SlideShare a Scribd company logo
1 of 20
Download to read offline
VIVA VOCE
(Experiment No. A1) / Self-Assessment
0. 1. What is meant by the term electric current?
Ans. The flow of charge through a conductor is called electric current.
Q. 2. Name the S.I. unit of current.
Ans. Ampere (A).
Q. 3. Name the SI. unit of resistance.
Ans. Ohm which is also written in symbolic form as greek letter S2.
Q. 4. What is an ampere? Define it.
Ans. It is an S.I. unit of current. It is defined as 1 coulomb of charge flowing throuoh
conductor in 1second. It is also measured as the rate of flow of charge, i.e., I = qh.
Q. 5. What is an ohm? Define i.
Ans. Ohm is the unit of resistance. When a potential difference of 1 volt is maintained acros
the ends of a conductor and a current of 1 A
flows through it, its resistance is said to be 1ob
Q.6. Every metallic conductor has a high number density offreeelecirons moving wi%
high thermal velocities. Why does it not show any current wihen connected acrOSs asensiti
ammeter?
Ans. The free electrons are in random motion. As a result of it, the number of electrons
Crossing an area of cross-section in one direction is the same as that crossing in the opposite
direction.Therefore, there is no net flow of electrons across a cross-section of the conductor in
any particular direction. Hence no current is shown by the ammeter.
Q. 7. How would you achieve a netflow of free electrons in a particular direction in
the conductor?
Ans. It can be achieved by applying a potential difference (p.d.) across the ends of a
conductor by connecting it to a source of e.m.f.
. 8. VWhy do free electrons start moving in a particular direction when a source of
e.m.f. is connected across the ends of the conductor?
Ans. The application of a potential difference across the ends of the conductor, creates an
electricfield (E = V)inside the conductor. The electrons experience the force and start drifting
in a direction opposite to the directionof the field.
0.9. What is drift velocity of electrons?
Ans. On account of application of p.d. across the ends of the conductor. the free electrons
Over and above the random motion, have a directed velocity. The average value of this directed
velocity is called drift velocity.
Q. 10. What are the orders of drift velocity for normallyapplied potentials (0 to5 V)
and that of random thermal speed at room temperature say (300 K).
Ans. The drift velocity is of theorder of 10m per second whereas random thermal velocity
of electrons is of the order of 10 metre per second.
Q.11. What is the conventional direction of the flow of current in a metallic conductor?
In what direction do the electrons move?
Ans. The conventional direction of the flow of current is taken as the direction of flow OJ
positive charge from higher potential to lower potential. Actually, it is the electrons (witl
negative charge) which flow in a metallic conductor. Thus the direction of flow of electroni'
current is from negative to positive i.e., opposite to that of the conventional current.
Q. 12. State Ohm's Law.
Ans. The law states that the current passing through a conductor is directly proportiona
the potential drop across its ends, provided the temperature and other physical conditions rem
unchanged.
Q. 13. Is Ohm's Law true for triodes and diodes?
Ans. No, it is not true because potential difference and current in these do not have im
relationship, i.e., the graph between them is not astraight line. They are said to be
non-ohmic
conductors; actually in vacuum tubes (V o [).
Q. 14. Define one volt.
Ans. Volt is the S.I. unit of electric potential.One volt is said to be the potential difference
between two points if one joule of work is done in bringing one coulomb of charge from one
point to the other.
Q. 15. What is an electric cell?
Ans. A cell is a device in which e.m.f. is generated due to chemical action taking place
in it.
Q. l6. What are the essential parts of a cell?
Ans. Acell has two essential parts, viz.,(i) twoelectrodes which are known as its positive
pole and negative pole, and (ii) an electrolyte.
Q. 17. What is the essential difference between a primary and a secondary cel?
Ans. In a primary cell the chemical action taking place inside the cell directly supplies the
electrical energy, i.e., chemical energy directly changes into electrical energy, whereas in a
secondary cell, electrical energy is first stored as chemical potential energy in the cell and
afterwards itis reconverted into electricalenergy. Primary cells are not rechargeable whereas
secondary cells can be recharged.
Q. 18. Give examples of Primary and Secondary cells.
Ans. Daniell and Lechlanche cells are primary cells, whereas Lead acid accumulator and
Alkaliaccumulator (Ni-Fe cell) are the examples of secondary cells.
Q. 19. What is a dry cel?
Ans. It is essentially a Lechlanche cell in which the electrolyte is taken in a paste form.
0. 20. What is a battery?
Ans. Combination of cells joined in series is called a battery. Battery is used for drawing
higher currents. The e.m.f.of the battery is equal to the sum of the e.m.f. of all individual cells.
Q. 21. What is a battery eliminator?
Ans. It is basically arectifier in which an A.C. voltage of 220 V from mains is converted
into a low d.c. voltage of adesired value such as 1.5 V, 3.0 V, 6 V,9V, 12 V. It is a good
substitute for a battery or a cell.
0. 22. Is there anyadvantage of battery eliminator over usual source of e.m.f.?
Ans. Yes, the main advantage is that no charging is required for battery eliminator. (One can
also draw large currents). Battery eliminator is easy to handle and maintain, whereas a cell
requires change of chemicals and electrodes.
Q. 23. What is meant by ampere hour capacity of a cell?
measure of the electrical capacity of a cell, i.e., how much quantity of
electricity a cellis capable of supplying. It is measured by the product amperes xhours. Acell
Ans. It is a
of 16 ampere hour capacity can supply a current of one ampere for 16 hours or a current of
2 amperes for 8 hours.
Q. 24. (a) What does the abbreviation e.m.f. stand for?
(b) As the namne implies, is e.m.f. actually a force?
Ans. (a) It stands for electromotive force.
(b) No, it is a misnomer. It is rather the maximum potential difference across the terminale
of a cell when no current is drawn irom 1l, 1.e., the cell is in the open cireuit
O. 25. What is the usual sourCe of e.nn.f. in the laboratorv>
Ans. A primary or secondary cell and
eliminator.
Or a battery (number of cells in series) or an
Q. 26. Whyare the accumulators called storage cells?
Ans. These cells act as storehouses for electricity. Current can be drawn from them wheneve.
desired. After being discharged, they can be recharged. Since they store (or accumulate
electricity, they are known as storage cells or accumulators.
Q. 27. What is neant by internal resistance of a cell?
Ans. The resistance offered by the electrolyte of acelltothe flow of electricity is calledl
internal resistance of the cell. For a normal working cell, its value is about 1to2 ohm.
Q. 28. Is storage cell or accumulator, a primary cell or secondary cell?
Ans. It is a secondary cell.
Q. 29. Which one -a primary cell or astorage cell - has smaller internal resistance?
Ans. Storage cells have smaller internal resistance (about 0.1 2 in comparison to about
2 2 for primary cells.)
Q. 30. What do you understand by the ternm, "short-circuiting of a cell"?
Ans. When the two poles of a cell are connected by a wire of negligible resistance, then a
large current is drawn from the cell because I
circuited.
Q. 31. What is meant by e.m.f. of a cell? What are the values of e.m.f. of Daniell and
of Lechlanche cells?
Ans. It is the potential drop across the terminals of a cell when cell is in open circuit. E.m.f.
of Lechlanche cell is 1.5 V and that of Daniell cell is 1.1 V.
Ans.
Q. 32. Name the electrodes and electrolytes in Lechlanche and Daniell ceils.
Cell
Lechlanche
R
Daniell
’c as R’0 and the cell is said to be short
Positive electrode
Carbon rod
Copper vessel
Negative electrode
Zinc rod
Zinc rod
O. 33. What do you mean by a cell being in an open circuit?
acurrent is drawn from the cell, then it is said to be in closed circuit.
Ans. When no current is drawn from a cell, it is said to be in open circuit whereas when
0. 34. What is meant by terminal potential drop of a cell?
Electrolyte
0. 35. On what factors does the e.m.f. of a cell depend?
NH,CI
Dil. H,SO,
Ans. It is the drop of potential across the electrodes of a cell when current is being dran
from it, i.e., the cell is in the closed circuit.
0.36. Which one is greater - C.m.f. or terminal p.d. and why?
Ans. (1) Nature of plates, (2) Nature of electrolyte, (3) Composition of the electrolyte
(4) It is indepdendent of the separation between the plates, and (5) Area of the plates immersed
inthe electrolyte.
Ans. The e.m.f. is greater as it is the maximum value of p.d. which can exist across u
terminals of a cell and this happenswhen nocurrent is drawn from the cell. When the cell sen
out current, apart of the e.m.f. 1s lost in overcoming internal resistance of the cell and the p
at its terminals falls belowits maximum value. Hence terminal p.d. is less than the e.m.i. oI
cell.
Q. 37. What is a standard cell? Name one such cell?
Ans. Acell whose e.m.f. remains constant with variations of time as wellas temperature,
is called a standard cell. Mercury-Cadmiun cell is a standard cell with e.m.f. = 1.0183 volt at
20°C.
Q. 38. What are the defects of ordinary cells?
Ans. There are two defects, viz. :
() Local action, and (ii) Polarisation.
Q. 39. What is local action and how is it remedied?
Ans. This defect arises due to the use of commercial zinc in making the cathode. Such a
material is usually impure and leads to the formation of local cells on the zinc rod. It is remedied
by amalgamating the zinc rod with mercury.
Q. 40. What is polarisation and how is it remedied?
Ans. This defect arises due to the formation of a layer of hydrogen on the copper plate. This
develops a back e.m.f. and as such e.m.f. falls quickly. It is remedied by using a suitable
depolariser which converts hydrogen into water before it reaches the copper plate. Use of MnO,
does this job in a Lechlanche cell.
Q. 41. Name the depolariser for (i) Lechlanche, and (ii) Daniell cells.
Ans. In Lechlanche cell, MnO, is used as depolariser. In Daniell cell CuSO, is used as
depolariser.
Q. 42. Name the cells used for getting (i) large current, (ii) constant current, and
(iii)intermittent current.
Ans. (i) Storage cell or accumulator, (ii) Daniell cell, and (iii)Lechlanche cell.
Q. 43. Why is it not possible for a Lechlanche cell to give a constant current?
Ans. It is because the hydrogen produced does not get depolarised by MnO, at the same rate
at which it is being produced during the chemical reaction.
Q. 44. What is agalvanometer?
Ans. Galyanometer is an instrument which is used to detect the presence of a feeble current
in a circuit.
Q. 45. What is an international ohm?
Ans. It is the resistance of a column of mercury of area of cross-section 1 mm', length
106.300 cm and mass 14.452l gram at 0°C.
Q. 46. What is a shunt?
Ans. A low resistance when connected in parallel to a galvanometer is called a shunt. It is
generally used for converting a galvanometer into an ammeter.
0. 47. What is the law of resistances in series?
Ans When more than one resistors are connected in series, their combined resistance is
equal to the sum of their individual resistances. Symbolically,
R= R, + R, + R, +
0. 48. What is the law of resistances in parallel?
Ane When a number of resistors are connected in parallel, the reciprocal of the resistance
of the combination is equal to the sum of the reciprocals of their individual resistances.
Symbolically,
in series.
1
Rp
Q. 49. What is an ammeter? Why is it always connccted in series in a circuit?
Ans. It is essentially ashunted moving coil galvanometer. It has avery low resistance and
measures the current through acircuit without modifying its magnitude only when it is connected
1,1,1
R R, R,
Q. 50. What is a voltmeter? Why is it always connected in parallel ina circuit?
Ans, It is a moving coilgalvanometer with a high resistance in series. It measures potential
drop across two points without changing its magnitude when it is connected in parallel.
Q. 51. What should be the resistance of an ideal (i) voltmeter, and (ii) ammeter?
Ans. (i) Ideal voltmeter : Infinity, (ii) Ideal ammeter : Zero.
Q52. How will you convert a moving coil galvanometer into (i) an ammeter,
(i) a voltmeter?
Ans. (i) By connecting alow resistance of suitable value ie.,ashunt across the terminals
of the galvanometer. (ii) By connecting ahigh resistance in series with the galvanometer.
Q. 53. Can you measure e.m.f. of a cell with a voltmeter?
Ans. No, because it requires some curent from the cell for its reading.
Q. 54. Four resistors of 0.1, 1, 10and 100 S2 resistances are connected in parallel. Give
the approximate value of the combined resistance without making caleulations.
Ans. It is less than the least resistance, ie., less than 0.12. Its actual value is 0.09 2.
Q. 55. What are milli-ammeter and milli-voltmeter?
Ans. Milli stands for 103, therefore milli-ammeter is an instrument used for measuring
currents of the order of 10 amperes, whereas milli-voltmeter is an instrument used for measuring
voltages of the order of 10 volts.
Q.56. What is meant by a current of one micro-ampere and a p.d. of 1micro-volt?
Ans. One micro-ampere, or 1u A = 10 A,
One micro-volt, or, 1 u V=106 V
Q. 57. What is the effect of tenmperature on the resistance of a conductor?
Ans The resistance of a conductor increases with the rise of temperature.
Q. 58. Name some substances whose resistance decreases with the rise of temperature.
Ans. Resistance of carbon and semiconductorS,germaniunm and silicon decreases with rise
of temperature. Variation is more or less exponential.
Q. 59. What is the basic difference between a conductor and an insulator? Name sone
conductors and insulators.
Ans. Presence of free electrons is responsible for the electrical conductivity of anmaterial.
()Conductors. In conductors, alarge number of free electrons are available for electrical
conduction. All metals are good conductors, e.g., copper and silver.
1014 2 m.
() Insulators. The substance in which no free electrons are available to conduct electricity.
