................................................................................................................................33 8. References..........................................................................................................................................37 9. Acknowledgments..............................................................................................................................39 10. SupplementaryMaterial..................................................................................................................40
  • 3. 3 Abstract The phosphine Mes2PH,24, (Mes = 2,4,6-trimethylphenyl),waspreparedbythe metathesisreaction betweenPCl3 andMesMgBr,followedby hydridetransferwithLiAlH4.The dimesitylphosphido-borane lithiumsalt,[Mes2P(BH3)]Li(THF)2, 26,wassuccessfullysynthesisedbyboronation of24withBH3.SMe2, and subsequent metalation with n-BuLi. The dimesitylphosphido-bis-(borane) lithium salt, [Mes2P(BH3)2]Li(THF)2,32, was successfully synthesised by metalation with n-BuLi, and subsequent boronation, with two equivalents of BH3.SMe2,of 24. Both compounds were characterisedby single crystal X-raydiffraction (XRD).Analysisof the molecularstructures of 26and32, confirms the number of agostic-type interactions differsbetweenthe borane moietiesandthe coordinatedlithiumcation. The phosphine Ph2PH,25, waspreparedby the reduction of Ph3P withsodium,followedbyquenching withNH4Br. The diphenylphosphido-borane lithiumsalt,[Ph2P(BH3)]Li, 28, was synthesised in situ by boronation of 25 withBH3.SMe2, followedby metalationwith n-BuLi. The attemptedsynthesisof the phosphido-boranestabilisedstannylene,[(Ph2P(BH3))2]Sn,40,by the metathesisreactionbetween 28 andSnCl2,insteadgave thephosphido-boranesubstitutedstannate,[(Ph2P(BH3))3Sn]Li(THF), 41,which wasisolated andcharacterisedby singlecrystal XRD.Compound 41wasthendirectlysynthesisedand characterised by 1 H, 7 Li, 11 B, 31 P and 119 Sn NMR spectroscopy. The molecularstructure of 41 contains agostic-type interactionsbetween the borane groups andthe lithium cation, but the interactions are absent between the borane groups and the low valent tin centre. The tin centre is instead stabilised through a combination of steric and electronic effects provided by the ligands. The phosphine-borane stabilised carbanion complex, [Mes2P(BH3)CHPh]Li, 44, was prepared by the metathesis reaction between 26 and PhCH2Br, followed by metalation with n-BuLi. 31 P NMR spectroscopy of the reactionmixture of 44 withstannocene, SnCp2, showsa signal indicativeof a tin- containing compound, but this compound was not isolated. 31 P NMR spectroscopy revealed the attempted syntheses of [(Mes2P(BH3))2]Sn, 33, and [(Dipp2P(BH3))2]Sn,34,(Dipp= 2,6-diisopropylphenyl), were unsuccessful due torapiddecomposition and hydrolysis of the products.
  • 4. 4 Introduction Group 14 elements favour the formal +II and +IV oxidation states, with the +II oxidation state becomingincreasinglymore favourable and accessibleforthe heavierelements.Forexample, Pb, the heaviestelementof group14, the +IV oxidationstate ishighlyunstablewhereasthe+IIoxidationstate isreadilyaccessible.1,2 Inthisregard,the +IIoxidationstate of the heaviergroup14 elements(Ge,Sn, Pb) is the state that is to be stabilised. To disfavour the dimerisation of various ligand stabilised tetrylenes,E[R]2 whereR= NR’2,PR’2,CR’3 , R’2C{P(BH3)R’2} (Figure 1), three principle ideasneedtobe considered. Firstly, the use of amido (NR2) and phosphido (PR2) heteroatom ligands to stabilise the lowoxidationstate metal centre,3-5 anda comparisonof bothheteroatomgroupswill be discussed.6 The use of stericallybulky acyclicandcyclichydrocarbyl ligands will follow,7-9 concludingwiththe use of phosphido-borane ligands to stabilise the E(II) centre through agostic-type interactions of the borane substituents and E. This is a new area of interest uncovered by Izod and co-workers with promising results obtained in recent years.10-13 Figure 1. Generic structures of E[R]2, where R = NR’2, PR’2, CR’3, R’2C{P(BH3)R’2}. Phosphido-borane stabilised tetrylenes [R2P(BH3)]2E, where E = Sn, Pb, are uncommon complexes whichis surprisingbecauseof the isoelectronicrelationshipphosphido-boraneligandsshare withsilyl ligands, [R3Si]- , and their use as key intermediates in a number of important reactions.14-16 The basis of the research is to isolate and deepen understanding of examples of this type. Heteroatom Stabilised Tetrylenes The chemistry involved withheavier group 14 metals and amido (NR2) ligandsis comprehensive and well developed.Diaminocarbenes [(R2N)2C]andtheircycliccounterpartsN-heterocycliccarbeneshave been widely studied since they were first isolated in 1991 by Arduengo.17 The stability of these compounds can be attributed to the very efficient overlap of the heteroatom lone pairs with the vacant pπ-orbital on the carbon. This mitigates the electron deficiency at carbon thereby stabilising
  • 5. 5 the singlet state relative to the triplet state.The efficient overlapcauses the diaminocarbenes to be strongly nucleophilic but only weakly electrophilic. For diphosphinocarbenesandsilylenes, [(R2P)2E],whereEcorresponds toC or Si respectively,there is a decreased n-pπ-orbital overlap and thus significantly reduced stability.18 Limited examples of diphosphinocarbenesare available.A notablebulkyexampleof [(R2P)ArC]where Ar=2,4,6-Me3C6H2.19 Comparedto NR2 ligandspecies,PR2 ligandshave beenlessextensivelyexplored.One reasonforthis is that there is a higher energetic barrier to inversion from the trigonal pyramidal configuration to planar configuration, resulting in a stereo chemically active lone pair on phosphorus. This causes a tendencytoformoligomericbridgingarrangementswhenboundtometal centres.Earliercomparison of phosphide ligands [P(SiMe3)2] to amido ligands [N(SiMe3)2] by Goel et al.2 and Matchett et al.6 concluded that the phosphide ligands, 1-4, exhibit higher molecularities and coordination numbers with inherentlystronger bridge forming capabilities than the amido ligands (Figure 2). This can be rationalised by the combination of the larger size and the lower electronegativity of phosphorus versus nitrogen. If the phosphide ligands are sterically protected they can offer advantageous electroniceffectsoveramido ligandsthatcanleadtonovel low coordinatemetal centredmonomeric systems with potentially unprecedented bonding schemes. Figure 2. Structure of high molecularity [E{P(R)2}2]2 where E = Sn, ,Pb, R = SiMe3, tBu, 1-4. Crystals were isolated of the novel, extremely bulky Sn(II)-diarylphosphide, [Armes2 P(Ph)]2Sn, 5, by Power et al.3 (Figure 3) that was monomeric in both solution and the solid state. Figure 3. 5, where Armes2 = C6H3-2,6(C6H2-2,4,6-Me3). Diaminogermylenes,[(R2N)2Ge],have beenknownsincethe 1970’sbecause of the ease ofaccessibility of electron deficient Ge(II) metal centres from readily available starting materials, for example GeI2 and GeCl2.(1,4-dioxane). Diphosphinogermylenes,[(R2P)2Ge], are farlesswell knownasthe lone pair- pπ-orbital, n-pπ bonding interactions are likelyto be very weak. Before 2005, there was only one
  • 6. 6 monomericcrystallographicallycharacterisedGe(II)compoundbyDriess etal.4 butthe structural data was found to be too poor for detailed analysis. In2005 Izod etal.5 isolatedseveral novelGe(II) complexeswhichincludedtwounusual ‘ate’complexes andan intramolecularlybase-stabiliseddiphosphagermylene,[{(Me3Si)2CH}P(C6H4-2-CH2NMe2)]2Ge,6 (Equation 1). Equation 1. Synthesis of 6 from the reaction of [{(Me3Si)2CH}P(C6H4-2-CH2NMe2)]K with 0.5 equivalents of GeI2. Treatment of [{(Me3Si)2CH}P(C6H4-2-CH2NMe2)]K with 0.5 equivalents of GeI2 in THF gave the intramolecularly base-stabilised diphosphagermylene, 6. The structure was established by X-ray crystallographyandelemental analysis.The Ge(II) centre isboundby one P atom and one N atom of one of the phosphide ligandstoforma six-memberedchelate ringandisalsoboundbyone Patomof the secondphosphideligand.Thisarrangementgivesathree-coordinate,trigonalpyramidalGe metal centre with a stereochemically active lone pair.The N atom on the secondligandwas shownto not have any contactswithGe. The Ge-Pbond lengthswere comparabletothe Ge-Plengthsreportedfor [(R2P)2Ge(II)]. Both P atoms are distinctly pyramidal, which suggests that there is poor n-pπ-orbital overlap, consistentwithanintramolecularbase stabilisedGe(II) centre.The monomerischiral at the two P atoms and also at Ge. When [{(Me3Si)2CH}P(C6H4-2-CH2NMe2)]Li is treated with 0.5 equivalents of GeI2, the novel ‘ate’ complex [{(Me3Si)2CH}P(C6H4-2-CH2NMe2)]2GeLi2I2(OEt2)3 was formed, as confirmed by X-ray crystallography.The terminalN atomisboundto the Li2I2 fragmentbutas the coordinationgeometry of the Ge(II) centre is very similar to 6, the fact that the Li2I2 is bound has little significance. Izod et al.20 reported the synthesis of a relatively bulky phosphide ligand,{(Me3Si)2CH}(Ph)PH, 7, the preparation of its lithium, 8, sodium and potassium derivatives, and with the reaction of these derivatives with ECl2, where E = Ge, Sn, the formation of either diphosphatetrylenes or ‘ate’ complexes.
  • 7. 7 Scheme 1. Synthesis of 9 from the reaction of the prepared ligand, 8, with SnCl2. Reaction of 8 with SnCl2 yields the ate complex, [{(Me3Si)2CH}(Ph)P]3SnLi(THF), 9, unexpectedly, irrespective of the reaction stoichiometry (it would only be expected with a 3:1 ratio of 8:SnCl2) (Scheme 1). The expected homoleptic complex [{(Me3Si)2CH}(Ph)P]2Snis not observed even at 0.5 equivalents of SnCl2. Similarlythe reactionof GeCl2(1,4-dioxane)with3equivalentsof 8yieldsthe Ge analogue, 10.Both 9 and 10 retain their structure in toluene but form their respective separated ion pair complexes on crystallisation from hexanes/THF. Single crystals of 10 suitable for X-ray crystallography were isolated from cold hexanes/THF which showedthatateachP atomwas a chiral centre.The three Patomsformμ-bridgesbetweenthe Li and Ge centres creating a trigonal bipyramidal GeP3Li core with a trigonal pyramidal geometry at Ge. Acyclic and Cyclic Dialkyl Stabilised Tetrylenes Dialkyltetrylenesare limitedtoonlya few examplesinthe literature. Alkyl ligandsprincipally provide kinetic stabilisation to group 14 tetrylenes by sterically hindering the electron deficient E(II) centre, preventingattack fromnucleophilicspecies.21 Thereisnothermodynamicstabilisationbecauseof the lackof electronegative heteroatomsavailabletostabilisethe sp2 lonepairinthe singletstate.Inrecent years, there have been numerous reports of diarylstannylenes but only very few cases of dialkylstannylenes.7-9,22,23 The former generally allowsfor increased steric hindrance of the heavier tetrylenes therefore decreasing the tendency to dimerise further than for dialkylstannylenes. Lappert et al.7 in 1973 reported the archetypal dialkylstannylene, Sn[CH(SiMe3)2]2, 11, which is monomericinbenzenesolutionbutfavoursdimerisationinthesolidstate because of thelackof steric bulkaroundthe Sn(II) centre (Figure4).The dimerwasalso the firsttimeformalmultiplebondingwas observed between the heavier main group elements, row 3 and heavier.
  • 8. 8 Figure 4. Dimerisation of 11 in benzene. The first dialkylstannylene to be shown categorically to be a monomer in the solid state, {(Me3Si)2CCH2}2Sn,12,wasisolatedbyKiraetal.8 (Figure5) in1991 as 12 providessufficientstericbulk to disfavour dimerisation. The only other monomeric dialkylstannylene, {(Me3Si)2C(SiMe2CH2)}2Sn, 13, that has been fully structurally characterised and isolated was by Eaborn et al.9 in 2000 (Figure 6). The dialkylplumbylene analogue, {(Me3Si)2C(SiMe2CH2)}2Pb, 14, was also characterised by Eaborn et al. in 1997,22 becomingthe firstdialkylleadspeciestobe isolated. Both 13 and 14 are composedof a sterically bulky seven-membered ring surrounding the E(II) centre. Jutzi et al.23 in 1991 were able to characterise the first unsymmetrically substituted acyclic dialkylgermylene, (Me3Si)3CGeCH(SiMe3)2, 15, inthe solidstate (Figure7).The molecule hassimilaritiestothatof 13 withthe exceptionof having three SiMe3 substituents on one of the alkyl ligands. This creates enough steric bulk to disfavour dimerisation of the monomer. Figures 5, 6 and 7. 12, 13 and 15 isolated by Kira, Eaborn and Jutzi et al. respectively. Phosphine-Borane Stabilised Tetrylenes Phosphine-borane substitutedcarbanionligandsystems,[R2P(BH3)CR’2]- have beenshowntostabilise low valent tetrylene compounds through agostic-type interactions.11,12,13 Significant interactions between the vacant 5pπ- and 6pπ-orbitals in Sn and Pb respectively, and the B-H σ-orbitals of the ligandhave been observed.Substantial delocalisationof the B-H σ-bondingelectrondensityintothe vacant 5pπ-orbital of Sn and the 6pπ-orbital of Pb stabilise the low valent tetrylene centres. Given the relatively straightforward synthesis of phosphido-borane ligands, [R2P(BH3)]- , and their potential utilityit’ssurprisingtheyhave received verylittle attention.Phosphido-boraneshave been noted to be key intermediates in the synthesis of chiral phosphines and are used in the catalytic
  • 9. 9 dehydrocouplingtogive polymericmaterials.15 Theyhave alsobeenshowntobe precatalystsforthe formationof P-C sp bondswhenboundto Cu(I).16 Inthese applicationsthe intermediatesare usually generated in situ with very few being isolated and characterised in the solid state. The isolated examples are bound as monomers, dimers or polymers to Li, Na or K metals. As noted earlier, [R2P(BH3)]- ligands are isoelectronic with [R3Si]- . Izod et al.10 reacted [{nPr2P(BH3)}(Me3Si)CCH2][Li(THF)2]2 with SnCl2 in THF to produce the novel dialkylstannylene, [{nPr2P(BH3)}(Me3Si)CCH2]2Sn, 16,as air sensitive yellow crystals(Figure 8).Itwasnotedthe similarity of thiscompoundwiththat of 12. 16 was prepared inexcellentyieldafterasimple work-upwhereas 12 was only isolated in low yields after a difficult work-up. This can be attributed to the increased charge delocalisation away from the carbanion in the ligand used to produce 16 than for the ligand used to produce 12 due to the increasing charge delocalising ability of phosphine-borane ligands versus silyl ligands. This therefore makes the dicarbanion less nucleophilic, causing a decreased tendency to reduce Sn(II) to Sn(0). If heated to 60 ° in hexanes or left in light for a week, 16 will decompose to elemental tin and the phosphine-borane alkyl ligand. Figure 8. 16 isolated by Izod et al. 1 H, 11 B{1 H}, 31 P{1 H} and 119 Sn NMR spectra of 16 shows that it is a 1:1 mixture of the two possible diastereoisomers. Pure rac-16 or meso-16 isomers can be obtained by selective crystallisations. The X-ray crystal structures of bothdiastereoisomersof 16 show short agostic-type B-H… Sncontacts, not seen before for dialkylstannylene compounds but reported for a few cases of the transition metals. Rac-16 has one interaction either side of the five-membered ring with one H atom from each BH3 group in close proximity to that of the electron-deficient Sn(II). The meso- isomer has both BH3 substituents on the same side of the heterocycle but only one short B-H… Sn contact is observed, althoughit is significantlyshorter thanthe correspondingdistancesin rac-16; well withinthe sumof the Van der Waal radii of Sn and H atoms. Compound 16 was the firstexample of a B-H… E interaction thatinvolvedalow oxidationmaingroup metal centre and these interactions mitigate the electron deficiency of the Sn(II) centre allowingthe monomeric form to persist in solution. The Pb analogue,[{nPr2P(BH3)}(Me3Si)CCH2]2Pb, 17, was also characterised in 2008 by Izod et al.11 to extend the general principles of the phenomenon of agostic-type phosphine-borane interactions,
  • 10. 10 whichwasonlythe seconddialkylplumbylenetoeverhave beenstructurallycharacterised. Usingthe same methodology that was used for the Sn compound, extensive reduction of Pb occurred to elemental lead. By using 1 equivalent of the dilithium salt [{nPr2P(BH3)}(Me3Si)CCH2][Li(THF)2]2 with Cp2Pb, 17 formed in excellent yields after a simple work-up. Both rac- and meso- diastereoisomers couldbe crystallised asdiscrete dialkylplumbylenes. The solidstate structuresconfirmthatthere are twoB-H… Pb contactsforthe rac-isomerwiththe meso-isomerhavingone contactslightlystronger.As Pb is a larger atom, it enables a second, weaker Pb… H interaction in the meso-isomer that is not observed for the Sn(II) analogue. Figure 9. rac-[{Me2P(BH3)}(Me3Si)C{(SiMe2)(CH2)}]2E, where E = Sn, 18, Pb, 19. Two novel compounds were synthesised, a dialkylstannylene and a dialkylplumbylene, rac- [{Me2P(BH3)}(Me3Si)C{(SiMe2)(CH2)}]2E where E = Sn, 18, Pb, 19, by Izod et al.12 in 2009 (Figure 9). In bothcasesa dominance of the rac-isomerwasobserved,aconsequenceof the increasedstabilisation associatedwithtwoagostic-typeinteractionscomparedtothe meso-isomerwhich onlyhasone.Both compounds 18 and19 crystallise asdiscretemolecularspeciesfrom Et2OwithSnorPb coordinatedto the two carbanion centres of the ligand, generating a puckered seven-membered ring. From DFT calculations, the HOMOineachcase isthe lone paironE of essentiallyscharacterwhereasthe LUMO ineachcase isthe essentiallypure,vacantpπ-orbitalonE,therefore,thereissignificantdelocalisation of B-H σ-bonding electron density into the vacant pπ-orbital. As Pb has a larger, more diffuse 6pπ- orbital than Sn’s 5pπ-orbital, Pb has a poorer overlap, thereby a decreased energy interaction. Figure 10. rac-[(RMe2Si){Me2P(BH3)}CH]2E, where E = Sn, Pb, R = Me, Ph, 20-23. Acyclic dialkyltetrylenes have been prepared that are direct isoelectronic analogues of 11, which favoured dimerisation, that was first reported by Lappert et al. in the 1970’s. The cyclic dialkyltetrylenes, 18-19, are stabilised in the monomeric state12 , by a combination of agostic-type interactions and because of the steric bulk of the ligands used. The acyclic phosphine-borane
  • 11. 11 analogues, 20-21, were isolatedinthe monomericform (Figure 10), providingevidence thatagostic- type interactions are sufficiently stabilising, without the need for steric bulk. [(RMe2Si){Me2P(BH3)}CH]Li lithium salts were prepared in situ by the reaction between Me2P(BH3)CH2Li andRMe2SiCl,followedbytreatmentwith n-BuLiinTHF,where R=Me, Ph.By adding 0.5 equivalents of Cp2E in toluene, rac-[(Me3Si){Me2P(BH3)}CH]2E, where E = Sn, 20, Pb, 21, respectively, were obtained as single crystal structures. rac-[(PhMe2Si){Me2P(BH3)}CH]2E, where E = Sn, 22, Pb, 23, respectively,werealsoobtained (Figure10).13 The meso-diastereomerwasnotisolated which can be attributed to the stabilisation afforded by rac-20-23 having two agostic-type B-H… E interactions instead of only one. 20-23 are all unambiguously monomeric in structure, showingthat the twoagostic-type B-H… Einteractionsare sufficiently stabilisingtodisfavourdimerisationwhichwas also supported by DFT calculations. For the dimerisation of 20, the energy calculated was +30.5 kcal mol-1 which clearly suggests that the energy gained on the formation of the Sn=Sn double bond is insufficient versus the loss of the two B-H… Sn agostic-type interactions.These interactions therefore provide a substantial barrier toward dimerisation. Aims To investigate phosphido-borane ligands, [R2P(BH3)]- , in the stabilisation of low oxidation states of heavy group 14 metal centres by agostic-type interactions. To provide evidence that agostic-type interactionsbetweenB-H… Ecansupportthe monomeric+IIoxidationstateof germanium,tinandlead metal centres by disfavouring dimerisation. The research will be carried out in relation to gaining knowledge and further insight into the fundamental science being observed regarding the agostic- type interactions in these novel bis-phosphido-borane stabilised group 14 metal tetrylene compounds.If +IImetal centrescanbe stabilisedthroughagostic-typeinteractions,the nextquestion is how this unique feature can be exploited, for example, in catalysis.
