SlideShare a Scribd company logo
1 of 24
L’ orizzonte in cosmologia
      Oltre l’ orizzonte cosmologico
                      Paolo de Bernardis
                     Dipartimento di Fisica
                Università di Roma La Sapienza


                                                           • L’ orizzonte delle particelle è la superficie che ci separa da
              A pranzo con la fisica - NIPS Lab              quanto non possiamo osservare, perché la luce partita oltre l’
         Dipartimento di Fisica Università di Perugia        orizzonte non è ancora arrivata fino a noi. Le particelle che si
                                                             trovano oltre l’ orizzonte non sono ancora in contatto causale
                         11/03/2010                          con noi. Esiste se l’ universo ha un’età finita.
                                                           • Esistono però altri orizzonti, di tipo fisico, più vicini di quello
                                                             delle particelle, che dipendono dai dettagli della propagazione
                                                             della luce nell’ universo.




                                                                                             Lunghezza d’ onda λ (nm)
      Il redshift
• Negli anni ’20 Carl Wirtz,                                 Galassia
Edwin Hubble ed altri,                                       molto lontana
analizzarono la luce
proveniente da galassie
distanti, e notarono che piu’                               Galassia lontana

una galassia e’ distante,
piu’ le lunghezze d’ onda
della sua luce sono                                          Galassia vicina

allungate (spostamento
verso il rosso, redshift).
                                                               laboratorio
•Questo dato empirico viene
interpretato come una prova
dell’ espansione dell’
                                                                                     Ca II       HI
universo.
                                                                                                      Mg I    Na I




Percorrendo distanze cosmologiche, la luce cambia colore
                                                             • Se vogliamo arrivare a
• La relativita’ generale di Einstein prevede
  che, in un universo in espansione, le                        osservare l’ orizzonte,
  lunghezze d’onda λ dei fotoni si allunghino                  dobbiamo osservare più
  esattamente quanto le altre lunghezze.                       lontano possibile.
• Piu’ distante e’ una galassia, piu’ e’ lungo il
  cammino che la luce deve percorrere, piu’                  • La luce che è partita da
  lungo e’ il tempo che impiega, maggiore e’                   regioni di universo così
  l’ espansione dell’ universo dal momento                     remote, avrà allungato
  dell’ emissione a quello dalla ricezione, e
  piu’ la lunghezza d’ onda viene allungata.                   moltissimo le sue
                                                               lunghezze d’ onda,
 to                                                            diventando infrarossa, o
                                                               microonde, o radioonde …
 t1                                                          • Quindi richiede telescopi e
                                                               rivelatori speciali per essere
                                                               osservata.
 t2




                                                                                                                                   1
• L’ orizzonte a cui si arriva, però, è di tipo fisico.                                                      Orizzonte fisico
• Infatti l’ espansione dell’ universo comporta un suo                • In un universo in espansione, dominato dalla
  raffreddamento. Osservando lontano riceveremo                         radiazione, si può calcolare accuratamente il
  luce che è stata emessa quando l’ universo era più                    tempo necessario per passare dal Big Bang
  caldo di oggi.                                                        (densità e temperatura infinite) fino alla
• Se guardiamo abbastanza lontano, arriveremo ad                        temperatura in cui elettroni e protoni
  osservare epoche in cui l’ universo era caldo come                    possono combinarsi in atomi
                                                                        (ricombinazione dell’ idrogeno).
  o più della superficie del sole.
                                                                      • La temperatura a cui avviene la
• E quindi era ionizzato. In quell’ epoca i fotoni non                  ricombinazione è circa 3000K, e il tempo
  potevano propagarsi su linee rette, ma su spezzate                    necessario per arrivarci è di 380000 anni.
  venendo continuamente diffusi dagli elettroni liberi                • Quindi per i primi 380000 anni della sua
  del mezzo ionizzato.                                                  evoluzione l’ universo è ionizzato e opaco.
• L’ universo primordiale è opaco, come opaco è l’
  interno di una stella.




                Orizzonte fisico                                         Composizione della luce che viene dal sole (spettro)
                                                                                                                  Lunghezza d’ onda (micron)
• Osservando sempre più lontano,
  potremo vedere solo finchè l’ universo è                               Intensità luminosa W/m2/sr/cm-1)                   Radiazione Termica,
  trasparente. Cioè fino all’ epoca della                                                                                   Spettro di Corpo Nero

  ricombinazione.
• Possiamo quindi osservare entro un
  orizzonte che è una superficie sferica,
  centrata sulla nostra posizione, al di là
  della quale l’ universo è opaco a causa
  delle diffusioni (scattering) contro gli
  elettroni liberi subite dai fotoni.
• Si chiama superficie di ultimo scattering
  ed è il nostro orizzonte fisico.




                                   Strong evidence for a hot
                                   early phase of the Universe
                                                                                                             Orizzonte fisico
                                                                      • Nel seguito:
                                     Thermal spectrum ….
                                                                        –L’ osservazione della superficie di
                                     … and accurate isotropy
                                                                         ultimo scattering.
                                                                                                     • Come si fa
                              0K                   3K            5K                                  • Quali sono i risultati
                                                                                                     • Orizzonti causali impressi nell’ orizzonte
                                                                                                       fisico
                                                                                                     • Conseguenze per la cosmologia e la
   Cosmic                                                                                              fisica fondamentale
   Microwave                                                            –Come andare oltre.
   Background




                                                                                                                                                    2
How to detect CMB photons                                                    How to detect CMB photons

           • E(γCMB) of the order of 1 meV                                               • E(γCMB) of the order of 1 meV
           • Frequency: 15-600 GHz                                                       • Frequency: 15-600 GHz
           • Detection methods:                                                          • Detection methods:
               – Coherent (antenna + amplifier)                                            – Coherent (antenna + amplifier)
               – Thermal (bolometers)                                                      – Thermal (bolometers)
               – Direct (Cooper pairs in KIDs)                                             – Direct (Cooper pairs in KIDs)
           • Space (atmospheric opacity)                                                 • Space (atmospheric opacity)




              Cryogenic Bolometers                                            Cryogenic Bolometers                               Again, need
• The CMB spectrum is a continuum and bolometers are wide band
                                                                            • Johnson noise in the thermistor                      of low
  detectors. That’s why they are so sensitive.                                                                                   temperature
                                                                              d Δ V J2                                             and low
                             Thermometer                                               = 4 kTR
                             (Ge thermistor (ΔR)                                 df                                              background
          Load resistor
                             at low T)                                      • Temperature noise
                                                                             d Δ W T2         4 kT 2 G eff
                                                                                       = 2
                                                                                 df       G eff + (2π fC )
                                                                                                            2
                                                            Incoming                                                      Q
                ΔV                                          Photons (ΔB)    • Photon noise
                                                                              d ΔWPh 4k 5TBG x4 (ex −1+ ε )
                                                                                    2       5
                                        Feed                                          = 2 3 ∫ε                dx
                          Integrating   Horn         filter                     df      ch           (ex −1)2
               Radiation  cavity        (angle selective)
                                                     (frequency             • Total NEP (fundamental):
               Absorber (ΔT)                         selective)
                                                                                      1 d ΔVJ d ΔWT d ΔWPh
                                                                                             2      2      2
• Fundamental noise sources are Johnson noise in the thermistor
  (<ΔV2> = 4kTRΔf), temperature fluctuations in the thermistor               NEP2 =            +      +
  ((<ΔW2> = 4kGT2Δf), background radiation noise (Tbkg5)        need                  ℜ2 df      df     df
  to reduce the temperature of the detector and the radiative
  background.




                                                                           •The absorber is micro
                                                                           machined as a web of              Spider-Web Bolometers
                                                                           metallized Si3N4 wires, 2
                                                                           μm thick, with 0.1 mm           Built by JPL              Signal wire
                                                                           pitch.
                                                                                                          Absorber
                                                                           •This is a good absorber for
                                                                           mm-wave photons and
                                                                           features a very low cross
                                                                           section for cosmic rays.
        Circa 1970                                                         Also, the heat capacity is
                                                                           reduced by a large factor
                                                                           with respect to the solid
                                                                           absorber.
                           Circa 1980                                      •NEP ~ 2 10-17 W/Hz0.5 is
                                                                           achieved @0.3K
                                                                           •150μKCMB in 1 s
                                                                           •Mauskopf et al. Appl.Opt.      Thermistor
                                                                           36, 765-771, (1997)                            2 mm




                                                                                                                                                   3
Development of thermal detectors for far IR and mm-waves
                           17
                          10
                                                                                                                                     How to detect CMB photons
                                  Langley's bolometer
                                                         Golay Cell
a measurement (seconds)




                           12                                                                                                          • E(γCMB) of the order of 1 meV
                          10                                  Golay Cell
  time required to make




                                                                  Boyle and Rodgers bolometer                                          • Frequency: 15-600 GHz
                                           1year                      F.J.Low's cryogenic bolometer                                    • Detection methods:
                           7
                          10                                            Composite bolometer
                                                  1day                                                                                     – Coherent (antenna + amplifier)
                                                    1 hour                    Composite bolometer at 0.3K
                                                                                                                                           – Thermal (bolometers)
                           2
                          10                                                                                                               – Direct (Cooper pairs in KIDs)
                                                         1 second
                                                                                     Spider web bolometer at 0.3K
                                                                                      Spider web bolometer at 0.1K
                                                            Photon noise limit for the CMB
                                                                                                                                       • Space (atmospheric opacity)
                                1900       1920      1940      1960        1980     2000     2020     2040     2060

                                                                       year




                                            COBE-FIRAS                                                                MPI
• COBE-FIRAS was a                                                                                                    (Martin Puplett
  cryogenic Martin-                                                                                                   Interferometer)

  Puplett Fourier-                                                                                                    Beamsplitter =
  Transform                                                                                                           wire grid
                                                                                                                      polarizer
  Spectrometer with
  composite                                                                                                           Differential
  bolometers. It was                                                                                                  instrument

  placed in a 400 km
  orbit.
• A zero instrument                                                                                                                               ∞
                                                                                                                                     I SKY ( x) = C ∫ [SSKY (σ ) − SREF (σ )]rt(σ ){ + cos[4πσx]}dσ
                                                                                                                                                                                    1
  comparing the specific
  sky brightness to the
                                                                                                                                                  0

                                                                                                                                                 ∞
  brightness of a                                                                                                                    ICAL( x) = C∫ [SCAL(σ ) − SREF (σ )]rt(σ ){ + cos[4πσx]}dσ
                                                                                                                                                                                1
  cryogenic Blackbody                                                                                                                             0




                                                         FIRAS
      • The FIRAS guys were able to change the temperature of
        the internal blackbody until the interferograms were null.
      • This is a null measurement, which is much more
        sensitive than an absolute one: (one can boost the gain of
        the instrument without saturating it !).
      • This means that the difference between the spectrum of
        the sky and the spectrum of a blackbody is zero, i.e. the
        spectrum of the sky is a blackbody with that temperature.
      • This also means that the internal blackbody is a real
        blackbody: it is unlikely that the sky can have the same
        deviation from the Planck law characteristic of the
        source built in the lab.                                                                                                                       σ (cm-1) wavenumber




                                                                                                                                                                                                      4
• The spectrum                                                                • Techniques ?