such as mica, wOod, ebonite and rubber.
Q. 60. What is the order of magnitude of resistivity of conductors and insulators?
Ans. Resistivity of conductors is of the order of 10-% SQ m and that of insulators is
Q. 61. What happens to the resistance of a conductor if its length is doubled without
changing its cross-sectional area?
Ans. (0) Resistance of a conductor is directly proportional to its length i.e., R ox l.
(ii) R o where a is crosS-sectional area.
a
Thus, when l is doubled, R is also doubled.
Q. 62. What happens to the resistance of a conductor if its area of cross-section is
reduced to half and itslength is doubled?
Aus. Its resistance becomes 4 times the original value.
Q. 63. What is the difference between micro-ohm resistance and mega-ohm resistance?
Ans. 1micr0-ohm = 10-6 Q
1mega-ohm = 106 Q
Q. 64. What is meant by specific resistance?
Ans. Specific resistance of a material is the resistance to the flow of current offered by the
conductor of the given material having length one metre and area of cross-section one square
metre. In the relation R=p
Q. 65. What is the S.I. unit of specific resistance?
Ans. Ohm-metre (2 m).
, when l= lm and a = 1m', then R = p.
0. 66. If the length of a conductor is doubled and area of cross-section reduced to half
as done in Q. 62, what happens to specific resistance?
Ans. It remains the same. Specific resistance is the property of the material of the conductor
and it is independent of the dimensions of the conductor.
Q. 67. What is resistivity?
Ans. It is another name for specific resistance.
Q. 68. What is electrical conductivity of a material?
Ans. It is the reciprocal of the specific resistance.
Q. 69. What is the S.I. unit of electrical conductivity?
Ans. It is, siemen m' or S m-l.
0. 70. Siemen is the S.I. Unit for which physical quantity?
Ans. Conductance. 1 siemen = 1 (ohm) or mho.
Q. 71. What is a resistance box?
Ans. A resistance box consists of a large
number of standard resistances of different values
(1,2, 2, 5, 10, 20...)ohms fixed in a box. The upper
ends of these resistances are connected to brass studs
arranged in such away that these resistances can be
joined together inseries by removing plugs from the
gaps between the studs as shown in Fig. 3.5.
Fig. 3.5.Connections of resistance coils
inside a
resistance box.
Q. 72. How are the resistances of different magnitude designed and fixed in th.
resistance box?
Ans. The insulated resistance wire of required length is taken. It is doubled over itself anda
then wound over a bobbin of wood or porcelain.The two free ends are then connected to bras
studs.
Q. 73. WVhy is the wire doubled over itsclf before it is wound over a bobbin?
Ans. This is done so as to avoid induced current effects.
Q.74. How are the values of different resistances in the resistance box controlled and
manipulated?
Ans. Lengths of all resistance coils are more or less the same. The different values are
achieved by controling their thicknesses. For high resistances, wires of high resistivity material
are used.
Q. 75. What is the approximate thickness and length of the wire for infinite resistance
in theresistance box?
Ans. There is no resistance wire below the infinity plug. When the infinity plug is taken out,
the two studs remain unconnected and no current flows across.So there is infinite resistance.
Q. 76. Which material is suitable for the construction of standard resistances for
resistance boxes etc.?
Ans. The two common materials used for this purpose are
(i) Constantan, and (ii) Manganin.
Q. 77. Why is copper not used?
Ans. Actually the material suitable for the construction of standard resistances should have
() high specific resistance, and
(ii) low temperature coefficient of resistance, i.e., its resistance should not change
appreciably with the rise of temperature. Manganin and constantan satisfy these
twoconditions, whereas copper does not.
0. 78. Why is a material named Eureka also sometimes used for this purpose?
Ans. Eureka is nothing but another name of constantan.
Q. 79. What is the composition of manganin and constantan?
Ans. Manganin (Cu 83%,Mn 13% and Ni4%); Constantan (Cu 60%, Ni40%).
Q. 80. For making astandard resistance, why should the materialpossess high speeie
resistance?
Ans. So that even a small length of the wire is enough.
Q. 81. What is a rheostat?
Ans. It is adevice toincrease or decrease the curent strength in acircuit by introduc1ng
variable resistance in the circuit. A rheostat is effectively a variable resistor.
Q.82. Windings of the rheostat wire are quite close to each other. Don't they get sl
circuited?
Ans. The wire has a coating of insulating oxide over it. This insulates the windings
each other.
0. 83. If the windings are insulated then how does the slider make a contact with the
wire when the rheostat is in use?
Q.
Ans. The insulation is only above the slider. Just below it where the slider is to make the
contact the insulating oxide ismissing throughout the entire length of the rheostat.
Q.84. What material is chosen for therheostat wire and why?
Ans. It isconstantan. Because its temperature coefficient of increase of resistance is low.
Q. 85. What is potential divider arrangement?
Ans. It is an arrangement which provides a variable p.d. In this arrangement, a cell is
connected across the two ends of the rheostat wire. The e.m.f. of the cell is distributed along the
whole length of this wire. The circuit (across which a variable p.d. is required) is connected
between the terminal of the slider and one end of the rheostat wire. Thus by shifting the slider
to various positions,one gets various values of p.d. across the circuit. Thus it provides a means
of applying a desired low value of the p.d. in a circuit.
0. 86. Name the material of the tube over which the constantan wire is wound for
making a rheostat.
Ans. Any non-conducting material is OK. Generally porcelain is used.
VIVA VOCE / SELF ASSESSMENT
(Experiment Nos. A2 and A3 : Metre Bridge)
Q. 1. What is a metre bridge?
Ans. It is an instrument used for determining the unknown value of the given resistance.
0. 2. What is the alternative term used for metre bridge?
Ans. Slide wire bridge.
Q. 3. Namethe principleon which metre bridge is based.
Ans. Wheatstone's bridge.
Q.4. When is the Wheatstone's bridge said to be most sensitive?
Ans. When resistances in allthe four arms P, Q, R and S are of nearly the same order of
magnitude.
Q. 5. When is the bridge balanced?
Ans. The potential of the common end joining the resistors P and is the sanme as that of
the common end joining the resistors R and S.
0.6. What is the relation between P, 0, R and S when thebridge is balanced?
Ans.
PR
Q S
Q.7. What will happen in Expt. No. 2 (Circuit Fig. 3.8) if the positions ofthe cell
galvanometer are interchanged?
Ans. The balance point is not affected on interchanging the positions of the cell and
galvanometer as such arms BD and AC are called conjugate arms.
Q. 8. WVhy should the moving contact of jockey not be pressed too hard or scratchd
along the wire?
Ans. If done so, it may damage the uniformity of the bridge wire.
Q. 9. Why should the current be passed only while taking an observation?
Ans. A continuous flow of current would cause heating and hence an increase in the yalues
of resistances.
Q. 10. Why isthe metre bridge suitable for resistances of moderate values only?
Ans. The bridge becomes insensitive for too high or too low values and the readings become
undependable. When determining low resistances, the end resistances of the metre bridge wire
and resistance of connecting wires contribute towards the major part of error.
Q. 11. Why should the bridge wire be of uniform cross-section throughout?
Ans. If it is not so, the resistance per unit length of the wire would vary from position to
position and the relation at balance condition, i.e.,
P R
0. 12. For determination of resistance of a coil, which of two methods is better -
Ohm's Law method or metre bridge method?
Ans. Obviously, the bridge method is better because it is the null point method which is
superior to all other methods.
would no longer be valid.
(100 -7)
Q. 13. Why should the battery key be pressed before the galvanometer key?
Ans. This is done to avoid any electromagnetic induction.
0. 14. Sometimes it is advisable to shunt the galvanometer while trying for a balance
point. Why?
Ans, During the first trial of the balance, the current that passes through the galvanomete
may be large and may damage it. "Therefore, to protect the galvanometer, a shunt is used. When
the balance point reaches near the null position, shunt is removed and exact null position S
located.
Ans. Constantan.
0. 15. What is the material of the wire of metre bridge?
Q. 16. Why is constantan used for the bridge wire?
Ans. The coefficient increase of resistance with rise of temperature a is very SImallforthis
material; also its resistivity is high.
The respective values for constantan are 0.4 x 10 (°C)-! and 49 x 10-8 ohm-M
corresponding values for copper are 43 x 10 (°C) and 1.69 x 108 ohm-m.
0. 17. Why is it necessary to obtain the balance point in the middle of the bridge wire?
Explain in detail.
Ans. The sensitivity of the Wheatstone's bridge is maximum when the resistance of all its
four arms are nearly of the same order. For this, the null point or the balance point should be near
the middle ofthe wire. It can be shown (proof given below) that when the balance point is in the
middleofthe wire, asmall error in determining its position introduces the least error inthe value
of the unknown resistance, i.e., the accuracy of the result is the highest.
Proof. Suppose dl is a smallerror introduced in the determination of l and the corresponding
error produced in X is dX.
In the balanced condition for the bridge, we have
Or
But.
X=
X =
Or
On differentiating the above, we get
X
(100- )
dX
(L-I)
log X = Log (L -) - log I + log
- dl dl
L-|
0. where L stands for the total length of the wire
+0=
The magnitude of (dX/X) is minimum when (L - ) in the denominator is maximum.
l+ (L- ) = L, constant
l=L-I
-Ldl
Hence, the product (L -) is maximum when
I(L-I)
0. 19. Define an international ohm.
l=(U2), i.e., the balance point is in the middle of L.
Q. 18. Define resistivity, or specific resistance.
Ans. It is the resistance of aunit cube of amaterial. R=p.
(:dÍ =0 and dL = 0)
A
A
=1; p= R.So it is the resistance across any two opposite faces of a cube of edge of unit length.
1International ohm = 1.00052 ohm.
-; suchthat forl= land
Ans. International ohm is used as a standard for expressing a unit resistance. It is defined
as the resistance of a column of mercury of uniform cross-section 1mm², weighing 14.4521 g
and measuring 106.300 cm at 0°C. The international ohm is slightly bigger than true ohm.
0. 20. Can we measure aresistance of the order of 0.l60 2 using a Wheatstone's
bridge? Support your answer with reasoning?
Ans. No, the resistance of the connecting wires and at the junctions of metre bridge and the
other terminals is itself of the order of the resistance to be measured. It would create uncertainty
in the measurement of low resistance.
0. 21. How can youmeasure the value of such ow resistance of the order of 0.2 ohm?
Ans. (i)The resistance of low value (0.2 ohm)can be determined by using a metre bridee
of wire of resistance 0.5 2 and homogeneous composition and uniform area of cross-section
throughout, makingthe second arm resistance of magnitude 0.2 ohm using standard
resistance,
The readings are taken by interchanging the arms and calculating the mean.
(ii) Using thick copper wires for connections, a voltmeter of nearly infinite.
resistance and a
sensitive ammeter of nearly zero resistance can be used to measure the potential drop across the
given resistance and the current through it. Applying Ohm's law, the value of resistance can
determined.
Q. 22. What is S.I. unit of specific resistance?
Ans. Ohm-m.
Q. 23. State the relation of p with R, Iand d.
Ans. p = R. A/l =
R
Q. 24. What is the shape of the graph of R vs. Ifor a wire of uniform cross-section and
of a given homogeneous composition material?
Ans. It would be a straight line through the origin.
Q. 25. The radius of a bridge wire increases uniformly, how wil its resistance vary as
youmove along the length?
Ans.Resistance willnot increase linearly with length. As area of cross-section increases,it
will cause decrease in resistance. Therefore, increase will not be uniform rather as we move along
the wire, rate of increase of resistance will be less.
0. 26. What is the general formula for combination of n resistances R, R, Ry ..., R,
to be connected in series?
41
Ans. Combined resistance is given by R, = 2K= R, + R, + R, +
Ans.
R,
0. 27. What is the general formula for combination of n resistances R,, R,, R9 .., R,
to be connected in parallel?
EM
Ans. Current.
i=l R
1,1
R R,
t ... t
i=1
0. 28. If three resistances of different values are connected in series in a circuit, which
would be the same in both -- current or the potentialdifference across their ends?
1
R
0. 29. Resistances of 10 2 and 15 2 are connected across a source of e.m.f. 12 Y
(r= 0). What current would be drawn from the battery?
1
Ans. When in series : R. = 25 S2 and I = 0.48 A, when in parallel : R = 6 2 and
1, =2.0 A.
P.
Q. 30. Two appliances of 100 W and 200 W are connected across mains of 250 V. Find
the equivalent power consumption by them if connected in (a) parallel, and (b) series.
Ans. In parallel, P, =P, + P, = 100 + 200 = 300 W
......... t R.
1
In series, the current through them will decrease, thereby decreasing the power consumpuo
P P >P,=
P+P,
=66.67 W
0. 31. In series connection in Q. No. 30, how is it that P. =
Ans. When connected in series, the curent is the same through both of them and resistances
get added up.
Since,
Therefore, P =
R
is
R,
P=
whereas in parallel, Vis the same for both.
1
=
0. 34. What are o and 9?
Ans. 0 =
= P+ P,.
R
RÍ- Ro
R, .0
R, R,+ R,
y2
v2 y2 P P,
Q. 32. Why are the appliances connected in parallel in domestic and industrial circuits?
Ans. (1) The potential across each appliance would be the same.
(2) Each appliance can be operated independently by using a switch.
(3) If one appliance fuses, the others would continue functioning.
1
0. 33. How does the resistance R of a conductor vary with rise in temperature 0?