  • 12. 12 Approach The precursorphosphines, R2PH,where R= Mes, Dipp,Ph, will be synthesised accordingtoSchemes 2 and 3. The synthesis of Mes2PH, 24, involves the metathesisreaction of two equivalentsof the Grignard reagentMesMgBr, andone equivalentof PCl3,toproduce Mes2PCl,followedby hydride transferwith LiAlH4 (Scheme 2). Scheme 2. Proposed synthesis of 24. The synthesis of Ph2PH, 25, involves the reduction of Ph3P by sodium, followed by quenching with NH4Br (Scheme 3). Scheme 3. Proposedsynthesisof 25. Boronationof the phosphine withBH3.SMe2,followedbymetalation of the product,R2P(BH3)H,with n-BuLi, gives the phosphido-borane ligand, [R2P(BH3)]Li (Scheme 4). Scheme 4. Proposed synthesis of [R2P(BH3)]Li. The synthesis of novel phosphido-borane stabilised tetrylenes, [R2P(BH3)]2E, where E = Ge, Sn, Pb, involvesthe metathesisreactionbetweentwoequivalentsof the phosphido-borane ligandsandECl2 (Equation 2). The compounds [R2P(BH3)]2E, will be isolated and characterised by XRD and NMR spectroscopy. Equation 2. Proposed synthesis of [R2P(BH3)]2E.
  • 13. 13 Results & Discussion Synthesis and Characterisation of [Mes2P(BH3)]Li(THF)2 (26) The research began with the methodology already in use by Izod et al. to afford dialkylphosphido- borane lithiumsalts, [R2P(BH3)]Li, where R = Mes, 26, Dipp, 27, Ph, 28. Compounds 26-28 couldthen be used as metathesis reagents for reaction with tin dichloride, SnCl2, with the aim to isolate and characterise bis-(dialkylphosphido-borane) stannylenes, [R2P(BH3)]2Sn. Dimesitylphosphine, Mes2PH, 24, was synthesised, as shown in Scheme 5, as the precursor to the dimesitylphosphido-borane lithium salt, [Mes2P(BH3)]Li(THF)2, 26. Scheme 5. Synthesis of 24. The reaction of one equivalent of 24 with one equivalent of BH3.SMe2 solution in THF, afforded complete conversion to dimesitylphosphine borane, Mes2P(BH3)H, 29, after one hour at room temperature. The 31 P NMR spectrum of the isolated crystalline product is shown in Figure 11, which contains a broad doublet at -28.3 ppm (JPH = 387.6 Hz). Figure 11. 31P NMR spectrum of 29 in CDCl3.
  • 14. 14 One equivalentof n-butyllithiumsolutionin n-hexanewasaddedtoaffordcompleteconversion of 29 to 26, shown in the 31 P NMR spectrum of the isolated product (Figure 12) which contains a single, broad doublet at -55.9 ppm (JPH = 47.2 Hz). The 11 B{1 H} NMR spectrum contains a broad doublet at - 31.9 ppm (JPB = 36.7 Hz) (Figure S8). Figure 12. 31P NMR spectrum of 26 in THF-d8/toluene-d8. The volatile THF was evaporated in vacuo, before diethyl ether was added, where upon pale yellow crystalsof 26 precipitatedoutof solutionatroom temperature.XRDconfirmedthe structure as that of 26, shown in Figure 13. Figure 13. X-ray crystal structure of 26 with carbon bound hydrogen atoms omitted for clarity. Selected bond lengths (Å) and angles (°): P-B 1.967(2), B…Li 2.426(3), P-Li(1A) 2.645(3), P- C(1) 1.8505(16), P-C(10) 1.8504(16), P-B…Li 139.76(12). Compound 26 crystallisesasa cyclical dimericstructure, whereineachphosphorusatomisboundto a borane group and a lithiumcation.Twoof the borane hydrogenatoms have contacts witha lithiumion,inanagostic-type interaction,stabilisingthe compound.Twomoleculesof the donor tetrahydrofuransolventare coordinatedtoeachlithiumatom.
  • 15. 15 The bond lengthsof P-C(1) andP-C(10) are 1.8505(16) Å. The P-B bondlengthis 1.967(2) Å,similarto a phosphido-borane lithiumsalt, [{Ph2P(BH3)}CHPiPr2]Li(tmeda), 30,characterised byIzod et al.13 , whichhas a slightlysmallerP-Blengthof 1.933(2) Å (Figure 14). The B… Li distances in26 are 2.426(3) Å,the same lengthasthe B… Li distances in30 of 2.442(4) Å.24 Figure 14. X-raycrystal structure of 30 withcarbon bound hydrogen atoms omitted for clarity. Selected bond lengths (Å):P-B 1.933(2), B…Li 2.442(4). The P-Li1 contacts within26 are 2.645(3) Å.Comparedto the P-Li distancesof 2.479(11) Å and 2.483(1) Å inthe phosphide lithiumsaltdimer, [(Mes2P)Li(OEt2)]2,31,crystallisedbyPoweretal.25 (Figure 15),thisisa longer distance thanexpected. Figure 15. Structure of 31. Hydrolysis of 26 to [Mes2P(BH3)2]Li(THF)2(32)and 24 Itwasfoundthat26 can decompose throughahydrolysispathway todimesitylphosphido-bis-(borane) lithiumsalt, [Mes2P(BH3)2]Li(THF)2, 32,andthe startingphosphine24.The proposedmechanismisthe nucleophilicattackof 26 on the borane of a molecule of 29, to afford 32 and 24 (Scheme 6).Thiscan be attributed to the increased nucleophilicity of 32 with respect to 29. Scheme 6. The hydrolysis mechanism of 26 to 32 and 24.
  • 16. 16 Integration of the peaks in the 31 P NMR spectrum gave the ratio of the products, 26:32:24, as 8:1:1 (Figure 16). As the ratio of 32 and 24 are equal, this suggests the proposed hydrolysispathway is correct. The sample was re-analysed by 31 P NMR spectroscopy after three days, with an increase in the hydrolysis products observed, at a ratio of 26:32:24 of 5:1:1. Figure 16. 31P NMR spectrum of 26 and the corresponding hydrolysis products 32 and 24 in THF-d8/toluene-d8. A broad unresolvedseptet,due tothe couplingof phosphorustotwo 11 B quadrupolaractive nuclei(I = 3/2), can be seenat-10.8 ppm inthe 31 PNMR spectrum, andalsoa sharp doubletat -93.4 ppm(JPH = 228.3 Hz), which correspond to 32 and 24 respectively. Synthesis and Characterisation of 32 Compound 32 was isolated to confirm the identity of the decomposition product by comparison of the signals observed in the 31 P NMR spectra. Two equivalents of BH3.SMe2 in n-hexane solution was addedto one equivalentof 29 inTHF, to yield 32, shownin the 31 P{1 H} NMR spectrumof the product (Figure 17),whichcontainsa broad singlet at-21.2 ppm. The change of solventfromTHF-d8/toluene- d8 to CDCl3 has a pronounced effect on the chemical shift but the multiplet observed unequivocally corresponds to that of 32.
  • 17. 17 Figure 17. 31P{1H} NMR spectrum of 32 in CDCl3. The THF wasremoved in vacuo,beforediethyletherwasadded,whereuponpaleyellowcrystalsof 32 precipitated out of solution. XRD confirmed the structure as that of 32 (Figure 18). Figure 18. X-raycrystal structure of 32 with carbon boundhydrogen atoms omitted for clarity. Selected bond lengths (Å) and angles (°): P-B(1) 1.9655(19), P-B(2) 1.9619(18), B(1)…Li 2.455(4), B(2)…Li 2.505(4), P-C(1) 1.8419(16), P-C(10) 1.8464(16), P-B(1)…Li 89.70(11), P-B(2)…Li 88.33(10). Compound 32 crystallisesasamonomerwithtwo coordinated disorderedTHFsolventmolecules. The phosphorus atom is bound to two mesityl groups and to two borane groups.The borane groups are coordinated to lithium through B-H… Li contacts with different hapticities. Interestingly,two B-H… Li contacts are observed for one borane group whereas the second borane group only has one B-H… Li contact. The P-C(1) and P-C(10) bond lengths are 1.8419(16) Å and 1.8464(16) Å respectively,equal in length to that of the P-C(1) andP-C(10) bondlengthsin 26, of 1.8505(16) Å. The P-B(1) and P-B(2) bonds are
  • 18. 18 of essentially identical lengths of 1.9655(19) Å and 1.9619(18) Å respectively. The P-B bond lengths are similar to that of 26. The B(1)… Li distance,withtwoB-H… Li contacts, hasa lengthof 2.455(4) Å comparedto the distance of B(2)… Li, with only one B-H… Li contact of 2.505(4) Å. The B(1)-H… Li contact can be said to be slightly strongerbecause of the increasedhapticity versusthatof the B(2)-H… Li contact. Compound 26, with two B-H… Li contacts, has a smaller B... Li distance of 2.426(3) Å, implying the interactions in 26 are slightlystrongerstill,asthere is onlyone borane group in the molecule able toadd stabilitythrough agostic-type interactions. Attempted Synthesis of [Mes2P(BH3)]2Sn (33) Inan attempttosynthesisebis-(dimesitylphosphido-borane) stannylene,[Mes2P(BH3)]2Sn,33purified and isolated crystals of 26 were used as metathesis reagents for reaction with SnCl2. A solution of two equivalentsof 26 in THF was added dropwise to SnCl2 at -78 °C in THF, and the resulting solution was slowly warmed to room temperature. After three hours, elemental tin particulates were observed in the reaction mixture. The observed species in the 31 P NMR spectrum suggest that the reaction material contained none of the desired compound and had completely decomposed. A mechanism of radical-based reductive elimination followed by a hydrogen radical beingremovedfromthe solventwaspostulatedforthe decompositionof 33to elementaltinandthe corresponding products observed below in Figure 19. Figure 19. 31P NMR spectrum of the reaction between two equivalents of 26 and SnCl2 in THF.
  • 19. 19 The characteristic broad signals for tin-containing phosphido-borane compounds with 119 Sn satellite peaksare absentfrom the 31 PNMR spectrum.The hydrolysisproductsof 26are once again observed, in the ratio of 26:32:24 of 1:1:1. The rapid decomposition can be attributed to three factors: (i) The P-Sn bond is weaker and more easily reduced than a C-Sn bond (ii) The lack of a lone pair on phosphorus means it cannot stabilise the electron deficient Sn(II) centre by pπ-pπ interactions26 (iii) Mesityl aromatic rings, with three methyl substituents, causes the rings to be very electron rich. Electron density is pushed to phosphorus, increasing the nucleophilicity of the ligand. This effect increases the likelihood of reduction of the Sn(II) centre to Sn(0). Synthesis of [Dipp2P(BH3)]Li (27) DippR groups are stericallybulkierthanmesityl Rgroups,decreasingthe tendency of the phosphido- borane ligands to dimerise. The fact that there are only two alkyl chains on the dipp aromatic ring compared to three methyl groups on the mesityl aromatic ring also means the ring is relatively less electronrich.Lesselectrondensitycantherefore be centredonthe phosphorusatom.The effectisa less nucleophilic phosphorus atom, which corresponds to a decreasing likelihood of the stannylene, [Dipp2P(BH3)]2Sn, 34, being reduced from the stabilised +2 oxidation state to elemental tin with the production of diphosphine borane, Dipp2P(BH3)-P(BH3)Dipp2. Compound 27 was synthesised for metalationwith SnCl2, to investigate the stabilisationeffect of these ligands on the low valent Sn(II)centre. Figure 20. Structure of Dipp2PH, 35. One equivalentof BH3.SMe2 solutionwas addedtoone equivalentof 35 indiethyl etherto synthesisethe phosphine borane, Dipp2P(BH3)H,36.Subsequently,one equivalentof n-butyllithium was thenadded tothe resultingsolution toform27 in situ. Thisis showninthe 31 P{1 H} NMR spectrumof the productwhichcontainsa broad, quartetat -73.5 ppm (JPB = 36.4 Hz) (Figure 21).