              2h ν 3
 B(ν , T ) =
              c2 ex −1
TCMB     = 2.725K
                                               RJ        Wien                                                               RJ        Wien
           hν      ν
 xCMB =        ≅
          kTCMB 56 GHz
              xmax
1 − e − xmax =     ⇒ xmax = 2.82 ⇒
               3
                                                                                ν << ν max = 160 GHz ⇒ coherent detectors
ν max   = 159 GHz (σ max = 5.31 cm −1 )
                                                                                ν >> ν max = 160 GHz ⇒ bolometers
                 λ
 B(ν , T ) =       B(λ , T ) ⇒ λmax = 1.06 mm                                   ν ≈ ν max = 160 GHz ⇒ ? ??
                 ν




• The DMR instrument aboard
  of the COBE satellite
                                             COBE-DMR
                                                           CMB anisotropy
                                                                                               Cosmic Horizons
  measured the first map of                                                      • The very good isotropy of the CMB sky is to
  CMB anisotropy (1992)                                                            some extent surprising.
                                               Galactic Plane
• The contrast of the image is
  very low, but there are
                                                                                 • The CMB comes from an epoch of 380000 years
  structures, at a level of                                                        after the Big Bang.
  10ppm.                                                                         • So it depicts a region of the universe as it was
• Instrumental noise is                                                            380000 years after the Big Bang.
  significant in the maps
  (compare the three different
                                                                                 • The region we can map, however, is much wider
  wavelengths)                                                                     than 380000 light years.
• DMR did not have a real                                                        • So it contains subregions which are separated
  telescope, so the angular                                                        more than the length light has travelled since the
  resolution was quite coarse                                                      Big Bang. These regions would not be in causal
  (10 o !!)                                                                        contact in a static universe.




                                                         R= distance from                                                             R= distance from
                                                         us = 14 Glyrs                                  a   l Gly                     us = 14 Glyrs
                                                                                                s ev er
                                                                                                                      y
                                                                                                                     4 Gl




                                                         But also distance in                                                         But also distance in
                                                                                                                    R=1




                     R                                   time: 14 Gyrs ago                      R=                                    time: 14 Gyrs ago
                         &                                                                        14
                             t                                                                         Gl
                                                                                                         y


                                 here, now                                                                  here, now
                                                     K




                                                                                                                                  K
                                                  000




                                                                                                                               000
                                               T=3




                                                                                                                            T=3




                  Transparent                                                                Transparent
                  universe                                                                   universe
   Opaque                                                                         Opaque
   universe                                                                       universe




                                                                                                                                                             5
Cosmic Horizons
                                              r=3                      R= distance from
                                                 80 k
                                                     l   y
                                   ly                                  us = 14 Glyrs
                            er al G
           ly

                     s ev
         0k


                                                                                                           • We measure the same brightness



                                          y
       38




                                         4 Gl
                                                                       But also distance in
     r=




                                                                                                             (temperature) in all these regions, and this

                                        R=1
                     R=                                                time: 14 Gyrs ago
                       14
                             Gl
                                                                                                             is surprising, because to attain thermal
                               y                                                                             equilibrium, contact is required ! (through
                                                                                                             forces, thermal, radiative …).
                                here, now                                                                  • We live in an expanding universe. Regions


                                                                   K
                                                                                                             separated by more than 380000 light
                                                                000
                                                             T=3                                             years might have been in causal contact
                  Transparent

 Opaque
                  universe                                                                                   (and thus homogeneized) earlier.
 universe




Expansion vs Horizon                                                                                       Expansion vs Horizon
                In a Universe made of                                                                 on           In a Universe made of                                                       on
                                                                                               r iz                                                                                     r iz
                matter and radiation, the
                                                                                         e   ho                    matter and radiation, the
                                                                                                                                                                                  e   ho
                expansion rate decreases                                            f th                           expansion rate decreases                                  f th
                with time.                                                     eo                                  with time.                                           eo
                                                                        s iz                                                                                     s iz

                                                                       size of                                                                                 size of
                                                                                   ed region                                                                               ed region
                                                                       the consider                                                                            the consider



                                                                                                                                                   So a region as large as
                                                                                                                                                   the horizon when the CMB
                                                                                                                                                   is released ….



                                                                                                                                                 380000 y
                                                                                             time                                                                                     time




Expansion vs Horizon                                                                                       Expansion vs Horizon
                In a Universe made of                                                                 on           In a Universe made of                                                       on
                                                                                               r iz                                                                                     r iz
                matter and radiation, the
                                                                                         e   ho                    matter and radiation, the
                                                                                                                                                                                  e   ho
                expansion rate decreases                                            f th                           expansion rate decreases                                  f th
                with time.                                                     eo                                  with time.                                           eo
                                                                        s iz                                                                                     s iz

                                                                       size of                                                                                 size of
                                                                                   ed region                                                                               ed region
                                                                       the consider                                                                            the consider




                      … has never been                                                                                   … nor has been
                      causally connected                                                                                 causally connected to
                      before                                                                                             surrounding regions

                                                380000 y                                                                                         380000 y
                                                                                             time                                                                                     time




                                                                                                                                                                                                    6
Cosmic Horizons                                                                                                                                          Granulazione solare


• Hence the “Paradox of Horizons” :                                                                                                            Gas incandescente
                                                                                                                                               sulla superficie del
• We see approximately the same temperature                                                                                                    Sole (5500 K)

  everywhere in the map of the CMB, but we                                                                                         8 minuti luce
                                                                                                               Qui, ora
  do not understand how this has been
  obtained in the first 380000 years of the
  evolution of the universe.
• Was this temperature regulated everywhere
  ab-initio ?
• Are our assumptions about the composition
  of the universe wrong, and the universe does
  not decelerate in the first 380000 years ?




                                                                                   Granulazione solare                                 Flatness Paradox
                               Gas incandescente                                                              • The expansion of the Universe is regulated by the
                               sulla superficie del                                                             Friedmann equation, directly deriving from
                               Sole (5500 K)
                                                                                                                Einstein’s equations for a homogeneous and
Qui, ora
                    8 minuti luce                                                                               isotropic fluid.
                                                                                                              • If the Universe contains only matter and radiation, it
                                                                                                                either collapses or dilutes, with a rate depending on
                            Gas incandescente
                                                                                                                the mass-energy density.
                            nell’ universo
                            primordiale (l’
                                                                                                              • To get an evolution with a mass-energy density of
                            universo diventa                                                                    the order of the observed one today, billions of
                            trasparente a 3000 K)
                                                                                                                years after the Big Bang, you need to tune it at the
Qui, ora
                    14 miliardi di anni luce                                                                    beginning very accurately, precisely equal to a
                                                                                                                critical value.
                                                      Mappa di BOOMERanG dell’ Universo Primordiale
                                                                                                              • How was this fine-tuning achieved ?




                                                                                                                                     Inflation might be the solution
a(t)                                                                                                                                 C
                                                                                                                                 I n os m
                                                                                                                                    fla ic
                                                                                                                                       tio
                                                                                                                                           n
                                                                                                              Sub-atomic scales
                                                                                                     ang
                                                                                              ig B
                                                                                    th   eB
                                                                                ter                                 t=10-36s
                                                                           s af
 Cosmic distances




                                                                         1n
                                                                  ity,
                                                                                                           Quantum fluctuations of
                                                              ens
                                                     ic   al d                                             the field dominating the
                                                Crit                                                        energy of the universe

                                                                                                                Energy scale:
                                                                                                                 1016 GeV

                                                                                                             Cosmic Inflation:

                                                                                                             A very fast expansion                          Cosmological scales
                                                                                                             of the universe, driven
                                                                                                             by a phase transition in
                                                                                                                                                               t=380000 y
                                                                         Billion years               t       the first split-second                         density fluctuations




                                                                                                                                                                                                     7
ma
                                                                                                                                     l   size of
                                                                                                                                                       d region
Expansion vs Horizon                                                                                                          nor lution the considere
                                                                                                                               e vo

         According to the inflation                                                  on                                                                                            on
                                                                              r iz                                                                                          r iz
         theory ….
                                                                        e   ho                                                                                        e   ho
                                                                   f th                                                                                          f th
                                                              eo                                                                                            eo
                                                       s iz                                                                                          s iz




                                                                                                        exponential
                                                     size of




                                                                                                        expansion
                                                                 ed region
                                                     the consider




                                                                                                        Inflation:
                                        A region as large as the
                                        horizon when the CMB is
                                        released ….
                  …had been causally
                  connected to the
                  surrounding regions
                  before inflation
                                      380000 y                                                          10-36 s
                                                                            time                                                                                          time




                                     ma
                                        l   size of
                                                          d region                        • Inflation
                                 nor lution the considere                                    – Provides a physical process to origin density fluctuations
                                  e vo
                                                                                             – Explains the flatness paradox
                                                                                             – Explains the horizons paradox
                                                                                     on
                                                                              r iz        • Is a predictive theory (a list of > models has been compiled..)
                                                                        e   ho
                                                                   f th                      – Predicts gaussian density fluctuations
                                                              eo                             – Predicts scale invariant density fluctuations
                                                       s iz
                                                                                             – Predicts Ω=1
        exponential




                                                                                          • How can we test it ?
        expansion
        Inflation:




                                                                                          • We still expect a difference between the physical processes
                                                                                            happening inside the horizon and those relevant outside the
                                                                                            horizon.
                                                                                          • So we expect anyway that the scale of the causal horizon is
                      Here the horizon
                                                                                            imprinted in the image of the CMB.
                      contains all of the                                                 • The angular size subtended by the horizons when the CMB is
                      universe observable                                                   released is around 1 degree, if the geometry of space is
                      today                                                                 Euclidean.
                                                                                          • We need sharp images of the CMB, so that we can resolve
        10-36 s                                                             time            the density fuctuations predicted by inflation.




                                                                                                                                                                  380000 lyrs




                                                                                                                  R

                            θ                                                   d
                                                                                                                                      1o
                                 R                                                               COBE resolution
                                                                                                                      Here, now
                                                                                                                                                 K




                                                                                                         10o
                                                                                                                                              000



                                                                                                                                                      (T= ng
                                                                                                                                                         ∞)
                                                                                                                                                          a
                                                                                                                                                      BigB
                                                                                                                                           T=3




     d ao   380000 ly
θ≈    × ≈               ×1100 ≈1o
     R a 14000000000 ly
                                                                                                                                                             R= distance
                                                                                                                                                             from us
                                                                                                                                                             = 14 Glyrs




                                                                                                                                                                                        8
LSS
                            high resolution                                                                                 14 Gly




                                                                                                                                                           horizon
    •    The images from COBE-DMR were not sharp                                                                     Critical density Universe Ω=1
         enough to resolve cosmic horizons (the angular                                                         1o
         resolution was 7°).
    •    After COBE, experimentalists worked hard to
         develop higher resolution experiments.
    •    In addition to testing inflation, we expected high




                                                                                                                                                           horizon
         resolution observations to give informations                                                                                  Ω>1
         about                                                                                                   2o
                                                                                                            High density Universe

         a) The geometry of space
         b) The physics of the primeval fireball.