Ans. Ra = R, (1 + a ) up to a rise of temperature of about 400°C.
Ans. . is the coefficient of increase of resistance with temperature in S.I. unit (degree)-,
whereas is the rise in its temperature.
0. 35. How do you express a in terms of Rg, Ro and 0?
P+P
and its unit is (°C!.
Q. 36. Can you name a material whose resistance decreases with the rise in
temperature?
Ans. Semiconductors (Ge, Si), semiconducting diode etc.
0. 37. How does the resistance of a platinum resistance thermometer vary when it is
heated to a very high temperature?
Ans. R = R, (1 + a + Be), where and Bare temperature coefficients of resistance of
platinum.
0. 38. If the same experiment is performed with ametre bridge wire of length 50 cm
in place of 1 metre long, what changes do you expect in the result?
Ans. It will introduce more error in the final result. Permissible eITor in length measurement
Increases, hence percentage error increases.
where Al is the least count of the metre scale which remains the same.When r decregges
0. 1. What is agalvanometer?
VIVAVOCE / SELF ASSESSMENT
(Experiment Nos. A6 and A7:
Ans. lt is an instrument used to detect feeble electric currents.
Conversion of Galvanometer into Ammeter
and Voltmeter)
Q.2. What type of galvanometer is Weston galvanometer?
Ans. lt is a pivoted type moving coil galvanometer.
Ans.
0. 3. Why is the scale of a galvanometer marked on both sides of zero?
It is so because galvanometer is used to detect null deflection.
Ans.
through it.
Q. 4. What do you understand by resistance of a galvanometer?
It is the resistance offered by the coil of the galvanometer to the flow of current
Q. 5. Which part of the galvanometer offers this resistance?
Q. 7.
Ans. It is the coil of the galvanometer which offers this resistance.
Q. 6. How do you determine this resistance of the galvanometer?
Ans. By half deflection method.
Draw thecircuit diagram for this method.
Ans.Refer to and draw the circuit asin Fig. 5.4 on page 95.
Q. 8. Does thevalue of G always equal Sunder thehalf deflection condition?
Ans. No, it is true only when R >> S.
Q.9. What will happen if R=S?
Ans. Inthat case G# Sbut it will be given by the relation
G=
RS
G = S.
R S
R
S. S
RS
R
Q. 10. For the determination of Gof a galvanometer by balf deilection method. w
should we use high value of R, i.e., R >> G ?
Ans. It prevents the galvanometer from damage. Also we can use the relation
Q. 12. What is an ammeter?
Q.11. Is there any other method for determining G?
t....which equals S when approaches zero.
Ans. G can also be determined by Kelvin's method.
S
Ans. An ammeter is also a galvanometer with a suitable value of shunt, i.e., low resistanos
connected in parallel to it. It gives the value of the current to be measured directly.
Q. 13. Doyou mean that there is no difference between a galvanometer and an ammeter
except for the scale graduations?
Ans. Yes, there is no fundamental difference in its construction. But the resistance of a
ammeter is very low as compared to that of a galvanometer hecause a shunt of low value is
attached in parallel to it.
Q. 14. Why is it necessary for an ammeter to have a low resistance?
Ans. An ammeter is always connected in series with a circuit in which current is to be
measured. Iff it has a high resistance, 1t wi
it will alter the value of actual current to be measured.
Q. 15. According to you an ideal ammeter shouid have zero resistance. Isn't it?
Ans. Yes, ideally speaking, a current-measuring device must have azero resistance but this
cannot be realised in practice, sowe try tohave it as low as possible.
Q. 16. How do you achieveit practically?
S=
Ans. This is achieved practically by connecting avery smallresistance in parallel with the
galvanometer.This small resistance is known as shunt.
Q. 17. VWhy does the resistance of the galvanometer become very low when a shunt is
connected acrOSs its terminals?
Ans. From the law of resistances in parallel, we know that the combined resistance is smaller
than even the smallest individual resistance. Thus the resistance of the shunted galvanometer
becomes less than even the shunt resistance.
lç.G
0. 18. Do you connect a shunt of any arbitrary resistance value to convert a gve
galvanometer into an ammeter?
Ans No, the value of shunt res..ws depends upon the desired range of the ammeter
its value for range I, and full deflection current l, would be
Q. 19. What do you understand by the range of an ammeter?
Ans It is the maximum value of the current which can be safely measured by it.
0. 20. If a given galvanometer is to be converted firstly into an ammeter of rage
1
ampere and then to range of 100 mA,inwhich case willthe value of shunt resistance be
lower?
Ans. The value of the shunt resistance will be lower when 1 ampere current is to be
measured.
Q. 21. Explain, why is it so?
Ans. The value of shunt resistance S to be applied to a galvanometer of resistance G, to
change it into an ammeter of range I, is given by
S=
where I, is the current through the coil of the galvanometer which gives the full scale deflection.
Now from the formula it is clear that higher the value of I, lower will be the value of S.
Q. 22. How do you determine I?
-G= G
Ans. ,is given by the product of the figure of merit and the total number of divisions on
either side of the zero of the galvanometer. (le= kN
Q. 23. What do you mean by the figure of merit of a galvanometer?
Ans. Figure of merit of a given galvanometer is the amount of current required to produce
a deflection of one division on the galvanometer scale. Sensitivity is reciprocal of figure of merit.
Q. 24. VWhat is the order of figure of merit of pivoted type moving coil galvano-meters
which you use in the laboratory?
Ans. It is generally of the order of 10 ampere, i.e., (10 uA per division).
Q. 25. Once you know the vaiue of the shunt resistance to be connected, in what form
will you connect it?
Ans. A shunt, in the form of awire of suitable length and material, is connected across the
galvanometer in parallel with it.
Q.26. How doyou compute the suitabie length of the shunt wire?
Ans. Resistance S of a given wire is given as
S=p
where is its length, ais the area of cross-section and p is its specific resistance. Since a, the
area of cross-section of the wire is (Tr),
Sr
Radius rof the wire can be determined by using a screw gauge, p of the material of the wire
can be obtained from the standard tables. Hence we can get the length l of the wire corresponding
to the required shunt resistance.
Q. 27. Why should a slightly greater length of the wire taken than the calculated
length 1?
Ans, Yes.
Ans. It is done because a smallpart of the wire near its ends is required for the terminal
Connections, so that the exact calculated length of the wire is left out between the two terminals.
Q. 28. Can you check the accuracy of the converted ammcter?
Q.29. When the current in thecircuit is I, we know that only I; passes through the
galvanonmeter. How does your converted ammeter measure I?
Ans. From the formula,
S(U-1) =l;.G
I. = 1.S/(S + G)
Itis clear that I,, I, as G and S are constants for a given converted ammeter. Thus the scala
of converted ammeter directly measures Iafter proper calibration.
Conversion of Galvanometer into Voltmeter
Q. 30. What is a voltmeter?
Ans. It is an instrument which is used to measure the value of the potential difference
between two points directly.
Q. 31. What is the difference between a galvanometer and a voltmeter?
Ans.
difference.
Galvanometer detects feeble currents whereas a voltmeter measures potential
Q. 32. Is there any difference in the construction of a galvanometer and voltmeter?
Ans. Yes, a voltmeter is a galvanometer with a very high resistance connected in series
with it.
Q. 33. Why is it necessary for a voltmeter to have a high resistance?
Ans. Since the voltmeter is to be connected across two points in parallel if it has alow
resistance it willdecrease the actual potential difference to be measured.
0. 34. An ideal voltmeter should have infnite resistance, isn't it?
Ans. Yes. Avoltage measuring device nmust have infinite resistance, but practically this is not
possible.
Q. 35. Why is itnot possible practically?
Ans. For any p.d. to be measured, the voltmeter has to deflect its pointer, for which it needs
energy, i.e., it must draw some current.
Q. 36. How do you dothis inactual practice?
Ans. This is done by connecting a suitable high resistance in series with the galvanometer.
Q. 37. Do you connect a high resistance of any arbitrary value in series with agrven
galvanometer for this purpose?
Ans. No, the value of the series resistance depends upon the sensitivity and desired rang°
of the converted voltmeter.
Q. 38. VWhat do you understand by the range of a voltmeter?
Ans. It is the maximum value of the p.d. which can be measured by it.
0. 39. If a galvanometer is first converted into a voltmeter of range 10 volis and theu
into one of range of 1 volt, in which case is the series resistance of higher value?
Ans. In the case of the 10volts range voltmeter because, R= (VJL) G.
0. 40. How doyou deternmine the resistance tobe connected iu series vith galvanomete
to change it into a volimeter of a required range?
Ans. It is determined by using the following formula
R= (VI) - G
However, there are other kinds of voltmeter like vacuum tube voltmeter (VTVM)with resistance a0ou
10 mega ohm and quadrant electrometer to measure p.d. without consuming any current. Tne
discussion lies beyond the scope of this book.
where the symbols have their usual meanings.
0.41. How do you check the aceuracy of this converted voltmeter?
Ans. Refer to the circuit given in Fig.5.10. Astandard voltmeter Vof the same range is
connected inparallel with this converted voltmeter with arheostat ete. as shown. For aparticular
position of rheostat slider, the readings in the standard and the converted voltmeters are noted.
The difference in these two readings gives the error in the converted voltmeter.
0. 42. A resistance of 10000ohms is connected in series with a galvanometer of
resistance 50 ohms. Is the converted galvanonmefer anammeter or voltmeter?
Ans, A voltmeter.
Q. 43. In Q. No. 42, if the range of the converted voltmeter is 10 V and it has
50 divisions. what is the full scale deflection current and figure of merit of the
galvanometer?
Ans. I, (for full deflection) is nearly
k, figure of merit
Q. 45.
manipulated?
lG_1000 LA
No 50
Vo
R
10V
10 000 S2
Q. 44. How are the resistances of different magnitudes designed and fixed in the
resistance box?
Ans. The insulated resistance wire of desired value is taken and it is doubled over itself.
Then it is wound over abobbin of wood or porcelain. The two free ends are connected to the
two brass studs, separated by a plug key.
= 20 LA div.1
How are the values of different resistances in the box controlled and
0. 49. What is a milli-volimeter?
Ans. We know that R os la. The lengths of different resistance wires taken are almost the
same. Their values are controlled by their thickness. Thinner the wire, higher is its resistance.
= =1 mA
Q. 46. What is appropriate thickness and length of the wire for infinite resistance in
the box?
Ans. There is no resistance wire marked infinity. When infinity plug is taken out, there is
only air gap left between the two brass studs and thus it introduces an infinite resistance in it.
0. 47. Why is the wire doubled over itself ?
Ans. It is done to avoid induced current effects.
Q. 50. What is a micro-ammeter?
0. 48, What is the material of the wires to be used in the resistanee boxes and why?
Ans. Constantan or manganin, because they have low temperature coefficient of resistance
and high specificresistance.
Ans. It is a voltmeter which measures up to
1
1000
Ans. tis an ammeter which can measure currents of the order of 1/10° of an ampere, i.e.,
Q. 51. What is the minimum current measurabie by a moving coil
galvanometer
(D'Arsonval type)?
Ans. 0.1 LA.
Q 52. The required value of shunt for converting a galvanometer into an ammeter of
range 3A, is O.05 ohm, Findthe shunt resistance required if the required range of the
ammeter is 30 mA.
Ans. Shunt value S is given as S =
If 1, << I, , then
lG_-xG.
of the new shunt S' required should be,
S lo
Therefore, if I, range is to be reduced by afactor of
S' = 100 × S = 100 × 0.05 = 5ohms.
3A
30×10
Q. 53. Can you use a d.c. ammeter for the measurement of alternating current? If not,
why?
Ans. No. Ad.c. ammeterfunctions on magnetic effect of current and the force experienced
by aconductor placed in amagnetic field. When a.c. ispassed through the coil of d.c. ammeter,
its direction of deflection would reverse at the same frequency as the frequency of the alternating
current (say 50 Hz). The inertia of the coil would not respond to frequent changes in the direction
of deflection, and hence would show zero reading when alternating current is passed through a
d.c. ammeter.
-, ie.. 100, then the resistance
A'
Q. 54. What is the obvious difference between an a.c. voitmeter and a d.c. voltmeter
which you can tel! just by seeing them?
Ans. 1. Scale of d.c. voltmeter has divisions uniformly spaced whereas that of a.c. one is non
uniform, i.e., as you go to higher values, the divisions become closer.
2. There is a marking ~ On a.c. voltmeter and on d.c. voltmeter.
3. In ad.c. voltmeter,there is a coil pivoted between the magnetic pole pieces whereas in
a.c. there is a heating coil where heat produced varies as the square of current.
Q.55. How can you increase the range of a galvanometer?
Ans. We can increase the range of agalvanometer by connecting a resistance in series
with it.
0. 56. How can you measure alternating current?
Ans. Same as d.c. ammeter, i.e., 1.5 A.
.Ans. Heating effect of current, Q= '. R.t.is independent of the direction of flow of current,
because P would always be positive. Therefore,Hot Wire Ammeter is used forthis purpose.
0. 57. n acircuit, a d.c. ammeter reads 1.5 A. If the meter is replaced by an a.c. meter,
what would it read?
0. 58. In Q. No. 57, what would be the peak value of alternating current?
Ans. Z,=2.gs or V2 l Therefore, the peak value I, =1.52 A=2.115 A.
Q. 59. An ideal voltmeter should have infinite resistance. Do you know of arny su
voltmeter in practice?
Ans. Yes, the electronic voltmeter VTVM (Vacuum Tube Volt Meter) has nearlyinfinite
resistance and is used fOr accurate measurements of p.d.

