Download free for 30 days
Sign in
Upload
Language (EN)
Support
Business
Mobile
Social Media
Marketing
Technology
Art & Photos
Career
Design
Education
Presentations & Public Speaking
Government & Nonprofit
Healthcare
Internet
Law
Leadership & Management
Automotive
Engineering
Software
Recruiting & HR
Retail
Sales
Services
Science
Small Business & Entrepreneurship
Food
Environment
Economy & Finance
Data & Analytics
Investor Relations
Sports
Spiritual
News & Politics
Travel
Self Improvement
Real Estate
Entertainment & Humor
Health & Medicine
Devices & Hardware
Lifestyle
Change Language
Language
English
Español
Português
Français
Deutsche
Cancel
Save
Submit search
EN
Uploaded by
bussayamas1618
226 views
Onet m6 52 math
Read more
0
Save
Share
Embed
Embed presentation
Download
Download to read offline
1
/ 21
2
/ 21
3
/ 21
4
/ 21
5
/ 21
6
/ 21
7
/ 21
8
/ 21
9
/ 21
10
/ 21
11
/ 21
12
/ 21
13
/ 21
14
/ 21
15
/ 21
16
/ 21
17
/ 21
18
/ 21
19
/ 21
20
/ 21
21
/ 21
More Related Content
PPTX
#DBS2016 - The Digital Journey - Keys to Success
by
Information Services Group (ISG)
PPTX
Metamorfosis (III), d'Ovidi
by
arsamatoria
PPTX
Terror en la casa 21 carlos sanmartin 8 b
by
20de
PPTX
las TIC
by
eriktwi
PPT
Presentació edu ca2rs_v03
by
EduCA2rs
PPTX
Secrets of Social Media
by
lanicholls00
DOCX
Bio etica
by
Duvian Becerra
PDF
Recent Work
by
thomasmdelsordo
#DBS2016 - The Digital Journey - Keys to Success
by
Information Services Group (ISG)
Metamorfosis (III), d'Ovidi
by
arsamatoria
Terror en la casa 21 carlos sanmartin 8 b
by
20de
las TIC
by
eriktwi
Presentació edu ca2rs_v03
by
EduCA2rs
Secrets of Social Media
by
lanicholls00
Bio etica
by
Duvian Becerra
Recent Work
by
thomasmdelsordo
Viewers also liked
PDF
All the Change in the World: BCBSNC outsources IT infrastructure and changes ...
by
Information Services Group (ISG)
PPT
Internet safety
by
martdale
PDF
Lewitt paragraphs on conceptual art
by
CCricket
DOC
Creative waystousepodcastsintheclassroom
by
kosovoireland
ODP
Lozzi irene 2011-12_esercizio4
by
denim747
PPT
Lecture 17
by
farooqdd
PDF
Onet m6 52 art
by
bussayamas1618
ODP
Alimentos Naturales.
by
marquitush
PDF
SIC 2015 Welcome
by
Information Services Group (ISG)
PPS
Tearsofawoman 120530135129-phpapp01
by
gkk1948
PPT
Active social media and generation gaps
by
ACTIVE-project
PDF
Scan0001
by
CONGVANDEN_PKT
DOC
Folhetoeq1
by
teacherpereira
PDF
The Market Research Software Survey
by
Research Magazine
PDF
Folhetoeq1
by
teacherpereira
PDF
Xtreme fat loss diet package and discount price
by
healthylover
PDF
זיהוי חשיפות מס בפעילות בינלאומית
by
Dr. Avi Nov, Law Office
PDF
Traveler to journalist: how audience participation could become the new trave...
by
SMCFrance
All the Change in the World: BCBSNC outsources IT infrastructure and changes ...
by
Information Services Group (ISG)
Internet safety
by
martdale
Lewitt paragraphs on conceptual art
by
CCricket
Creative waystousepodcastsintheclassroom
by
kosovoireland
Lozzi irene 2011-12_esercizio4
by
denim747
Lecture 17
by
farooqdd
Onet m6 52 art
by
bussayamas1618
Alimentos Naturales.
by
marquitush
SIC 2015 Welcome
by
Information Services Group (ISG)
Tearsofawoman 120530135129-phpapp01
by
gkk1948
Active social media and generation gaps
by
ACTIVE-project
Scan0001
by
CONGVANDEN_PKT
Folhetoeq1
by
teacherpereira
The Market Research Software Survey
by
Research Magazine
Folhetoeq1
by
teacherpereira
Xtreme fat loss diet package and discount price
by
healthylover
זיהוי חשיפות מס בפעילות בינלאומית
by
Dr. Avi Nov, Law Office
Traveler to journalist: how audience participation could become the new trave...
by
SMCFrance
More from bussayamas1618
PDF
Onet m6 52 math
by
bussayamas1618
PDF
Onet m6 52 art
by
bussayamas1618
PDF
Onet m6 52 art
by
bussayamas1618
PDF
Onet m6 52 art
by
bussayamas1618
PDF
Onet m6 52 art
by
bussayamas1618
PDF
Onet m6 52 art
by
bussayamas1618
PDF
Onet m6 52 art
by
bussayamas1618
PDF
Onet m6 52 art
by
bussayamas1618
PDF
Onet m6 52 art
by
bussayamas1618
PDF
Onet m6 52 art
by
bussayamas1618
PDF
Onet m6 52 art
by
bussayamas1618
PDF
Onet m6 52 art
by
bussayamas1618
PDF
Onet m6 52 art
by
bussayamas1618
PDF
Onet m6 52 art
by
bussayamas1618
PDF
Onet m6 52 art
by
bussayamas1618
PDF
Onet m6 52 art
by
bussayamas1618
PDF
Onet m6 52 thai
by
bussayamas1618
PDF
K9
by
bussayamas1618
PDF
Onet m6 52 eng
by
bussayamas1618
PDF
K16
by
bussayamas1618
Onet m6 52 math
by
bussayamas1618
Onet m6 52 art
by
bussayamas1618
Onet m6 52 art
by
bussayamas1618
Onet m6 52 art
by
bussayamas1618
Onet m6 52 art
by
bussayamas1618
Onet m6 52 art
by
bussayamas1618
Onet m6 52 art
by
bussayamas1618
Onet m6 52 art
by
bussayamas1618
Onet m6 52 art
by
bussayamas1618
Onet m6 52 art
by
bussayamas1618
Onet m6 52 art
by
bussayamas1618
Onet m6 52 art
by
bussayamas1618
Onet m6 52 art
by
bussayamas1618
Onet m6 52 art
by
bussayamas1618
Onet m6 52 art
by
bussayamas1618
Onet m6 52 art
by
bussayamas1618
Onet m6 52 thai
by
bussayamas1618
K9
by
bussayamas1618
Onet m6 52 eng
by
bussayamas1618
K16
by
bussayamas1618
Onet m6 52 math
1.