  • 20. 20 Figure 21. 31P{1H} NMR spectrum of in situ generated 27 in diethyl ether. An excessof the borane solutionwasadded accidently,whichaccountsfor the largerthan expected broad,unresolvedseptetsignal at -24.1 ppmwhichcorrespondstothe bis-phosphido-borane lithium salt, [Dipp2P(BH3)2]Li, 37. A small sharp singlet at -102.1 ppm corresponding to 35 is also noted. Attempted Synthesis of 34 The reaction mixture described above was added dropwise to tin dichloride, at -78 °C, and slowly warmedtoroomtemperature (Figure22).The resultingorange-yellowsolutiondecomposedinunder an hour to produce a black solutionandlarge amountsof fine elemental tinparticulates.Thiscanbe attributedtothe rapidreduction of 34to elemental tin.The factthatthe expectedreductionproduct, Dipp2(BH3)P-P(BH3)Dipp2, is not observed, leads to the conclusion that the compound is highly unstable,due tothe largesterichindrancewithinthe molecule.Thiscausesthefurtherdecomposition to the less hindered Dipp2P-PDipp2, and free borane in solution, the former corresponding to the insignificant singlet at -37.6 ppm. The 31 P{1 H} NMR spectrum shows no evidence of any tin-containing phosphido-borane compounds. Compound 36 can be seenasa broad,unresolvedquartetat-32.2 ppm. The hydrolysisproductsof 37 and 35, due to the broad, unresolved septet at -24.1 ppm and the sharp singlet at -102.9 ppm, respectively, provide further evidence for this decomposition pathway.
  • 21. 21 Figure 22. 31P{1H} NMR spectrum of the reaction of 27 with SnCl2 after one hour in diethyl ether. Synthesis of [Ph2P(BH3)]Li (28) To investigate more fully the hypothesis that the large steric bulk of the mesityl and dipp R groups were the major cause of the rapid decomposition of bis-(dialkylphosphido-borane) stannylenes, the smaller diphenylphosphido-borane lithium salt, [Ph2P(BH3)]Li, 28, was synthesised in situ for the metathesis reaction with SnCl2. Compound 25 was synthesised as the precursor to 28 (Scheme 7). Scheme 7. Synthesis of 25. The reaction of one equivalent of 25 with one equivalent of BH3.SMe2 solution in THF afforded diphenylphosphine borane, Ph2P(BH3)H, 38, after one hour at room temperature (Figure 23). Figure 23. 31P NMR spectrum of 38 in CDCl3.
  • 22. 22 The 31 P NMR spectrum of the product contains a broad doublet at 1.9 ppm (JPH = 389.17 Hz). To the resulting solution,one equivalent of n-butyllithiumsolution was added and this mixture was stirred for 1 h to afford a red solution of 28 in situ. This is shown in the 31 P NMR spectrum of the product, which contains a single, broad quartet at -32.6 ppm (JPB = 21.5 Hz) (Figure 24). Figure 24. 31P NMR spectrum of in situ generated 28 in THF. Attemptstocrystallise 28were unsuccessful due tothe oil-like nature of the productinTHF,toluene, methylcyclohexane and dimethoxyethane solvents. Synthesis of [Ph2P(BH3)2]Li (39) One equivalent of n-butyllithium solution was added to one equivalent of 25 in THF to afford a red solutionof [Ph2P]Li in situ.Subsequentadditionof twoequivalentsof BH3.SMe2 solutionafforded the diphenylphosphido-bis-(borane) lithium salt, [Ph2P(BH3)2]Li, 39, in situ (Figure 25). Figure 25. 31P{1H} NMR spectrum of in situ generated 39 in THF. The 31 P{1 H} NMR spectrumof the product containsa single,broadmultipletat -7.2 ppm. Attemptsto crystallise 39 were unsuccessful due to the oil-like nature of the product in a number of solvents.
  • 23. 23 Attempted Synthesis of [Ph2P(BH3)]2Sn (40) In an attempt to synthesise bis-(diphenylphosphido-borane) stannylene, [Ph2P(BH3)]2Sn, 40, the reaction solution of 39 described above was used in the metathesis reaction with SnCl2. Two equivalents of 39 were added dropwise to one equivalent of SnCl2 in THF, at -78 °C, and this mixture was slowly warmed to room temperature. The 31 P{1 H} NMR spectrum of the reactionmixture (Figure 26), shows twotin-containingproductsof the metathesisreaction;abroadsingletat -10.1 ppmwith 119 Snsatellitepeaks(JSnP = 1632 Hz) andan unidentified broad singlet at -6.7 ppm with 119 Sn satellite peaks (JSnP = 1690 Hz). Later experiments concluded that the signal at -10.1 ppm corresponds to the unexpected product tris- (diphenylphosphido-borane) stannate, [(Ph2P(BH3))3Sn]Li(THF), 41. Figure 26. 31P{1H} NMR spectrum of twoSn compounds one hour after the reactionof in situ generated 39 andSnCl2 inTHF. The volatileswereremoved in vacuo.Toluenewasaddedandthe solutionwasfilteredthrough celite. Consequently,only 41 was observed in the 31 P NMR spectrum (Figure 27). The unidentified product therefore was stable in THF solvent but not in toluene. JSnP = 1632 Hz
  • 24. 24 Figure 27. 31P{1H} NMR spectrum of 41 in THF-d8/toluene-d8. The 31 P{1 H} NMR spectrum of the reaction mixture contains a broad singlet at -16.6 ppm, correspondingto 41 withbroad 119 Snsatellite peaks(JSnP =1632 Hz).Other minorproducts observed inthe reactionmixture are thatof 38, the broad multipletat -0.6 ppm,and 28, the broadmultipletat -10.8 ppm. Direct Synthesis and Characterisation of 41 A directed synthesis of this compound was undertaken to get a clean sample of 41 to confidently assign the peaks observed in the NMR spectra. To isolate 41, three equivalents of 28 were added dropwise to one equivalent of SnCl2 in THF, at -78 °C, and this mixture was warmed slowly to room temperature. The volatile THF was removed in vacuo. Toluene was added to the resulting solidand the pale solids were removed by filtration. Crystals suitable for X-ray crystallographywere obtained from a concentrated solution of 41 in toluene, stored at -25 °C. The 31 P NMR spectrum of the isolated crystals contains a broad singlet at -12.4 ppm (JSnP = 1632 Hz), due to 41, along with a small unidentified broad multiplet at -18.7 ppm (Figure 28). JSnP = 1632 Hz
  • 25. 25 Figure 28. 31P NMR spectrum of 41 in THF-d8/toluene-d8. The 119 Sn NMR spectrum (Figure 29) contains a single sharp quartet at 59 ppm (JSnP = 1632 Hz) confirming that the product is 41. Figure 29. 119Sn NMR spectrum of 41 in THF-d8/Toluene-d8. Compound 41 crystallises as a monomer with one disordered THF solvent molecule (Figure 30).The centre tin atom is bound to three phosphorus atoms. The borane groups all have agostic-type interactions with the lithium cation. Interestingly, two of the borane hydrogens of two BH3 groups have contacts withlithiumbutin the thirdborane group,there is only one B-H… Li contact. The P-Sn bondsare of differinglengths;Sn-P2isthe longest bond at 2.6444(13) Å compared to Sn-P1 and Sn- P3 lengthsof 2.6097(14) Å and2.6288(13) Å,respectively.ThebondsbetweenP-Bare allof statistically equal lengths with an average of 1.954(6) Å, equal to the lengths shown previously in 26 and 32. JSnP = 1632 Hz
  • 26. 26 Figure 30. X-ray crystal structure of 41 with carbon bound hydrogen atoms omitted for clarity. Selectedbond lengths (Å) andangles (°) shown in Table 1. The lengthof the B2… Li distance israther long at 2.798(14) Å, comparedto the lengthsof the B(1)… Li and B(3)… Li distances at 2.470(13) Å and 2.477(14) Å, respectively. This is explained by the reduced hapticity of the B(2)-H… Li contact versus the hapticity observed in both the B(1)-H… Li and B(3)-H… Li contacts. The B(1)-H… Li and B(3)-H… Li contact lengths are similar to 26 and 32. Izod et al.27 synthesised the only other known compound of this nature, tris-(diisopropylphosphido- borane) stannate, [({(CH3)2CH}2P(BH3))3Sn]Li(THF)3, 42 (Figure 31) Whereas in 41, all three borane groups are coordinated to lithium, in 42 only one of the borane groups is, with the other two remaininguncoordinated.The bondlengthsof Sn to P(1), P(2), and P(3) are 2.6349(6) Å, 2.6219(6) Å and 2.6241(6) Å, respectively. All P-B bond lengths are equal at 1.957(3) Å. The length of the B(1)… Li distance in 42 is smaller than the B… Li distances in 41 at 2.381(5) Å, because the agostic-type interactions are spread over only one BH3 group with two B-H… Li contacts in 42, whereas in 41, the interactions are spread over three BH3 groups with five B-H… Li contacts. Figure 31. X-raycrystal structure of42 withcarbon bound hydrogen atoms omittedfor clarity. Selectedbonglengths (Å) and angles (°) shown in Table 1.
  • 27. 27 The bond angle of P(1)-B(1)… Li is extremely large at 148.32(18)° compared to 41’s P(1, 2, 3)-B(1, 2, 3)… Li bondanglesof 114.8(4)°, 97.0(3)° and108.4(4)°, respectively.Thisisattributedtothe constraint of all three BH3 groups coordinated through B-H… Li contacts in 41. In 2010, Izod et al.28 synthesised [[{(Me3Si)2CH}(Ph)P]3Sn]Li(THF)4, 43,withSn-Pbondlengthsof 2.649(2) Å and P-Sn-P bond angles of 91.41(6)° (Figure 32). These are significantly smaller than the bond angles of 41 at 93.60(4)°, 95.17(5)° and 95.56(5)°. This is explained by the requirementof the bondanglesin 41 to widentoincorporate the BH3 groups. Figure 32. Structure of 43. Bond Length (Å)/ Bond Angle (°) [(Ph2P(BH3))3Sn]- Li(THF), 41 [({(CH3)2P(BH3))3Sn]- Li(THF)3, 42 [[{(Me3Si)2CH}(Ph)P]3Sn]- Li(THF)4, 43 Sn-P 2.6097(14) 2.6444(13) 2.6288(13) 2.6349(6) 2.6219(6) 2.6241(6) 2.649(2) B-Li 2.470(13) 2.798(14) 2.477(14) 2.381(5) n/a P-B-Li 114.8(4) 97.0(3) 108.4(4) 148.32(18) n/a P-Sn-P 95.17(5) 93.60(4) 95.56(5) 103.459(19) 104.400(19) 103.853(18) 91.41(6) Table 1. Selected bond lengths (Å) and angles (°) of 41, 42, and 43.
  • 28. 28 Decomposition of 41 Analysisby 31 P{1 H}and119 Sn{1 H}NMRspectroscopy of the sample showninFigure 27,conducted after two days in THF-d8/toluene-d8 solvent, shows the partial decomposition of 41 (Figures 33 and 34). Notable identified peaks in the 31 P{1 H} NMR spectrum are for 41 at -15.4 ppm and the hydrolysis products 39, at -10.1 ppmand 25, at -41.2* ppm. A large broadmultipletisobservedat1.9ppmwhich correspondsto 38, a consequence of 41 beinghighlyunstable insolution.One of the majorproducts observed is not for 41, but instead for an unidentified tin-containing compound, due to the broad multiplet at 70.6 ppm. The 119 Sn satellites were not fully resolved but the broad multiplet signal is characteristic of tin- compounds. Figure 33. 31P{1H} NMR spectrum of the partial decomposition of 41 in THF-d8/toluene-d8. Figure 34. 119Sn{1H} NMR spectrum of the partial decomposition of 41 in THF-d8/toluene-d8.
  • 29. 29 The 119 Sn{1 H} NMR spectrumof the solution containsasharpquartetat -75 ppmdue to 41. A second, sharp triplet signal at -32 ppm is also observed, due to a compound of the general formula [{Ph2P(BH3)}2Sn(X)]- .Itisreasonabletoconclude thatthe signalobservedinthe 31 P{1 H} NMRspectrum at 70.6 ppm and the signal observed in the 119 Sn{1 H} NMR spectrum at -32 ppm are for the same compound, [{Ph2P(BH3)}2Sn(X)]- . The broad nature of the 31 P signal and the triplet multiplicity of the 119 Sn signal provide the evidence for this statement. Afterfive daysina sealedNMR tube inTHF-d8/toluene-d8 solvent,the complete decompositionof 41 was observed (Figure 35). Figure 35. 31P{1H} NMR spectrum of the complete decomposition of 41 after five days in THF-d8/toluene-d8. Elemental tin particulates were observed throughout the now colourless solution, along with the insignificant sharp singlet at 20.1 ppm due to Ph2P-PPh2, providing evidence that reduction had occurred. The major product is 38, the broad multiplet seen at 0.71 ppm, along with a substantial amount of the unidentified [{Ph2P(BH3)}2Sn(X)]- compound, corresponding to the broad multiplet at 70.5 ppm. This productwas neverisolated,butitcan be concludedthat[{Ph2P(BH3)}2Sn(X)]- isinfact the thermodynamic stable product versus 41. AromaticRgroups,beingelectronrich,whenboundtophosphoruspushelectrondensityontoP.Alkyl groups connected to the aromatic ring further increase the electron density in the ring, in turn, increasingthe electrondensitycentralisedonphosphorus. The more electronrichP is,the increased likelihoodof decomposition of [R2P(BH3)]2Sn.Thisinvestigationhasshownthatcompoundscontaining dippgroups(twoalkylchains)are the mostprone to decomposition,followedbymesitylgroups(three methyl groups), with phenyl groups being the most stable. Twodiphenylphosphido-boraneligands are toosmall topreventattackof athirdligand. The electron- poor Sn(II) centre readily accepts a further phosphido-borane ligand to become electron-precise. Technically this is not a phosphido-borane stabilised stannylene as a stannylene is defined as a
  • 30. 30 stabilised low valent Sn centre. This leads to the conclusion that aromatic diphosphido-borane substituted stannylenes are too unstable to be isolated. Synthesis of [Mes2P(BH3)CHPh]Li (44) The investigation into synthesising bis-dialkylphosphido-borane stannylenes was shown to be unsuccessful.The classof compoundsare highlythermallyand photochemically unstable,andprone to decomposition through reduction and hydrolysis pathways. Dialkylphosphido-borane carbanion ligands have been previously synthesised by Izod et al. and have been used to stabilise low valent heavy group 14 metal centres (E = Sn, Pb) through agostic-type interactions.11-13 Compound 44 was synthesisedasaderivative of thisclassof carbanionligandstobe usedinthe metathesisreactionwith stannocene, SnCp2. One equivalent of n-butyllithium was added to one equivalent of Mes2P(BH3)CH2Ph, 45, in THF to afford 44 in situ. This is shown in the 31 P NMR spectrum of the product (Figure 36) which contains a broad multiplet at -0.6 ppm, the major product 44. Figure 36. 31P NMR spectrum of in situ generated 44 in THF. The volatile THF was removed in vacuo before toluene was added to the resulting pale solid. Two equivalents of 44 in situ were added to SnCp2 in toluene at room temperature to afford an orange- yellow solution after one hour (Figure 37).