                                                                                                                                                           horizon
    a) The angle subteneded by the horizon can be                                                                0.5o
        more or less than 1° if space is curved.                                                               Low density Universe Ω<1




 PS                              PS                               PS
                                                                                                       The quest for high resolution
    0          200
    High density Universe
                             l    0           200
                                  Critical density Universe
                                                              l      0          200
                                                                      Low density Universe
                                                                                              l     b) Within a causally connected region, the
            Ω>1                              Ω=1                               Ω<1                    hot, ionized gas of the primeval fireball is
                                                                                                      subject to opposite forces: gravity and
                                                                                                      photon pressure.
                       2o                          1o                                               • If a density fluctuation is present,
                                                                                   0.5o               “acoustic oscillations” start, depending on
                                                                                                      the composition of the universe (density
                                                                                                      of baryons) and on the spectrum of initial
                                                                                                      density fluctuations.




Density perturbations (Δρ/ρ) were oscillating in the primeval plasma (as a result of the
opposite effects of gravity and photon pressure).
               Due to gravity,                                    T is reduced enough
               Δρ/ρ increases,                                    that gravity wins again
                                                                                                   • The study of solar oscillations
               and so does T                                                                         allows us to study the interior
                                                                                                     structure of the sun, well below
                                                                                                     the photosphere, because these
                                                                                                     waves depend on the internal
                            Pressure of photons                                                      structure of the sun.
 overdensity                increases, resisting to the
                            compression, and the
                   t        perturbation bounces back                                              • The study of CMB anisotropy
                                  Before recombination T > 3000 K                                    allows us to study the universe
                   t              After recombination         T < 3000 K                             well behind (well before) the
                                                                                                     cosmic photosphere (the
                                                                    Here photons are not tightly     recombination epoch), because
                                                                    coupled to matter, and their     the oscillations depend on the
                                                                    pressure is not effective.       composition of the universe
                                                                    Perturbations can grow and
                                                                    form Galaxies.
                                                                                                     and on the initial perturbations.
After recombination, density perturbation can grow and create the hierarchy of structures
we see in the nearby Universe.




                                                                                                                                                                     9
How to obtain wide, high angular                                                      How to obtain wide, high angular
       resolution maps of the CMB                                                            resolution maps of the CMB
• Angular Resolution: Microwave telescope, at                                        • Angular Resolution: Microwave telescope, at
  relatively high frequencies (θ=λ/D)                                                  relatively high frequencies (θ=λ/D)
• 150GHz: peak of CMB brightness                                                     • 150GHz: peak of CMB brightness
• Low sky noise and high transparency at 150 GHz:                                    • Low sky noise and high transparency at 150 GHz:
  Balloon or Satellite                                                                 Balloon or Satellite
• High sensitivity at 150 GHz: cryogenic bolometers                                  • High sensitivity at 150 GHz: cryogenic bolometers
• Multiband for controlling foreground emission                                      • Multiband for controlling foreground emission
                                                                                     • Sensitivity and sky coverage (size of explored
   Statistical samples of the CMB sky (about one hundred directions) in the 90s        region): either
                                                                                       – Extremely high sensitivity (0.1K) and regular flight
   In Italy: ARGO                        In the USA: MAX, MSAM, …                                            or
                                                                                       – High sensitivity (0.3K) and long duration flight




     How to obtain wide, high angular
                                                                                      Universita’ di Roma, La Sapienza:                           Cardiff University: P. Ade, P. Mauskopf
                                                                                      P. de Bernardis, G. De Troia, A. Iacoangeli,                IFAC-CNR: A. Boscaleri
                                                                                      S. Masi, A. Melchiorri, L. Nati, F. Nati, F.                INGV: G. Romeo, G. di Stefano
       resolution maps of the CMB                                                     Piacentini, G. Polenta, S. Ricciardi, P. Santini, M.
                                                                                      Veneziani
                                                                                                                                                  IPAC: B. Crill, E. Hivon
                                                                                                                                                  CITA: D. Bond, S. Prunet, D. Pogosyan
                                                                                      Case Western Reserve University:
• Angular Resolution: Microwave telescope, at                                         J. Ruhl, T. Kisner, E. Torbet, T. Montroy
                                                                                                                                                  LBNL, UC Berkeley: J. Borrill
                                                                                                                                                  Imperial College: A. Jaffe, C. Contaldi
  relatively high frequencies (θ=λ/D)                                                 Caltech/JPL:
                                                                                      A. Lange, J. Bock, W. Jones, V. Hristov
                                                                                                                                                  U. Penn.: M. Tegmark, A. de Oliveira-Costa
                                                                                                                                                  Universita’ di Roma, Tor Vergata: N. Vittorio,
• 150GHz: peak of CMB brightness                                                      University of Toronto:
                                                                                      B. Netterfield, C. MacTavish, E. Pascale
                                                                                                                                                  G. de Gasperis, P. Natoli, P. Cabella

• Low sky noise and high transparency at 150 GHz:
  Balloon or Satellite
• High sensitivity at 150 GHz: cryogenic bolometers
• Multiband for controlling foreground emission
• Sensitivity and sky coverage (size of explored
  region): either
   – Extremely high sensitivity (0.1K) and regular flight MAXIMA
                         or
   – High sensitivity (0.3K) and long duration flight BOOMERanG
                                                                                                                      BOOMERanG




  the BOOMERanG ballon-borne telescope                                                                    120 mm


                                                                                                      3He
Sun Shield                                                                                                   fridge
                          Solar
                          Array         Differential
                                        GPS Array                                           D                               D
                                                                            Star
                                                                            Camera
                                        Cryostat
                                        and                                                               0.3K
                                        detectors
                                                                                        D             D          D           D
                                                                                                 D                                                       Focal plane assembly
Ground                                                                                                                                                   BOOMERanG-LDB Appl.Opt
Shield                                   Primary                                                          1.6K                                                  MultiBand
                                         Mirror                                                                                                   150       D = location of detectors
                                                                                                                                                              Photometers          150
                                                                                                                                                              (150,240,410)
                                         (1.3m)
                                                                                                  preamps                                    90                                            90
                                                                                                                                                              4o on the sky
               Sensitive at 90, 150, 240, 410 GHz




                                                                                                                                                                                                   10
• The instrument is flown                                                                    9/Jan/1999
  above the Earth
  atmosphere, at an altitude
  of 37 km, by means of a
  stratospheric balloon.
• Long duration flights (LDB,
  1-3 weeks) are performad
  by NASA-NSBF over
  Antarctica
• BOOMERanG has been flown
  LDB two times:
• From Dec.28, 1998 to
  Jan.8, 1999, for CMB
  anisotropy measurements
• In 2003, from Jan.6 to
  Jan.20, for CMB polarization
  measurements (B2K).




                           BOOMERanG
• 1998:                                                                                      • 1998:
  BOOMERanG                                                                                    BOOMERanG
  mapped the                                                                                   mapped the
  temperature                                                                                  temperature
  fluctuations of                                                                              fluctuations of
  the CMB at                                                                                   the CMB at
  sub-horizon                                                                                  sub-horizon
  scales (<1O).                                                                                scales (<1O).
• The signal                                                                                 • The rms
  was well                                                                                     signal has the
  above the                                                                                    CMB
  noise:                                                                                       spectrum and
                                                                                               does not fit
      2 indep. det.
       at 150 GHz                                                                              any spectrum
                                                                                               of foreground
                                                                                               emission.




 PS                            PS                               PS


   0          200          l    0           200             l    0          200          l
   High density Universe        Critical density Universe         Low density Universe
           Ω>1                            Ω=1                             Ω<1




                      2o                        1o
                                                                              0.5o




                                                                                                                 11
In the primeval plasma, photons/baryons density perturbations start to oscillate only when the sound horizon
                                                                          becomes larger than their linear size . Small wavelength perturbations oscillate faster than large ones.
Full power




                                                                                                                                                                                                                                            multipole
                                                                                                                                                                      The angle subtended depends on the geometry of space
spectrum                                                                      Size of sound horizon
                                                                                                       v                  v               v                LSS
measurement                                                                                                                                                                                                                      2nd dip
from                                                                                                              C               R
BOOMERanG                                                                    size of perturbation
(2002)                                                                       (wavelength/2)                       v               v




                                                                                                                                                                                                                                            450
-Geometry of                                                                                                              C              R                                                                                      2nd peak
the universe
from location of                                                                                                      v                     v
first peak
                                                                                                                                C
                                                                                                                                                                                                                                  1st dip
-Signature of                                                                                                                 v                    380000 ly
inflation from
amplitudes of 3




                                                                                                                                                                                                                                            220
                                                                                                                                        C                                                                                    1st peak
peaks and
general slope                                                               0y                             time                 300000 y
                                                                          Big-bang                                             recombination                     Power Spectrum




      We can measure cosmological parameters with CMB !
Temperature Angular spectrum varies with Ωtot , Ωb , Ωc, Λ, τ, h, ns, …   “The perfect universe”




      • Data consistent with flat Universe                                                                  Radiation
                                                                                                                                      Normal
                                                                                                                                      Matter
      • Baryon fraction agrees with BBN                                                                      < 0.3%                    4%
      • With supernovae or LSS => Λ term
                                                                                                                                                              Dark
                                                                                                                                                              Matter
                                                                                                                                                               22%




                                                                                                Dark
                                                                                               Energy
                                                                                                74%




                                                                                                                                                                                                                                                        12
Did Inflation really happen ?                                                                CMB polarization
• We do not know. Inflation has not been                                         • CMB radiation is Thomson scattered at recombination.
  proven yet. It is, however, a mechanism able                                   • If the local distribution of incoming radiation in the
  to produce primordial fluctuations with the right                                rest frame of the electron has a quadrupole moment,
  characteristics.                                                                 the scattered radiation acquires some degree of linear
                                                                                   polarization.
• Four of the basic predictions of inflation have
  been proven:                                                                                          Last scatte
                                                                                                                    ri   ng surface
   –   existence of super-horizon fluctuations
   –   gaussianity of the fluctuations
   –   flatness of the universe
   –   scale invariance of the density perturbations
• One more remains to be proved: the stochastic
  background of gravitational waves produced
  during the inflation phase.
• CMB can help in this – see below.




              y                                                y

                  -
                                 -10ppm           +10ppm
                                                                   +                            If inflation really
                                                                                                    happened…
                                   x                                         x
    +             -        +                         -             -    -          • It stretched geometry of                           OK
                                                                                     space to nearly Euclidean
                                          y
                  -                                                +               • It produced a nearly scale
                                                                                     invariant spectrum of density                      OK
                                                                                     fluctuations
                                                           x
                                              -                                    • It produced a stochastic
                                                                                     background of gravitational
                                                                                     waves.
                                                                                                                                        ?
       = e- at last scattering