ÃËÑÊÇÔªÒ
04 ¤³ÔµÈÒʵÃì ˹éÒ 2 ÇѹàÊÒÃì·Õ‹ 20 ¡ØÁÀҾѹ¸ì 2553 àÇÅÒ 11.30 - 13.30 ¹. Êèǹ·Õ‹ 1 ẺÃкÒµÑÇàÅ×Í¡ áµèÅТéÍÁդӵͺ·Õ‹¶Ù¡µéͧ·Õ‹ÊØ´à¾Õ§¤ÓµÍºà´ÕÂÇ ¨Ó¹Ç¹ 36 ¢éÍ (¢éÍ 1–36) ¢éÍÅÐ 1 ¤Ðá¹¹ 1. ãËé A = {1, 2, 3, . . .} áÅÐ B = {{1, 2}, {3, 4, 5}, 6, 7, 8, . . .} ¢éÍã´à»š¹à·ç¨ 1. A−B ÁÕÊÁÒªÔ¡ 5 µÑÇ 2. ¨Ó¹Ç¹ÊÁÒªÔ¡¢Í§à¾ÒàÇÍÃì૵¢Í§ B−A à·èҡѺ 4 3. ¨Ó¹Ç¹ÊÁÒªÔ¡¢Í§ (A − B) ∪ (B − A) ໚¹¨Ó¹Ç¹¤Ùè 4. A∩B ¤×Í૵¢Í§¨Ó¹Ç¹¹Ñº·Õ‹ÁÕ¤èÒÁÒ¡¡ÇèÒ 5 2. ¾Ô¨ÒóҡÒÃãËéà˵ؼŵèÍ仹Ռ à赯 1) A 2) àËç´à»š¹¾×ªÁÕ´Í¡ ¼Å àËç´à»š¹¾×ªªÑŒ¹ÊÙ§ ¢éÍÊÃØ»¢éÒ§µé¹ÊÁà˵ØÊÁ¼Å ¶éÒ A á·¹¢éͤÇÒÁã´ 1. ¾×ªªÑŒ¹ÊÙ§·Ø¡ª¹Ô´ÁÕ´Í¡ 2. ¾×ªªÑŒ¹ÊÙ§ºÒ§ª¹Ô´ÁÕ´Í¡ 3. ¾×ªÁÕ´Í¡·Ø¡ª¹Ô´à»š¹¾×ªªÑŒ¹ÊÙ§ 4. ¾×ªÁÕ´Í¡ºÒ§ª¹Ô´à»š¹¾×ªªÑŒ¹ÊÙ§
2.
ÃËÑÊÇÔªÒ
04 ¤³ÔµÈÒʵÃì ˹éÒ 3 ÇѹàÊÒÃì·Õ‹ 20 ¡ØÁÀҾѹ¸ì 2553 àÇÅÒ 11.30 - 13.30 ¹. 3. ¾Ô¨ÒóҢéͤÇÒÁµèÍ仹Ռ ¡. ¨Ó¹Ç¹·Õ‹à»š¹·È¹ÔÂÁäÁèÃÙ騺ºÒ§¨Ó¹Ç¹à»š¹¨Ó¹Ç¹ÍµÃáÂÐ ¢. ¨Ó¹Ç¹·Õ‹à»š¹·È¹ÔÂÁäÁèÃÙ騺ºÒ§¨Ó¹Ç¹à»š¹¨Ó¹Ç¹µÃáÂÐ ¢éÍã´¶Ù¡µéͧ 1. ¢éÍ ¡. áÅТéÍ ¢. 2. ¢éÍ ¡. à·èҹь¹ 3. ¢éÍ ¢. à·èҹь¹ 4. ¢éÍ ¡. áÅТéÍ ¢. ¼Ô´ 4. ¡Ó˹´ãËé s, t, u áÅÐ v ໚¹¨Ó¹Ç¹¨ÃÔ§ «Ö‹§ s<t áÅÐ u<v ¾Ô¨ÒóҢéͤÇÒÁµèÍ仹Ռ ¡. s−u<t−v ¢. s−v <t−u ¢éÍã´¶Ù¡µéͧ 1. ¢éÍ ¡. áÅТéÍ ¢. 2. ¢éÍ ¡. à·èҹь¹ 3. ¢éÍ ¢. à·èҹь¹ 4. ¢éÍ ¡. áÅТéÍ ¢. ¼Ô´
3.
ÃËÑÊÇÔªÒ
04 ¤³ÔµÈÒʵÃì ˹éÒ 4 ÇѹàÊÒÃì·Õ‹ 20 ¡ØÁÀҾѹ¸ì 2553 àÇÅÒ 11.30 - 13.30 ¹. 5. ¼Åà©Å¢ͧÊÁ¡Òà 2|5 − x| = 1 ÍÂÙè㹪èǧ㴠1. (−10, −5) 2. (−6, −4) 3. (−4, 5) 4. (−3, 6) 3 6. ¶éÒ à»š¹¼Åà©ÅÂ˹֋§¢Í§ÊÁ¡Òà 4x2 + bx − 6 = 0 àÁ×‹Í b ໚¹¨Ó¹Ç¹¨ÃÔ§áÅéÇ ÍÕ¡¼Å 4 à©ÅÂ˹֋§¢Í§ÊÁ¡ÒùՌÁÕ¤èҵç¡Ñº¢éÍã´ 1 1. −2 2. − 2 1 3. 4. 2 2 7. ¢éÍã´ÁÕ¤èÒµèÒ§¨Ò¡¢éÍÍ׋¹ 1. (−1)0 2. (−1)0.2 3. (−1)0.4 4. (−1)0.8 √ √ √ √ √ √ 2 8. |4 3 − 5 2| − |3 5 − 5 2| + |4 3 − 3 5| à·èҡѺ¢éÍã´ 1. 0 2. 180 3. 192 4. 200
4.