  • 31. 31 Figure 37. 31P NMR spectrum of the reaction of 44 and SnCp2 in toluene. The 31 P NMR spectrum of the solution contains two broad signals at 14.4 ppm and 19.1 ppm, potentiallydiastereoisomersof eachother,aswasobservedforthe compoundsisolatedbyIzod etal. previous.10-12 The broad shape of the signals are expected for tin-containing phosphido-borane compounds. The 119 Sn satellites are not resolved because of the poor signal to noise ratio. Current work by Izod et al. is on-going to isolate and characterise the products contained in the reaction mixture. There are a small number of dialkyltetrylenesthat have been synthesised and characterised by Izod et al. over recent years (Figures 8-10). The electron-deficient Sn(II) centres are stabilised through agostic-type interactionswiththe BH3 substituents.Asthe phosphine-borane groupisan extra atom furtherfromthe Sn(II)centre, theinteractionbetweenB-H… Snisinamore favourableorientationthan for phosphido-borane ligands,where the phosphorusatomisadjacent to the Sn(II) centre.The tight angle in the latter forces the agostic-type interactions into unfavourable orientationsand therefore cannotefficientlystabilise the Sn(II)centre.Fromthe crystal structure dataanalysed of 41,noagostic- type B-H… Sn contacts were observed leading to the conclusion that the bite angle is too small for effective stabilisation. Conclusion Compounds 26 and 32 were synthesisedandisolated.The molecularstructuresof 26 and 32 contain agostic-type interactions between the borane moieties and the lithium cation, providing effective
  • 32. 32 stabilisationof these compounds.Somewhatunexpectedly,differenthapticitiesof these interactions are observed. The investigation into the synthesis and consequent isolation of phosphido-borane stabilised stannylenes, [R2P(BH3)]2Sn, where R = Mes, Dipp, Ph, was unsuccessful, due to the rapid decomposition of the products to elemental tin, among other ligand side products. The weaker P-Sn bonds are a major factor in their instability versus the C-Sn bonds in phosphine- borane substituted alkyl stannylenes, [R2P(BH3)CR’2]2Sn, because the P-Sn bond has an increased tendencytobe reduced.Inpart,the decompositionof 40can be attributedtothe factthe phosphorus lone pairisboundtothe borane moietyandthereforethereisnopπ-pπoverlapbetweenphosphorus and the low valent Sn(II) centre. Phosphine-borane stabilised alkyl ligands have been shown to have a favourable orientation of the borane moieties with the electron-poor tin centre that allows for efficient overlap of B-H σ-orbitals with the pπ-orbital of Sn. The agostic-type interactionsstabilise the low valent Sn(II) centre through donation of electrondensityintothetinpπ-orbital.Thisinteractioncannotoccurinphosphido-borane substituted stannylenes as phosphorus is adjacent to the tin centre causing the unfavourable orientation of the tin centre with the borane moieties due to the constrained angle. The low valent tin centre therefore is not stabilised by agostic-type interactions in phosphido-borane substituted stannylenes. Compound 41 was isolateddue tothe smallernature of phenyl groupscomparedtomesityl anddipp groups. The X-raycrystal structure of 41 contains noagostic-type interactionsbetweenB-Hσ-orbitals and Sn pπ-orbitals.The electron-precise tincentre isinsteadstabilisedthroughacombinationof the favourable steric and electronic effects of the ligands. The investigation into bis-(phosphido-borane) stannylenesand the consequent absence of evidence of theirsynthesisby 11 B, 31 Pand 119 SnNMR spectroscopydemonstratesthe highlyunstable natureof this class of compounds. Future work will therefore not focus on the isolationof phosphido-borane substituted tetrylenes.Instead,the synthesisandisolationof furtherstericallydemanding phosphine- borane substituted alkyl tetrylenes, [R2P(BH3)CR’2]2E, will be explored. Characterisation by XRD will provide furtherevidenceforthe stabilisationof low valentgroup14 tetrylene centresdue toagostic- type interactions.
  • 33. 33 Experimental All manipulations were carried out using standard Schlenk techniques under an atmosphere of dry argon. Diethyl ether, THF and light petroleum (b.p. 40-60 ° C) were dried prior to use by distillation under nitrogen from sodium or sodium/potassium alloy and were stored over a potassium film. Deuterated toluene was distilled from potassium and stored over activated 4Å molecular sieves. Borane dimethyl sulphideand n-butyllithiumwere preparedasstocksolutionsin n-hexaneortoluene and were dried prior to use over activated 4Å molecular sieves. All other compounds were used as supplied by the manufacturer. 1 H, 11 Band 31 PNMR spectrawere recordedona BrukerAvance III300 spectrometeroperatingat300, 96.25 and 121.44 MHz, respectively, a Bruker Avance II 400 spectrometer operating at 400, 128.34 and 161.92 MHz, respectively,ora BrukerAvance III500 spectrometeroperatingat500, 160.42 and 202.40 MHz, respectively; chemical shifts are quoted in ppm relative to tetramethylsilane, external BF3.Et2Oand 85% H3PO4. 7 Li, 13 C{1 H} and 119 Sn{1 H} NMR spectrawere recordedon a Bruker Avance III 500 spectrometeroperatingat194.32, 125.73 and 186.45 Hz,respectively;chemical shiftsare quoted in ppm relative to 9.7 MLiCl, tetramethylsilane and Me4Sn, respectively. Mes2PH (24) To a solutionof PCl3 (3.43 g, 25 mmol) indiethyl ether(50 mL) wasaddeda solutionof MesMgBr (50 mL, 1.0 M, 50 mmol) in diethyl ether (50 mL) at -78 °C. The resulting yellow solution was warmed slowlytoroomtemperatureandfiltered. The filtratewascooled(0°C) beforeLiAlH4 (0.95g,25 mmol) was addedinportions.The mixture wasstirredfor 30 min and slowlywarmedtoroom temperature. The reaction was quenched with degassed H2O (50 mL). The organic layer was decanted and further extractedwithcoldpetrol (3x 30 mL). The combinedorganiclayersweredriedovermolecularsieves. The volatileswere removed in vacuo togive ayellow solid,whichwasheatedat70°C in vacuo toyield 24 as a pale yellowcrystalline solid. Yield 5.78 g, 85.6%. 1 H NMR (CDCl3, 25 °C): δ 2.22 (s,6H, p-CH3), 2.24 (s, 12H, o-CH3),5.23 (d, JPC = 232.90 Hz, 1H, PH),6.80 (m, 4H, ArH). 31 P{1 H} NMR (CDCl3,25 °C):δ -93.1 (s). Mes2P(BH3)H (29) To a solutionof Mes2PH(0.08 g, 0.30 mmol) inTHF (10 mL) was addeda solutionof BH3.SMe2 in THF (0.18 mL,1.68 M, 0.30 mmol) andthe solutionwasstirredfor1h.The volatileswereremoved in vacuo
  • 34. 34 to give 29 asa pale yellowsolid,whichwassufficientlycleanforuse withoutfurtherpurification.Yield 0.07 g, 83.3%. 1 H{11 B} NMR (CDCl3,25 °C): δ 1.23, (dd, JPH = 14.55 Hz, JHH = 7.25 Hz, 3H, BH3),2.25 (s, 6H, p-CH3),2.36 (s,12H, o-CH3),6.60 (dq, JPH = 383.94 Hz, JHH = 7.63Hz, 1H, PH),6.85 (m, 4H, m-ArH). 13 C{1 H} NMR (CDCl3, 25 °C): δ 21.16 (CH3), 21.99 (d, JPC = 6.16 Hz, CH3), 122.05 (d, JPC = 51.20 Hz, Ar), 130.37 (d, JPC = 8.22 Hz, Ar), 141.17 (Ar), 142.55 (d, JPC = 8.47 Hz, Ar). 11 B{1 H} NMR (CDCl3, 25 °C): δ - 34.7 (s, br). 31 P{1 H} NMR (CDCl3, 25 °C): δ -28.3 (m, br). [Mes2P(BH3)]Li(THF)2 (26) To a solution of Mes2P(BH3)H (0.71 g, 2.50 mmol) in THF (20 mL) was added a solution of n-BuLi in hexanes(1.0 mL, 2.49 M, 2.50 mmol) and the resultingredsolutionwasstirredfor 1 h. The volatiles were removed in vacuo.Diethylether(20mL) was addedtothe resultingpale solid.The solutionwas reducedto10 mLand storedat -25 °C overnight.CrystalssuitableforX-raycrystallographyof 26were obtained. Isolated yield: 0.50 g, 66.2%. 1 H{11 B} NMR (THF-d8/toluene-d8,25 °C): δ 1.13 (d, JPH = 7.13 Hz, 3H, BH3), 1.76 (m,THF), 2.17 (s,6H, p-CH3),2.50 (s,12H, o-CH3), 3.74 (m, THF), 6.68 (s,4H, m-ArH). 13 C{1 H} NMR(THF-d8/toluene-d8,25°C):δ 20.37 (CH3),23.42 (d, JPC = 12.43 Hz,CH3), 25.33 (THF), 67.23 (THF), 128.17 (d, JPC = 2.24 Hz, Ar),132.40 (Ar),141.08 (d, JPC = 10.61 Hz, Ar),143.23 (d, JPC = 25.86 Hz, Ar). 7 Li NMR (THF-d8/toluene-d8,25 °C): δ -0.7 (s,br). 11 B{1 H} NMR (THF-d8/toluene-d8,25 °C): δ -31.9 (d, JPB = 37 Hz). 31 P{1 H} NMR (THF-d8/toluene-d8, 25 °C): δ -55.9 (s, br). [Mes2P(BH3)2]Li(THF)2 (32) To a solution of Mes2P(BH3)H (0.21 g, 0.73 mmol) in THF (20 mL) was added a solution of n-BuLi in hexanes (0.3 mL, 2.49 M, 0.75 mmol) and the solution was stirredfor 1 h. A solution of BH3.SMe2 in THF (0.4 mL, 2M, 0.73 mmol) was added and the mixture was stirred for 1 h. The volatiles were removed in vacuo. Diethyl ether (20 mL) was added to the resulting pale solid. The solution was reducedto10 mLand storedat -25 °C overnight.CrystalssuitableforX-raycrystallographyof 32were obtained.Isolatedyield:0.37g,94.5%. 1 H{11 B} NMR(CDCl3,25°C):δ 1.06 (d, JPH =7.6 Hz,6H, BH3), 1.76 (m,THF), 2.18 (s,6H, p-CH3),2.30 (s, 12H, o-CH3), 3.61 (m, THF), 6.70 (s, m-ArH). 13 C{1 H} NMR (CDCl3, 25 °C): δ 20.79 (CH3),23.19 (CH3), 25.87 (THF),67.65 (THF), 129.91 (d, JPC = 7.59 Hz, Ar) , 141.70 (d, JPC = 7.34 Hz, Ar). 7 Li NMR (CDCl3,25 °C): δ 0.0 (m, br). 11 B{1 H} NMR (CDCl3,25 °C): δ -29.0 (m, br). 31 P{1 H} NMR (CDCl3, 25 °C): δ -21.2 (s, br).
  • 35. 35 Dipp2P(BH3)H (36) To a solutionof Dipp2PH(0.18g,0.51 mmol) indiethyl ether(20mL) wasaddedasolutionof BH3.SMe2 in THF (0.3 mL, 1.68 M, 0.51 mmol) and the solutionwasstirredfor 1 h. The volatileswere removed in vacuo to give 36 as a pale yellow solid, which was sufficiently clean for use without further purification.Yield0.16 g, 85.3%. 1 H{11 B} NMR (CDCl3, 25 °C): δ 0.93 (d, JHH = 6.90 Hz, 12H, CH3), 0.99 (d, JHH = 6.74 Hz, 12H, CH3),1.38 (m,3H, BH3).3.47 (m, 4H, CHMe2),6.70 (dq, JPH = 313.35 Hz, JHH = 6.65 Hz, 1H, PH),7.08 (m,4H, m-ArH),7.28 (m, 2H, p-ArH). 13 C{1 H} NMR(CDCl3, 25 °C): δ 23.89 (CH3), 24.46 (CH3), 31.62 (CH), 124.88 (d, JPC = 7.90 Hz, Ar), 125.27 (d, JPC = 51.63 Hz, Ar), 131.45 (d, JPC = 1.86 Hz, Ar),152.71 (d, JPC = 8.48 Hz,Ar). 11 B{1 H} NMR (CDCl3,25 °C):δ -32.1 (s,br). 31 P{1 H} NMR (CDCl3,25 °C): δ -33.9 (s, br). Ph2PH (25) Solidsodium(4.09 g, 178.0 mmol) wasaddedinportionsto NH3(l) (200 mL) and stirredfor 10 min.To the resulting solution, Ph3P (23.3 g, 88.9 mmol) was added and the mixture was stirred for 30 min before pre-driedNH4Br (17.4 g, 178.0 mmol) was added. The organic material was extracted with diethyl ether (4 x 30 mL). The volatiles were removed in vacuo to give a pale yellow mixture. The mixture was distilled to give 25 as a colourless liquid at 80 °C (10-2 mmHg). Yield 12.30 g, 74.4%. 1 H NMR (CDCl3, 25 °C): δ 5.12 (d, JPH = 218.05 Hz, 1H, PH), 7.10 (m, 6H, ArH), 7.30 (m, 4H, ArH). 31 P{1 H} NMR (CDCl3, 25 °C): δ -40.2 (s). Ph2P(BH3)H (38) To a solutionof Ph2PH(7.5g, 34 mmol) inTHF (100 mL) was addeda solutionof BH3.SMe2 inTHF (8.5 mL, 2.0 M, 17 mmol) andthe solutionwasstirredfor1 h.The volatileswere removed in vacuo togive 38 as a pale yellow solid, which was sufficientlyclean for use without further purification.Yield 3.74 g, 55.0%. 1 H{11 B} NMR (CDCl3, 25 °C): δ 1.29 (d, JPH = 16.24 Hz, 3H, BH3), 6.31 (dq, JPH = 378.11, JHH = 7.24 Hz, 1H, PH),7.46 (m,6H, ArH),7.68 (m, 4H, ArH). 11 B{1 H} NMR (CDCl3,25 °C): δ -40.2 (d, JPB = 45.8 Hz). 31 P{1 H} NMR (CDCl3, 25 °C): δ 1.2 (m, br).
  • 36. 36 [(Ph2P(BH3))3Sn]Li(THF) (41) To a solution of Ph2PH (1.27 g, 6.83 mmol) in THF (30 mL) was added a solution of BH3.SMe2 in THF (4.1 mL, 1.68 M, 6.83 mmol) andthe solutionwasstirredfor1 h. A solutionof n-BuLi inhexanes(3.0 mL, 2.3 M, 6.83 mmol) was added andthe mixture was stirredfor1 h. The resultingredsolutionwas added dropwise to a suspension of SnCl2 (0.43 g, 2.3 mmol) in THF (10 mL) at -78 °C. The resulting yellow solution was warmed slowly to room temperature and the volatiles were removed in vacuo. Toluene (20 mL) was addedto the resultingsolidtogive a yellow solutionwithpale solidsthatwere removedbyfiltration.The filtrate wasreducedto10 mL and was storedat -25 °C overnight.Crystals suitable forX-raycrystallography of 41were obtained. Isolatedyield:0.82g,45.6%. 1 H{11 B} NMR(THF- d8/toluene-d8,25°C): δ 1.54 (d, JPH = 9.1 Hz, 9H, BH3),6.98 (m, 12H, o-ArH),7.00 (m, 6H, p-ArH),7.61 (m, m-ArH). 13 C{1 H} NMR (THF-d8/toluene-d8, 25 °C): δ 127.69 (m, Ar), 128.00 (Ar), 134.31 (m, Ar), 136.67 (m, Ar). 7 Li NMR(THF-d8/toluene-d8,25°C):-0.6(s,br). 11 B{1 H} NMR(THF-d8/toluene-d8,25°C): δ -32.6 (m, br). 31 P{1 H} NMR (THF-d8/toluene-d8, 25 °C): δ -12.4 (s, br, JSnP = 1632 Hz). 119 Sn{1 H} NMR (THF-d8/toluene-d8, 25 °C): δ -59 (q, JSnP = 1632 Hz). Mes2P(BH3)CH2Ph (45) To a solutionof Mes2PH (1.44 g, 5.33 mmol) inTHF (30 mL) was addeda solutionof BH3.SMe2 inTHF (3.2 mL, 1.68 M, 5.33 mmol) andthe solutionwasstirredfor1 h. A solutionof n-BuLi inhexanes(2.3 mL, 2.3 M, 5.33 mmol) was addedand the mixture was stirredfor1 h. The resultingredsolutionwas added to a solution of Ph2CH2Br (0.91 g, 5.33 mmol) in THF (20 mL). The volatiles were removed in vacuo togive apale yellowsolidwhichwasextractedintodichloromethane(50mL),filteredanddried overmolecularsieves.The solventwasremoved in vacuo fromthe filtrate togive 45 as a pale yellow solid. Yield1.53g, 76.7%. 1 H{11 B} NMR (CDCl3, 25 °C): δ 1.43 (d, JPH = 12.9 Hz, 3H, BH3),2.16 (s,12H, o- CH3),2.26 (s, 6H, p-CH3),3.95 (d, JPH = 11.03 Hz, 2H, CH2),6.77 (s, m-ArH),6.90 (d, JHH = 7.66 Hz,2H, o- ArH),7.04 (m, ArH),7.13 (m, ArH). 13 C{1 H} NMR (CDCl3,25°C): δ 21.04 (d, JPC = 1.13 Hz, CH3),23.51 (d, JPC = 4.55 Hz, CH3),37.25 (d, JPC = 29.96 Hz, CH2), 126.93 (d, JPC = 3.67 Hz, Ar),127.52 (d, JPC = 3.19 Hz, Ar),131.01 (d, JPC = 9.17 Hz, Ar),131.38 (d, JPC = 4.59 Hz, Ar),132.64 (d, JPC = 3.30 Hz, Ar),140.18 (d, JPC = 2.25 Hz,Ar),141.68 (Ar),141.77 (Ar). 11 B{1 H} NMR(CDCl3,25 °C):δ -30.1 (s,br). 31 P{1 H} NMR(CDCl3, 25°C): δ 17.9 (s, br).