 Quadrupole from P.G.W.                                                                          B-modes from P.G.W.
• If inflation really happened:                                                  • The amplitude of this effect is very small, but
      It stretched geometry of space to                                            depends on the Energy scale of inflation. In fact the
      nearly Euclidean                                                             amplitude of tensor modes normalized to the scalar
      It produced a nearly scale invariant                                         ones is:
                                                                                                  1/ 4
      spectrum of gaussian density                                                     1/ 4
                                                                                            ⎛ C2 ⎞
                                                                                               GW
                                                                                                                          Inflation potential
                                                                                   ⎛T ⎞                   V 1/ 4
      fluctuations                                                                 ⎜ ⎟   ≡ ⎜ Scalar ⎟
                                                                                           ⎜C       ⎟   ≅
      It produced a stochastic background of                                       ⎝S⎠     ⎝ 2      ⎠       3.7 × 1016 GeV
      gravitational waves: Primordial G.W.                                       • and
                                                                                           l(l + 1) B             ⎡ V 1/ 4      ⎤
      The background is so faint that even
                                                                   E-modes                         cl max ≅ 0.1μK ⎢             ⎥
      LISA will not be able to measure it.                                                   2π                   ⎢
                                                                                                                  ⎣ 2 ×1016 GeV ⎥
                                                                                                                                ⎦
• Tensor perturbations also produce
                                                                                 • There are theoretical arguments to expect that the
  quadrupole anisotropy. They generate
                                                                                   energy scale of inflation is close to the scale of GUT
  irrotational (E-modes) and rotational
  (B-modes) components in the CMB
                                                                                   i.e. around 1016 GeV.
  polarization field.                                                            • The current upper limit on anisotropy at large scales
• Since B-modes are not produced by scalar                                         gives T/S<0.5 (at 2σ)
  fluctuations, they represent a signature of                                    • A competing effect is lensing of E-modes, which is
  inflation.                                                       B-modes         important at large multipoles.




                                                                                                                                                13
PSB devices & feed optics (Caltech + JPL)

                                                                                                PSB Pair




                                                           06/01/2003




145 GHz                                                                                 B03 TT Power Spectrum
T map
                                                                                        • Detection of anisotropy signals all the way up to l=1500
(Masi et al.,                                                                           • Time and detector jacknife tests OK
2005)                                                                                   • Systematic effects negligible wrt noise & cosmic variance


the deepest
CMB map
ever




                                                              [Masi et al. 2005]                Jones et al. 2005




                                                                              19/20
                                                                                        TE Power Spectrum


                                                                                        • Smaller signal, but
                                                                                          detection evident (3.5σ)
                                                                                        • NA and IT results
                                                                                          consistent
                                                                                        • Error bars dominated by
                                                                                          cosmic variance
                                                                                        • Time and detectors
                                                                                                                            Piacentini et al. 2005
                                                                                          jacknife OK, i.e.
                                                                                          systematics negligible
                                                                                        • Data consistent with TT
                                                                                          best fit model




                La mappa dell’ universo primordiale con sovrapposta la polarizzazione
                Realizzata dal gruppo di Cosmologia di Tor Vergata (Genn. 2005)




                                                                                                                                                      14
EE Power Spectrum
                                                                                                              WMAP (2002)
• Signal extremely small, but
  detection evident for EE                                                         Wilkinson Microwave Anisotropy Probe
  (non zero at 4.8σ).
• No detection for BB nor for
  EB
• Time and detectors jacknife
  OK, i.e. systematics
  negligible
• Data consistent with TT best
                                 Montroy et al. 2005
  fit model
• Error bars dominated by
  detector noise.
                                 Montroy et al. 2005




WMAP in L2 : sun, earth, moon are all                                                                                                       WMAP
                                                                                                                                            Hinshaw et al. 2006
  well behind the solar shield.                                                                                                             astro-ph/0603451




                                                                   Detailed Views of the
                                                                                                                                1o
                                                                   Recombination Epoch
                                                                   (z=1088, 13.7 Gyrs ago)
                                                                                                           BOOMERanG
                                                                                                           Masi et al. 2005
                                                                                                           astro-ph/0507509




                                                                  Paradigm of CMB anisotropies                                                Power spectrum
                                                                                                             k




                                                                                                                                                                     l
                                                                                                                      Processed by
                                                                   smaller than




                                                                                           Power                                              of CMB
                                                                                                                    causal effects like
                                                                                           spectrum of                                        temperature
                                                                   horizon




                                                                                                                   Acoustic oscillations
                                                                   Scales




                                                                                           perturbations           Radiation pressure
                                                                                                                                              fluctuations
                                                                                               Gaussian,           from photons
                                                                                                                   resists gravitational
                                                                                   INFLATION




                                                                                               adiabatic
                                                                 Quantum                       (density)           compression
                                                                 fluctuations                    horizon               horizon                                 horizon
                                                                 in the early
                                                                 Universe                                              (ΔT/T) = (Δρ/ρ) /3
                                                                                                                              + (Δφ/c2)/3
                                                                                               P(k)=Akn




                                                                                                                                                  l( l+1) cl




                                                                                                                              – (v/c)•n
                                                                    larger than
                                                                    horizon
                                                                    Scales




                                                                                                                       Unperturbed


                                                                                                                                       plasma     neutral

2006                                       Hinshaw et al. 2006
                                                                  0
                                                                 Big-Bang
                                                                                  10-36s
                                                                                  Inflation
                                                                                                              3 min
                                                                                                          Nucleosynthesis
                                                                                                                                                 300000 yrs
                                                                                                                                           Recombination                 t




                                                                                                                                                                             15
Cosmological Parameters
                                           Assume an adiabatic inflationary model, and
                                          compare with same weak prior on 0.5<h<0.9
                                      WMAP                            BOOMERanG
                                      (100% of the sky, <1% gain      (4% of the sky, 10% gain
             Need for high               calibration, <1% beam,         calibration, 10% beam,
             angular                     multipole coverage 2-700)      multipole coverage 50-
             resolution                                                 1000)
                                      Bennett et al. 2003
               < 10’                                                  Ruhl et al. astro-ph/0212229




                                      • Ωο =1.02+0.02                 • Ωο = 1.03+0.05
                                      •    ns = 0.99+0.04 *           •      ns = 1.02+0.07
                                      •    Ωbh2 =0.022+0.001          •      Ωbh2 =0.023+0.003
                                      •    Ωmh2 =0.14+0.02            •      Ωmh2 =0.14+0.04
                                      •    T = 13.7+0.2 Gyr           •      T=14.5+1.5 Gyr
                                                                             τrec= ?
2006
                                                                      •
                                      •    τrec= 0.166+0.076
        Hinshaw et al. 2006




                                                        PLANCK
 2009      Planck is a very
           ambitious
           experiment.
                                 ESA’s mission to map the Cosmic Microwave Background
                                 Image of the whole sky at wavelengths near the intensity
           It carries a          peak of the CMB radiation, with
           complex CMB
           experiment (the
           state of the art, a
                                 • high instrument sensitivity (ΔT/T∼10-6)
           few years ago)
           all the way to L2,
                                 • high resolution (≈5 arcmin)
                                 • wide frequency coverage (25 GHz-950 GHz)
           improving the
           sensitivity wrt
                                 • high control of systematics
           WMAP by at
           least a factor 10,
                                 •Sensitivity to polarization
           extending the
           frequency             Launch: 2009; payload module: 2 instruments + telescope
           coverage
           towards high          • Low Frequency Instrument (LFI, uses HEMTs)
           frequencies by a
           factor about 10       • High Frequency Instrument (HFI, uses bolometers)
                                 • Telescope: primary (1.50x1.89 m ellipsoid)




                                                                Galaxy

                                                                                        CMB




                                                                                                     16
Galaxy                                                       Galaxy

                                                  CMB                                                 CMB




Two Instruments: Low Frequency (LFI) and High Frequency (HFI)




                                                                Spider Web and PSB Bolometers
                                                                • Ultra-sensitive Technology
                                                                • Tested on BOOMERanG (Piacentini et al.
                                                                  2002, Crill et al. 2004, Masi et al. 2006) for
                                                                  bolometers, filters, horns, scan at 0.3K and
                                                                  on Archeops at 0.1K (Benoit et al. 2004).
                                                                • Crucial role of balloon missions to get
                                                                  important science results, but also to
                                                                  validate satellite technology.




                                                                                                                   17
Measured performance of Planck HFI bolometers (0.1K)
   (Holmes et al., Appl. Optics, 47, 5997, 2008)
                                                     Multi-moded

      =
Photon
noise
limit




                                                                   Planck-Herschel
                                                                   Launch
                                                                   May 14, 2009
                                                                   15:12 CEST




  Telescopio fuori
  asse, diametro
  specchio principale
  1.8 m




                                                                                     18
Observing strategy
                              The payload will work from L2, to                      Launch
                                                                                     May 14th, 2009
                              avoid the emission of the Earth, of the
                              Moon, of the Sun
                                                           Boresight
                                                     (85o from spin axis)
                                                                                                                 Cruise
                                                                                                                 May-June 2009

                                                          Field of view
                                                        rotates at 1 rpm
                                                                                                                                              Calibrations,
                                      M                                                                                                       Scan
Ecliptic plane                                                                                                                                start July 2009
                        1 o/day   E
                                          L2




                                                                                                      HFI Verification / Calibration Plan
                                                                                                                                       e
                                                                                                                                    an
                                                                                                                            m al pl
                                                                                                                        ste      c       ht
                                                                                                                     -sy FI fo SL) -flig
                                                                                                                    b H
                                                                                                                 su             , C in
                                                                                                                           (I AS         LIGH, BEAM
                                                                             Main beam
                                                                             Far side lobes                                            LIGH, BEAM
                                                                             Spectral response
                                                                             Time response                                             LFER, SPIN
                                                                             Optical polarisation                                      LIGH, POLC
                                                                             Thermo-optical coupling, bckgnd                           01TO, 16TO, 4KTO
                                                                             Linearity                                                 4KTO
                                                                             Absolute response                                         LIGH
                                                                             Detection noise                                           RW72, SPIN, NOIS
                                                                             Crosstalk                                                 XTLK
                                                                             Detection chain caract                                    QECn, IVCF, IBTU, PHTU
                                                                             Numerical compression                                     CPSE, CPVA
                                                                             Cryo chain setup                                          4KTU,16TU, 01TU
                                                                             Compatibility                                             XTRA, NOIS
                                                                             Scanning                                                  ACMS [1.7arcmin]
                                                                             Solar AA                                                  SUNI [50%]




                 3 months after launch                                      The sky explored by Planck so far (First Light Survey, 2 weeks)


  ● The launch was flawless and the transfer to final orbit
    was completed on 1 July
  ● All parts of the satellite survived launch and it is fully
    functional
  ● Coldest temperature (0.1 K) was reached on 3 July. The
    thermal behavior (static and dynamic) is as predicted
    from the ground.
  ● The instruments have been fully tuned and are in stable
    operations since 30 July
  ● All planned initial tests and measurements have been
    completed on 13 August
  ● Planck is now transitioning into routine operational mode