ÃËÑÊÇÔªÒ
04 ¤³ÔµÈÒʵÃì ˹éÒ 5 ÇѹàÊÒÃì·Õ‹ 20 ¡ØÁÀҾѹ¸ì 2553 àÇÅÒ 11.30 - 13.30 ¹. 9. ¡Ó˹´ãËé a ໚¹¨Ó¹Ç¹¨ÃÔ§ºÇ¡ áÅÐ n ໚¹¨Ó¹Ç¹¤ÙèºÇ¡ ¾Ô¨ÒóҢéͤÇÒÁµèÍ仹Ռ √ n ¡. n a = |a| √ n ¢. an = |a| ¢éÍã´¶Ù¡µéͧ 1. ¢éÍ ¡. áÅТéÍ ¢. 2. ¢éÍ ¡. à·èҹь¹ 3. ¢éÍ ¢. à·èҹь¹ 4. ¢éÍ ¡. áÅТéÍ ¢. ¼Ô´ 10. ¶éÒ f (x) = −x2 + x + 2 áÅéÇ ¢éÍÊÃØ»ã´¶Ù¡µéͧ 1. f (x) ≥ 0 àÁ×‹Í −1 ≤ x ≤ 2 2. ¨Ø´Ç¡¡ÅѺ¢Í§¡ÃÒ¿¢Í§¿˜§¡ìªÑ¹ f ÍÂÙè㹨µØÀÒ¤·Õ‹Êͧ 3. ¿˜§¡ìªÑ¹ f ÁÕ¤èÒÊÙ§ÊØ´à·èҡѺ 2 4. ¿˜§¡ìªÑ¹ f ÁÕ¤èÒµ‹ÓÊØ´à·èҡѺ 2
5.
ÃËÑÊÇÔªÒ
04 ¤³ÔµÈÒʵÃì ˹éÒ 6 ÇѹàÊÒÃì·Õ‹ 20 ¡ØÁÀҾѹ¸ì 2553 àÇÅÒ 11.30 - 13.30 ¹. 11. ¤ÇÒÁÊÑÁ¾Ñ¹¸ìã¹¢éÍã´à»š¹¿˜§¡ìªÑ¹ 1. {(1, 2), (2, 3), (3, 2), (2, 4)} 2. {(1, 2), (2, 3), (3, 1), (3, 3)} 3. {(1, 3), (1, 2), (1, 1), (1, 4)} 4. {(1, 3), (2, 1), (3, 3), (4, 1)} √ 12. ¶éÒ f (x) = 3−x áÅÐ g(x) = −2 + |x − 4| áÅéÇ Df ∪ Rg ¤×Í¢éÍã´ 1. (−∞, 3] 2. [−2, ∞) 3. [−2, 3] 4. (−∞, ∞)
6.
ÃËÑÊÇÔªÒ
04 ¤³ÔµÈÒʵÃì ˹éÒ 7 ÇѹàÊÒÃì·Õ‹ 20 ¡ØÁÀҾѹ¸ì 2553 àÇÅÒ 11.30 - 13.30 ¹. 13. ¡Ó˹´ãËé¡ÃÒ¿¢Í§¿˜§¡ìªÑ¹ f ໚¹´Ñ§¹ÕŒ ß½¼ ß ¼ ß ¤èҢͧ 11f (−11) − 3f (−3)f (3) ¤×Í¢éÍã´ 1. 57 2. 68 3. 75 4. 86
7.
ÃËÑÊÇÔªÒ
04 ¤³ÔµÈÒʵÃì ˹éÒ 8 ÇѹàÊÒÃì·Õ‹ 20 ¡ØÁÀҾѹ¸ì 2553 àÇÅÒ 11.30 - 13.30 ¹. 14. ÃÙ»ÊÒÁàËÅÕ‹ÂÁÁØÁ©Ò¡Ãٻ˹֋§ Áվ׌¹·Õ‹ 600 µÒÃҧૹµÔàÁµÃ ¶éÒ´éÒ¹»ÃСͺÁØÁ ©Ò¡´éҹ˹֋§ÂÒÇ໚¹ 75% ¢Í§´éÒ¹»ÃСͺÁØÁ©Ò¡ÍÕ¡´éҹ˹֋§áÅéÇ àÊé¹ÃͺÃÙ»ÊÒÁ àËÅÕ‹ÂÁÁØÁ©Ò¡ÃÙ»¹ÕŒ ÂÒǡՋૹµÔàÁµÃ 1. 120 2. 40 √ √ 3. 60 2 4. 20 2 15. ¢ºÇ¹¾ÒàËôÃÙ»ÊÕ‹àËÅÕ‹ÂÁ¼×¹¼éÒ¢ºÇ¹Ë¹Ö‹§ »ÃСͺ´éǼÙéà´Ô¹à»š¹á¶Ç á¶ÇÅÐà·èÒæ ¡Ñ¹ (ÁÒ¡¡ÇèÒ 1 á¶Ç áÅÐá¶ÇÅÐÁÒ¡¡ÇèÒ 1 ¤¹) â´ÂÁÕ੾ÒмÙéÍÂÙèÃÔÁ´éÒ¹¹Í¡·ÑŒ§ÊÕ‹´éÒ¹¢Í§ ¢ºÇ¹à·èҹь¹ ·Õ‹ÊÇÁªØ´ÊÕá´§ «Ö‹§ÁÕ·ÑŒ§ËÁ´ 50 ¤¹ ¶éÒ x ¤×ͨӹǹá¶Ç¢Í§¢ºÇ¹ ¾ÒàËô áÅÐ N ¤×ͨӹǹ¤¹·Õ‹ÍÂÙèã¹¢ºÇ¹¾ÒàËôáÅéÇ ¢éÍã´¶Ù¡µéͧ 1. 31x − x2 = N 2. 29x − x2 = N 3. 27x − x2 = N 4. 25x − x2 = N
8.