  • 37. 37 References 1. D. M. Giolando,R.A. Jones,C.M. Nunn,J.M. Powerand A.H. Cowley, polyhedron, 1988, 7, 1909- 1910. 2. M. Y. Chiang, D. J. Rauscher, W. E. Buhro and S. C. Goel, J. Am. Chem. Soc., 1993, 115, 160-169. 3. E. Rivard, A. D. Sutton, J. C. Fettinger and P. P. Power, Inorg. Chim. Acta., 2007, 360, 1278-1286. 4. U. Winkler,S.Rell,H.Pritzkow,R.Janoschekand M. Driess, Angew.Chem.,Int. Ed. Engl., 1995, 34, 1614-1616. 5. R. W. Harrington, W. Clegg, B. Allen, W. Mcfarlane and K. Izod, Organometallics, 2005, 24, 2157- 2167. 6. W. E. Buhro, M. Y. Chiang and M. A. Matchett, Inorg. Chem., 1994, 33, 1109-1114. 7. P. J. Davidson and M. F. Lappert, J. Chem. Soc., Chem. Commun., 1973, 9, 317. 8. H. Sakurai,C.Kabuto,R.Hirano,R.YauchibaraandM.Kira, J.Am.Chem.Soc.,1991, 113, 7785-7787. 9. M. S. Hill,P. B. Hitchcock, D. Patel,J. D. Smith,S. Zhang and C. Eaborn, Organometallics,2000, 19, 49. 10. R. W. Harrington, W. Clegg, J. M. Watson and K. Izod, Inorg. Chem., 2013, 52, 1466-1475. 11. R. W. Harrington, W. Clegg, C. Wills, W. Mcfarlane and K. Izod, Organometallics, 2008, 27, 4386- 4394. 12. R. W. Harrington, W. Clegg, C. Wills and K. Izod, Organometallics, 2009, 28, 2211-2217. 13. R. W. Harrington, W. Clegg, C. Wills and K. Izod, Organometallics, 2009, 28, 5661-5668. 14. S. Herold,A.Mezzetti,A.Albinati,F.Lianza,T.Gerfin,V.Gramlichand L. M. Venanzi, Inorg.Chim. Acta., 1995, 235, 215-231. 15. S. J. Coles, M. B. Hursthouse, A. Gaumont and J. M. Brown, Chem. Commun., 1999, 1, 63-64. 16. C. Lepetit, L. Toupet, C. Alayrac, J. Lohier, E. Bernoud and I. Abdellah and A. Gaumont, Chem. Commun., 2012, 48, 4088-4090. 17. R. L. Harlow, M. Kline and A. J. Arduengo, J. Am. Chem. Soc., 1991, 113, 361-363. 18. L. Nyulaszi and A. Fekete, J. Organomet. Chem., 2002, 643-644, 278-284.
  • 38. 38 19. E. Despagnet,H.Gornitzka,A.B.Rozhenko,W.W.Schoeller, D.BourissouandG.Bertrand, Angew. Chem., Int. Ed., 2002, 41, 2835-2837. 20. R. W. Harrington, W. Clegg, E. R. Clark, J. Stewart and K. Izod, Inorg. Chem., 2010, 49, 4698-4707. 21. R. W. Harrington,W. Clegg,I. Carr, B. V. Tyson,W. Mcfarlane and K.Izod, Organometallics, 2006, 25, 1135-1143. 22. S.E. Sozerli,J.D.Smith,P.B. Hitchcock,T. Ganiczand C. Eaborn, Organometallics, 1997, 16, 5621- 5622. 23. B. Neumann, H. G. Stammler, A. Becker and P. Jutzi, Organometallics, 1991, 10, 1647-1648. 24. C. Wills,E.Anderson,R. W. Harrington, M. R. Probertand K. Izod, organometallics, 2014, 33(19), 5283-5294. 25. R. A. Bartlett, M. M. Olmstead, G. A. Sigel and P. P. Power, Inorg. Chem., 1987, 26, 1941-1946. 26. D. G. Rayner, S. M. El-Hamruni, R. W. Harrington, U. Baisch and K. Izod, Angew. Chem. Int. Ed., 2014, 53, 3636-3640. 27. K. Izod et al, unpublished. 28. J. Stewart, E. R. Clark, W. Clegg, R. W. Harrington and K. Izod, Inorg. Chem, 2010, 49, 4698-4707.
  • 39. 39 Acknowledgments I would like to thank supervisor Dr Keith Izod and his postgraduate students Peter Evans and Claire Jones for their invaluable help and advice, not to mention their patience and commitment to furthering my understanding of all aspects within the project. I would also like to thank Dr Paul Waddell for his time and expert knowledge of X-ray crystallography, and Richard Wardle for his insightful discussions on all matters related to the project.
  • 40. 40 Supplementary Material NMR Spectra Figure S1. 1H NMR spectrum of Mes2PH, 24, in CDCl3.
  • 41. 41 Figure S2. 31P{1H} NMR spectrum of Mes2PH, 24, in CDCl3. Figure S3. 1H{11B} NMR spectrum of Mes2P(BH3)H, 29, in CDCl3.
  • 42. 42 Figure S4. 13C{1H} NMR spectrum of Mes2P(BH3)H, 29, in CDCl3. Figure S5. 11B{1H} NMR spectrum of Mes2P(BH3)H 29, in CDCl3.
  • 43. 43 Figure S6. 1H{11B} NMR spectrum of [Mes2P(BH3)]Li(THF)2, 26, in THF-d8/toluene-d8. Figure S7. 7Li NMR spectrum of [Mes2P(BH3)]Li(THF)2, 26, in THF-d8/toluene-d8.
  • 44. 44 Figure S8. 11B{1H} NMR spectrum of [Mes2P(BH3)]Li(THF)2, 26, in THF-d8/toluene-d8. Figure S9. 13C{1H} NMR spectrum of [Mes2P(BH3)]Li(THF)2, 26, in THF-d8/toluene-d8.
  • 45. 45 Figure S10. 1H{11B} NMR spectrum of [Mes2P(BH3)2]Li(THF)2, 32, in CDCl3. Figure S11. 7Li NMR spectrum of [Mes2P(BH3)2]Li(THF)2, 32, in CDCl3.
  • 46. 46 Figure S12. 11B NMR spectrum of [Mes2P(BH3)2]Li(THF)2, 32, in CDCl3. Figure S13. 13C{1H} NMR spectrum of [Mes2P(BH3)2]Li(THF)2, 32, in CDCl3.
  • 47. 47 Figure S14. 1H{11B} NMR spectrum of Dipp2P(BH3)H, 36, in CDCl3. Figure S15. 11B{1H} NMR spectrum of Dipp2P(BH3)H, 36, in CDCl3.
  • 48. 48 Figure S16. 13C{1H} NMR spectrum of Dipp2P(BH3)H, 36, in CDCl3. Figure S17. 31P{1H} NMR spectrum of Dipp2P(BH3)H, 36, in CDCl3.
  • 49. 49 Figure S18. 1H NMR spectrum of Ph2PH, 25, in CDCl3. Figure S19. 31P NMR spectrum of Ph2PH, 25, in CDCl3.
  • 50. 50 Figure S20. 1H{11B} NMR spectrum of Ph2P(BH3)H, 38, in CDCl3. Figure S21. 11B{1H} NMR spectrum of Ph2P(BH3)H, 38, in CDCl3.
  • 51. 51 Figure S22. 1H{11B} NMR spectrum of [(Ph2P(BH3))3Sn]Li(THF), 41, in THF-d8/toluene-d8. Figure S23. 7Li NMR spectrum of [(Ph2P(BH3))3Sn]Li(THF), 41, in THF-d8/toluene-d8.
  • 52. 52 Figure S24. 11B{1H} NMR spectrum of [(Ph2P(BH3))3Sn]Li(THF), 41, in THF-d8/toluene-d8. Figure S25. 13C{1H} NMR spectrum of [(Ph2P(BH3))3Sn]Li(THF), 41, in THF-d8/toluene-d8.
  • 53. 53 Figure S26. 1H{11B} NMR spectrum of Mes2P(BH3)CH2Ph, 45, in CDCl3. Figure S27. 11B NMR spectrum of Mes2P(BH3)CH2Ph, 45, in CDCl3.
  • 54. 54 Figure S28. 13C{1H} NMR spectrum of Mes2P(BH3)CH2Ph, 45, in CDCl3. Figure S29. 31P NMR spectrum of Mes2P(BH3)CH2Ph, 45, in CDCl3.
  • 55. 55 Figure S30. 11B{1H} NMR spectrum of [Ph2P(BH3)]Li, 28, reaction mixture after one hour in THF. Figure S31. 11B{1H} NMR spectrum of [Ph2P(BH3)2]Li, 39, reaction mixture after one hour in THF.
  • 56. 56 Figure S32. 31P NMR spectrum of [Mes2P(BH3)]Li(THF)2, 26, andthe corresponding hydrolysis products, 32 and24 after three days in THF-d8/toluene-d8.
  • 57. 57 X-ray Crystallography Data [Mes2P(BH3)]Li(THF)2 Table 1 : Crystal data and structure refinement for [Mes2P(BH3)]Li(THF)2 (26) Identification code kji160011 Empirical formula C52H82B2Li2O4P2 Formula weight 868.61 Temperature/K 150.0(2) Crystal system triclinic Space group P-1 a/Å 9.8199(4) b/Å 11.2010(3) c/Å 13.0590(4) α/° 72.190(3) β/° 69.572(4) γ/° 74.325(3) Volume/Å3 1259.87(9) Z 1 ρcalcg/cm3 1.145 μ/mm-1 1.095 F(000) 472.0 Crystal size/mm3 0.27 × 0.21 × 0.15 Radiation CuKα (λ = 1.54184) 2Θ range for data collection/° 7.43 to 133.902 Index ranges -11 ≤ h ≤ 11, -13 ≤ k ≤ 13, -15 ≤ l ≤ 15 Reflections collected 34155 Independent reflections 4453 [Rint = 0.0474, Rsigma = 0.0244] Data/restraints/parameters 4453/0/295 Goodness-of-fit on F2 1.057 Final R indexes [I>=2σ (I)] R1 = 0.0363, wR2 = 0.0883 Final R indexes [all data] R1 = 0.0466, wR2 = 0.0953 Largest diff. peak/hole / e Å-3 0.33/-0.23 Table 2 Fractional Atomic Coordinates (×104) and Equivalent Isotropic Displacement Parameters (Å2×103) for kji160011. Ueq is defined as 1/3 of of the trace of the orthogonalised UIJ tensor. Atom x y z U(eq) P1 5205.0(5) 7072.2(4) 3281.7(3) 26.74(12) O1 6045.9(14) 5700.9(11) 7341.4(10) 36.8(3) O2 8268.5(13) 3887.7(11) 5756.4(9) 34.5(3) C1 7037.3(18) 7327.2(15) 2287.7(13) 27.2(3) C2 7958.7(19) 6313.2(15) 1799.1(13) 29.6(4) C3 9380.5(19) 6436.6(16) 1098.0(14) 33.7(4)
  • 58. 58 C4 9947(2) 7533.2(17) 854.5(13) 34.3(4) C5 9040(2) 8519.9(16) 1341.8(14) 34.2(4) C6 7611.3(19) 8441.3(15) 2051.4(13) 30.0(4) C7 7448(2) 5077.7(16) 2010.3(15) 36.7(4) C8 11494(2) 7643.4(19) 108.6(16) 43.5(5) C9 6741(2) 9561.8(16) 2557.4(15) 36.9(4) C10 3900.1(18) 8570.2(14) 2952.3(13) 26.1(3) C11 3709.9(19) 8956.9(15) 1861.8(13) 28.4(4) C12 2584.6(19) 9947.9(15) 1615.9(14) 31.4(4) C13 1584.4(19) 10587.4(15) 2414.4(14) 32.1(4) C14 1792.4(19) 10222.8(15) 3472.0(14) 31.1(4) C15 2923.9(18) 9253.9(14) 3756.5(13) 28.1(3) C16 4699(2) 8301.3(17) 937.6(14) 36.2(4) C17 329(2) 11623.1(18) 2148.8(17) 44.7(5) C18 3040(2) 9020.2(17) 4928.5(14) 38.8(4) C19 5408(2) 7020.5(17) 7364.3(16) 42.1(5) C20 5671(2) 7246.0(18) 8352.1(17) 45.9(5) C21 6853(3) 6142(2) 8646.7(18) 53.7(5) C22 6557(3) 5105.6(19) 8309.9(18) 56.4(6) C23 9134(2) 3078.8(16) 6495.8(15) 36.5(4) C24 10434(2) 2321.5(17) 5781.8(16) 41.8(4) C25 10638(2) 3203.6(16) 4617.6(15) 36.9(4) C26 9061(2) 3776.3(18) 4618.9(15) 39.5(4) B1 5684(2) 6669.5(19) 4706.0(16) 34.2(4) Li1 6208(3) 4838(3) 6180(2) 32.2(6) Table 3 Anisotropic Displacement Parameters (Å2×103) for kji160011. The Anisotropic displacement factor exponent takes the form: -2π2[h2a*2U11+2hka*b*U12+…]. Atom U11 U22 U33 U23 U13 U12 P1 28.2(2) 22.5(2) 26.7(2) -4.95(15) -4.28(16) -5.93(16) O1 46.9(8) 29.8(6) 35.4(6) -12.4(5) -14.0(6) -1.7(5) O2 31.8(7) 33.5(6) 31.9(6) -6.1(5) -6.2(5) -2.0(5) C1 28.7(9) 27.7(8) 23.2(8) -2.9(6) -7.0(6) -6.3(6) C2 30.3(9) 30.6(8) 26.1(8) -4.9(6) -7.8(7) -5.2(7) C3 31.3(10) 37.3(9) 29.1(8) -7.9(7) -7.6(7) -2.4(7) C4 29.9(10) 43.8(10) 25.2(8) 0.3(7) -8.6(7) -9.1(8) C5 36.5(10) 34.0(9) 31.5(9) 1.4(7) -11.9(7) -13.3(7) C6 32.4(10) 29.3(8) 27.6(8) -1.6(6) -10.2(7) -8.3(7) C7 35.4(10) 31.4(9) 40.1(10) -14.4(7) -3.0(8) -4.7(7) C8 33.3(11) 52.5(11) 36.9(10) 0.1(8) -6.7(8) -11.9(8) C9 40.2(11) 28.6(9) 42.9(10) -7.4(7) -9.9(8) -12.0(7) C10 28.8(9) 23.9(7) 26.3(8) -5.0(6) -6.4(6) -9.2(6) C11 33.2(9) 27.9(8) 26.5(8) -6.0(6) -6.3(7) -12.7(7)
  • 59. 59 C12 36.5(10) 32.9(8) 27.6(8) -1.2(7) -12.5(7) -13.6(7) C13 32.5(10) 27.8(8) 37.0(9) -4.4(7) -11.9(7) -8.4(7) C14 31.6(10) 28.6(8) 31.9(9) -10.0(7) -5.4(7) -5.3(7) C15 32.4(9) 25.2(8) 27.0(8) -5.3(6) -8.0(7) -7.6(7) C16 41.8(11) 42.5(10) 26.5(8) -11.0(7) -9.1(8) -8.9(8) C17 41.3(12) 43(1) 49.0(11) -7.0(8) -20.1(9) -1.6(8) C18 43.3(11) 39.4(10) 29.9(9) -13.2(7) -10.0(8) 3.2(8) C19 49.4(12) 32.3(9) 44.7(11) -17.3(8) -13.9(9) 2.0(8) C20 54.7(13) 41.1(10) 46.4(11) -19.7(9) -12.7(9) -7.5(9) C21 59.4(15) 62.6(13) 45.2(12) -17.5(10) -20.3(10) -8.8(11) C22 84.0(17) 42.4(11) 44.8(11) -14.0(9) -31.5(11) 6.7(11) C23 36.2(10) 34.6(9) 35.6(9) -1.5(7) -11.9(8) -7.4(7) C24 34.1(11) 36.4(10) 48.4(11) -5.3(8) -10.9(8) -2.7(8) C25 32.9(10) 35.1(9) 40.6(10) -12.8(8) -3.9(8) -7.2(7) C26 38.2(11) 45.8(10) 33.8(9) -13.2(8) -8.3(8) -5.0(8) B1 34.9(12) 32.8(10) 27.4(10) -0.7(8) -8.5(8) -2.4(8) Li1 35.5(16) 28.2(14) 31.4(14) -6.5(11) -9.1(12) -4.8(11) Table 4 Bond Lengths for kji160011. Atom Atom Length/Å Atom Atom Length/Å P1 C1 1.8505(16) C6 C9 1.509(2) P1 C10 1.8504(16) C10 C11 1.420(2) P1 B1 1.967(2) C10 C15 1.415(2) P1 Li11 2.645(3) C11 C12 1.387(2) O1 C19 1.446(2) C11 C16 1.509(2) O1 C22 1.429(2) C12 C13 1.388(2) O1 Li1 1.976(3) C13 C14 1.387(2) O2 C23 1.448(2) C13 C17 1.505(2) O2 C26 1.443(2) C14 C15 1.393(2) O2 Li1 1.987(3) C15 C18 1.512(2) C1 C2 1.415(2) C19 C20 1.504(3) C1 C6 1.412(2) C20 C21 1.506(3) C2 C3 1.393(2) C21 C22 1.487(3) C2 C7 1.513(2) C23 C24 1.512(3) C3 C4 1.388(2) C24 C25 1.518(2) C4 C5 1.386(3) C25 C26 1.507(3) C4 C8 1.506(2) B1 Li1 2.426(3) C5 C6 1.395(2) Li1 P11 2.645(3) 1 1-X,1-Y,1-Z Table 5 Bond Angles for kji160011.