More Related Content

Similar to PHYSICS VIVA QUESTIONS 12th SECTION A.pdf

Electricity presentation (Grade 10)
Electricity presentation (Grade 10)Electricity presentation (Grade 10)
Electricity presentation (Grade 10)duffieldj
 
Physics CECurrent Eletricity - Copy.pptx
Physics CECurrent Eletricity - Copy.pptxPhysics CECurrent Eletricity - Copy.pptx
Physics CECurrent Eletricity - Copy.pptxjimmyhoward7884
 
Analog circuits-lab-possible-viva-questions
Analog circuits-lab-possible-viva-questionsAnalog circuits-lab-possible-viva-questions
Analog circuits-lab-possible-viva-questionspadmajasiva
 
Electricity One Shot.pdf
Electricity One Shot.pdfElectricity One Shot.pdf
Electricity One Shot.pdfSABAKHAN478855
 
electrogravimetry-211216084524.pdf
electrogravimetry-211216084524.pdfelectrogravimetry-211216084524.pdf
electrogravimetry-211216084524.pdfLearnChemistrywithRa
 
Electromagnetism, electricity and digital electronics
Electromagnetism, electricity and digital electronicsElectromagnetism, electricity and digital electronics
Electromagnetism, electricity and digital electronicsFatima Bianca Gueco
 
13 pius augustine electric current
13 pius augustine electric current13 pius augustine electric current
13 pius augustine electric currentPiusAugustine
 
current and voltage in series and parallel- worksheet
current and voltage in series and parallel- worksheetcurrent and voltage in series and parallel- worksheet
current and voltage in series and parallel- worksheetRajesh Mumtaz
 
Current electricity
Current electricityCurrent electricity
Current electricityMussaOmary3
 
Electric current and dc circuits.
Electric current and dc circuits.Electric current and dc circuits.
Electric current and dc circuits.MlokotiSikhulule
 
Conductors, Capacitors, Dielectrics
Conductors, Capacitors, Dielectrics Conductors, Capacitors, Dielectrics
Conductors, Capacitors, Dielectrics josealberto21
 
Ppt djy 2011 topic 5.2 electric current sl
Ppt djy 2011   topic 5.2 electric current slPpt djy 2011   topic 5.2 electric current sl
Ppt djy 2011 topic 5.2 electric current slDavid Young
 
Current Electricity and Effects of Current
Current Electricity and Effects of CurrentCurrent Electricity and Effects of Current
Current Electricity and Effects of CurrentOleepari
 

Similar to PHYSICS VIVA QUESTIONS 12th SECTION A.pdf (20)

Unit 1.doc
Unit 1.docUnit 1.doc
Unit 1.doc
 
Electricity presentation (Grade 10)
Electricity presentation (Grade 10)Electricity presentation (Grade 10)
Electricity presentation (Grade 10)
 
Basic Elec 1.pptx
Basic Elec 1.pptxBasic Elec 1.pptx
Basic Elec 1.pptx
 
Physics CECurrent Eletricity - Copy.pptx
Physics CECurrent Eletricity - Copy.pptxPhysics CECurrent Eletricity - Copy.pptx
Physics CECurrent Eletricity - Copy.pptx
 
Analog circuits-lab-possible-viva-questions
Analog circuits-lab-possible-viva-questionsAnalog circuits-lab-possible-viva-questions
Analog circuits-lab-possible-viva-questions
 
Electricity One Shot.pdf
Electricity One Shot.pdfElectricity One Shot.pdf
Electricity One Shot.pdf
 
Mesh and nodal
Mesh and nodalMesh and nodal
Mesh and nodal
 
Electrogravimetry
ElectrogravimetryElectrogravimetry
Electrogravimetry
 
electrogravimetry-211216084524.pdf
electrogravimetry-211216084524.pdfelectrogravimetry-211216084524.pdf
electrogravimetry-211216084524.pdf
 
Current electricity
Current electricityCurrent electricity
Current electricity
 
Current electricity
Current electricityCurrent electricity
Current electricity
 
Electromagnetism, electricity and digital electronics
Electromagnetism, electricity and digital electronicsElectromagnetism, electricity and digital electronics
Electromagnetism, electricity and digital electronics
 
Current Electricity
Current ElectricityCurrent Electricity
Current Electricity
 
13 pius augustine electric current
13 pius augustine electric current13 pius augustine electric current
13 pius augustine electric current
 
current and voltage in series and parallel- worksheet
current and voltage in series and parallel- worksheetcurrent and voltage in series and parallel- worksheet
current and voltage in series and parallel- worksheet
 
Current electricity
Current electricityCurrent electricity
Current electricity
 
Electric current and dc circuits.
Electric current and dc circuits.Electric current and dc circuits.
Electric current and dc circuits.
 
Conductors, Capacitors, Dielectrics
Conductors, Capacitors, Dielectrics Conductors, Capacitors, Dielectrics
Conductors, Capacitors, Dielectrics
 
Ppt djy 2011 topic 5.2 electric current sl
Ppt djy 2011   topic 5.2 electric current slPpt djy 2011   topic 5.2 electric current sl
Ppt djy 2011 topic 5.2 electric current sl
 
Current Electricity and Effects of Current
Current Electricity and Effects of CurrentCurrent Electricity and Effects of Current
Current Electricity and Effects of Current
 

Recently uploaded

Call Now ☎ 8264348440 !! Call Girls in Shahpur Jat Escort Service Delhi N.C.R.
Call Now ☎ 8264348440 !! Call Girls in Shahpur Jat Escort Service Delhi N.C.R.Call Now ☎ 8264348440 !! Call Girls in Shahpur Jat Escort Service Delhi N.C.R.
Call Now ☎ 8264348440 !! Call Girls in Shahpur Jat Escort Service Delhi N.C.R.soniya singh
 
Call Girls Ludhiana Just Call 98765-12871 Top Class Call Girl Service Available
Call Girls Ludhiana Just Call 98765-12871 Top Class Call Girl Service AvailableCall Girls Ludhiana Just Call 98765-12871 Top Class Call Girl Service Available
Call Girls Ludhiana Just Call 98765-12871 Top Class Call Girl Service AvailableSeo
 
Hire↠Young Call Girls in Tilak nagar (Delhi) ☎️ 9205541914 ☎️ Independent Esc...
Hire↠Young Call Girls in Tilak nagar (Delhi) ☎️ 9205541914 ☎️ Independent Esc...Hire↠Young Call Girls in Tilak nagar (Delhi) ☎️ 9205541914 ☎️ Independent Esc...
Hire↠Young Call Girls in Tilak nagar (Delhi) ☎️ 9205541914 ☎️ Independent Esc...Delhi Call girls
 
✂️ 👅 Independent Andheri Escorts With Room Vashi Call Girls 💃 9004004663
✂️ 👅 Independent Andheri Escorts With Room Vashi Call Girls 💃 9004004663✂️ 👅 Independent Andheri Escorts With Room Vashi Call Girls 💃 9004004663
✂️ 👅 Independent Andheri Escorts With Room Vashi Call Girls 💃 9004004663Call Girls Mumbai
 
Call Girls In Defence Colony Delhi 💯Call Us 🔝8264348440🔝
Call Girls In Defence Colony Delhi 💯Call Us 🔝8264348440🔝Call Girls In Defence Colony Delhi 💯Call Us 🔝8264348440🔝
Call Girls In Defence Colony Delhi 💯Call Us 🔝8264348440🔝soniya singh
 
All Time Service Available Call Girls Mg Road 👌 ⏭️ 6378878445
All Time Service Available Call Girls Mg Road 👌 ⏭️ 6378878445All Time Service Available Call Girls Mg Road 👌 ⏭️ 6378878445
All Time Service Available Call Girls Mg Road 👌 ⏭️ 6378878445ruhi
 
𓀤Call On 7877925207 𓀤 Ahmedguda Call Girls Hot Model With Sexy Bhabi Ready Fo...
𓀤Call On 7877925207 𓀤 Ahmedguda Call Girls Hot Model With Sexy Bhabi Ready Fo...𓀤Call On 7877925207 𓀤 Ahmedguda Call Girls Hot Model With Sexy Bhabi Ready Fo...
𓀤Call On 7877925207 𓀤 Ahmedguda Call Girls Hot Model With Sexy Bhabi Ready Fo...Neha Pandey
 
GDG Cloud Southlake 32: Kyle Hettinger: Demystifying the Dark Web
GDG Cloud Southlake 32: Kyle Hettinger: Demystifying the Dark WebGDG Cloud Southlake 32: Kyle Hettinger: Demystifying the Dark Web
GDG Cloud Southlake 32: Kyle Hettinger: Demystifying the Dark WebJames Anderson
 
Call Girls In Sukhdev Vihar Delhi 💯Call Us 🔝8264348440🔝
Call Girls In Sukhdev Vihar Delhi 💯Call Us 🔝8264348440🔝Call Girls In Sukhdev Vihar Delhi 💯Call Us 🔝8264348440🔝
Call Girls In Sukhdev Vihar Delhi 💯Call Us 🔝8264348440🔝soniya singh
 