ÃËÑÊÇÔªÒ
04 ¤³ÔµÈÒʵÃì ˹éÒ 9 ÇѹàÊÒÃì·Õ‹ 20 ¡ØÁÀҾѹ¸ì 2553 àÇÅÒ 11.30 - 13.30 ¹. 16. ÃÙ»ÊÕ‹àËÅÕ‹ÂÁ¼×¹¼éÒÊͧÃÙ» ÁÕ¢¹Ò´à·èҡѹ â´ÂÁÕàÊé¹·á§ÁØÁÂÒÇ໚¹Êͧà·èҢͧ´éÒ¹ ¡ÇéÒ§ ¶éÒ¹ÓÃÙ»ÊÕ‹àËÅÕ‹ÂÁ¼×¹¼éÒ·ÑŒ§ÊͧÁÒÇÒ§µè͡ѹ´Ñ§ÃÙ» ¨Ø´ A áÅШش B ÍÂÙèËèÒ§¡Ñ¹à»š¹ ÃÐÂСՋà·èҢͧ´éÒ¹¡ÇéÒ§ 1. 1.5 2. 3 √ √ 3. 2 4. 2 2 17. â´Â¡ÒÃãªéµÒÃÒ§ËÒÍѵÃÒÊèǹµÃÕ⡳ÁԵԢͧÁØÁ¢¹Ò´µèÒ§æ ·Õ‹¡Ó˹´ãËéµèÍ仹Ռ θ sin θ cos θ 72◦ 0.951 0.309 73◦ 0.956 0.292 74◦ 0.961 0.276 75◦ 0.966 0.259 ÁØÁÀÒÂã¹·Õ‹ÁÕ¢¹Ò´àÅç¡·Õ‹ÊØ´¢Í§ÃÙ»ÊÒÁàËÅÕ‹ÂÁ·Õ‹ÁÕ´éÒ¹·ÑŒ§ÊÒÁÂÒÇ 7, 24 áÅÐ 25 ˹èÇ ÁÕ¢¹Ò´ã¡Åéà¤Õ§¡Ñº¢éÍã´ÁÒ¡·Õ‹ÊØ´ 1. 15◦ 2. 16◦ 3. 17◦ 4. 18◦
9.
ÃËÑÊÇÔªÒ
04 ¤³ÔµÈÒʵÃì ˹éÒ 10 ÇѹàÊÒÃì·Õ‹ 20 ¡ØÁÀҾѹ¸ì 2553 àÇÅÒ 11.30 - 13.30 ¹. 18. ÁØÁÁØÁ˹֋§¢Í§ÃÙ»ÊÒÁàËÅÕ‹ÂÁÁØÁ©Ò¡ÁÕ¢¹Ò´à·èҡѺ 60 ͧÈÒ ¶éÒàÊé¹ÃͺÃÙ»¢Í§ÃÙ» √ ÊÒÁàËÅÕ‹ÂÁ¹ÕŒÂÒÇ 3− 3 ¿ØµáÅéÇ ´éÒ¹·Õ‹ÂÒÇ໚¹Íѹ´ÑºÊͧÁÕ¤ÇÒÁÂÒÇà·èҡѺ¢éÍã´ √ 1. 2− 3 ¿Øµ √ 2. 2 + 3 ¿Øµ √ 3. 2 3 − 3 ¿Øµ √ 4. 2 3 + 3 ¿Øµ 19. ¡Åéͧǧ¨Ã»´«Ö‹§¶Ù¡µÔ´µÑŒ§ÍÂÙèÊÙ§¨Ò¡¾×Œ¹¶¹¹ 2 àÁµÃ ÊÒÁÒö¨ÑºÀÒ¾ä´éµ‹Ó·Õ‹ÊØ´·Õ‹ÁØÁ ¡éÁ 45◦ áÅÐÊÙ§·Õ‹ÊØ´·Õ‹ÁØÁ¡éÁ 30◦ ÃÐÂзҧº¹¾×Œ¹¶¹¹ã¹á¹Ç¡Åéͧ ·Õ‹¡Åéͧ¹ÕŒÊÒÁÒö √ ¨ÑºÀÒ¾ä´é¤×Íà·èÒã´ (¡Ó˹´ãËé 3 ≈ 1.73) 1. 1.00 àÁµÃ 2. 1.46 àÁµÃ 3. 2.00 àÁµÃ 4. 3.46 àÁµÃ 3 1 20. ¡Ó˹´ãËé , 1, , . . . ໚¹ÅӴѺàÅ¢¤³Ôµ ¼ÅºÇ¡¢Í§¾¨¹ì·Õ‹ 40 áÅо¨¹ì·Õ‹ 42 à·èҡѺ 2 2 ¢éÍã´ 1. −18 2. −19 3. −37 4. −38
10.
ÃËÑÊÇÔªÒ
04 ¤³ÔµÈÒʵÃì ˹éÒ 11 ÇѹàÊÒÃì·Õ‹ 20 ¡ØÁÀҾѹ¸ì 2553 àÇÅÒ 11.30 - 13.30 ¹. 21. ã¹ 40 ¾¨¹ìáá¢Í§ÅӴѺ an = 3 + (−1)n ÁÕ¡Õ‹¾¨¹ì ·Õ‹ÁÕ¤èÒà·èҡѺ¾¨¹ì·Õ‹ 40 1. 10 2. 20 3. 30 4. 40 22. ¡Ó˹´ãËé a1 , a2 , a3 , . . . ໚¹ÅӴѺàâҤ³Ôµ ¶éÒ a2 = 8 áÅÐ a5 = −64 áÅéÇ ¼ÅºÇ¡ ¢Í§ 10 ¾¨¹ìáá¢Í§ÅӴѺ¹ÕŒà·èҡѺ¢éÍã´ 1. 2, 048 2. 1, 512 3. 1, 364 4. 1, 024 23. ·ÒÊÕàËÃÕÂÊÒÁÍѹ´Ñ§¹ÕŒ àËÃÕÂáá´éҹ˹֋§·ÒÊÕ¢ÒÇ ÍÕ¡´éҹ˹֋§·ÒÊÕá´§ àËÃÕ·Ջ Êͧ´éҹ˹֋§·ÒÊÕá´§ ÍÕ¡´éҹ˹֋§·ÒÊÕ¿‡Ò àËÃÕ·ՋÊÒÁ´éҹ˹֋§·ÒÊÕ¿‡Ò ÍÕ¡´éҹ˹֋§ ·ÒÊÕ¢ÒÇ â¹àËÃÕ·ь§ÊÒÁ¢ÖŒ¹¾ÃéÍÁ¡Ñ¹ ¤ÇÒÁ¹èÒ¨Ð໚¹·Õ‹àËÃÕ¨Т֌¹Ë¹éÒµèÒ§Êաѹ ·ÑŒ§ËÁ´à»š¹´Ñ§¢éÍã´ 1 1 1. 2. 2 4 1 1 3. 4. 8 16
11.