  • 60. 60 Atom Atom Atom Angle/˚ Atom Atom Atom Angle/˚ C1 P1 B1 99.22(8) C15 C10 C11 117.34(15) C1 P1 Li11 130.60(8) C10 C11 C16 121.70(15) C10 P1 C1 106.01(7) C12 C11 C10 120.64(15) C10 P1 B1 117.47(8) C12 C11 C16 117.66(14) C10 P1 Li11 107.43(8) C11 C12 C13 122.30(15) B1 P1 Li11 96.42(9) C12 C13 C17 121.70(16) C19 O1 Li1 126.68(13) C14 C13 C12 116.81(16) C22 O1 C19 108.47(13) C14 C13 C17 121.49(16) C22 O1 Li1 124.85(13) C13 C14 C15 123.21(15) C23 O2 Li1 127.90(13) C10 C15 C18 123.91(15) C26 O2 C23 109.06(13) C14 C15 C10 119.61(15) C26 O2 Li1 122.55(13) C14 C15 C18 116.46(14) C2 C1 P1 118.13(12) O1 C19 C20 106.45(15) C6 C1 P1 123.70(12) C19 C20 C21 104.74(15) C6 C1 C2 118.00(15) C22 C21 C20 102.23(17) C1 C2 C7 121.90(15) O1 C22 C21 106.34(16) C3 C2 C1 120.05(15) O2 C23 C24 106.10(14) C3 C2 C7 118.05(14) C23 C24 C25 102.59(14) C4 C3 C2 122.24(16) C26 C25 C24 101.77(14) C3 C4 C8 121.56(17) O2 C26 C25 105.72(14) C5 C4 C3 117.36(16) P1 B1 Li1 139.76(12) C5 C4 C8 121.07(16) O1 Li1 P11 119.94(13) C4 C5 C6 122.56(16) O1 Li1 O2 107.33(15) C1 C6 C9 122.34(15) O1 Li1 B1 100.33(12) C5 C6 C1 119.78(15) O2 Li1 P11 98.67(11) C5 C6 C9 117.88(14) O2 Li1 B1 112.84(14) C11 C10 P1 117.70(11) B1 Li1 P11 117.82(13) C15 C10 P1 124.28(12) 1 1-X,1-Y,1-Z Table 6 Torsion Angles for kji160011. A B C D Angle/˚ A B C D Angle/˚ P1 C1 C2 C3 - 176.23(12) C11 C12C13C142.4(2) P1 C1 C2 C7 3.9(2) C11 C12C13C17 - 177.31(16) P1 C1 C6 C5 176.13(12) C12 C13C14C15-0.9(2) P1 C1 C6 C9 -2.8(2) C13 C14C15C10-1.8(2) P1 C10C11C12169.51(12) C13 C14C15C18177.07(16) P1 C10C11C16-9.6(2) C15 C10C11C12-1.5(2) P1 C10C15C14 - 167.45(12) C15 C10C11C16179.42(14) P1 C10C15C1813.8(2) C16 C11C12C13177.92(15)
  • 61. 61 O1 C19C20C2116.5(2) C17 C13C14C15178.80(16) O2 C23C24C2528.08(18) C19 O1 C22C21-24.9(2) C1 P1 C10C1161.60(14) C19 C20C21C22-30.5(2) C1 P1 C10C15 - 128.10(14) C20 C21C22O1 34.3(2) C1 C2 C3 C4 0.2(3) C22 O1 C19C204.9(2) C2 C1 C6 C5 0.9(2) C23 O2 C26C25-17.40(18) C2 C1 C6 C9 - 178.03(15) C23 C24C25C26-37.56(18) C2 C3 C4 C5 0.2(2) C24 C25C26O2 34.27(17) C2 C3 C4 C8 179.08(16) C26 O2 C23C24-6.96(18) C3 C4 C5 C6 0.0(2) B1 P1 C1 C2 98.76(14) C4 C5 C6 C1 -0.5(2) B1 P1 C1 C6 -76.48(15) C4 C5 C6 C9 178.43(16) B1 P1 C10C11171.31(12) C6 C1 C2 C3 -0.7(2) B1 P1 C10C15-18.39(17) C6 C1 C2 C7 179.46(15) Li11 P1 C1 C2 -8.00(18) C7 C2 C3 C4 180.00(16) Li11 P1 C1 C6 176.76(13) C8 C4 C5 C6 - 178.91(16) Li11 P1 C10C11-81.51(14) C10P1 C1 C2 - 139.04(13) Li11 P1 C10C1588.79(15) C10P1 C1 C6 45.72(15) Li1 O1 C19C20 - 174.92(16) C10C11C12C13-1.2(2) Li1 O1 C22C21154.89(17) C11C10C15C142.9(2) Li1 O2 C23C24165.03(15) C11C10C15C18 - 175.85(15) Li1 O2 C26C25170.09(14) 1 1-X,1-Y,1-Z Table 7 Hydrogen Atom Coordinates (Å×104) and Isotropic Displacement Parameters (Å2×103) for kji160011. Atom x y z U(eq) H3 9983 5747 776 40 H5 9407 9279 1186 41 H7A 7218 4669 2815 55 H7B 8233 4507 1587 55 H7C 6562 5256 1766 55 H8A 12083 7728 545 65 H8B 11462 8396 -516 65 H8C 11945 6878 -189 65 H9A 6002 10048 2166 55 H9B 7412 10113 2480 55 H9C 6243 9253 3356 55 H12 2495 10198 875 38 H14 1131 10655 4030 37
  • 62. 62 H16A 5710 8444 743 54 H16B 4339 8650 274 54 H16C 4691 7384 1196 54 H17A 626 12066 1354 67 H17B 76 12233 2617 67 H17C -534 11245 2302 67 H18A 2962 8133 5326 58 H18B 2239 9594 5337 58 H18C 3995 9182 4882 58 H19A 4335 7184 7452 50 H19B 5885 7593 6658 50 H20A 4757 7258 8992 55 H20B 6011 8066 8148 55 H21A 7854 6332 8218 64 H21B 6751 5920 9461 64 H22A 7470 4468 8128 68 H22B 5796 4671 8926 68 H23A 8537 2501 7124 44 H23B 9480 3602 6811 44 H24A 10208 1504 5802 50 H24B 11326 2146 6032 50 H25A 11199 3866 4514 44 H25B 11149 2724 4024 44 H26A 9005 4625 4090 47 H26B 8643 3217 4396 47 H1A 4720(20) 6349(19) 5464(17) 51 H1B 6590(20) 5800(20) 4587(16) 51 H1C 6120(20) 7440(20) 4824(17) 51
  • 63. 63 [Mes2P(BH3)2]Li(THF)2 (32) Table 1 : Crystal data and structure refinement for [Mes2P(BH3)2]Li(THF)2 Identification code kji160019_sa Empirical formula C26H44B2LiO2P Formula weight 448.14 Temperature/K 150.0(2) Crystal system monoclinic Space group P21/c a/Å 8.85840(10) b/Å 17.3236(2) c/Å 17.7774(2) α/° 90 β/° 93.8780(10) γ/° 90 Volume/Å3 2721.86(5) Z 4 ρcalcg/cm3 1.094 μ/mm-1 1.020 F(000) 976.0 Crystal size/mm3 0.25 × 0.21 × 0.15 Radiation CuKα (λ = 1.54184) 2Θ range for data collection/° 7.132 to 133.778 Index ranges -10 ≤ h ≤ 10, -20 ≤ k ≤ 20, -18 ≤ l ≤ 21 Reflections collected 38178 Independent reflections 4841 [Rint = 0.0421, Rsigma = 0.0238] Data/restraints/parameters 4841/7/328 Goodness-of-fit on F2 1.041 Final R indexes [I>=2σ (I)] R1 = 0.0423, wR2 = 0.1114 Final R indexes [all data] R1 = 0.0484, wR2 = 0.1171 Largest diff. peak/hole / e Å-3 0.30/-0.28 Table 2 Fractional Atomic Coordinates (×104) and Equivalent Isotropic Displacement Parameters (Å2×103) for kji160019_sa. Ueq is defined as 1/3 of of the trace of the orthogonalised UIJ tensor. Atom x y z U(eq) P1 5440.3(4) 1993.3(2) 3368.2(2) 25.81(13) O1 8765.4(14) 3325.6(8) 4953.0(7) 43.9(3) O2 9147.2(15) 3860.0(8) 3325.3(7) 47.4(3) C1 4192.2(17) 1521.0(9) 4016.6(8) 27.4(3) C2 4752.5(18) 1188.2(9) 4704.7(9) 29.3(3) C3 3743(2) 886.0(9) 5191.7(9) 32.6(4)
  • 64. 64 C4 2192(2) 913.5(10) 5040.9(10) 35.4(4) C5 1651.9(19) 1235.9(10) 4364.3(10) 35.0(4) C6 2610.8(18) 1544.2(9) 3850.6(9) 30.7(3) C7 6412(2) 1164.5(11) 4958.5(10) 38.0(4) C8 1141(2) 634.9(12) 5618.3(11) 47.0(5) C9 1869.1(19) 1902.7(11) 3143.6(10) 37.9(4) C10 4839.8(16) 1597.3(9) 2431.1(9) 27.0(3) C11 4502.6(18) 2071.2(10) 1799.6(10) 33.3(4) C12 4042.5(19) 1736.9(11) 1109.4(10) 38.2(4) C13 3911(2) 947.3(12) 1016.4(10) 40.2(4) C14 4306(2) 483.6(10) 1633.3(10) 37.9(4) C15 4769.8(17) 788.6(9) 2336.5(9) 30.8(3) C16 4616(3) 2937.1(11) 1832.6(11) 49.1(5) C17 3334(3) 598.5(15) 274.4(11) 60.6(6) C18 5151(2) 218.9(9) 2963.4(10) 36.7(4) C19 7943(3) 3624.4(16) 5550.9(12) 63.7(6) C21 9947(3) 2928(2) 6101.7(16) 88.6(10) C22 9985(3) 2857.4(18) 5278.4(14) 68.2(7) B1 5202(2) 3087.6(11) 3627.2(12) 35.8(4) B2 7638(2) 1834.8(11) 3422.2(11) 32.3(4) Li1 7947(3) 3186.3(19) 3909.5(17) 41.2(7) C20A8389(4) 3152(2) 6229.5(16) 65.3(8) C23A8696(4) 4151(2) 2573.6(19) 47.9(8) C24A9767(4) 4838(3) 2505(4) 63.2(13) C25A11234(5) 4570(3) 2946(3) 66.9(11) C26A10618(3) 4146(2) 3584(2) 50.1(8) C20B9050(17) 3515(9) 6269(7) 65.3(8) C23B9080(13) 3916(7) 2524(6) 47.9(8) C24B9238(17) 4789(9) 2384(12) 63.2(13) C25B10780(17) 4791(9) 2896(9) 66.9(11) C26B10196(11) 4434(6) 3586(6) 50.1(8) Table 3 Anisotropic Displacement Parameters (Å2×103) for kji160019_sa. The Anisotropic displacement factor exponent takes the form: - 2π2[h2a*2U11+2hka*b*U12+…]. Atom U11 U22 U33 U23 U13 U12 P1 23.0(2) 26.9(2) 27.2(2) 0.33(14) -0.79(15) -0.26(14) O1 42.5(7) 54.8(8) 33.7(6) -3.4(5) -1.7(5) -0.6(6) O2 45.5(7) 56.1(8) 39.8(7) 7.1(6) -4.0(6) -16.2(6) C1 27.6(8) 27.5(7) 27.1(7) -2.0(6) 1.4(6) 0.4(6) C2 33.5(8) 27.1(8) 26.8(7) -3.6(6) -1.1(6) 1.0(6) C3 43.1(9) 30.0(8) 24.7(7) -1.0(6) 1.0(7) 0.4(7) C4 40.8(9) 31.9(8) 34.5(9) -2.9(7) 9.5(7) -1.8(7) C5 27.2(8) 38.6(9) 39.6(9) -2.0(7) 5.6(7) -0.1(7)
  • 65. 65 C6 28.4(8) 33.1(8) 30.7(8) -1.3(6) 1.7(6) 0.5(6) C7 38.2(9) 41.5(9) 33.2(9) 5.2(7) -6.7(7) 0.6(7) C8 49.4(11) 49.9(11) 43.6(10) 3.0(8) 15.8(9) -3.2(9) C9 24.5(8) 49.8(10) 39.1(9) 7.4(8) -0.7(7) 0.9(7) C10 22.7(7) 30.7(8) 27.4(7) 1.2(6) 0.9(6) -1.3(6) C11 28.3(8) 37.6(9) 33.6(8) 5.6(7) -1.1(6) -1.2(6) C12 33.3(9) 50.7(10) 29.8(8) 9.5(7) -3.2(7) -2.4(7) C13 37.2(9) 52.9(11) 29.8(9) -2.9(7) -1.7(7) -6.7(8) C14 40.7(9) 35.9(9) 37.1(9) -4.5(7) 1.9(7) -5.5(7) C15 29.0(8) 33.3(8) 29.9(8) -0.8(6) 1.3(6) -2.3(6) C16 67.0(13) 38(1) 40.8(10) 13.8(8) -6.8(9) -1.7(9) C17 69.4(14) 75.4(15) 35.5(10) -8.7(10) -8.7(10) -14.1(12) C18 46.8(10) 26.4(8) 36.5(9) 0.1(7) -0.9(7) 1.1(7) C19 73.2(15) 76.0(16) 41.6(11) -10.1(10) 1.9(11) 22.2(12) C21 70.1(17) 138(3) 56.3(15) 23.7(16) -7.2(13) 20.3(18) C22 46.2(12) 98.4(19) 57.4(13) -16.3(13) -15.3(10) 20.7(12) B1 32.1(10) 29.6(9) 45.2(11) -5.6(8) -0.7(8) 0.3(7) B2 23.1(8) 37.7(10) 35.8(10) -1.7(8) -0.3(7) 0.2(7) Li1 39.7(16) 46.1(17) 37.5(16) 2.6(13) -0.8(13) -7.3(13) C20A72(2) 81(2) 43.4(14) 6.6(14) 9.9(14) -7.5(16) C23A39(2) 62(2) 42.5(12) 8.4(15) 5.3(13) 9.1(13) C24A56(3) 70.2(18) 66(3) 19.0(17) 24(3) 6(2) C25A51(3) 63(3) 89(2) 1(2) 27(2) -5.0(16) C26A32.7(17) 62(2) 55.1(14) 0.7(17) -3.7(14) -6.6(13) C20B72(2) 81(2) 43.4(14) 6.6(14) 9.9(14) -7.5(16) C23B39(2) 62(2) 42.5(12) 8.4(15) 5.3(13) 9.1(13) C24B56(3) 70.2(18) 66(3) 19.0(17) 24(3) 6(2) C25B51(3) 63(3) 89(2) 1(2) 27(2) -5.0(16) C26B32.7(17) 62(2) 55.1(14) 0.7(17) -3.7(14) -6.6(13) Table 4 Bond Lengths for kji160019_sa. Atom Atom Length/Å Atom Atom Length/Å P1 C1 1.8419(16) C10 C15 1.412(2) P1 C10 1.8464(16) C11 C12 1.393(2) P1 B1 1.9655(19) C11 C16 1.504(3) P1 B2 1.9619(18) C12 C13 1.382(3) O1 C19 1.426(3) C13 C14 1.385(3) O1 C22 1.440(3) C13 C17 1.508(3) O1 Li1 1.960(3) C14 C15 1.393(2) O2 Li1 1.929(3) C15 C18 1.510(2) O2 C23A 1.458(3) C19 C20A1.489(4) O2 C26A 1.440(3) C19 C20B1.567(12) O2 C23B 1.425(10) C21 C22 1.471(4)