'Future Evolution of the Internet' delivered by Geoff Huston at Everything Op...
'Future Evolution of the Internet' delivered by Geoff Huston at Everything Op...'Future Evolution of the Internet' delivered by Geoff Huston at Everything Op...
'Future Evolution of the Internet' delivered by Geoff Huston at Everything Op...APNIC
 
Call Girls In Saket Delhi 💯Call Us 🔝8264348440🔝
Call Girls In Saket Delhi 💯Call Us 🔝8264348440🔝Call Girls In Saket Delhi 💯Call Us 🔝8264348440🔝
Call Girls In Saket Delhi 💯Call Us 🔝8264348440🔝soniya singh
 
VIP Model Call Girls Hadapsar ( Pune ) Call ON 9905417584 Starting High Prof...
VIP Model Call Girls Hadapsar ( Pune ) Call ON 9905417584 Starting  High Prof...VIP Model Call Girls Hadapsar ( Pune ) Call ON 9905417584 Starting  High Prof...
VIP Model Call Girls Hadapsar ( Pune ) Call ON 9905417584 Starting High Prof...singhpriety023
 
₹5.5k {Cash Payment}New Friends Colony Call Girls In [Delhi NIHARIKA] 🔝|97111...
₹5.5k {Cash Payment}New Friends Colony Call Girls In [Delhi NIHARIKA] 🔝|97111...₹5.5k {Cash Payment}New Friends Colony Call Girls In [Delhi NIHARIKA] 🔝|97111...
₹5.5k {Cash Payment}New Friends Colony Call Girls In [Delhi NIHARIKA] 🔝|97111...Diya Sharma
 
Pune Airport ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready...
Pune Airport ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready...Pune Airport ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready...
Pune Airport ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready...tanu pandey
 
Low Rate Young Call Girls in Sector 63 Mamura Noida ✔️☆9289244007✔️☆ Female E...
Low Rate Young Call Girls in Sector 63 Mamura Noida ✔️☆9289244007✔️☆ Female E...Low Rate Young Call Girls in Sector 63 Mamura Noida ✔️☆9289244007✔️☆ Female E...
Low Rate Young Call Girls in Sector 63 Mamura Noida ✔️☆9289244007✔️☆ Female E...SofiyaSharma5
 
Call Girls Dubai Prolapsed O525547819 Call Girls In Dubai Princes$
Call Girls Dubai Prolapsed O525547819 Call Girls In Dubai Princes$Call Girls Dubai Prolapsed O525547819 Call Girls In Dubai Princes$
Call Girls Dubai Prolapsed O525547819 Call Girls In Dubai Princes$kojalkojal131
 
Call Girls Service Chandigarh Lucky ❤️ 7710465962 Independent Call Girls In C...
Call Girls Service Chandigarh Lucky ❤️ 7710465962 Independent Call Girls In C...Call Girls Service Chandigarh Lucky ❤️ 7710465962 Independent Call Girls In C...
Call Girls Service Chandigarh Lucky ❤️ 7710465962 Independent Call Girls In C...Sheetaleventcompany
 

Recently uploaded (20)

Call Now ☎ 8264348440 !! Call Girls in Shahpur Jat Escort Service Delhi N.C.R.
Call Now ☎ 8264348440 !! Call Girls in Shahpur Jat Escort Service Delhi N.C.R.Call Now ☎ 8264348440 !! Call Girls in Shahpur Jat Escort Service Delhi N.C.R.
Call Now ☎ 8264348440 !! Call Girls in Shahpur Jat Escort Service Delhi N.C.R.
 
Call Girls Ludhiana Just Call 98765-12871 Top Class Call Girl Service Available
Call Girls Ludhiana Just Call 98765-12871 Top Class Call Girl Service AvailableCall Girls Ludhiana Just Call 98765-12871 Top Class Call Girl Service Available
Call Girls Ludhiana Just Call 98765-12871 Top Class Call Girl Service Available
 
Hire↠Young Call Girls in Tilak nagar (Delhi) ☎️ 9205541914 ☎️ Independent Esc...
Hire↠Young Call Girls in Tilak nagar (Delhi) ☎️ 9205541914 ☎️ Independent Esc...Hire↠Young Call Girls in Tilak nagar (Delhi) ☎️ 9205541914 ☎️ Independent Esc...
Hire↠Young Call Girls in Tilak nagar (Delhi) ☎️ 9205541914 ☎️ Independent Esc...
 
✂️ 👅 Independent Andheri Escorts With Room Vashi Call Girls 💃 9004004663
✂️ 👅 Independent Andheri Escorts With Room Vashi Call Girls 💃 9004004663✂️ 👅 Independent Andheri Escorts With Room Vashi Call Girls 💃 9004004663
✂️ 👅 Independent Andheri Escorts With Room Vashi Call Girls 💃 9004004663
 
Call Girls In Defence Colony Delhi 💯Call Us 🔝8264348440🔝
Call Girls In Defence Colony Delhi 💯Call Us 🔝8264348440🔝Call Girls In Defence Colony Delhi 💯Call Us 🔝8264348440🔝
Call Girls In Defence Colony Delhi 💯Call Us 🔝8264348440🔝
 
All Time Service Available Call Girls Mg Road 👌 ⏭️ 6378878445
All Time Service Available Call Girls Mg Road 👌 ⏭️ 6378878445All Time Service Available Call Girls Mg Road 👌 ⏭️ 6378878445
All Time Service Available Call Girls Mg Road 👌 ⏭️ 6378878445
 
𓀤Call On 7877925207 𓀤 Ahmedguda Call Girls Hot Model With Sexy Bhabi Ready Fo...
𓀤Call On 7877925207 𓀤 Ahmedguda Call Girls Hot Model With Sexy Bhabi Ready Fo...𓀤Call On 7877925207 𓀤 Ahmedguda Call Girls Hot Model With Sexy Bhabi Ready Fo...
𓀤Call On 7877925207 𓀤 Ahmedguda Call Girls Hot Model With Sexy Bhabi Ready Fo...
 
(INDIRA) Call Girl Pune Call Now 8250077686 Pune Escorts 24x7
(INDIRA) Call Girl Pune Call Now 8250077686 Pune Escorts 24x7(INDIRA) Call Girl Pune Call Now 8250077686 Pune Escorts 24x7
(INDIRA) Call Girl Pune Call Now 8250077686 Pune Escorts 24x7
 
GDG Cloud Southlake 32: Kyle Hettinger: Demystifying the Dark Web
GDG Cloud Southlake 32: Kyle Hettinger: Demystifying the Dark WebGDG Cloud Southlake 32: Kyle Hettinger: Demystifying the Dark Web
GDG Cloud Southlake 32: Kyle Hettinger: Demystifying the Dark Web
 
Call Girls In Sukhdev Vihar Delhi 💯Call Us 🔝8264348440🔝
Call Girls In Sukhdev Vihar Delhi 💯Call Us 🔝8264348440🔝Call Girls In Sukhdev Vihar Delhi 💯Call Us 🔝8264348440🔝
Call Girls In Sukhdev Vihar Delhi 💯Call Us 🔝8264348440🔝
 
'Future Evolution of the Internet' delivered by Geoff Huston at Everything Op...
'Future Evolution of the Internet' delivered by Geoff Huston at Everything Op...'Future Evolution of the Internet' delivered by Geoff Huston at Everything Op...
'Future Evolution of the Internet' delivered by Geoff Huston at Everything Op...
 
Rohini Sector 22 Call Girls Delhi 9999965857 @Sabina Saikh No Advance
Rohini Sector 22 Call Girls Delhi 9999965857 @Sabina Saikh No AdvanceRohini Sector 22 Call Girls Delhi 9999965857 @Sabina Saikh No Advance
Rohini Sector 22 Call Girls Delhi 9999965857 @Sabina Saikh No Advance
 
Call Girls In Saket Delhi 💯Call Us 🔝8264348440🔝
Call Girls In Saket Delhi 💯Call Us 🔝8264348440🔝Call Girls In Saket Delhi 💯Call Us 🔝8264348440🔝
Call Girls In Saket Delhi 💯Call Us 🔝8264348440🔝
 
VIP Model Call Girls Hadapsar ( Pune ) Call ON 9905417584 Starting High Prof...
VIP Model Call Girls Hadapsar ( Pune ) Call ON 9905417584 Starting  High Prof...VIP Model Call Girls Hadapsar ( Pune ) Call ON 9905417584 Starting  High Prof...
VIP Model Call Girls Hadapsar ( Pune ) Call ON 9905417584 Starting High Prof...
 
₹5.5k {Cash Payment}New Friends Colony Call Girls In [Delhi NIHARIKA] 🔝|97111...
₹5.5k {Cash Payment}New Friends Colony Call Girls In [Delhi NIHARIKA] 🔝|97111...₹5.5k {Cash Payment}New Friends Colony Call Girls In [Delhi NIHARIKA] 🔝|97111...
₹5.5k {Cash Payment}New Friends Colony Call Girls In [Delhi NIHARIKA] 🔝|97111...
 
Pune Airport ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready...
Pune Airport ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready...Pune Airport ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready...
Pune Airport ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready...
 
Low Rate Young Call Girls in Sector 63 Mamura Noida ✔️☆9289244007✔️☆ Female E...
Low Rate Young Call Girls in Sector 63 Mamura Noida ✔️☆9289244007✔️☆ Female E...Low Rate Young Call Girls in Sector 63 Mamura Noida ✔️☆9289244007✔️☆ Female E...
Low Rate Young Call Girls in Sector 63 Mamura Noida ✔️☆9289244007✔️☆ Female E...
 
Call Girls Dubai Prolapsed O525547819 Call Girls In Dubai Princes$
Call Girls Dubai Prolapsed O525547819 Call Girls In Dubai Princes$Call Girls Dubai Prolapsed O525547819 Call Girls In Dubai Princes$
Call Girls Dubai Prolapsed O525547819 Call Girls In Dubai Princes$
 
Rohini Sector 26 Call Girls Delhi 9999965857 @Sabina Saikh No Advance
Rohini Sector 26 Call Girls Delhi 9999965857 @Sabina Saikh No AdvanceRohini Sector 26 Call Girls Delhi 9999965857 @Sabina Saikh No Advance
Rohini Sector 26 Call Girls Delhi 9999965857 @Sabina Saikh No Advance
 
Call Girls Service Chandigarh Lucky ❤️ 7710465962 Independent Call Girls In C...
Call Girls Service Chandigarh Lucky ❤️ 7710465962 Independent Call Girls In C...Call Girls Service Chandigarh Lucky ❤️ 7710465962 Independent Call Girls In C...
Call Girls Service Chandigarh Lucky ❤️ 7710465962 Independent Call Girls In C...
 