ÃËÑÊÇÔªÒ
04 ¤³ÔµÈÒʵÃì ˹éÒ 12 ÇѹàÊÒÃì·Õ‹ 20 ¡ØÁÀҾѹ¸ì 2553 àÇÅÒ 11.30 - 13.30 ¹. 24. ¡ÅèͧãºË¹Ö‹§ºÃèØÊÅÒ¡ËÁÒÂàÅ¢ 1–10 ËÁÒÂàÅ¢ÅÐ 1 㺠¶éÒÊØèÁËÂÔºÊÅÒ¡¨Ó¹Ç¹Êͧ 㺠â´ÂËÂÔº·ÕÅÐãºáººäÁèãÊè¤×¹ ¤ÇÒÁ¹èÒ¨Ð໚¹·Õ‹¨ÐËÂÔºä´éÊÅÒ¡ËÁÒÂàÅ¢µ‹Ó¡ÇèÒ 5 à¾Õ§˹֋§ãºà·èҹь¹ à·èҡѺ¢éÍã´ 2 8 1. 2. 9 15 2 11 3. 4. 35 156 25. 㹡ÒÃÇÑ´ÊèǹÊÙ§¹Ñ¡àÃÕ¹áµèÅФ¹ã¹ªÑŒ¹ ¾ºÇèҹѡàÃÕ¹·Õ‹ÊÙ§·Õ‹ÊØ´ÊÙ§ 177 ૹµÔàÁµÃ áÅйѡàÃÕ¹·Õ‹àµÕŒÂ·Õ‹ÊØ´ÊÙ§ 145 ૹµÔàÁµÃ ¾Ô¨ÒóÒ૵¢Í§ÊèǹÊÙ§µèÍ仹Ռ S = {H | H ໚¹ÊèǹÊÙ§ã¹Ë¹èÇÂૹµÔàÁµÃ¢Í§¹Ñ¡àÃÕ¹㹪ь¹} T = { H | 145 ≤ H ≤ 177 } ૵㴶×Í໚¹»ÃÔÀÙÁÔµÑÇÍÂèÒ§ (á«Áà»ÅÊ໫) ÊÓËÃѺ¡Ò÷´ÅÍ§ÊØèÁ¹ÕŒ 1. S áÅÐ T 2. S à·èҹь¹ 3. T à·èҹь¹ 4. ·ÑŒ§ S áÅÐ T äÁè໚¹»ÃÔÀÙÁÔµÑÇÍÂèÒ§
12.
ÃËÑÊÇÔªÒ
04 ¤³ÔµÈÒʵÃì ˹éÒ 13 ÇѹàÊÒÃì·Õ‹ 20 ¡ØÁÀҾѹ¸ì 2553 àÇÅÒ 11.30 - 13.30 ¹. 26. 㹡ÒÃàÅ×Í¡¤³Ð¡ÃÃÁ¡Òêش˹֋§ «Ö‹§»ÃСͺ´éÇ »Ãиҹ Ãͧ»Ãиҹ áÅÐ àŢҹءÒÃÍÂèÒ§ÅÐ 1 ¤¹ ¨Ò¡ËÔ§ 6 ¤¹ áÅЪÒ 4 ¤¹ ¤ÇÒÁ¹èÒ¨Ð໚¹·Õ‹¤³Ð¡ÃÃÁ¡Òà ªØ´¹ÕŒ ¨ÐÁÕ»ÃиҹáÅÐÃͧ»Ãиҹ໚¹ËÔ§à·èҡѺ¢éÍã´ 1 1 1. 2. 18 12 1 1 3. 4. 9 3 27. ¤ÃÙÊ͹ÇÔ·ÂÒÈÒʵÃìÁͺËÁÒÂãËé¹Ñ¡àÃÕ¹ 40 ¤¹ ·Óâ¤Ã§§Ò¹µÒÁ¤ÇÒÁʹ㨠ËÅѧ¨Ò¡ µÃǨÃÒ§ҹâ¤Ã§§Ò¹¢Í§·Ø¡¤¹áÅéÇ ¼ÅÊÃØ»à»š¹´Ñ§¹ÕŒ ¼Å¡ÒûÃÐàÁÔ¹ ¨Ó¹Ç¹â¤Ã§§Ò¹ ´ÕàÂÕ‹ÂÁ 3 ´Õ 20 ¾Íãªé 12 µéͧá¡éä¢ 5 ¢éÍÁÙÅ·Õ‹à¡çºÃǺÃÇÁ à¾×‹ÍãËéä´é¼ÅÊÃØ»¢éÒ§µé¹à»š¹¢éÍÁÙŪ¹Ô´ã´ 1. ¢éÍÁÙÅ»°ÁÀÙÁÔ àªÔ§»ÃÔÁÒ³ 2. ¢éÍÁÙŷصÔÂÀÙÁÔ àªÔ§»ÃÔÁÒ³ 3. ¢éÍÁÙÅ»°ÁÀÙÁÔ àªÔ§¤Ø³ÀÒ¾ 4. ¢éÍÁÙŷصÔÂÀÙÁÔ àªÔ§¤Ø³ÀÒ¾
13.
ÃËÑÊÇÔªÒ
04 ¤³ÔµÈÒʵÃì ˹éÒ 14 ÇѹàÊÒÃì·Õ‹ 20 ¡ØÁÀҾѹ¸ì 2553 àÇÅÒ 11.30 - 13.30 ¹. 28. ¤èÒà©ÅÕ‹ÂàÅ¢¤³Ôµ¢Í§¹ŒÓ˹ѡ¢Í§¾¹Ñ¡§Ò¹¢Í§ºÃÔÉѷ˹֋§ à·èҡѺ 48.01 ¡ÔâÅ¡ÃÑÁ ºÃÔÉÑ· ¹ÕŒÁÕ¾¹Ñ¡§Ò¹ªÒ 43 ¤¹ áÅо¹Ñ¡§Ò¹ËÔ§ 57 ¤¹ ¶éÒ¤èÒà©ÅÕ‹ÂàÅ¢¤³Ôµ¢Í§¹ŒÓ˹ѡ ¾¹Ñ¡§Ò¹ËÔ§à·èҡѺ 45 ¡ÔâÅ¡ÃÑÁ áÅéÇ ¹ŒÓ˹ѡ¢Í§¾¹Ñ¡§Ò¹ªÒ·ь§ËÁ´ÃÇÁ¡Ñ¹à·èҡѺ ¢éÍã´ 1. 2, 236 ¡ÔâÅ¡ÃÑÁ 2. 2, 279 ¡ÔâÅ¡ÃÑÁ 3. 2, 322 ¡ÔâÅ¡ÃÑÁ 4. 2, 365 ¡ÔâÅ¡ÃÑÁ
14.