  • 66. 66 O2 C26B 1.418(10) C21 C20A1.466(4) C1 C2 1.412(2) C21 C20B1.336(13) C1 C6 1.413(2) B1 Li1 2.455(4) C2 C3 1.388(2) B2 Li1 2.505(4) C2 C7 1.509(2) C23AC24A1.533(5) C3 C4 1.383(3) C24AC25A1.543(5) C4 C5 1.382(2) C25AC26A1.486(5) C4 C8 1.511(2) C23B C24B1.540(15) C5 C6 1.395(2) C24B C25B1.589(14) C6 C9 1.512(2) C25B C26B1.497(14) C10 C11 1.406(2) Table 5 Bond Angles for kji160019_sa. Atom Atom Atom Angle/˚ Atom Atom Atom Angle/˚ C1 P1 C10 104.54(7) C12 C11 C10 119.62(16) C1 P1 B1 101.74(8) C12 C11 C16 117.64(15) C1 P1 B2 122.87(8) C13 C12 C11 122.31(16) C10 P1 B1 122.73(8) C12 C13 C14 117.68(16) C10 P1 B2 102.51(7) C12 C13 C17 121.47(18) B2 P1 B1 104.20(8) C14 C13 C17 120.84(18) C19 O1 C22 108.18(16) C13 C14 C15 122.27(16) C19 O1 Li1 125.12(16) C10 C15 C18 123.71(14) C22 O1 Li1 122.00(16) C14 C15 C10 119.40(15) C23AO2 Li1 125.13(19) C14 C15 C18 116.88(15) C26AO2 Li1 123.74(18) O1 C19 C20A 106.5(2) C26AO2 C23A111.1(2) O1 C19 C20B 103.9(5) C23BO2 Li1 126.3(5) C20AC21 C22 105.2(2) C26BO2 Li1 128.4(5) C20BC21 C22 109.8(6) C26BO2 C23B105.1(7) O1 C22 C21 106.6(2) C2 C1 P1 122.20(12) P1 B1 Li1 89.70(11) C2 C1 C6 118.57(14) P1 B2 Li1 88.33(10) C6 C1 P1 119.04(12) O1 Li1 B1 119.99(15) C1 C2 C7 123.26(14) O1 Li1 B2 117.85(15) C3 C2 C1 119.40(15) O2 Li1 O1 104.65(15) C3 C2 C7 117.30(14) O2 Li1 B1 120.42(16) C4 C3 C2 122.64(15) O2 Li1 B2 115.50(15) C3 C4 C8 120.48(16) B1 Li1 B2 77.33(11) C5 C4 C3 117.62(15) C21 C20AC19 102.8(2) C5 C4 C8 121.84(16) O2 C23AC24A 102.1(3) C4 C5 C6 122.30(15) C23AC24AC25A 103.3(4) C1 C6 C9 123.67(14) C26AC25AC24A 101.4(3) C5 C6 C1 119.45(15) O2 C26AC25A 107.3(3) C5 C6 C9 116.87(14) C21 C20BC19 105.1(8)
  • 67. 67 C11 C10 P1 122.41(12) O2 C23BC24B 103.4(11) C11 C10 C15 118.62(14) C23BC24BC25B 89.6(12) C15 C10 P1 118.92(11) C26BC25BC24B 97.9(12) C10 C11 C16 122.75(16) O2 C26BC25B 106.1(10) Table 6 Torsion Angles for kji160019_sa. A B C D Angle/˚ A B C D Angle/˚ P1 C1 C2 C3 175.78(12) C13 C14 C15 C18 179.31(16) P1 C1 C2 C7 -2.1(2) C15 C10 C11 C12 3.0(2) P1 C1 C6 C5 - 175.52(12) C15 C10 C11 C16 - 177.03(16) P1 C1 C6 C9 3.2(2) C16 C11 C12 C13 179.58(18) P1 C10 C11 C12 - 179.43(12) C17 C13 C14 C15 - 176.72(18) P1 C10 C11 C16 0.6(2) C19 O1 C22 C21 -4.1(3) P1 C10 C15 C14 179.46(12) C22 O1 C19 C20A -16.4(3) P1 C10 C15 C18 0.4(2) C22 O1 C19 C20B 17.2(7) O1 C19 C20AC21 30.3(3) C22 C21 C20AC19 -32.3(4) O1 C19 C20B C21 -25.5(11) C22 C21 C20B C19 23.6(11) O2 C23AC24AC25A 34.2(4) B1 P1 C1 C2 -98.30(14) O2 C23BC24B C25B 55.8(12) B1 P1 C1 C6 76.64(14) C1 P1 C10 C11 129.53(13) B1 P1 C10 C11 14.91(16) C1 P1 C10 C15 -52.90(13) B1 P1 C10 C15 - 167.52(12) C1 C2 C3 C4 -1.7(2) B2 P1 C1 C2 17.34(16) C2 C1 C6 C5 -0.4(2) B2 P1 C1 C6 - 167.72(12) C2 C1 C6 C9 178.37(15) B2 P1 C10 C11 - 101.27(14) C2 C3 C4 C5 2.1(2) B2 P1 C10 C15 76.30(13) C2 C3 C4 C8 - 174.98(16) Li1 O1 C19 C20A 139.5(2) C3 C4 C5 C6 -1.6(3) Li1 O1 C19 C20B 173.1(7) C4 C5 C6 C1 0.8(3) Li1 O1 C22 C21 -160.9(2) C4 C5 C6 C9 - 178.04(16) Li1 O2 C23AC24A 161.8(3) C6 C1 C2 C3 0.8(2) Li1 O2 C26AC25A 173.9(2) C6 C1 C2 C7 - 177.07(15) Li1 O2 C23B C24B 140.4(7) C7 C2 C3 C4 176.31(15) Li1 O2 C26B C25B -179.0(6) C8 C4 C5 C6 175.40(16) C20AC21 C22 O1 23.3(4) C10P1 C1 C2 133.06(13) C23AO2 C26AC25A -6.4(4) C10P1 C1 C6 -52.00(14) C23AC24AC25AC26A -38.0(5) C10C11 C12 C13 -0.4(3) C24AC25AC26AO2 27.5(4) C11C10 C15 C14 -2.9(2) C26AO2 C23AC24A -17.8(3) C11C10 C15 C18 178.09(15) C20B C21 C22 O1 -13.5(9)
  • 68. 68 C11C12 C13 C14 -2.2(3) C23B O2 C26B C25B -2.8(9) C11C12 C13 C17 176.82(18) C23B C24BC25B C26B -54.3(12) C12C13 C14 C15 2.3(3) C24B C25BC26B O2 38.4(12) C13C14 C15 C10 0.2(3) C26B O2 C23B C24B -35.9(10) Table 7 Hydrogen Atom Coordinates (Å×104) and Isotropic Displacement Parameters (Å2×103) for kji160019_sa. Atom x y z U(eq) H3 4126 656 5637 39 H5 613 1248 4247 42 H7A 6967 934 4571 57 H7B 6551 865 5412 57 H7C 6773 1680 5053 57 H8A 1359 105 5739 71 H8B 112 680 5416 71 H8C 1284 943 6066 71 H9A 2358 2383 3044 57 H9B 818 1994 3212 57 H9C 1960 1558 2726 57 H12 3816 2056 697 46 H14 4260 -50 1576 45 H16A 3963 3131 2199 74 H16B 4315 3149 1347 74 H16C 5641 3084 1973 74 H17A 2248 607 237 91 H17B 3681 75 246 91 H17C 3706 892 -132 91 H18A 6053 382 3248 55 H18B 5311 -282 2752 55 H18C 4330 194 3289 55 H19A 6863 3584 5426 76 H19B 8195 4163 5641 76 H19C 7012 3339 5597 76 H19D 7702 4165 5470 76 H21A 10201 2440 6346 106 H21B 10655 3318 6296 106 H21C 9570 2452 6308 106 H21D 10961 3016 6325 106 H22A 10947 3038 5116 82 H22B 9849 2323 5125 82 H1A 5580(30) 3054(13) 4268(13) 54 H1B 4020(30) 3306(13) 3556(13) 54 H1C 6010(30) 3449(13) 3305(13) 54
  • 69. 69 H2A 8130(20) 2069(13) 3970(12) 48 H2B 8000(20) 1250(13) 3329(12) 48 H2C 7910(20) 2215(13) 2935(12) 48 H20A 8348 3453 6688 78 H20B 7743 2702 6260 78 H23A 7646 4314 2537 58 H23B 8845 3765 2190 58 H24A 9365 5299 2727 76 H24B 9942 4942 1981 76 H25A 11825 4234 2644 80 H25B 11850 5005 3122 80 H26A 11280 3720 3739 60 H26B 10536 4488 4012 60 H20C 9638 3979 6373 78 H20D 8493 3393 6705 78 H23C 8123 3723 2302 58 H23D 9899 3631 2319 58 H24C 8445 5096 2586 76 H24D 9359 4920 1861 76 H25C 11552 4477 2684 80 H25D 11163 5309 2989 80 H26C 11018 4205 3898 60 H26D 9703 4820 3880 60 Table 8 Atomic Occupancy for kji160019_sa. Atom Occupancy Atom Occupancy Atom Occupancy H19A 0.8238 H19B 0.8238 H19C 0.1762 H19D 0.1762 H21A 0.8238 H21B 0.8238 H21C 0.1762 H21D 0.1762 C20A 0.8238 H20A 0.8238 H20B 0.8238 C23A 0.7342 H23A 0.7342 H23B 0.7342 C24A 0.7342 H24A 0.7342 H24B 0.7342 C25A 0.7342 H25A 0.7342 H25B 0.7342 C26A 0.7342 H26A 0.7342 H26B 0.7342 C20B 0.1762 H20C 0.1762 H20D 0.1762 C23B 0.2658 H23C 0.2658 H23D 0.2658 C24B 0.2658 H24C 0.2658 H24D 0.2658 C25B 0.2658 H25C 0.2658 H25D 0.2658 C26B 0.2658 H26C 0.2658 H26D 0.2658
  • 70. 70 [(Ph2P(BH3))3Sn]Li(THF) (41) Table 1 : Crystal data and structure refinement for [(Ph2P(BH3))3Sn]Li(THF) Identification code kji160027_fa Empirical formula C40H47B3LiOP3Sn Formula weight 794.74 Temperature/K 150.0(2) Crystal system orthorhombic Space group P212121 a/Å 12.0937(3) b/Å 17.3507(5) c/Å 19.0102(6) α/° 90 β/° 90 γ/° 90 Volume/Å3 3988.99(19) Z 4 ρcalcg/cm3 1.323 μ/mm-1 0.791 F(000) 1632.0 Crystal size/mm3 0.2 × 0.16 × 0.11 Radiation MoKα (λ = 0.71073) 2Θ range for data collection/° 5.78 to 52.04 Index ranges -14 ≤ h ≤ 14, -20 ≤ k ≤ 21, -23 ≤ l ≤ 21 Reflections collected 21477 Independent reflections 7674 [Rint = 0.0472, Rsigma = 0.0604] Data/restraints/parameters 7674/71/484 Goodness-of-fit on F2 1.043 Final R indexes [I>=2σ (I)] R1 = 0.0370, wR2 = 0.0655 Final R indexes [all data] R1 = 0.0527, wR2 = 0.0717 Largest diff. peak/hole / e Å-3 0.76/-0.43 Flack parameter -0.047(16) Table 2 Fractional Atomic Coordinates (×104) and Equivalent Isotropic Displacement Parameters (Å2×103) for kji160027_fa. Ueq is defined as 1/3 of of the trace of the orthogonalised UIJ tensor. Atom x y z U(eq) Sn1 5013.0(4) 3701.4(2) 2638.2(2) 21.78(10) P1 7144.7(11) 3695.6(8) 2851.3(8) 27.7(3)
  • 71. 71 P2 4673.7(11) 4894.3(7) 3476.6(7) 23.8(3) P3 5091.5(15) 4519.0(6) 1475.2(6) 24.5(3) C1 7736(4) 3104(3) 2149(3) 27.3(13) C2 8381(5) 3441(3) 1634(3) 35.4(15) C3 8825(5) 3001(3) 1092(3) 41.7(16) C4 8624(5) 2225(3) 1062(3) 40.3(16) C5 7980(6) 1886(3) 1562(4) 46.8(18) C6 7533(5) 2320(3) 2104(3) 38.8(15) C7 7304(5) 3129(3) 3661(3) 32.5(14) C8 6618(5) 2511(3) 3812(3) 35.7(15) C9 6736(6) 2094(3) 4435(3) 43.4(17) C10 7549(6) 2291(4) 4904(4) 47.3(18) C11 8225(6) 2912(4) 4763(4) 51.8(19) C12 8108(5) 3331(3) 4148(4) 42.1(16) C13 5265(4) 4588(3) 4312(3) 24.5(13) C14 5999(4) 5062(3) 4672(3) 28.0(13) C15 6439(5) 4834(3) 5309(3) 34.0(14) C16 6151(5) 4142(3) 5600(3) 35.3(15) C17 5413(5) 3666(3) 5251(3) 33.9(13) C18 4992(6) 3884(2) 4610(2) 30.1(11) C19 3197(4) 4834(3) 3646(3) 23.5(12) C20 2457(5) 4706(3) 3095(3) 30.2(15) C21 1328(5) 4737(3) 3210(3) 31.3(14) C22 913(5) 4892(3) 3862(3) 33.3(14) C23 1628(5) 5016(4) 4410(3) 41.1(16) C24 2762(5) 4988(3) 4305(3) 36.6(14) C25 3609(4) 4610(3) 1329(3) 26.2(13) C26 3108(5) 5324(3) 1401(3) 33.4(14) C27 1976(5) 5404(3) 1331(3) 38.0(15) C28 1333(5) 4771(3) 1203(3) 39.1(15) C29 1813(5) 4059(3) 1132(3) 38.6(15) C30 2945(5) 3973(3) 1187(3) 33.0(14) C31 5591(4) 3898(3) 769(3) 24.2(12) C32 5620(5) 3097(3) 815(3) 30.5(14) C33 6055(5) 2652(3) 282(3) 34.5(14) C34 6462(5) 2999(3) -315(3) 36.4(15) C35 6425(5) 3796(3) -382(3) 32.9(14) C36 5990(5) 4234(3) 155(3) 26.9(13) B1 7920(7) 4673(4) 2900(5) 39(2) B2 4995(8) 5992(3) 3330(3) 30.2(13) B3 5798(7) 5527(4) 1382(4) 35.6(17) Li1 6854(9) 5793(5) 2472(6) 48(3) O1A 8015(16) 6537(12) 2450(20) 39(3) C37A7810(15) 7305(13) 2248(13) 67(5) C38A8888(17) 7669(12) 2116(13) 75(5)