  Preview of data from the first-light survey (2 weeks of
    stable operation)




                                                                                                                                                                19
The sky explored by Planck so far (First Light Survey, 2 weeks)




                                                        Galactic Plane




                                                                         20
The sky explored by Planck in the First Light Survey, first 2 weeks




                                         High Galactic Latitude (CMB)




                                                                        21
Oltre l'orizzonte cosmologico
Oltre l'orizzonte cosmologico
Oltre l'orizzonte cosmologico

More Related Content

What's hot

The galactic supernova_remnant_w49_b_likely_originates_from_a_jet_driven
The galactic supernova_remnant_w49_b_likely_originates_from_a_jet_drivenThe galactic supernova_remnant_w49_b_likely_originates_from_a_jet_driven
The galactic supernova_remnant_w49_b_likely_originates_from_a_jet_drivenSérgio Sacani
 
Chapter 13 Lecture
Chapter 13 LectureChapter 13 Lecture
Chapter 13 Lecturedlsupport
 
XRF Theory and Application
XRF Theory and ApplicationXRF Theory and Application
XRF Theory and ApplicationSirwan Hasan
 
UK Space Conference: James Webb Space Telescope (Gillian Wright)
UK Space Conference: James Webb Space Telescope (Gillian Wright)UK Space Conference: James Webb Space Telescope (Gillian Wright)
UK Space Conference: James Webb Space Telescope (Gillian Wright)A. Rocketeer
 
Poe's Astro Shows Medley
Poe's Astro Shows MedleyPoe's Astro Shows Medley
Poe's Astro Shows MedleyKevin Poe
 
Dtu10e lecture ppt_ch03
Dtu10e lecture ppt_ch03Dtu10e lecture ppt_ch03
Dtu10e lecture ppt_ch03Asma Said,PhD
 
Twinkle Twinkle 090814 (Revision)
Twinkle Twinkle 090814 (Revision)Twinkle Twinkle 090814 (Revision)
Twinkle Twinkle 090814 (Revision)Gavin Brown
 
Probing Extreme Physics With Compact Objcts
Probing Extreme Physics With Compact ObjctsProbing Extreme Physics With Compact Objcts
Probing Extreme Physics With Compact ObjctsSérgio Sacani
 
Act pre 06_apr_2018_michael_ hippke_interstellar communication
Act pre 06_apr_2018_michael_ hippke_interstellar communicationAct pre 06_apr_2018_michael_ hippke_interstellar communication
Act pre 06_apr_2018_michael_ hippke_interstellar communicationAdvanced-Concepts-Team
 
Astronomy - State of the Art - Telescopes
Astronomy - State of the Art - TelescopesAstronomy - State of the Art - Telescopes
Astronomy - State of the Art - TelescopesChris Impey
 

What's hot (19)

The galactic supernova_remnant_w49_b_likely_originates_from_a_jet_driven
The galactic supernova_remnant_w49_b_likely_originates_from_a_jet_drivenThe galactic supernova_remnant_w49_b_likely_originates_from_a_jet_driven
The galactic supernova_remnant_w49_b_likely_originates_from_a_jet_driven
 
The Supernova and Black Holes
The Supernova and Black HolesThe Supernova and Black Holes
The Supernova and Black Holes
 
Astronomy group-1
Astronomy group-1Astronomy group-1
Astronomy group-1
 
X-ray Diffraction
X-ray DiffractionX-ray Diffraction
X-ray Diffraction
 
Ph press talk
Ph press talkPh press talk
Ph press talk
 
Bahan kuliah kontek
Bahan kuliah kontekBahan kuliah kontek
Bahan kuliah kontek
 
Chapter 13 Lecture
Chapter 13 LectureChapter 13 Lecture
Chapter 13 Lecture
 
XRF Theory and Application
XRF Theory and ApplicationXRF Theory and Application
XRF Theory and Application
 
UK Space Conference: James Webb Space Telescope (Gillian Wright)
UK Space Conference: James Webb Space Telescope (Gillian Wright)UK Space Conference: James Webb Space Telescope (Gillian Wright)
UK Space Conference: James Webb Space Telescope (Gillian Wright)
 
Poe's Astro Shows Medley
Poe's Astro Shows MedleyPoe's Astro Shows Medley
Poe's Astro Shows Medley
 
1200 cash[2]
1200 cash[2]1200 cash[2]
1200 cash[2]
 
Dtu10e lecture ppt_ch03
Dtu10e lecture ppt_ch03Dtu10e lecture ppt_ch03
Dtu10e lecture ppt_ch03
 
Twinkle Twinkle 090814 (Revision)
Twinkle Twinkle 090814 (Revision)Twinkle Twinkle 090814 (Revision)
Twinkle Twinkle 090814 (Revision)
 
Probing Extreme Physics With Compact Objcts
Probing Extreme Physics With Compact ObjctsProbing Extreme Physics With Compact Objcts
Probing Extreme Physics With Compact Objcts
 
A1 17 Ism
A1 17 IsmA1 17 Ism
A1 17 Ism
 
Act pre 06_apr_2018_michael_ hippke_interstellar communication
Act pre 06_apr_2018_michael_ hippke_interstellar communicationAct pre 06_apr_2018_michael_ hippke_interstellar communication
Act pre 06_apr_2018_michael_ hippke_interstellar communication
 
Xrd
XrdXrd
Xrd
 
Astronomy - State of the Art - Telescopes
Astronomy - State of the Art - TelescopesAstronomy - State of the Art - Telescopes
Astronomy - State of the Art - Telescopes
 
engineering materials
engineering materialsengineering materials
engineering materials
 

Viewers also liked

3M Safety Tapes from Project Sales Corp, India
3M Safety Tapes from Project Sales Corp, India3M Safety Tapes from Project Sales Corp, India
3M Safety Tapes from Project Sales Corp, IndiaProject Sales Corp
 
TRABAJO DE INFORMATICA
TRABAJO DE INFORMATICA TRABAJO DE INFORMATICA
TRABAJO DE INFORMATICA WILMEREDUARDO
 
Alvarado rodriguez jina
Alvarado rodriguez jinaAlvarado rodriguez jina
Alvarado rodriguez jinajinamirella
 
Triveni Turbines PO for Birkosit Sealing Compound
Triveni Turbines PO for Birkosit Sealing CompoundTriveni Turbines PO for Birkosit Sealing Compound
Triveni Turbines PO for Birkosit Sealing CompoundProject Sales Corp
 
Large Independent Power Producers Rely on Birkosit Sealing Compound
Large Independent Power Producers Rely on Birkosit Sealing CompoundLarge Independent Power Producers Rely on Birkosit Sealing Compound
Large Independent Power Producers Rely on Birkosit Sealing CompoundProject Sales Corp
 
Diary rubric
Diary rubricDiary rubric
Diary rubrictristan87
 

Viewers also liked (10)

3M Safety Tapes from Project Sales Corp, India
3M Safety Tapes from Project Sales Corp, India3M Safety Tapes from Project Sales Corp, India
3M Safety Tapes from Project Sales Corp, India
 
TRABAJO DE INFORMATICA
TRABAJO DE INFORMATICA TRABAJO DE INFORMATICA
TRABAJO DE INFORMATICA
 
Alvarado rodriguez jina
Alvarado rodriguez jinaAlvarado rodriguez jina
Alvarado rodriguez jina
 
Triveni Turbines PO for Birkosit Sealing Compound
Triveni Turbines PO for Birkosit Sealing CompoundTriveni Turbines PO for Birkosit Sealing Compound
Triveni Turbines PO for Birkosit Sealing Compound
 
Empreendedorismo fast farma (1)
Empreendedorismo fast farma (1)Empreendedorismo fast farma (1)
Empreendedorismo fast farma (1)
 
Allah is the light
Allah is the lightAllah is the light
Allah is the light
 
Organisatie- & functie-inrichting
Organisatie- & functie-inrichtingOrganisatie- & functie-inrichting
Organisatie- & functie-inrichting
 
Large Independent Power Producers Rely on Birkosit Sealing Compound
Large Independent Power Producers Rely on Birkosit Sealing CompoundLarge Independent Power Producers Rely on Birkosit Sealing Compound
Large Independent Power Producers Rely on Birkosit Sealing Compound
 
Diary rubric
Diary rubricDiary rubric
Diary rubric
 
Academic CV
Academic CVAcademic CV
Academic CV
 

Similar to Oltre l'orizzonte cosmologico

Class%20presentation.ppt
Class%20presentation.pptClass%20presentation.ppt
Class%20presentation.pptHemenGogoi1
 
Electromagnetic spectrum in Astronomy.pptx
Electromagnetic spectrum in Astronomy.pptxElectromagnetic spectrum in Astronomy.pptx
Electromagnetic spectrum in Astronomy.pptxmaryammaher2
 
Astronomy - Stat eof the Art - Cosmology
Astronomy - Stat eof the Art - CosmologyAstronomy - Stat eof the Art - Cosmology
Astronomy - Stat eof the Art - CosmologyChris Impey
 
Prof Jonathan Sievers (UKZN) NITheP Associate Workshop talk
Prof Jonathan Sievers (UKZN) NITheP Associate Workshop talk Prof Jonathan Sievers (UKZN) NITheP Associate Workshop talk
Prof Jonathan Sievers (UKZN) NITheP Associate Workshop talk Rene Kotze
 
Astronomy - State of the Art - Galaxies
Astronomy - State of the Art - GalaxiesAstronomy - State of the Art - Galaxies
Astronomy - State of the Art - GalaxiesChris Impey
 
Telescopes & astronomy andie
Telescopes & astronomy andieTelescopes & astronomy andie
Telescopes & astronomy andieJanelle Wilson
 
Ch 3 -properties of light
Ch 3 -properties of lightCh 3 -properties of light
Ch 3 -properties of lightcphsastronomy
 
Universe and the Solar System (Lesson 1).pptx
Universe and the Solar System (Lesson 1).pptxUniverse and the Solar System (Lesson 1).pptx
Universe and the Solar System (Lesson 1).pptxJoenelRubino3
 
EINSTEIN'S GRAVITATIONAL LINES
EINSTEIN'S GRAVITATIONAL LINESEINSTEIN'S GRAVITATIONAL LINES
EINSTEIN'S GRAVITATIONAL LINESEL Diablo
 
Dtu10e lecture ppt_ch04
Dtu10e lecture ppt_ch04Dtu10e lecture ppt_ch04
Dtu10e lecture ppt_ch04Asma Said,PhD
 
IB Astrophysics - cosmology - Flippingphysics by nothingnerdy
IB Astrophysics - cosmology - Flippingphysics by nothingnerdyIB Astrophysics - cosmology - Flippingphysics by nothingnerdy
IB Astrophysics - cosmology - Flippingphysics by nothingnerdyNothingnerdy
 
Dark side ofthe_universe_public_29_september_2017_nazarbayev_shrt
Dark side ofthe_universe_public_29_september_2017_nazarbayev_shrtDark side ofthe_universe_public_29_september_2017_nazarbayev_shrt
Dark side ofthe_universe_public_29_september_2017_nazarbayev_shrtZhaksylyk Kazykenov
 