ÃËÑÊÇÔªÒ
04 ¤³ÔµÈÒʵÃì ˹éÒ 15 ÇѹàÊÒÃì·Õ‹ 20 ¡ØÁÀҾѹ¸ì 2553 àÇÅÒ 11.30 - 13.30 ¹. 29. á¼¹ÀÒ¾µé¹-㺢ͧ¹ŒÓ˹ѡã¹Ë¹èÇ¡ÃÑÁ¢Í§ä¢èä¡è 10 ¿Í§ ໚¹´Ñ§¹ÕŒ 5 7 8 6 7 8 9 7 0 4 4 7 8 1 ¢éÍÊÃØ»ã´à»š¹à·ç¨ 1. °Ò¹¹ÔÂÁ¢Í§¹ŒÓ˹ѡ¢Í§ä¢èä¡èÁÕà¾Õ§¤èÒà´ÕÂÇ 2. ¤èÒà©ÅÕ‹ÂàÅ¢¤³ÔµáÅÐÁѸ°ҹ¢Í§¹ŒÓ˹ѡ¢Í§ä¢èä¡èÁÕ¤èÒà·èҡѹ 3. ÁÕä¢èä¡è 5 ¿Í§·Õ‹ÁÕ¹ŒÓ˹ѡ¹éÍ¡ÇèÒ 70 ¡ÃÑÁ 4. ä¢èä¡è·Õ‹ÁÕ¹ŒÓ˹ѡÊÙ§¡ÇèÒ°Ò¹¹ÔÂÁ ÁըӹǹÁÒ¡¡ÇèÒ ä¢èä¡è·Õ‹ÁÕ¹ŒÓ˹ѡà·èҡѺ°Ò¹ ¹ÔÂÁ
15.
ÃËÑÊÇÔªÒ
04 ¤³ÔµÈÒʵÃì ˹éÒ 16 ÇѹàÊÒÃì·Õ‹ 20 ¡ØÁÀҾѹ¸ì 2553 àÇÅÒ 11.30 - 13.30 ¹. 30. ÊÓËÃѺ¢éÍÁÙÅàªÔ§»ÃÔÁÒ³ã´æ ·Õ‹ÁÕ¤èÒʶԵԵèÍ仹Ռ ¤èÒʶԵÔ㴨еç¡Ñº¤èҢͧ¢éÍÁÙŤèÒ Ë¹Ö‹§àÊÁÍ 1. ¾ÔÊÑ 2. ¤èÒà©ÅÕ‹ÂàÅ¢¤³Ôµ 3. ÁѸ°ҹ 4. °Ò¹¹ÔÂÁ 31. ¢éÍÁÙŵèÍ仹ՌáÊ´§¹ŒÓ˹ѡã¹Ë¹èÇ¡ÔâÅ¡ÃÑÁ ¢Í§¹Ñ¡àÃÕ¹¡ÅØèÁ˹֋§ 41, 88, 46, 42, 43, 49, 44, 45, 43, 95, 47, 48 ¤èÒ¡ÅÒ§ã¹¢éÍã´à»š¹¤èÒ·Õ‹àËÁÒÐÊÁ·Õ‹¨Ð໚¹µÑÇá·¹¢Í§¢éÍÁÙŪش¹ÕŒ 1. ÁѸ°ҹ 2. °Ò¹¹ÔÂÁ 3. ¤èÒà©ÅÕ‹ÂàÅ¢¤³Ôµ 4. ¤èÒà©ÅՋ¢ͧ¤èÒÊÙ§ÊØ´áÅФèÒµ‹ÓÊØ´
16.
ÃËÑÊÇÔªÒ
04 ¤³ÔµÈÒʵÃì ˹éÒ 17 ÇѹàÊÒÃì·Õ‹ 20 ¡ØÁÀҾѹ¸ì 2553 àÇÅÒ 11.30 - 13.30 ¹. 32. ¤Ðá¹¹Êͺ¤ÇÒÁÃÙé·Ñ‹Ç仢ͧ¹Ñ¡àÃÕ¹ 200 ¤¹¹ÓàʹÍâ´Âãªéá¼¹ÀÒ¾¡Åèͧ´Ñ§¹ÕŒ ½¼ ½¾ ½ ½ ¾ ¢éÍã´à»š¹à·ç¨ 1. ¨Ó¹Ç¹¹Ñ¡àÃÕ¹·Õ‹·Óä´é 12 ¶Ö§ 16 ¤Ðá¹¹ ÁÕà·èҡѺ ¨Ó¹Ç¹¹Ñ¡àÃÕ¹·Õ‹·Óä´é 16 ¶Ö§ 18 ¤Ðá¹¹ 2. ¨Ó¹Ç¹¹Ñ¡àÃÕ¹·Õ‹·Óä´é 12 ¶Ö§ 18 ¤Ðá¹¹ ÁÕà·èҡѺ ¨Ó¹Ç¹¹Ñ¡àÃÕ¹·Õ‹·Óä´é 18 ¶Ö§ 24 ¤Ðá¹¹ 3. ¨Ó¹Ç¹¹Ñ¡àÃÕ¹·Õ‹·Óä´é 10 ¶Ö§ 12 ¤Ðá¹¹ ÁÕà·èҡѺ ¨Ó¹Ç¹¹Ñ¡àÃÕ¹·Õ‹·Óä´é 18 ¶Ö§ 24 ¤Ðá¹¹ 4. ¨Ó¹Ç¹¹Ñ¡àÃÕ¹·Õ‹·Óä´é 10 ¶Ö§ 16 ¤Ðá¹¹ ÁÕà·èҡѺ ¨Ó¹Ç¹¹Ñ¡àÃÕ¹·Õ‹·Óä´é 16 ¶Ö§ 24 ¤Ðá¹¹
17.