  • 72. 72 C39A9744(14) 7059(10) 2195(17) 62(4) C40A9175(15) 6453(9) 2584(17) 47(3) O1B 7836(16) 6637(11) 2330(20) 39(3) C37B7620(15) 7296(13) 1922(13) 67(5) C38B8641(16) 7682(12) 1800(13) 75(5) C39B9508(14) 7326(10) 2233(16) 62(4) C40B8947(14) 6685(9) 2599(15) 47(3) Table 3 Anisotropic Displacement Parameters (Å2×103) for kji160027_fa. The Anisotropic displacement factor exponent takes the form: - 2π2[h2a*2U11+2hka*b*U12+…]. Atom U11 U22 U33 U23 U13 U12 Sn1 16.65(15) 25.15(15) 23.54(17) -1.39(14) -0.4(2) -1.3(2) P1 17.8(7) 26.4(6) 38.7(9) -6.1(7) -3.4(6) -0.1(6) P2 20.4(8) 28.6(6) 22.4(7) -2.3(6) 0.8(6) 0.5(6) P3 22.9(7) 27.6(5) 23.0(6) -0.6(5) 2.1(9) -2.7(8) C1 16(3) 30(3) 35(4) -2(2) -5(3) 3(2) C2 28(3) 32(3) 46(4) -2(3) 0(3) -2(3) C3 36(4) 47(4) 43(4) -3(3) 10(3) 0(3) C4 33(4) 43(3) 45(4) -13(3) 5(3) 3(3) C5 51(4) 30(3) 60(5) -12(3) 3(4) 3(3) C6 40(4) 32(3) 45(4) -4(3) 11(3) -4(3) C7 26(3) 36(3) 35(4) -11(3) -8(3) 10(3) C8 38(4) 31(3) 38(4) -2(3) -5(3) 7(3) C9 50(4) 37(3) 43(4) -3(3) 0(4) 16(3) C10 54(5) 47(4) 41(4) -3(4) -5(4) 26(4) C11 52(5) 66(5) 37(4) -13(4) -20(4) 21(4) C12 35(4) 42(3) 49(4) -11(3) -10(3) 9(3) C13 21(3) 27(2) 25(3) -4(2) 1(2) 0(2) C14 21(3) 33(3) 29(3) -3(3) 0(3) -5(3) C15 25(3) 49(3) 28(3) -5(3) -5(3) -2(3) C16 30(3) 46(3) 30(4) 3(3) -4(3) 3(3) C17 35(3) 34(3) 33(3) 0(3) -2(3) 5(3) C18 28(3) 31(2) 32(3) -5(2) 5(4) -5(4) C19 19(3) 28(3) 24(3) -3(2) 2(3) -1(2) C20 27(3) 39(3) 24(4) 0(3) 3(3) 5(3) C21 24(3) 40(3) 30(3) -8(3) -5(3) 1(3) C22 15(3) 46(3) 38(4) -3(3) 2(3) 3(3) C23 32(4) 67(4) 25(3) -2(3) 7(3) 8(3) C24 24(3) 62(4) 24(3) -4(3) -2(3) 3(3) C25 24(3) 35(3) 19(3) 5(2) 5(2) -3(2) C26 33(4) 35(3) 32(3) 8(3) -2(3) 4(3) C27 35(4) 41(3) 38(4) 9(3) 2(3) 15(3) C28 23(3) 59(4) 35(4) 7(3) -1(3) 7(3)
  • 73. 73 C29 23(3) 49(4) 44(4) -6(3) -3(3) -3(3) C30 29(3) 37(3) 32(3) -3(3) -5(3) 3(3) C31 20(3) 35(3) 18(3) 1(2) -2(2) 0(2) C32 30(3) 34(3) 27(3) 3(3) 3(3) -3(3) C33 43(4) 28(3) 33(4) 0(3) 2(3) -2(3) C34 34(4) 45(3) 31(3) -11(3) 4(3) 1(3) C35 33(3) 43(3) 23(3) 2(3) 5(3) -10(3) C36 24(3) 27(3) 30(3) -1(3) -4(3) 2(2) B1 26(4) 30(3) 62(6) -12(4) -6(4) -6(3) B2 32(3) 26(2) 33(3) -3(2) 4(5) 1(4) B3 42(4) 30(3) 35(4) -3(3) 8(4) -16(3) Li1 35(6) 37(5) 72(9) -4(5) 15(6) -8(4) O1A 27(5) 33(4) 58(10) 5(4) -3(5) 0(4) C37A50(6) 42(4) 110(16) 10(9) -22(7) 11(4) C38A66(8) 47(4) 113(14) 31(8) -22(8) -6(5) C39A43(6) 62(9) 80(6) 19(9) -15(6) -10(5) C40A32(6) 41(8) 69(5) 10(7) -17(6) -4(5) O1B 27(5) 33(4) 58(10) 5(4) -3(5) 0(4) C37B50(6) 42(4) 110(16) 10(9) -22(7) 11(4) C38B66(8) 47(4) 113(14) 31(8) -22(8) -6(5) C39B43(6) 62(9) 80(6) 19(9) -15(6) -10(5) C40B32(6) 41(8) 69(5) 10(7) -17(6) -4(5) Table 4 Bond Lengths for kji160027_fa. Atom Atom Length/Å Atom Atom Length/Å Sn1 P1 2.6097(14) C20 C21 1.384(8) Sn1 P2 2.6444(13) C21 C22 1.365(8) Sn1 P3 2.6288(13) C22 C23 1.372(8) P1 C1 1.830(6) C23 C24 1.387(8) P1 C7 1.836(6) C25 C26 1.387(8) P1 B1 1.940(7) C25 C30 1.392(7) P2 C13 1.821(5) C26 C27 1.382(8) P2 C19 1.818(5) C27 C28 1.368(8) P2 B2 1.963(5) C28 C29 1.371(8) P3 C25 1.821(6) C29 C30 1.380(8) P3 C31 1.825(5) C31 C32 1.393(7) P3 B3 1.954(6) C31 C36 1.391(7) C1 C2 1.381(8) C32 C33 1.377(8) C1 C6 1.384(7) C33 C34 1.376(8) C2 C3 1.391(8) C34 C35 1.389(7) C3 C4 1.369(8) C35 C36 1.376(8) C4 C5 1.363(9) B1 Li1 2.470(13) C5 C6 1.386(8) B2 Li1 2.798(14)
  • 74. 74 C7 C8 1.386(8) B3 Li1 2.477(14) C7 C12 1.388(8) Li1 O1A 1.908(15) C8 C9 1.394(8) Li1 O1B 1.904(15) C9 C10 1.371(9) O1A C37A1.408(16) C10 C11 1.380(10) O1A C40A1.433(14) C11 C12 1.384(9) C37AC38A1.470(16) C13 C14 1.390(7) C38AC39A1.488(19) C13 C18 1.386(6) C39AC40A1.459(15) C14 C15 1.382(8) O1B C37B1.409(14) C15 C16 1.367(8) O1B C40B1.438(15) C16 C17 1.385(8) C37B C38B1.424(16) C17 C18 1.375(7) C38B C39B1.469(18) C19 C20 1.394(8) C39B C40B1.477(15) C19 C24 1.385(7) Table 5 Bond Angles for kji160027_fa. Atom Atom Atom Angle/˚ Atom Atom Atom Angle/˚ P1 Sn1 P2 93.60(4) C21 C20 C19 120.5(5) P1 Sn1 P3 95.56(5) C22 C21 C20 120.9(6) P3 Sn1 P2 95.17(4) C21 C22 C23 119.3(5) C1 P1 Sn1 105.94(18) C22 C23 C24 120.5(5) C1 P1 C7 105.7(2) C19 C24 C23 120.9(6) C1 P1 B1 109.6(3) C26 C25 P3 119.5(4) C7 P1 Sn1 103.6(2) C26 C25 C30 118.4(5) C7 P1 B1 112.2(3) C30 C25 P3 122.0(4) B1 P1 Sn1 118.8(2) C27 C26 C25 120.8(6) C13 P2 Sn1 103.66(15) C28 C27 C26 120.0(6) C13 P2 B2 109.2(3) C27 C28 C29 120.0(6) C19 P2 Sn1 102.33(17) C28 C29 C30 120.7(6) C19 P2 C13 102.4(2) C29 C30 C25 120.1(5) C19 P2 B2 106.0(3) C32 C31 P3 123.4(4) B2 P2 Sn1 130.0(2) C36 C31 P3 119.0(4) C25 P3 Sn1 98.04(17) C36 C31 C32 117.6(5) C25 P3 C31 105.3(2) C33 C32 C31 121.4(5) C25 P3 B3 109.8(3) C34 C33 C32 119.9(5) C31 P3 Sn1 108.19(16) C33 C34 C35 119.9(5) C31 P3 B3 108.5(3) C36 C35 C34 119.7(5) B3 P3 Sn1 125.1(2) C35 C36 C31 121.5(5) C2 C1 P1 120.0(4) P1 B1 Li1 114.8(4) C2 C1 C6 118.2(5) P2 B2 Li1 97.0(3) C6 C1 P1 121.8(4) P3 B3 Li1 108.4(4) C1 C2 C3 120.7(5) B1 Li1 B2 108.9(5) C4 C3 C2 120.1(6) B1 Li1 B3 113.4(5)
  • 75. 75 C5 C4 C3 119.8(6) B3 Li1 B2 95.5(4) C4 C5 C6 120.4(5) O1A Li1 B1 99.0(8) C1 C6 C5 120.7(6) O1A Li1 B2 121.5(13) C8 C7 P1 121.7(5) O1A Li1 B3 119.0(12) C8 C7 C12 118.5(6) O1B Li1 B1 109.0(8) C12 C7 P1 119.8(5) O1B Li1 B2 119.1(12) C7 C8 C9 121.0(6) O1B Li1 B3 110.4(11) C10 C9 C8 119.8(6) C37AO1A Li1 121.1(13) C9 C10 C11 119.5(7) C37AO1A C40A 108.5(9) C10 C11 C12 120.9(6) C40AO1A Li1 130.3(14) C11 C12 C7 120.2(6) O1A C37AC38A 107.3(11) C14 C13 P2 120.5(4) C37AC38AC39A 107.1(11) C18 C13 P2 121.3(4) C40AC39AC38A 103.6(11) C18 C13 C14 118.2(5) O1A C40AC39A 107.2(10) C15 C14 C13 120.6(5) C37BO1B Li1 125.9(14) C16 C15 C14 120.5(5) C37BO1B C40B 108.7(9) C15 C16 C17 119.7(6) C40BO1B Li1 125.4(12) C18 C17 C16 119.9(5) O1B C37BC38B 108.2(10) C17 C18 C13 121.1(5) C37BC38BC39B 109.2(10) C20 C19 P2 120.4(4) C38BC39BC40B 104.7(10) C24 C19 P2 121.4(4) O1B C40BC39B 107.9(10) C24 C19 C20 117.8(5) Table 6 Torsion Angles for kji160027_fa. A B C D Angle/˚ A B C D Angle/˚ Sn1 P1 C1 C2 111.8(4) C19 P2 C13 C18 55.8(5) Sn1 P1 C1 C6 -66.5(5) C19 C20 C21 C22 0.0(9) Sn1 P1 C7 C8 34.6(5) C20 C19 C24 C23 -0.1(9) Sn1 P1 C7 C12-143.5(4) C20 C21 C22 C23 -0.3(9) Sn1 P2 C13C14130.2(4) C21 C22 C23 C24 0.3(9) Sn1 P2 C13C18-50.4(5) C22 C23 C24 C19 -0.1(10) Sn1 P2 C19C20-46.0(4) C24 C19 C20 C21 0.2(8) Sn1 P2 C19C24140.6(4) C25 P3 C31 C32 -88.2(5) Sn1 P3 C25C26111.4(4) C25 P3 C31 C36 93.3(4) Sn1 P3 C25C30-64.6(5) C25 C26 C27 C28 1.4(9) Sn1 P3 C31C3215.8(5) C26 C25 C30 C29 -1.0(8) Sn1 P3 C31C36-162.7(4) C26 C27 C28 C29 -1.2(9) P1 C1 C2 C3 -179.2(5) C27 C28 C29 C30 -0.1(9) P1 C1 C6 C5 179.3(5) C28 C29 C30 C25 1.2(9) P1 C7 C8 C9 -178.8(4) C30 C25 C26 C27 -0.3(9) P1 C7 C12C11179.3(5) C31 P3 C25 C26 -137.2(5) P2 C13C14C15179.3(4) C31 P3 C25 C30 46.8(5) P2 C13C18C17-177.9(4) C31 C32 C33 C34 -0.6(9)
  • 76. 76 P2 C19C20C21-173.5(4) C32 C31 C36 C35 -1.6(8) P2 C19C24C23173.4(5) C32 C33 C34 C35 -0.6(9) P3 C25C26C27-176.5(5) C33 C34 C35 C36 0.7(9) P3 C25C30C29175.1(5) C34 C35 C36 C31 0.5(9) P3 C31C32C33-176.8(5) C36 C31 C32 C33 1.7(8) P3 C31C36C35176.9(4) B1 P1 C1 C2 -17.5(6) C1 P1 C7 C8 -76.6(5) B1 P1 C1 C6 164.2(5) C1 P1 C7 C12105.4(5) B1 P1 C7 C8 164.0(5) C1 C2 C3 C4 0.1(10) B1 P1 C7 C12 -14.1(6) C2 C1 C6 C5 1.0(9) B2 P2 C13 C14 -11.5(5) C2 C3 C4 C5 0.5(10) B2 P2 C13 C18 167.9(5) C3 C4 C5 C6 -0.3(10) B2 P2 C19 C20 92.3(5) C4 C5 C6 C1 -0.4(10) B2 P2 C19 C24 -81.1(5) C6 C1 C2 C3 -0.8(9) B3 P3 C25 C26 -20.6(6) C7 P1 C1 C2 -138.7(5) B3 P3 C25 C30 163.4(5) C7 P1 C1 C6 43.0(6) B3 P3 C31 C32 154.2(5) C7 C8 C9 C10-0.7(9) B3 P3 C31 C36 -24.3(5) C8 C7 C12C111.1(9) Li1 O1A C37A C38A-166(2) C8 C9 C10C111.7(9) Li1 O1A C40A C39A154(3) C9 C10C11C12-1.3(10) Li1 O1B C37B C38B -165(3) C10C11C12C7 -0.1(10) Li1 O1B C40B C39B 166(3) C12C7 C8 C9 -0.7(8) O1A C37AC38A C39A4(3) C13P2 C19C20-153.2(4) C37AO1A C40A C39A-24(3) C13P2 C19C2433.4(5) C37AC38AC39A C40A-18(3) C13C14C15C16-0.7(9) C38AC39AC40A O1A 25(3) C14C13C18C171.5(8) C40AO1A C37A C38A12(3) C14C15C16C170.1(9) O1B C37B C38B C39B -9(3) C15C16C17C181.3(9) C37BO1B C40B C39B -11(3) C16C17C18C13-2.1(9) C37BC38B C39B C40B 2(3) C18C13C14C15-0.1(8) C38BC39B C40B O1B 5(3) C19P2 C13C14-123.6(4) C40BO1B C37B C38B 12(3) Table 7 Hydrogen Atom Coordinates (Å×104) and Isotropic Displacement Parameters (Å2×103) for kji160027_fa. Atom x y z U(eq) H2 8523 3979 1651 42 H3 9268 3240 741 50 H4 8932 1925 693 48 H5 7838 1348 1540 56 H6 7082 2078 2448 47 H8 6058 2369 3486 43 H9 6254 1676 4533 52 H10 7647 2001 5323 57
  • 77. 77 H11 8779 3055 5092 62 H12 8579 3758 4059 50 H14 6200 5547 4477 34 H15 6946 5161 5548 41 H16 6455 3988 6038 42 H17 5198 3189 5455 41 H18 4505 3547 4367 36 H20 2731 4598 2637 36 H21 835 4649 2829 38 H22 137 4914 3935 40 H23 1344 5122 4866 49 H24 3247 5076 4689 44 H26 3548 5765 1501 40 H27 1645 5899 1372 46 H28 553 4824 1164 47 H29 1363 3621 1044 46 H30 3270 3479 1127 40 H32 5334 2852 1223 37 H33 6073 2107 327 41 H34 6769 2694 -681 44 H35 6698 4037 -795 39 H36 5962 4778 105 32 H1A 7780(50) 4920(30) 2330(40) 59 H1B 7460(60) 5010(40) 3270(40) 59 H1C 8760(60) 4600(30) 3010(40) 59 H2A 4690(50) 6270(30) 3820(30) 45 H2B 4500(50) 6170(30) 2910(30) 45 H2C 5910(50) 6060(30) 3250(30) 45 H3A 6690(60) 5410(40) 1410(40) 53 H3B 5510(50) 5760(30) 870(30) 53 H3C 5520(50) 5880(30) 1840(30) 53 H37A 7413 7581 2628 80 H37B 7350 7319 1817 80 H38A 9019 8089 2459 90 H38B 8911 7889 1636 90 H39A 9994 6871 1730 74 H39B 10391 7253 2460 74 H40A 9434 5940 2427 57 H40B 9324 6504 3094 57 H37C 7102 7642 2173 80 H37D 7280 7145 1470 80 H38C 8568 8235 1921 90 H38D 8842 7644 1296 90 H39C 9810 7701 2575 74 H39D 10119 7132 1936 74
  • 78. 78 H40C 9344 6195 2511 57 H40D 8936 6780 3112 57 Table 8 Atomic Occupancy for kji160027_fa. Atom Occupancy Atom Occupancy Atom Occupancy O1A 0.4909 C37A 0.4909 H37A 0.4909 H37B 0.4909 C38A 0.4909 H38A 0.4909 H38B 0.4909 C39A 0.4909 H39A 0.4909 H39B 0.4909 C40A 0.4909 H40A 0.4909 H40B 0.4909 O1B 0.5091 C37B 0.5091 H37C 0.5091 H37D 0.5091 C38B 0.5091 H38C 0.5091 H38D 0.5091 C39B 0.5091 H39C 0.5091 H39D 0.5091 C40B 0.5091 H40C 0.5091 H40D 0.5091