Similar to Oltre l'orizzonte cosmologico (20)

Neutron stars
Neutron starsNeutron stars
Neutron stars
 
Class%20presentation.ppt
Class%20presentation.pptClass%20presentation.ppt
Class%20presentation.ppt
 
E4 - Cosmology
E4 - CosmologyE4 - Cosmology
E4 - Cosmology
 
D3
D3D3
D3
 
D3
D3D3
D3
 
Electromagnetic spectrum in Astronomy.pptx
Electromagnetic spectrum in Astronomy.pptxElectromagnetic spectrum in Astronomy.pptx
Electromagnetic spectrum in Astronomy.pptx
 
Astronomy - Stat eof the Art - Cosmology
Astronomy - Stat eof the Art - CosmologyAstronomy - Stat eof the Art - Cosmology
Astronomy - Stat eof the Art - Cosmology
 
Prof Jonathan Sievers (UKZN) NITheP Associate Workshop talk
Prof Jonathan Sievers (UKZN) NITheP Associate Workshop talk Prof Jonathan Sievers (UKZN) NITheP Associate Workshop talk
Prof Jonathan Sievers (UKZN) NITheP Associate Workshop talk
 
lecture6
lecture6lecture6
lecture6
 
lecture15
lecture15lecture15
lecture15
 
Dark Matter
Dark MatterDark Matter
Dark Matter
 
Astronomy - State of the Art - Galaxies
Astronomy - State of the Art - GalaxiesAstronomy - State of the Art - Galaxies
Astronomy - State of the Art - Galaxies
 
Telescopes & astronomy andie
Telescopes & astronomy andieTelescopes & astronomy andie
Telescopes & astronomy andie
 
Ch 3 -properties of light
Ch 3 -properties of lightCh 3 -properties of light
Ch 3 -properties of light
 
Universe and the Solar System (Lesson 1).pptx
Universe and the Solar System (Lesson 1).pptxUniverse and the Solar System (Lesson 1).pptx
Universe and the Solar System (Lesson 1).pptx
 
EINSTEIN'S GRAVITATIONAL LINES
EINSTEIN'S GRAVITATIONAL LINESEINSTEIN'S GRAVITATIONAL LINES
EINSTEIN'S GRAVITATIONAL LINES
 
Sun
SunSun
Sun
 
Dtu10e lecture ppt_ch04
Dtu10e lecture ppt_ch04Dtu10e lecture ppt_ch04
Dtu10e lecture ppt_ch04
 
IB Astrophysics - cosmology - Flippingphysics by nothingnerdy
IB Astrophysics - cosmology - Flippingphysics by nothingnerdyIB Astrophysics - cosmology - Flippingphysics by nothingnerdy
IB Astrophysics - cosmology - Flippingphysics by nothingnerdy
 
Dark side ofthe_universe_public_29_september_2017_nazarbayev_shrt
Dark side ofthe_universe_public_29_september_2017_nazarbayev_shrtDark side ofthe_universe_public_29_september_2017_nazarbayev_shrt
Dark side ofthe_universe_public_29_september_2017_nazarbayev_shrt
 

More from nipslab

Fluidi e superfluidi luminosi
Fluidi e superfluidi luminosiFluidi e superfluidi luminosi
Fluidi e superfluidi luminosinipslab
 
Perugia giazotto
Perugia giazottoPerugia giazotto
Perugia giazottonipslab
 
Perugia giazotto
Perugia giazottoPerugia giazotto
Perugia giazottonipslab
 
Spettroscopia di neutroni e dinamica proteica
Spettroscopia di neutroni e dinamica proteicaSpettroscopia di neutroni e dinamica proteica
Spettroscopia di neutroni e dinamica proteicanipslab
 
E' possibile controllare la corrente di calore?
E' possibile controllare la corrente di calore?E' possibile controllare la corrente di calore?
E' possibile controllare la corrente di calore?nipslab
 
La fisica dei motori molecolari
La fisica dei motori molecolariLa fisica dei motori molecolari
La fisica dei motori molecolarinipslab
 
Oltre l'orizzonte cosmologico
Oltre l'orizzonte cosmologicoOltre l'orizzonte cosmologico
Oltre l'orizzonte cosmologiconipslab
 
Stringhe, Brane e Olografia
Stringhe, Brane e OlografiaStringhe, Brane e Olografia
Stringhe, Brane e Olografianipslab
 
Econofisica: alcuni tratti di una scienza ibrida
Econofisica: alcuni tratti di una scienza ibridaEconofisica: alcuni tratti di una scienza ibrida
Econofisica: alcuni tratti di una scienza ibridanipslab
 
Parlami di Scienza Mariù
Parlami di Scienza MariùParlami di Scienza Mariù
Parlami di Scienza Mariùnipslab
 
COHERENCE, SELF-SIMILARITY AND BRAIN ACTIVITY
COHERENCE, SELF-SIMILARITY AND BRAIN ACTIVITYCOHERENCE, SELF-SIMILARITY AND BRAIN ACTIVITY
COHERENCE, SELF-SIMILARITY AND BRAIN ACTIVITYnipslab
 
La Previsione del tempo atmosferico dal paradigma deterministico a quello pro...
La Previsione del tempo atmosferico dal paradigma deterministico a quello pro...La Previsione del tempo atmosferico dal paradigma deterministico a quello pro...
La Previsione del tempo atmosferico dal paradigma deterministico a quello pro...nipslab
 
Computazione quantistica con i fotoni -P. Mataloni
Computazione quantistica con i fotoni -P. MataloniComputazione quantistica con i fotoni -P. Mataloni
Computazione quantistica con i fotoni -P. Mataloninipslab
 
Luce Colore e Visione - Alessandro Farini
Luce Colore e Visione - Alessandro FariniLuce Colore e Visione - Alessandro Farini
Luce Colore e Visione - Alessandro Farininipslab
 
Il Calore nella Finanza
Il Calore nella FinanzaIl Calore nella Finanza
Il Calore nella Finanzanipslab
 

More from nipslab (15)

Fluidi e superfluidi luminosi
Fluidi e superfluidi luminosiFluidi e superfluidi luminosi
Fluidi e superfluidi luminosi
 
Perugia giazotto
Perugia giazottoPerugia giazotto
Perugia giazotto
 
Perugia giazotto
Perugia giazottoPerugia giazotto
Perugia giazotto
 
Spettroscopia di neutroni e dinamica proteica
Spettroscopia di neutroni e dinamica proteicaSpettroscopia di neutroni e dinamica proteica
Spettroscopia di neutroni e dinamica proteica
 
E' possibile controllare la corrente di calore?
E' possibile controllare la corrente di calore?E' possibile controllare la corrente di calore?
E' possibile controllare la corrente di calore?
 
La fisica dei motori molecolari
La fisica dei motori molecolariLa fisica dei motori molecolari
La fisica dei motori molecolari
 
Oltre l'orizzonte cosmologico
Oltre l'orizzonte cosmologicoOltre l'orizzonte cosmologico
Oltre l'orizzonte cosmologico
 
Stringhe, Brane e Olografia
Stringhe, Brane e OlografiaStringhe, Brane e Olografia
Stringhe, Brane e Olografia
 
Econofisica: alcuni tratti di una scienza ibrida
Econofisica: alcuni tratti di una scienza ibridaEconofisica: alcuni tratti di una scienza ibrida
Econofisica: alcuni tratti di una scienza ibrida
 
Parlami di Scienza Mariù
Parlami di Scienza MariùParlami di Scienza Mariù
Parlami di Scienza Mariù
 
COHERENCE, SELF-SIMILARITY AND BRAIN ACTIVITY
COHERENCE, SELF-SIMILARITY AND BRAIN ACTIVITYCOHERENCE, SELF-SIMILARITY AND BRAIN ACTIVITY
COHERENCE, SELF-SIMILARITY AND BRAIN ACTIVITY
 
La Previsione del tempo atmosferico dal paradigma deterministico a quello pro...
La Previsione del tempo atmosferico dal paradigma deterministico a quello pro...La Previsione del tempo atmosferico dal paradigma deterministico a quello pro...
La Previsione del tempo atmosferico dal paradigma deterministico a quello pro...
 
Computazione quantistica con i fotoni -P. Mataloni
Computazione quantistica con i fotoni -P. MataloniComputazione quantistica con i fotoni -P. Mataloni
Computazione quantistica con i fotoni -P. Mataloni
 
Luce Colore e Visione - Alessandro Farini
Luce Colore e Visione - Alessandro FariniLuce Colore e Visione - Alessandro Farini
Luce Colore e Visione - Alessandro Farini
 
Il Calore nella Finanza
Il Calore nella FinanzaIl Calore nella Finanza
Il Calore nella Finanza
 