PHYSICS VIVA QUESTIONS 12th SECTION A.pdf

  • 1. VIVA VOCE (Experiment No. A1) / Self-Assessment 0. 1. What is meant by the term electric current? Ans. The flow of charge through a conductor is called electric current. Q. 2. Name the S.I. unit of current. Ans. Ampere (A). Q. 3. Name the SI. unit of resistance. Ans. Ohm which is also written in symbolic form as greek letter S2.
  • 2. Q. 4. What is an ampere? Define it. Ans. It is an S.I. unit of current. It is defined as 1 coulomb of charge flowing throuoh conductor in 1second. It is also measured as the rate of flow of charge, i.e., I = qh. Q. 5. What is an ohm? Define i. Ans. Ohm is the unit of resistance. When a potential difference of 1 volt is maintained acros the ends of a conductor and a current of 1 A flows through it, its resistance is said to be 1ob Q.6. Every metallic conductor has a high number density offreeelecirons moving wi% high thermal velocities. Why does it not show any current wihen connected acrOSs asensiti ammeter? Ans. The free electrons are in random motion. As a result of it, the number of electrons Crossing an area of cross-section in one direction is the same as that crossing in the opposite direction.Therefore, there is no net flow of electrons across a cross-section of the conductor in any particular direction. Hence no current is shown by the ammeter. Q. 7. How would you achieve a netflow of free electrons in a particular direction in the conductor? Ans. It can be achieved by applying a potential difference (p.d.) across the ends of a conductor by connecting it to a source of e.m.f. . 8. VWhy do free electrons start moving in a particular direction when a source of e.m.f. is connected across the ends of the conductor? Ans. The application of a potential difference across the ends of the conductor, creates an electricfield (E = V)inside the conductor. The electrons experience the force and start drifting in a direction opposite to the directionof the field. 0.9. What is drift velocity of electrons? Ans. On account of application of p.d. across the ends of the conductor. the free electrons Over and above the random motion, have a directed velocity. The average value of this directed velocity is called drift velocity. Q. 10. What are the orders of drift velocity for normallyapplied potentials (0 to5 V) and that of random thermal speed at room temperature say (300 K). Ans. The drift velocity is of theorder of 10m per second whereas random thermal velocity of electrons is of the order of 10 metre per second. Q.11. What is the conventional direction of the flow of current in a metallic conductor? In what direction do the electrons move? Ans. The conventional direction of the flow of current is taken as the direction of flow OJ positive charge from higher potential to lower potential. Actually, it is the electrons (witl negative charge) which flow in a metallic conductor. Thus the direction of flow of electroni' current is from negative to positive i.e., opposite to that of the conventional current. Q. 12. State Ohm's Law. Ans. The law states that the current passing through a conductor is directly proportiona the potential drop across its ends, provided the temperature and other physical conditions rem unchanged. Q. 13. Is Ohm's Law true for triodes and diodes? Ans. No, it is not true because potential difference and current in these do not have im relationship, i.e., the graph between them is not astraight line. They are said to be non-ohmic conductors; actually in vacuum tubes (V o [). Q. 14. Define one volt.
  • 3. Ans. Volt is the S.I. unit of electric potential.One volt is said to be the potential difference between two points if one joule of work is done in bringing one coulomb of charge from one point to the other. Q. 15. What is an electric cell? Ans. A cell is a device in which e.m.f. is generated due to chemical action taking place in it. Q. l6. What are the essential parts of a cell? Ans. Acell has two essential parts, viz.,(i) twoelectrodes which are known as its positive pole and negative pole, and (ii) an electrolyte. Q. 17. What is the essential difference between a primary and a secondary cel? Ans. In a primary cell the chemical action taking place inside the cell directly supplies the electrical energy, i.e., chemical energy directly changes into electrical energy, whereas in a secondary cell, electrical energy is first stored as chemical potential energy in the cell and afterwards itis reconverted into electricalenergy. Primary cells are not rechargeable whereas secondary cells can be recharged. Q. 18. Give examples of Primary and Secondary cells. Ans. Daniell and Lechlanche cells are primary cells, whereas Lead acid accumulator and Alkaliaccumulator (Ni-Fe cell) are the examples of secondary cells. Q. 19. What is a dry cel? Ans. It is essentially a Lechlanche cell in which the electrolyte is taken in a paste form. 0. 20. What is a battery? Ans. Combination of cells joined in series is called a battery. Battery is used for drawing higher currents. The e.m.f.of the battery is equal to the sum of the e.m.f. of all individual cells. Q. 21. What is a battery eliminator? Ans. It is basically arectifier in which an A.C. voltage of 220 V from mains is converted into a low d.c. voltage of adesired value such as 1.5 V, 3.0 V, 6 V,9V, 12 V. It is a good substitute for a battery or a cell. 0. 22. Is there anyadvantage of battery eliminator over usual source of e.m.f.? Ans. Yes, the main advantage is that no charging is required for battery eliminator. (One can also draw large currents). Battery eliminator is easy to handle and maintain, whereas a cell requires change of chemicals and electrodes. Q. 23. What is meant by ampere hour capacity of a cell? measure of the electrical capacity of a cell, i.e., how much quantity of electricity a cellis capable of supplying. It is measured by the product amperes xhours. Acell Ans. It is a of 16 ampere hour capacity can supply a current of one ampere for 16 hours or a current of 2 amperes for 8 hours. Q. 24. (a) What does the abbreviation e.m.f. stand for? (b) As the namne implies, is e.m.f. actually a force? Ans. (a) It stands for electromotive force. (b) No, it is a misnomer. It is rather the maximum potential difference across the terminale of a cell when no current is drawn irom 1l, 1.e., the cell is in the open cireuit O. 25. What is the usual sourCe of e.nn.f. in the laboratorv> Ans. A primary or secondary cell and eliminator. Or a battery (number of cells in series) or an
  • 4. Q. 26. Whyare the accumulators called storage cells? Ans. These cells act as storehouses for electricity. Current can be drawn from them wheneve. desired. After being discharged, they can be recharged. Since they store (or accumulate electricity, they are known as storage cells or accumulators. Q. 27. What is neant by internal resistance of a cell? Ans. The resistance offered by the electrolyte of acelltothe flow of electricity is calledl internal resistance of the cell. For a normal working cell, its value is about 1to2 ohm. Q. 28. Is storage cell or accumulator, a primary cell or secondary cell? Ans. It is a secondary cell. Q. 29. Which one -a primary cell or astorage cell - has smaller internal resistance? Ans. Storage cells have smaller internal resistance (about 0.1 2 in comparison to about 2 2 for primary cells.) Q. 30. What do you understand by the ternm, "short-circuiting of a cell"? Ans. When the two poles of a cell are connected by a wire of negligible resistance, then a large current is drawn from the cell because I circuited. Q. 31. What is meant by e.m.f. of a cell? What are the values of e.m.f. of Daniell and of Lechlanche cells? Ans. It is the potential drop across the terminals of a cell when cell is in open circuit. E.m.f. of Lechlanche cell is 1.5 V and that of Daniell cell is 1.1 V. Ans. Q. 32. Name the electrodes and electrolytes in Lechlanche and Daniell ceils. Cell Lechlanche R Daniell ’c as R’0 and the cell is said to be short Positive electrode Carbon rod Copper vessel Negative electrode Zinc rod Zinc rod O. 33. What do you mean by a cell being in an open circuit? acurrent is drawn from the cell, then it is said to be in closed circuit. Ans. When no current is drawn from a cell, it is said to be in open circuit whereas when 0. 34. What is meant by terminal potential drop of a cell? Electrolyte 0. 35. On what factors does the e.m.f. of a cell depend? NH,CI Dil. H,SO, Ans. It is the drop of potential across the electrodes of a cell when current is being dran from it, i.e., the cell is in the closed circuit. 0.36. Which one is greater - C.m.f. or terminal p.d. and why? Ans. (1) Nature of plates, (2) Nature of electrolyte, (3) Composition of the electrolyte (4) It is indepdendent of the separation between the plates, and (5) Area of the plates immersed inthe electrolyte. Ans. The e.m.f. is greater as it is the maximum value of p.d. which can exist across u terminals of a cell and this happenswhen nocurrent is drawn from the cell. When the cell sen out current, apart of the e.m.f. 1s lost in overcoming internal resistance of the cell and the p at its terminals falls belowits maximum value. Hence terminal p.d. is less than the e.m.i. oI cell.
  • 5. Q. 37. What is a standard cell? Name one such cell? Ans. Acell whose e.m.f. remains constant with variations of time as wellas temperature, is called a standard cell. Mercury-Cadmiun cell is a standard cell with e.m.f. = 1.0183 volt at 20°C. Q. 38. What are the defects of ordinary cells? Ans. There are two defects, viz. : () Local action, and (ii) Polarisation. Q. 39. What is local action and how is it remedied? Ans. This defect arises due to the use of commercial zinc in making the cathode. Such a material is usually impure and leads to the formation of local cells on the zinc rod. It is remedied by amalgamating the zinc rod with mercury. Q. 40. What is polarisation and how is it remedied? Ans. This defect arises due to the formation of a layer of hydrogen on the copper plate. This develops a back e.m.f. and as such e.m.f. falls quickly. It is remedied by using a suitable depolariser which converts hydrogen into water before it reaches the copper plate. Use of MnO, does this job in a Lechlanche cell. Q. 41. Name the depolariser for (i) Lechlanche, and (ii) Daniell cells. Ans. In Lechlanche cell, MnO, is used as depolariser. In Daniell cell CuSO, is used as depolariser. Q. 42. Name the cells used for getting (i) large current, (ii) constant current, and (iii)intermittent current. Ans. (i) Storage cell or accumulator, (ii) Daniell cell, and (iii)Lechlanche cell. Q. 43. Why is it not possible for a Lechlanche cell to give a constant current? Ans. It is because the hydrogen produced does not get depolarised by MnO, at the same rate at which it is being produced during the chemical reaction. Q. 44. What is agalvanometer? Ans. Galyanometer is an instrument which is used to detect the presence of a feeble current in a circuit. Q. 45. What is an international ohm? Ans. It is the resistance of a column of mercury of area of cross-section 1 mm', length 106.300 cm and mass 14.452l gram at 0°C. Q. 46. What is a shunt? Ans. A low resistance when connected in parallel to a galvanometer is called a shunt. It is generally used for converting a galvanometer into an ammeter. 0. 47. What is the law of resistances in series? Ans When more than one resistors are connected in series, their combined resistance is equal to the sum of their individual resistances. Symbolically, R= R, + R, + R, + 0. 48. What is the law of resistances in parallel? Ane When a number of resistors are connected in parallel, the reciprocal of the resistance of the combination is equal to the sum of the reciprocals of their individual resistances. Symbolically,
  • 6. in series. 1 Rp Q. 49. What is an ammeter? Why is it always connccted in series in a circuit? Ans. It is essentially ashunted moving coil galvanometer. It has avery low resistance and measures the current through acircuit without modifying its magnitude only when it is connected 1,1,1 R R, R, Q. 50. What is a voltmeter? Why is it always connected in parallel ina circuit? Ans, It is a moving coilgalvanometer with a high resistance in series. It measures potential drop across two points without changing its magnitude when it is connected in parallel. Q. 51. What should be the resistance of an ideal (i) voltmeter, and (ii) ammeter? Ans. (i) Ideal voltmeter : Infinity, (ii) Ideal ammeter : Zero. Q52. How will you convert a moving coil galvanometer into (i) an ammeter, (i) a voltmeter? Ans. (i) By connecting alow resistance of suitable value ie.,ashunt across the terminals of the galvanometer. (ii) By connecting ahigh resistance in series with the galvanometer. Q. 53. Can you measure e.m.f. of a cell with a voltmeter? Ans. No, because it requires some curent from the cell for its reading. Q. 54. Four resistors of 0.1, 1, 10and 100 S2 resistances are connected in parallel. Give the approximate value of the combined resistance without making caleulations. Ans. It is less than the least resistance, ie., less than 0.12. Its actual value is 0.09 2. Q. 55. What are milli-ammeter and milli-voltmeter? Ans. Milli stands for 103, therefore milli-ammeter is an instrument used for measuring currents of the order of 10 amperes, whereas milli-voltmeter is an instrument used for measuring voltages of the order of 10 volts. Q.56. What is meant by a current of one micro-ampere and a p.d. of 1micro-volt? Ans. One micro-ampere, or 1u A = 10 A, One micro-volt, or, 1 u V=106 V Q. 57. What is the effect of tenmperature on the resistance of a conductor? Ans The resistance of a conductor increases with the rise of temperature. Q. 58. Name some substances whose resistance decreases with the rise of temperature. Ans. Resistance of carbon and semiconductorS,germaniunm and silicon decreases with rise of temperature. Variation is more or less exponential. Q. 59. What is the basic difference between a conductor and an insulator? Name sone conductors and insulators. Ans. Presence of free electrons is responsible for the electrical conductivity of anmaterial. ()Conductors. In conductors, alarge number of free electrons are available for electrical conduction. All metals are good conductors, e.g., copper and silver. 1014 2 m. () Insulators. The substance in which no free electrons are available to conduct electricity. such as mica, wOod, ebonite and rubber. Q. 60. What is the order of magnitude of resistivity of conductors and insulators? Ans. Resistivity of conductors is of the order of 10-% SQ m and that of insulators is