ÃËÑÊÇÔªÒ
04 ¤³ÔµÈÒʵÃì ˹éÒ 18 ÇѹàÊÒÃì·Õ‹ 20 ¡ØÁÀҾѹ¸ì 2553 àÇÅÒ 11.30 - 13.30 ¹. 33. ¨Ò¡¡ÒõÃǨÊͺÅӴѺ·Õ‹¢Í§¤Ðá¹¹Êͺ¢Í§¹Ò ¡ áÅйÒ ¢ ã¹ ÇÔªÒ¤³ÔµÈÒʵÃì ·Õ‹ÁÕ¼Ùéà¢éÒÊͺ 400 ¤¹ »ÃÒ¡®ÇèÒ¹Ò ¡ Êͺä´é¤Ðá¹¹ÍÂÙèã¹µÓá˹觤ÇÍÃìä·Åì·Õ‹ 3 áÅйÒ ¢ Êͺä´é¤Ðá¹¹ÍÂÙèã¹µÓá˹è§à»ÍÃìà«ç¹ä·Åì·Õ‹ 60 ¨Ó¹Ç¹¹Ñ¡àÃÕ¹·Õ‹Êͺä´é ¤Ðá¹¹ÃÐËÇèÒ§¤Ðá¹¹¢Í§¹Ò ¡ áÅйÒ ¢ ÁÕ»ÃÐÁÒ³¡Õ‹¤¹ 1. 15 ¤¹ 2. 30 ¤¹ 3. 45 ¤¹ 4. 60 ¤¹ 34. ¢éÍÁÙŪش˹֋§ ÁÕºÒ§Êèǹ¶Ù¡¹ÓàʹÍã¹µÒÃÒ§µèÍ仹Ռ ÍѹµÃÀÒ¤ªÑŒ¹ ¤ÇÒÁ¶Õ‹ ¤ÇÒÁ¶Õ‹ÊÐÊÁ ¤ÇÒÁ¶Õ‹ÊÑÁ¾Ñ·¸ì 2–6 7–11 11 0.2 12–16 14 17–21 6 0.3 ªèǧ¤Ðá¹¹ã´à»š¹ªèǧ¤Ðá¹¹·Õ‹ÁÕ¤ÇÒÁ¶Õ‹ÊÙ§ÊØ´ 1. 2–6 2. 7–11 3. 12–16 4. 17–21
18.
ÃËÑÊÇÔªÒ
04 ¤³ÔµÈÒʵÃì ˹éÒ 19 ÇѹàÊÒÃì·Õ‹ 20 ¡ØÁÀҾѹ¸ì 2553 àÇÅÒ 11.30 - 13.30 ¹. 35. ¨Ó¹Ç¹¼ÙéÇèÒ§§Ò¹·Ñ‹Ç»ÃÐà·Èã¹à´×͹¡Ñ¹ÂÒ¹ »‚¾.È. 2551 Áըӹǹ·ÑŒ§ÊÔŒ¹ 4.29 áʹ ¤¹ µÒÃÒ§à»ÃÕºà·ÕºÍѵÃÒ¡ÒÃÇèÒ§§Ò¹ã¹à´×͹¡Ñ¹ÂÒ¹ »‚¾.È. 2550 ¡Ñº»‚¾.È. 2551 ໚¹´Ñ§¹ÕŒ ÍѵÃÒ¡ÒÃÇèÒ§§Ò¹ã¹à´×͹¡Ñ¹ÂÒ¹ ¾×Œ¹·Õ‹ÊÓÃǨ (¨Ó¹Ç¹¼ÙéÇèÒ§§Ò¹µèͨӹǹ¼ÙéÍÂÙèã¹ ¡ÓÅѧáç§Ò¹¤Ù³ 100) »‚¾.È. 2550 »‚¾.È. 2551 ÀÒ¤ãµé 1.0 1.0 ÀÒ¤µÐÇѹÍÍ¡à©Õ§à˹×Í 0.9 1.3 ÀÒ¤à˹×Í 1.5 1.2 ÀÒ¤¡ÅÒ§ (¡àÇé¹¡ÃØ§à·¾ÁËÒ¹¤Ã) 1.3 0.9 ¡Ãا෾ÁËÒ¹¤Ã 1.2 1.2 ·Ñ‹Ç»ÃÐà·È 1.2 1.1 ¾Ô¨ÒóҢéͤÇÒÁµèÍ仹Ռ ¡. ¨Ó¹Ç¹¼ÙéÇèÒ§§Ò¹ã¹ÀÒ¤ãµéã¹à´×͹¡Ñ¹ÂÒ¹¢Í§»‚¾.È. 2550 áÅТͧ»‚¾.È. 2551 à·èҡѹ ¢. ¨Ó¹Ç¹¼ÙéÍÂÙè㹡ÓÅѧáç§Ò¹·Ñ‹Ç»ÃÐà·Èã¹à´×͹¡Ñ¹ÂÒ¹ »‚¾.È. 2551 ÁÕ»ÃÐÁÒ³ 39 ÅéÒ¹¤¹ ¢éÍã´¶Ù¡µéͧ 1. ¢éÍ ¡. áÅТéÍ ¢. 2. ¢éÍ ¡. à·èҹь¹ 3. ¢éÍ ¢. à·èҹь¹ 4. ¢éÍ ¡. áÅТéÍ ¢. ¼Ô´
19.
ÃËÑÊÇÔªÒ
04 ¤³ÔµÈÒʵÃì ˹éÒ 20 ÇѹàÊÒÃì·Õ‹ 20 ¡ØÁÀҾѹ¸ì 2553 àÇÅÒ 11.30 - 13.30 ¹. 36. 㹡ÒÃãªéʶԵÔà¾×‹Í¡ÒõѴÊÔ¹ã¨áÅÐÇÒ§á¼¹ ÊÓËÃѺàÃ׋ͧ·Õ‹¨Ó໚¹µéͧÁÕ¡ÒÃãªé¢éÍÁÙÅáÅÐ ÊÒÃʹà·È ¶éÒ¢Ò´¢éÍÁÙÅáÅÐÊÒÃʹà·È´Ñ§¡ÅèÒÇ ¼ÙéµÑ´ÊԹ㨤Ç÷Ӣь¹µÍ¹ã´¡è͹ 1. à¡çºÃǺÃÇÁ¢éÍÁÙÅ 2. àÅ×Í¡ÇÔ¸ÕÇÔà¤ÃÒÐËì¢éÍÁÙÅ 3. àÅ×Í¡ÇÔ¸Õà¡çºÃǺÃÇÁ¢éÍÁÙÅ 4. ¡Ó˹´¢éÍÁÙÅ·Õ‹¨Ó໚¹µéͧãªé
20.