Oltre l'orizzonte cosmologico

  • 1. L’ orizzonte in cosmologia Oltre l’ orizzonte cosmologico Paolo de Bernardis Dipartimento di Fisica Università di Roma La Sapienza • L’ orizzonte delle particelle è la superficie che ci separa da A pranzo con la fisica - NIPS Lab quanto non possiamo osservare, perché la luce partita oltre l’ Dipartimento di Fisica Università di Perugia orizzonte non è ancora arrivata fino a noi. Le particelle che si trovano oltre l’ orizzonte non sono ancora in contatto causale 11/03/2010 con noi. Esiste se l’ universo ha un’età finita. • Esistono però altri orizzonti, di tipo fisico, più vicini di quello delle particelle, che dipendono dai dettagli della propagazione della luce nell’ universo. Lunghezza d’ onda λ (nm) Il redshift • Negli anni ’20 Carl Wirtz, Galassia Edwin Hubble ed altri, molto lontana analizzarono la luce proveniente da galassie distanti, e notarono che piu’ Galassia lontana una galassia e’ distante, piu’ le lunghezze d’ onda della sua luce sono Galassia vicina allungate (spostamento verso il rosso, redshift). laboratorio •Questo dato empirico viene interpretato come una prova dell’ espansione dell’ Ca II HI universo. Mg I Na I Percorrendo distanze cosmologiche, la luce cambia colore • Se vogliamo arrivare a • La relativita’ generale di Einstein prevede che, in un universo in espansione, le osservare l’ orizzonte, lunghezze d’onda λ dei fotoni si allunghino dobbiamo osservare più esattamente quanto le altre lunghezze. lontano possibile. • Piu’ distante e’ una galassia, piu’ e’ lungo il cammino che la luce deve percorrere, piu’ • La luce che è partita da lungo e’ il tempo che impiega, maggiore e’ regioni di universo così l’ espansione dell’ universo dal momento remote, avrà allungato dell’ emissione a quello dalla ricezione, e piu’ la lunghezza d’ onda viene allungata. moltissimo le sue lunghezze d’ onda, to diventando infrarossa, o microonde, o radioonde … t1 • Quindi richiede telescopi e rivelatori speciali per essere osservata. t2 1
  • 2. • L’ orizzonte a cui si arriva, però, è di tipo fisico. Orizzonte fisico • Infatti l’ espansione dell’ universo comporta un suo • In un universo in espansione, dominato dalla raffreddamento. Osservando lontano riceveremo radiazione, si può calcolare accuratamente il luce che è stata emessa quando l’ universo era più tempo necessario per passare dal Big Bang caldo di oggi. (densità e temperatura infinite) fino alla • Se guardiamo abbastanza lontano, arriveremo ad temperatura in cui elettroni e protoni osservare epoche in cui l’ universo era caldo come possono combinarsi in atomi (ricombinazione dell’ idrogeno). o più della superficie del sole. • La temperatura a cui avviene la • E quindi era ionizzato. In quell’ epoca i fotoni non ricombinazione è circa 3000K, e il tempo potevano propagarsi su linee rette, ma su spezzate necessario per arrivarci è di 380000 anni. venendo continuamente diffusi dagli elettroni liberi • Quindi per i primi 380000 anni della sua del mezzo ionizzato. evoluzione l’ universo è ionizzato e opaco. • L’ universo primordiale è opaco, come opaco è l’ interno di una stella. Orizzonte fisico Composizione della luce che viene dal sole (spettro) Lunghezza d’ onda (micron) • Osservando sempre più lontano, potremo vedere solo finchè l’ universo è Intensità luminosa W/m2/sr/cm-1) Radiazione Termica, trasparente. Cioè fino all’ epoca della Spettro di Corpo Nero ricombinazione. • Possiamo quindi osservare entro un orizzonte che è una superficie sferica, centrata sulla nostra posizione, al di là della quale l’ universo è opaco a causa delle diffusioni (scattering) contro gli elettroni liberi subite dai fotoni. • Si chiama superficie di ultimo scattering ed è il nostro orizzonte fisico. Strong evidence for a hot early phase of the Universe Orizzonte fisico • Nel seguito: Thermal spectrum …. –L’ osservazione della superficie di … and accurate isotropy ultimo scattering. • Come si fa 0K 3K 5K • Quali sono i risultati • Orizzonti causali impressi nell’ orizzonte fisico • Conseguenze per la cosmologia e la Cosmic fisica fondamentale Microwave –Come andare oltre. Background 2
  • 3. How to detect CMB photons How to detect CMB photons • E(γCMB) of the order of 1 meV • E(γCMB) of the order of 1 meV • Frequency: 15-600 GHz • Frequency: 15-600 GHz • Detection methods: • Detection methods: – Coherent (antenna + amplifier) – Coherent (antenna + amplifier) – Thermal (bolometers) – Thermal (bolometers) – Direct (Cooper pairs in KIDs) – Direct (Cooper pairs in KIDs) • Space (atmospheric opacity) • Space (atmospheric opacity) Cryogenic Bolometers Cryogenic Bolometers Again, need • The CMB spectrum is a continuum and bolometers are wide band • Johnson noise in the thermistor of low detectors. That’s why they are so sensitive. temperature d Δ V J2 and low Thermometer = 4 kTR (Ge thermistor (ΔR) df background Load resistor at low T) • Temperature noise d Δ W T2 4 kT 2 G eff = 2 df G eff + (2π fC ) 2 Incoming Q ΔV Photons (ΔB) • Photon noise d ΔWPh 4k 5TBG x4 (ex −1+ ε ) 2 5 Feed = 2 3 ∫ε dx Integrating Horn filter df ch (ex −1)2 Radiation cavity (angle selective) (frequency • Total NEP (fundamental): Absorber (ΔT) selective) 1 d ΔVJ d ΔWT d ΔWPh 2 2 2 • Fundamental noise sources are Johnson noise in the thermistor (<ΔV2> = 4kTRΔf), temperature fluctuations in the thermistor NEP2 = + + ((<ΔW2> = 4kGT2Δf), background radiation noise (Tbkg5) need ℜ2 df df df to reduce the temperature of the detector and the radiative background. •The absorber is micro machined as a web of Spider-Web Bolometers metallized Si3N4 wires, 2 μm thick, with 0.1 mm Built by JPL Signal wire pitch. Absorber •This is a good absorber for mm-wave photons and features a very low cross section for cosmic rays. Circa 1970 Also, the heat capacity is reduced by a large factor with respect to the solid absorber. Circa 1980 •NEP ~ 2 10-17 W/Hz0.5 is achieved @0.3K •150μKCMB in 1 s •Mauskopf et al. Appl.Opt. Thermistor 36, 765-771, (1997) 2 mm 3
  • 4. Development of thermal detectors for far IR and mm-waves 17 10 How to detect CMB photons Langley's bolometer Golay Cell a measurement (seconds) 12 • E(γCMB) of the order of 1 meV 10 Golay Cell time required to make Boyle and Rodgers bolometer • Frequency: 15-600 GHz 1year F.J.Low's cryogenic bolometer • Detection methods: 7 10 Composite bolometer 1day – Coherent (antenna + amplifier) 1 hour Composite bolometer at 0.3K – Thermal (bolometers) 2 10 – Direct (Cooper pairs in KIDs) 1 second Spider web bolometer at 0.3K Spider web bolometer at 0.1K Photon noise limit for the CMB • Space (atmospheric opacity) 1900 1920 1940 1960 1980 2000 2020 2040 2060 year COBE-FIRAS MPI • COBE-FIRAS was a (Martin Puplett cryogenic Martin- Interferometer) Puplett Fourier- Beamsplitter = Transform wire grid polarizer Spectrometer with composite Differential bolometers. It was instrument placed in a 400 km orbit. • A zero instrument ∞ I SKY ( x) = C ∫ [SSKY (σ ) − SREF (σ )]rt(σ ){ + cos[4πσx]}dσ 1 comparing the specific sky brightness to the 0 ∞ brightness of a ICAL( x) = C∫ [SCAL(σ ) − SREF (σ )]rt(σ ){ + cos[4πσx]}dσ 1 cryogenic Blackbody 0 FIRAS • The FIRAS guys were able to change the temperature of the internal blackbody until the interferograms were null. • This is a null measurement, which is much more sensitive than an absolute one: (one can boost the gain of the instrument without saturating it !). • This means that the difference between the spectrum of the sky and the spectrum of a blackbody is zero, i.e. the spectrum of the sky is a blackbody with that temperature. • This also means that the internal blackbody is a real blackbody: it is unlikely that the sky can have the same deviation from the Planck law characteristic of the source built in the lab. σ (cm-1) wavenumber 4
  • 5. • The spectrum • Techniques ? 2h ν 3 B(ν , T ) = c2 ex −1 TCMB = 2.725K RJ Wien RJ Wien hν ν xCMB = ≅ kTCMB 56 GHz xmax 1 − e − xmax = ⇒ xmax = 2.82 ⇒ 3 ν << ν max = 160 GHz ⇒ coherent detectors ν max = 159 GHz (σ max = 5.31 cm −1 ) ν >> ν max = 160 GHz ⇒ bolometers λ B(ν , T ) = B(λ , T ) ⇒ λmax = 1.06 mm ν ≈ ν max = 160 GHz ⇒ ? ?? ν • The DMR instrument aboard of the COBE satellite COBE-DMR CMB anisotropy Cosmic Horizons measured the first map of • The very good isotropy of the CMB sky is to CMB anisotropy (1992) some extent surprising. Galactic Plane • The contrast of the image is very low, but there are • The CMB comes from an epoch of 380000 years structures, at a level of after the Big Bang. 10ppm. • So it depicts a region of the universe as it was • Instrumental noise is 380000 years after the Big Bang. significant in the maps (compare the three different • The region we can map, however, is much wider wavelengths) than 380000 light years. • DMR did not have a real • So it contains subregions which are separated telescope, so the angular more than the length light has travelled since the resolution was quite coarse Big Bang. These regions would not be in causal (10 o !!) contact in a static universe. R= distance from R= distance from us = 14 Glyrs a l Gly us = 14 Glyrs s ev er y 4 Gl But also distance in But also distance in R=1 R time: 14 Gyrs ago R= time: 14 Gyrs ago & 14 t Gl y here, now here, now K K 000 000 T=3 T=3 Transparent Transparent universe universe Opaque Opaque universe universe 5
  • 6. Cosmic Horizons r=3 R= distance from 80 k l y ly us = 14 Glyrs er al G ly s ev 0k • We measure the same brightness y 38 4 Gl But also distance in r= (temperature) in all these regions, and this R=1 R= time: 14 Gyrs ago 14 Gl is surprising, because to attain thermal y equilibrium, contact is required ! (through forces, thermal, radiative …). here, now • We live in an expanding universe. Regions K separated by more than 380000 light 000 T=3 years might have been in causal contact Transparent Opaque universe (and thus homogeneized) earlier. universe Expansion vs Horizon Expansion vs Horizon In a Universe made of on In a Universe made of on r iz r iz matter and radiation, the e ho matter and radiation, the e ho expansion rate decreases f th expansion rate decreases f th with time. eo with time. eo s iz s iz size of size of ed region ed region the consider the consider So a region as large as the horizon when the CMB is released …. 380000 y time time Expansion vs Horizon Expansion vs Horizon In a Universe made of on In a Universe made of on r iz r iz matter and radiation, the e ho matter and radiation, the e ho expansion rate decreases f th expansion rate decreases f th with time. eo with time. eo s iz s iz size of size of ed region ed region the consider the consider … has never been … nor has been causally connected causally connected to before surrounding regions 380000 y 380000 y time time 6
  • 7. Cosmic Horizons Granulazione solare • Hence the “Paradox of Horizons” : Gas incandescente sulla superficie del • We see approximately the same temperature Sole (5500 K) everywhere in the map of the CMB, but we 8 minuti luce Qui, ora do not understand how this has been obtained in the first 380000 years of the evolution of the universe. • Was this temperature regulated everywhere ab-initio ? • Are our assumptions about the composition of the universe wrong, and the universe does not decelerate in the first 380000 years ? Granulazione solare Flatness Paradox Gas incandescente • The expansion of the Universe is regulated by the sulla superficie del Friedmann equation, directly deriving from Sole (5500 K) Einstein’s equations for a homogeneous and Qui, ora 8 minuti luce isotropic fluid. • If the Universe contains only matter and radiation, it either collapses or dilutes, with a rate depending on Gas incandescente the mass-energy density. nell’ universo primordiale (l’ • To get an evolution with a mass-energy density of universo diventa the order of the observed one today, billions of trasparente a 3000 K) years after the Big Bang, you need to tune it at the Qui, ora 14 miliardi di anni luce beginning very accurately, precisely equal to a critical value. Mappa di BOOMERanG dell’ Universo Primordiale • How was this fine-tuning achieved ? Inflation might be the solution a(t) C I n os m fla ic tio n Sub-atomic scales ang ig B th eB ter t=10-36s s af Cosmic distances 1n ity, Quantum fluctuations of ens ic al d the field dominating the Crit energy of the universe Energy scale: 1016 GeV Cosmic Inflation: A very fast expansion Cosmological scales of the universe, driven by a phase transition in t=380000 y Billion years t the first split-second density fluctuations 7