  • 7. Q. 61. What happens to the resistance of a conductor if its length is doubled without changing its cross-sectional area? Ans. (0) Resistance of a conductor is directly proportional to its length i.e., R ox l. (ii) R o where a is crosS-sectional area. a Thus, when l is doubled, R is also doubled. Q. 62. What happens to the resistance of a conductor if its area of cross-section is reduced to half and itslength is doubled? Aus. Its resistance becomes 4 times the original value. Q. 63. What is the difference between micro-ohm resistance and mega-ohm resistance? Ans. 1micr0-ohm = 10-6 Q 1mega-ohm = 106 Q Q. 64. What is meant by specific resistance? Ans. Specific resistance of a material is the resistance to the flow of current offered by the conductor of the given material having length one metre and area of cross-section one square metre. In the relation R=p Q. 65. What is the S.I. unit of specific resistance? Ans. Ohm-metre (2 m). , when l= lm and a = 1m', then R = p. 0. 66. If the length of a conductor is doubled and area of cross-section reduced to half as done in Q. 62, what happens to specific resistance? Ans. It remains the same. Specific resistance is the property of the material of the conductor and it is independent of the dimensions of the conductor. Q. 67. What is resistivity? Ans. It is another name for specific resistance. Q. 68. What is electrical conductivity of a material? Ans. It is the reciprocal of the specific resistance. Q. 69. What is the S.I. unit of electrical conductivity? Ans. It is, siemen m' or S m-l. 0. 70. Siemen is the S.I. Unit for which physical quantity? Ans. Conductance. 1 siemen = 1 (ohm) or mho. Q. 71. What is a resistance box? Ans. A resistance box consists of a large number of standard resistances of different values (1,2, 2, 5, 10, 20...)ohms fixed in a box. The upper ends of these resistances are connected to brass studs arranged in such away that these resistances can be joined together inseries by removing plugs from the gaps between the studs as shown in Fig. 3.5. Fig. 3.5.Connections of resistance coils inside a resistance box.
  • 8. Q. 72. How are the resistances of different magnitude designed and fixed in th. resistance box? Ans. The insulated resistance wire of required length is taken. It is doubled over itself anda then wound over a bobbin of wood or porcelain.The two free ends are then connected to bras studs. Q. 73. WVhy is the wire doubled over itsclf before it is wound over a bobbin? Ans. This is done so as to avoid induced current effects. Q.74. How are the values of different resistances in the resistance box controlled and manipulated? Ans. Lengths of all resistance coils are more or less the same. The different values are achieved by controling their thicknesses. For high resistances, wires of high resistivity material are used. Q. 75. What is the approximate thickness and length of the wire for infinite resistance in theresistance box? Ans. There is no resistance wire below the infinity plug. When the infinity plug is taken out, the two studs remain unconnected and no current flows across.So there is infinite resistance. Q. 76. Which material is suitable for the construction of standard resistances for resistance boxes etc.? Ans. The two common materials used for this purpose are (i) Constantan, and (ii) Manganin. Q. 77. Why is copper not used? Ans. Actually the material suitable for the construction of standard resistances should have () high specific resistance, and (ii) low temperature coefficient of resistance, i.e., its resistance should not change appreciably with the rise of temperature. Manganin and constantan satisfy these twoconditions, whereas copper does not. 0. 78. Why is a material named Eureka also sometimes used for this purpose? Ans. Eureka is nothing but another name of constantan. Q. 79. What is the composition of manganin and constantan? Ans. Manganin (Cu 83%,Mn 13% and Ni4%); Constantan (Cu 60%, Ni40%). Q. 80. For making astandard resistance, why should the materialpossess high speeie resistance? Ans. So that even a small length of the wire is enough. Q. 81. What is a rheostat? Ans. It is adevice toincrease or decrease the curent strength in acircuit by introduc1ng variable resistance in the circuit. A rheostat is effectively a variable resistor. Q.82. Windings of the rheostat wire are quite close to each other. Don't they get sl circuited? Ans. The wire has a coating of insulating oxide over it. This insulates the windings each other.
  • 9. 0. 83. If the windings are insulated then how does the slider make a contact with the wire when the rheostat is in use? Q. Ans. The insulation is only above the slider. Just below it where the slider is to make the contact the insulating oxide ismissing throughout the entire length of the rheostat. Q.84. What material is chosen for therheostat wire and why? Ans. It isconstantan. Because its temperature coefficient of increase of resistance is low. Q. 85. What is potential divider arrangement? Ans. It is an arrangement which provides a variable p.d. In this arrangement, a cell is connected across the two ends of the rheostat wire. The e.m.f. of the cell is distributed along the whole length of this wire. The circuit (across which a variable p.d. is required) is connected between the terminal of the slider and one end of the rheostat wire. Thus by shifting the slider to various positions,one gets various values of p.d. across the circuit. Thus it provides a means of applying a desired low value of the p.d. in a circuit. 0. 86. Name the material of the tube over which the constantan wire is wound for making a rheostat. Ans. Any non-conducting material is OK. Generally porcelain is used.
  • 10. VIVA VOCE / SELF ASSESSMENT (Experiment Nos. A2 and A3 : Metre Bridge) Q. 1. What is a metre bridge? Ans. It is an instrument used for determining the unknown value of the given resistance. 0. 2. What is the alternative term used for metre bridge? Ans. Slide wire bridge. Q. 3. Namethe principleon which metre bridge is based. Ans. Wheatstone's bridge. Q.4. When is the Wheatstone's bridge said to be most sensitive? Ans. When resistances in allthe four arms P, Q, R and S are of nearly the same order of magnitude. Q. 5. When is the bridge balanced? Ans. The potential of the common end joining the resistors P and is the sanme as that of the common end joining the resistors R and S. 0.6. What is the relation between P, 0, R and S when thebridge is balanced?
  • 11. Ans. PR Q S Q.7. What will happen in Expt. No. 2 (Circuit Fig. 3.8) if the positions ofthe cell galvanometer are interchanged? Ans. The balance point is not affected on interchanging the positions of the cell and galvanometer as such arms BD and AC are called conjugate arms. Q. 8. WVhy should the moving contact of jockey not be pressed too hard or scratchd along the wire? Ans. If done so, it may damage the uniformity of the bridge wire. Q. 9. Why should the current be passed only while taking an observation? Ans. A continuous flow of current would cause heating and hence an increase in the yalues of resistances. Q. 10. Why isthe metre bridge suitable for resistances of moderate values only? Ans. The bridge becomes insensitive for too high or too low values and the readings become undependable. When determining low resistances, the end resistances of the metre bridge wire and resistance of connecting wires contribute towards the major part of error. Q. 11. Why should the bridge wire be of uniform cross-section throughout? Ans. If it is not so, the resistance per unit length of the wire would vary from position to position and the relation at balance condition, i.e., P R 0. 12. For determination of resistance of a coil, which of two methods is better - Ohm's Law method or metre bridge method? Ans. Obviously, the bridge method is better because it is the null point method which is superior to all other methods. would no longer be valid. (100 -7) Q. 13. Why should the battery key be pressed before the galvanometer key? Ans. This is done to avoid any electromagnetic induction. 0. 14. Sometimes it is advisable to shunt the galvanometer while trying for a balance point. Why? Ans, During the first trial of the balance, the current that passes through the galvanomete may be large and may damage it. "Therefore, to protect the galvanometer, a shunt is used. When the balance point reaches near the null position, shunt is removed and exact null position S located. Ans. Constantan. 0. 15. What is the material of the wire of metre bridge? Q. 16. Why is constantan used for the bridge wire? Ans. The coefficient increase of resistance with rise of temperature a is very SImallforthis material; also its resistivity is high. The respective values for constantan are 0.4 x 10 (°C)-! and 49 x 10-8 ohm-M corresponding values for copper are 43 x 10 (°C) and 1.69 x 108 ohm-m.
  • 12. 0. 17. Why is it necessary to obtain the balance point in the middle of the bridge wire? Explain in detail. Ans. The sensitivity of the Wheatstone's bridge is maximum when the resistance of all its four arms are nearly of the same order. For this, the null point or the balance point should be near the middle ofthe wire. It can be shown (proof given below) that when the balance point is in the middleofthe wire, asmall error in determining its position introduces the least error inthe value of the unknown resistance, i.e., the accuracy of the result is the highest. Proof. Suppose dl is a smallerror introduced in the determination of l and the corresponding error produced in X is dX. In the balanced condition for the bridge, we have Or But. X= X = Or On differentiating the above, we get X (100- ) dX (L-I) log X = Log (L -) - log I + log - dl dl L-| 0. where L stands for the total length of the wire +0= The magnitude of (dX/X) is minimum when (L - ) in the denominator is maximum. l+ (L- ) = L, constant l=L-I -Ldl Hence, the product (L -) is maximum when I(L-I) 0. 19. Define an international ohm. l=(U2), i.e., the balance point is in the middle of L. Q. 18. Define resistivity, or specific resistance. Ans. It is the resistance of aunit cube of amaterial. R=p. (:dÍ =0 and dL = 0) A A =1; p= R.So it is the resistance across any two opposite faces of a cube of edge of unit length. 1International ohm = 1.00052 ohm. -; suchthat forl= land Ans. International ohm is used as a standard for expressing a unit resistance. It is defined as the resistance of a column of mercury of uniform cross-section 1mm², weighing 14.4521 g and measuring 106.300 cm at 0°C. The international ohm is slightly bigger than true ohm. 0. 20. Can we measure aresistance of the order of 0.l60 2 using a Wheatstone's bridge? Support your answer with reasoning? Ans. No, the resistance of the connecting wires and at the junctions of metre bridge and the other terminals is itself of the order of the resistance to be measured. It would create uncertainty in the measurement of low resistance. 0. 21. How can youmeasure the value of such ow resistance of the order of 0.2 ohm? Ans. (i)The resistance of low value (0.2 ohm)can be determined by using a metre bridee of wire of resistance 0.5 2 and homogeneous composition and uniform area of cross-section
  • 13. throughout, makingthe second arm resistance of magnitude 0.2 ohm using standard resistance, The readings are taken by interchanging the arms and calculating the mean. (ii) Using thick copper wires for connections, a voltmeter of nearly infinite. resistance and a sensitive ammeter of nearly zero resistance can be used to measure the potential drop across the given resistance and the current through it. Applying Ohm's law, the value of resistance can determined. Q. 22. What is S.I. unit of specific resistance? Ans. Ohm-m. Q. 23. State the relation of p with R, Iand d. Ans. p = R. A/l = R Q. 24. What is the shape of the graph of R vs. Ifor a wire of uniform cross-section and of a given homogeneous composition material? Ans. It would be a straight line through the origin. Q. 25. The radius of a bridge wire increases uniformly, how wil its resistance vary as youmove along the length? Ans.Resistance willnot increase linearly with length. As area of cross-section increases,it will cause decrease in resistance. Therefore, increase will not be uniform rather as we move along the wire, rate of increase of resistance will be less. 0. 26. What is the general formula for combination of n resistances R, R, Ry ..., R, to be connected in series? 41 Ans. Combined resistance is given by R, = 2K= R, + R, + R, + Ans. R, 0. 27. What is the general formula for combination of n resistances R,, R,, R9 .., R, to be connected in parallel? EM Ans. Current. i=l R 1,1 R R, t ... t i=1 0. 28. If three resistances of different values are connected in series in a circuit, which would be the same in both -- current or the potentialdifference across their ends? 1 R 0. 29. Resistances of 10 2 and 15 2 are connected across a source of e.m.f. 12 Y (r= 0). What current would be drawn from the battery? 1 Ans. When in series : R. = 25 S2 and I = 0.48 A, when in parallel : R = 6 2 and 1, =2.0 A. P. Q. 30. Two appliances of 100 W and 200 W are connected across mains of 250 V. Find the equivalent power consumption by them if connected in (a) parallel, and (b) series. Ans. In parallel, P, =P, + P, = 100 + 200 = 300 W ......... t R. 1 In series, the current through them will decrease, thereby decreasing the power consumpuo P P >P,= P+P, =66.67 W