ÃËÑÊÇÔªÒ
04 ¤³ÔµÈÒʵÃì ˹éÒ 21 ÇѹàÊÒÃì·Õ‹ 20 ¡ØÁÀҾѹ¸ì 2553 àÇÅÒ 11.30 - 13.30 ¹. Êèǹ·Õ‹ 2 ¨Ó¹Ç¹ 4 ¢éÍ (¢éÍ 37–40) ¢éÍÅÐ 1 ¤Ðá¹¹ ¤Ó͸ԺÒ 1. ¢éÍÊͺÊèǹ¹ÕŒ ໚¹¢éÍÊͺ·Õ‹Áդӵͺ·Õ‹¶Ù¡µéͧ໚¹¨Ó¹Ç¹àµçÁºÇ¡ËÃ×ÍÈÙ¹Âì «Ö‹§ »ÃСͺ´éǵÑÇàÅ¢äÁèà¡Ô¹ 3 ËÅÑ¡ àÁ׋Íà¢Õ¹ã¹Ãкº°Ò¹ÊÔº 2. 㹡Òõͺ ãËéÃкÒµÑÇàÅ×Í¡·Õ‹µÃ§¡ÑºµÑÇàÅ¢ã¹áµèÅÐËÅÑ¡¢Í§¤ÓµÍº â´ÂµéͧÃкÒ µÑÇàÅ×Í¡·ÑŒ§ 3 ËÅÑ¡ ¤×Í ËÅÑ¡ÃéÍ ËÅÑ¡ÊÔº áÅÐËÅѡ˹èÇ µÒÁÅӴѺ (¡Ã³Õ·Õ‹¤ÓµÍº·Õ‹ µéͧ¡ÒõͺäÁèÁÕàÅ¢ËÅѡ㴠ãËéÃкÒÂàÅ¢ 0 ã¹ËÅÑ¡¹ÑŒ¹) 3. ¼Ùéà¢éÒÊͺµéͧÃкÒ¤ӵͺä´é¶Ù¡µéͧ·ÑŒ§ 3 ËÅÑ¡ ¨Ö§¨Ðä´é¤Ðṹ㹢é͹ь¹æ µÑÇÍÂèÒ§¡ÒÃÃкÒ¤ӵͺ 1. ¶éҤӵͺ·Õ‹µéͧ¡Òõͺ¤×Í 0 ãËéÃкÒÂàÅ¢ 000 ã¹ËÅÑ¡ÃéÍ ËÅÑ¡ÊÔº áÅÐËÅѡ˹èÇ µÒÁÅӴѺ 2. ¶éҤӵͺ·Õ‹µéͧ¡Òõͺ¤×Í 47 ãËéÃкÒÂàÅ¢ 047 ã¹ËÅÑ¡ÃéÍ ËÅÑ¡ÊÔº áÅÐËÅѡ˹èÇ µÒÁÅӴѺ 3. ¶éҤӵͺ·Õ‹µéͧ¡Òõͺ¤×Í 209 ãËéÃкÒÂàÅ¢ 209 ã¹ËÅÑ¡ÃéÍ ËÅÑ¡ÊÔº áÅÐËÅѡ˹èÇ µÒÁÅӴѺ
21.
ÃËÑÊÇÔªÒ
04 ¤³ÔµÈÒʵÃì ˹éÒ 22 ÇѹàÊÒÃì·Õ‹ 20 ¡ØÁÀҾѹ¸ì 2553 àÇÅÒ 11.30 - 13.30 ¹. 37. 㹡ÒÃÊͺ¢Í§¹Ñ¡àÃÕ¹ªÑŒ¹»ÃжÁÈÖ¡ÉÒ¡ÅØèÁ˹֋§ ¾ºÇèÒ ÁÕ¼ÙéÊͺ¼èÒ¹ÇÔªÒµèÒ§æ ´Ñ§¹ÕŒ ¤³ÔµÈÒʵÃì 36 ¤¹ Êѧ¤ÁÈÖ¡ÉÒ 50 ¤¹ ÀÒÉÒä·Â 44 ¤¹ ¤³ÔµÈÒʵÃìáÅÐÊѧ¤ÁÈÖ¡ÉÒ 15 ¤¹ ÀÒÉÒä·ÂáÅÐÊѧ¤ÁÈÖ¡ÉÒ 12 ¤¹ ¤³ÔµÈÒʵÃìáÅÐÀÒÉÒä·Â 7 ¤¹ ·ÑŒ§ÊÒÁÇÔªÒ 5 ¤¹ ¨Ó¹Ç¹¼ÙéÊͺ¼èÒ¹ÍÂèÒ§¹éÍÂ˹֋§ÇÔªÒÁÕ¡Õ‹¤¹ 38. ã¹Êǹ»†ÒáËè§Ë¹Ö‹§ à¨éҢͧ»ÅÙ¡µé¹ÂÙ¤ÒÅÔ»µÑÊ໚¹á¶Ç´Ñ§¹ÕŒ á¶Çáá 12 µé¹ á¶Ç·Õ‹Êͧ 14 µé¹ á¶Ç·Õ‹ÊÒÁ 16 µé¹ â´Â»ÅÙ¡à¾Ô‹Áàªè¹¹ÕŒ µÒÁÅӴѺàÅ¢¤³Ôµ ¶éÒà¨éҢͧ»ÅÙ¡µé¹ ÂÙ¤ÒÅÔ»µÑÊäÇé·ÑŒ§ËÁ´ 15 á¶Ç ¨ÐÁÕµé¹ÂÙ¤ÒÅÔ»µÑÊã¹Êǹ»†Ò¹ÕŒ·ÑŒ§ËÁ´¡Õ‹µé¹ 39. µÙé¹ÔÃÀÑÂÁÕÃкºÅçÍ¡·Õ‹à»š¹ÃËÑÊ»ÃСͺ´éǵÑÇàŢⴴ 0 ¶Ö§ 9 ¨Ó¹Ç¹ 3 ËÅÑ¡ ¨Ó¹Ç¹ ÃËÑÊ·ÑŒ§ËÁ´·Õ‹ÁÕºÒ§ËÅÑ¡«ŒÓ¡Ñ¹ ¤×Íà·èÒã´ 40. ¨Ó¹Ç¹ÇÔ¸Õ㹡ÒèѴãËéËÔ§ 3 ¤¹ áÅЪÒ 3 ¤¹ ¹Ñ‹§àÃÕ§¡Ñ¹à»š¹á¶Ç â´ÂãËéÊÒÁÕÀÃÃÂÒ ¤Ùè˹֋§¹Ñ‹§µÔ´¡Ñ¹àÊÁÍ ÁÕ·ÑŒ§ËÁ´¡Õ‹ÇÔ¸Õ
Download