  • 14. 0. 31. In series connection in Q. No. 30, how is it that P. = Ans. When connected in series, the curent is the same through both of them and resistances get added up. Since, Therefore, P = R is R, P= whereas in parallel, Vis the same for both. 1 = 0. 34. What are o and 9? Ans. 0 = = P+ P,. R RÍ- Ro R, .0 R, R,+ R, y2 v2 y2 P P, Q. 32. Why are the appliances connected in parallel in domestic and industrial circuits? Ans. (1) The potential across each appliance would be the same. (2) Each appliance can be operated independently by using a switch. (3) If one appliance fuses, the others would continue functioning. 1 0. 33. How does the resistance R of a conductor vary with rise in temperature 0? Ans. Ra = R, (1 + a ) up to a rise of temperature of about 400°C. Ans. . is the coefficient of increase of resistance with temperature in S.I. unit (degree)-, whereas is the rise in its temperature. 0. 35. How do you express a in terms of Rg, Ro and 0? P+P and its unit is (°C!. Q. 36. Can you name a material whose resistance decreases with the rise in temperature? Ans. Semiconductors (Ge, Si), semiconducting diode etc. 0. 37. How does the resistance of a platinum resistance thermometer vary when it is heated to a very high temperature? Ans. R = R, (1 + a + Be), where and Bare temperature coefficients of resistance of platinum. 0. 38. If the same experiment is performed with ametre bridge wire of length 50 cm in place of 1 metre long, what changes do you expect in the result? Ans. It will introduce more error in the final result. Permissible eITor in length measurement Increases, hence percentage error increases. where Al is the least count of the metre scale which remains the same.When r decregges
  • 15. 0. 1. What is agalvanometer? VIVAVOCE / SELF ASSESSMENT (Experiment Nos. A6 and A7: Ans. lt is an instrument used to detect feeble electric currents. Conversion of Galvanometer into Ammeter and Voltmeter) Q.2. What type of galvanometer is Weston galvanometer? Ans. lt is a pivoted type moving coil galvanometer. Ans. 0. 3. Why is the scale of a galvanometer marked on both sides of zero? It is so because galvanometer is used to detect null deflection. Ans. through it. Q. 4. What do you understand by resistance of a galvanometer? It is the resistance offered by the coil of the galvanometer to the flow of current Q. 5. Which part of the galvanometer offers this resistance? Q. 7. Ans. It is the coil of the galvanometer which offers this resistance. Q. 6. How do you determine this resistance of the galvanometer? Ans. By half deflection method. Draw thecircuit diagram for this method. Ans.Refer to and draw the circuit asin Fig. 5.4 on page 95. Q. 8. Does thevalue of G always equal Sunder thehalf deflection condition? Ans. No, it is true only when R >> S. Q.9. What will happen if R=S? Ans. Inthat case G# Sbut it will be given by the relation
  • 16. G= RS G = S. R S R S. S RS R Q. 10. For the determination of Gof a galvanometer by balf deilection method. w should we use high value of R, i.e., R >> G ? Ans. It prevents the galvanometer from damage. Also we can use the relation Q. 12. What is an ammeter? Q.11. Is there any other method for determining G? t....which equals S when approaches zero. Ans. G can also be determined by Kelvin's method. S Ans. An ammeter is also a galvanometer with a suitable value of shunt, i.e., low resistanos connected in parallel to it. It gives the value of the current to be measured directly. Q. 13. Doyou mean that there is no difference between a galvanometer and an ammeter except for the scale graduations? Ans. Yes, there is no fundamental difference in its construction. But the resistance of a ammeter is very low as compared to that of a galvanometer hecause a shunt of low value is attached in parallel to it. Q. 14. Why is it necessary for an ammeter to have a low resistance? Ans. An ammeter is always connected in series with a circuit in which current is to be measured. Iff it has a high resistance, 1t wi it will alter the value of actual current to be measured. Q. 15. According to you an ideal ammeter shouid have zero resistance. Isn't it? Ans. Yes, ideally speaking, a current-measuring device must have azero resistance but this cannot be realised in practice, sowe try tohave it as low as possible. Q. 16. How do you achieveit practically? S= Ans. This is achieved practically by connecting avery smallresistance in parallel with the galvanometer.This small resistance is known as shunt. Q. 17. VWhy does the resistance of the galvanometer become very low when a shunt is connected acrOSs its terminals? Ans. From the law of resistances in parallel, we know that the combined resistance is smaller than even the smallest individual resistance. Thus the resistance of the shunted galvanometer becomes less than even the shunt resistance. lç.G 0. 18. Do you connect a shunt of any arbitrary resistance value to convert a gve galvanometer into an ammeter? Ans No, the value of shunt res..ws depends upon the desired range of the ammeter its value for range I, and full deflection current l, would be Q. 19. What do you understand by the range of an ammeter? Ans It is the maximum value of the current which can be safely measured by it.
  • 17. 0. 20. If a given galvanometer is to be converted firstly into an ammeter of rage 1 ampere and then to range of 100 mA,inwhich case willthe value of shunt resistance be lower? Ans. The value of the shunt resistance will be lower when 1 ampere current is to be measured. Q. 21. Explain, why is it so? Ans. The value of shunt resistance S to be applied to a galvanometer of resistance G, to change it into an ammeter of range I, is given by S= where I, is the current through the coil of the galvanometer which gives the full scale deflection. Now from the formula it is clear that higher the value of I, lower will be the value of S. Q. 22. How do you determine I? -G= G Ans. ,is given by the product of the figure of merit and the total number of divisions on either side of the zero of the galvanometer. (le= kN Q. 23. What do you mean by the figure of merit of a galvanometer? Ans. Figure of merit of a given galvanometer is the amount of current required to produce a deflection of one division on the galvanometer scale. Sensitivity is reciprocal of figure of merit. Q. 24. VWhat is the order of figure of merit of pivoted type moving coil galvano-meters which you use in the laboratory? Ans. It is generally of the order of 10 ampere, i.e., (10 uA per division). Q. 25. Once you know the vaiue of the shunt resistance to be connected, in what form will you connect it? Ans. A shunt, in the form of awire of suitable length and material, is connected across the galvanometer in parallel with it. Q.26. How doyou compute the suitabie length of the shunt wire? Ans. Resistance S of a given wire is given as S=p where is its length, ais the area of cross-section and p is its specific resistance. Since a, the area of cross-section of the wire is (Tr), Sr Radius rof the wire can be determined by using a screw gauge, p of the material of the wire can be obtained from the standard tables. Hence we can get the length l of the wire corresponding to the required shunt resistance. Q. 27. Why should a slightly greater length of the wire taken than the calculated length 1? Ans, Yes. Ans. It is done because a smallpart of the wire near its ends is required for the terminal Connections, so that the exact calculated length of the wire is left out between the two terminals. Q. 28. Can you check the accuracy of the converted ammcter? Q.29. When the current in thecircuit is I, we know that only I; passes through the galvanonmeter. How does your converted ammeter measure I?
  • 18. Ans. From the formula, S(U-1) =l;.G I. = 1.S/(S + G) Itis clear that I,, I, as G and S are constants for a given converted ammeter. Thus the scala of converted ammeter directly measures Iafter proper calibration. Conversion of Galvanometer into Voltmeter Q. 30. What is a voltmeter? Ans. It is an instrument which is used to measure the value of the potential difference between two points directly. Q. 31. What is the difference between a galvanometer and a voltmeter? Ans. difference. Galvanometer detects feeble currents whereas a voltmeter measures potential Q. 32. Is there any difference in the construction of a galvanometer and voltmeter? Ans. Yes, a voltmeter is a galvanometer with a very high resistance connected in series with it. Q. 33. Why is it necessary for a voltmeter to have a high resistance? Ans. Since the voltmeter is to be connected across two points in parallel if it has alow resistance it willdecrease the actual potential difference to be measured. 0. 34. An ideal voltmeter should have infnite resistance, isn't it? Ans. Yes. Avoltage measuring device nmust have infinite resistance, but practically this is not possible. Q. 35. Why is itnot possible practically? Ans. For any p.d. to be measured, the voltmeter has to deflect its pointer, for which it needs energy, i.e., it must draw some current. Q. 36. How do you dothis inactual practice? Ans. This is done by connecting a suitable high resistance in series with the galvanometer. Q. 37. Do you connect a high resistance of any arbitrary value in series with agrven galvanometer for this purpose? Ans. No, the value of the series resistance depends upon the sensitivity and desired rang° of the converted voltmeter. Q. 38. VWhat do you understand by the range of a voltmeter? Ans. It is the maximum value of the p.d. which can be measured by it. 0. 39. If a galvanometer is first converted into a voltmeter of range 10 volis and theu into one of range of 1 volt, in which case is the series resistance of higher value? Ans. In the case of the 10volts range voltmeter because, R= (VJL) G. 0. 40. How doyou deternmine the resistance tobe connected iu series vith galvanomete to change it into a volimeter of a required range? Ans. It is determined by using the following formula R= (VI) - G However, there are other kinds of voltmeter like vacuum tube voltmeter (VTVM)with resistance a0ou 10 mega ohm and quadrant electrometer to measure p.d. without consuming any current. Tne discussion lies beyond the scope of this book.
  • 19. where the symbols have their usual meanings. 0.41. How do you check the aceuracy of this converted voltmeter? Ans. Refer to the circuit given in Fig.5.10. Astandard voltmeter Vof the same range is connected inparallel with this converted voltmeter with arheostat ete. as shown. For aparticular position of rheostat slider, the readings in the standard and the converted voltmeters are noted. The difference in these two readings gives the error in the converted voltmeter. 0. 42. A resistance of 10000ohms is connected in series with a galvanometer of resistance 50 ohms. Is the converted galvanonmefer anammeter or voltmeter? Ans, A voltmeter. Q. 43. In Q. No. 42, if the range of the converted voltmeter is 10 V and it has 50 divisions. what is the full scale deflection current and figure of merit of the galvanometer? Ans. I, (for full deflection) is nearly k, figure of merit Q. 45. manipulated? lG_1000 LA No 50 Vo R 10V 10 000 S2 Q. 44. How are the resistances of different magnitudes designed and fixed in the resistance box? Ans. The insulated resistance wire of desired value is taken and it is doubled over itself. Then it is wound over abobbin of wood or porcelain. The two free ends are connected to the two brass studs, separated by a plug key. = 20 LA div.1 How are the values of different resistances in the box controlled and 0. 49. What is a milli-volimeter? Ans. We know that R os la. The lengths of different resistance wires taken are almost the same. Their values are controlled by their thickness. Thinner the wire, higher is its resistance. = =1 mA Q. 46. What is appropriate thickness and length of the wire for infinite resistance in the box? Ans. There is no resistance wire marked infinity. When infinity plug is taken out, there is only air gap left between the two brass studs and thus it introduces an infinite resistance in it. 0. 47. Why is the wire doubled over itself ? Ans. It is done to avoid induced current effects. Q. 50. What is a micro-ammeter? 0. 48, What is the material of the wires to be used in the resistanee boxes and why? Ans. Constantan or manganin, because they have low temperature coefficient of resistance and high specificresistance. Ans. It is a voltmeter which measures up to 1 1000 Ans. tis an ammeter which can measure currents of the order of 1/10° of an ampere, i.e.,
  • 20. Q. 51. What is the minimum current measurabie by a moving coil galvanometer (D'Arsonval type)? Ans. 0.1 LA. Q 52. The required value of shunt for converting a galvanometer into an ammeter of range 3A, is O.05 ohm, Findthe shunt resistance required if the required range of the ammeter is 30 mA. Ans. Shunt value S is given as S = If 1, << I, , then lG_-xG. of the new shunt S' required should be, S lo Therefore, if I, range is to be reduced by afactor of S' = 100 × S = 100 × 0.05 = 5ohms. 3A 30×10 Q. 53. Can you use a d.c. ammeter for the measurement of alternating current? If not, why? Ans. No. Ad.c. ammeterfunctions on magnetic effect of current and the force experienced by aconductor placed in amagnetic field. When a.c. ispassed through the coil of d.c. ammeter, its direction of deflection would reverse at the same frequency as the frequency of the alternating current (say 50 Hz). The inertia of the coil would not respond to frequent changes in the direction of deflection, and hence would show zero reading when alternating current is passed through a d.c. ammeter. -, ie.. 100, then the resistance A' Q. 54. What is the obvious difference between an a.c. voitmeter and a d.c. voltmeter which you can tel! just by seeing them? Ans. 1. Scale of d.c. voltmeter has divisions uniformly spaced whereas that of a.c. one is non uniform, i.e., as you go to higher values, the divisions become closer. 2. There is a marking ~ On a.c. voltmeter and on d.c. voltmeter. 3. In ad.c. voltmeter,there is a coil pivoted between the magnetic pole pieces whereas in a.c. there is a heating coil where heat produced varies as the square of current. Q.55. How can you increase the range of a galvanometer? Ans. We can increase the range of agalvanometer by connecting a resistance in series with it. 0. 56. How can you measure alternating current? Ans. Same as d.c. ammeter, i.e., 1.5 A. .Ans. Heating effect of current, Q= '. R.t.is independent of the direction of flow of current, because P would always be positive. Therefore,Hot Wire Ammeter is used forthis purpose. 0. 57. n acircuit, a d.c. ammeter reads 1.5 A. If the meter is replaced by an a.c. meter, what would it read? 0. 58. In Q. No. 57, what would be the peak value of alternating current? Ans. Z,=2.gs or V2 l Therefore, the peak value I, =1.52 A=2.115 A. Q. 59. An ideal voltmeter should have infinite resistance. Do you know of arny su voltmeter in practice? Ans. Yes, the electronic voltmeter VTVM (Vacuum Tube Volt Meter) has nearlyinfinite resistance and is used fOr accurate measurements of p.d.