  • 8. ma l size of d region Expansion vs Horizon nor lution the considere e vo According to the inflation on on r iz r iz theory …. e ho e ho f th f th eo eo s iz s iz exponential size of expansion ed region the consider Inflation: A region as large as the horizon when the CMB is released …. …had been causally connected to the surrounding regions before inflation 380000 y 10-36 s time time ma l size of d region • Inflation nor lution the considere – Provides a physical process to origin density fluctuations e vo – Explains the flatness paradox – Explains the horizons paradox on r iz • Is a predictive theory (a list of > models has been compiled..) e ho f th – Predicts gaussian density fluctuations eo – Predicts scale invariant density fluctuations s iz – Predicts Ω=1 exponential • How can we test it ? expansion Inflation: • We still expect a difference between the physical processes happening inside the horizon and those relevant outside the horizon. • So we expect anyway that the scale of the causal horizon is Here the horizon imprinted in the image of the CMB. contains all of the • The angular size subtended by the horizons when the CMB is universe observable released is around 1 degree, if the geometry of space is today Euclidean. • We need sharp images of the CMB, so that we can resolve 10-36 s time the density fuctuations predicted by inflation. 380000 lyrs R θ d 1o R COBE resolution Here, now K 10o 000 (T= ng ∞) a BigB T=3 d ao 380000 ly θ≈ × ≈ ×1100 ≈1o R a 14000000000 ly R= distance from us = 14 Glyrs 8
  • 9. LSS high resolution 14 Gly horizon • The images from COBE-DMR were not sharp Critical density Universe Ω=1 enough to resolve cosmic horizons (the angular 1o resolution was 7°). • After COBE, experimentalists worked hard to develop higher resolution experiments. • In addition to testing inflation, we expected high horizon resolution observations to give informations Ω>1 about 2o High density Universe a) The geometry of space b) The physics of the primeval fireball. horizon a) The angle subteneded by the horizon can be 0.5o more or less than 1° if space is curved. Low density Universe Ω<1 PS PS PS The quest for high resolution 0 200 High density Universe l 0 200 Critical density Universe l 0 200 Low density Universe l b) Within a causally connected region, the Ω>1 Ω=1 Ω<1 hot, ionized gas of the primeval fireball is subject to opposite forces: gravity and photon pressure. 2o 1o • If a density fluctuation is present, 0.5o “acoustic oscillations” start, depending on the composition of the universe (density of baryons) and on the spectrum of initial density fluctuations. Density perturbations (Δρ/ρ) were oscillating in the primeval plasma (as a result of the opposite effects of gravity and photon pressure). Due to gravity, T is reduced enough Δρ/ρ increases, that gravity wins again • The study of solar oscillations and so does T allows us to study the interior structure of the sun, well below the photosphere, because these waves depend on the internal Pressure of photons structure of the sun. overdensity increases, resisting to the compression, and the t perturbation bounces back • The study of CMB anisotropy Before recombination T > 3000 K allows us to study the universe t After recombination T < 3000 K well behind (well before) the cosmic photosphere (the Here photons are not tightly recombination epoch), because coupled to matter, and their the oscillations depend on the pressure is not effective. composition of the universe Perturbations can grow and form Galaxies. and on the initial perturbations. After recombination, density perturbation can grow and create the hierarchy of structures we see in the nearby Universe. 9
  • 10. How to obtain wide, high angular How to obtain wide, high angular resolution maps of the CMB resolution maps of the CMB • Angular Resolution: Microwave telescope, at • Angular Resolution: Microwave telescope, at relatively high frequencies (θ=λ/D) relatively high frequencies (θ=λ/D) • 150GHz: peak of CMB brightness • 150GHz: peak of CMB brightness • Low sky noise and high transparency at 150 GHz: • Low sky noise and high transparency at 150 GHz: Balloon or Satellite Balloon or Satellite • High sensitivity at 150 GHz: cryogenic bolometers • High sensitivity at 150 GHz: cryogenic bolometers • Multiband for controlling foreground emission • Multiband for controlling foreground emission • Sensitivity and sky coverage (size of explored Statistical samples of the CMB sky (about one hundred directions) in the 90s region): either – Extremely high sensitivity (0.1K) and regular flight In Italy: ARGO In the USA: MAX, MSAM, … or – High sensitivity (0.3K) and long duration flight How to obtain wide, high angular Universita’ di Roma, La Sapienza: Cardiff University: P. Ade, P. Mauskopf P. de Bernardis, G. De Troia, A. Iacoangeli, IFAC-CNR: A. Boscaleri S. Masi, A. Melchiorri, L. Nati, F. Nati, F. INGV: G. Romeo, G. di Stefano resolution maps of the CMB Piacentini, G. Polenta, S. Ricciardi, P. Santini, M. Veneziani IPAC: B. Crill, E. Hivon CITA: D. Bond, S. Prunet, D. Pogosyan Case Western Reserve University: • Angular Resolution: Microwave telescope, at J. Ruhl, T. Kisner, E. Torbet, T. Montroy LBNL, UC Berkeley: J. Borrill Imperial College: A. Jaffe, C. Contaldi relatively high frequencies (θ=λ/D) Caltech/JPL: A. Lange, J. Bock, W. Jones, V. Hristov U. Penn.: M. Tegmark, A. de Oliveira-Costa Universita’ di Roma, Tor Vergata: N. Vittorio, • 150GHz: peak of CMB brightness University of Toronto: B. Netterfield, C. MacTavish, E. Pascale G. de Gasperis, P. Natoli, P. Cabella • Low sky noise and high transparency at 150 GHz: Balloon or Satellite • High sensitivity at 150 GHz: cryogenic bolometers • Multiband for controlling foreground emission • Sensitivity and sky coverage (size of explored region): either – Extremely high sensitivity (0.1K) and regular flight MAXIMA or – High sensitivity (0.3K) and long duration flight BOOMERanG BOOMERanG the BOOMERanG ballon-borne telescope 120 mm 3He Sun Shield fridge Solar Array Differential GPS Array D D Star Camera Cryostat and 0.3K detectors D D D D D Focal plane assembly Ground BOOMERanG-LDB Appl.Opt Shield Primary 1.6K MultiBand Mirror 150 D = location of detectors Photometers 150 (150,240,410) (1.3m) preamps 90 90 4o on the sky Sensitive at 90, 150, 240, 410 GHz 10
  • 11. • The instrument is flown 9/Jan/1999 above the Earth atmosphere, at an altitude of 37 km, by means of a stratospheric balloon. • Long duration flights (LDB, 1-3 weeks) are performad by NASA-NSBF over Antarctica • BOOMERanG has been flown LDB two times: • From Dec.28, 1998 to Jan.8, 1999, for CMB anisotropy measurements • In 2003, from Jan.6 to Jan.20, for CMB polarization measurements (B2K). BOOMERanG • 1998: • 1998: BOOMERanG BOOMERanG mapped the mapped the temperature temperature fluctuations of fluctuations of the CMB at the CMB at sub-horizon sub-horizon scales (<1O). scales (<1O). • The signal • The rms was well signal has the above the CMB noise: spectrum and does not fit 2 indep. det. at 150 GHz any spectrum of foreground emission. PS PS PS 0 200 l 0 200 l 0 200 l High density Universe Critical density Universe Low density Universe Ω>1 Ω=1 Ω<1 2o 1o 0.5o 11
  • 12. In the primeval plasma, photons/baryons density perturbations start to oscillate only when the sound horizon becomes larger than their linear size . Small wavelength perturbations oscillate faster than large ones. Full power multipole The angle subtended depends on the geometry of space spectrum Size of sound horizon v v v LSS measurement 2nd dip from C R BOOMERanG size of perturbation (2002) (wavelength/2) v v 450 -Geometry of C R 2nd peak the universe from location of v v first peak C 1st dip -Signature of v 380000 ly inflation from amplitudes of 3 220 C 1st peak peaks and general slope 0y time 300000 y Big-bang recombination Power Spectrum We can measure cosmological parameters with CMB ! Temperature Angular spectrum varies with Ωtot , Ωb , Ωc, Λ, τ, h, ns, … “The perfect universe” • Data consistent with flat Universe  Radiation Normal Matter • Baryon fraction agrees with BBN < 0.3% 4% • With supernovae or LSS => Λ term Dark Matter 22% Dark Energy 74% 12
  • 13. Did Inflation really happen ? CMB polarization • We do not know. Inflation has not been • CMB radiation is Thomson scattered at recombination. proven yet. It is, however, a mechanism able • If the local distribution of incoming radiation in the to produce primordial fluctuations with the right rest frame of the electron has a quadrupole moment, characteristics. the scattered radiation acquires some degree of linear polarization. • Four of the basic predictions of inflation have been proven: Last scatte ri ng surface – existence of super-horizon fluctuations – gaussianity of the fluctuations – flatness of the universe – scale invariance of the density perturbations • One more remains to be proved: the stochastic background of gravitational waves produced during the inflation phase. • CMB can help in this – see below. y y - -10ppm +10ppm + If inflation really happened… x x + - + - - - • It stretched geometry of OK space to nearly Euclidean y - + • It produced a nearly scale invariant spectrum of density OK fluctuations x - • It produced a stochastic background of gravitational waves. ? = e- at last scattering Quadrupole from P.G.W. B-modes from P.G.W. • If inflation really happened: • The amplitude of this effect is very small, but It stretched geometry of space to depends on the Energy scale of inflation. In fact the nearly Euclidean amplitude of tensor modes normalized to the scalar It produced a nearly scale invariant ones is: 1/ 4 spectrum of gaussian density 1/ 4 ⎛ C2 ⎞ GW Inflation potential ⎛T ⎞ V 1/ 4 fluctuations ⎜ ⎟ ≡ ⎜ Scalar ⎟ ⎜C ⎟ ≅ It produced a stochastic background of ⎝S⎠ ⎝ 2 ⎠ 3.7 × 1016 GeV gravitational waves: Primordial G.W. • and l(l + 1) B ⎡ V 1/ 4 ⎤ The background is so faint that even E-modes cl max ≅ 0.1μK ⎢ ⎥ LISA will not be able to measure it. 2π ⎢ ⎣ 2 ×1016 GeV ⎥ ⎦ • Tensor perturbations also produce • There are theoretical arguments to expect that the quadrupole anisotropy. They generate energy scale of inflation is close to the scale of GUT irrotational (E-modes) and rotational (B-modes) components in the CMB i.e. around 1016 GeV. polarization field. • The current upper limit on anisotropy at large scales • Since B-modes are not produced by scalar gives T/S<0.5 (at 2σ) fluctuations, they represent a signature of • A competing effect is lensing of E-modes, which is inflation. B-modes important at large multipoles. 13
  • 14. PSB devices & feed optics (Caltech + JPL) PSB Pair 06/01/2003 145 GHz B03 TT Power Spectrum T map • Detection of anisotropy signals all the way up to l=1500 (Masi et al., • Time and detector jacknife tests OK 2005) • Systematic effects negligible wrt noise & cosmic variance the deepest CMB map ever [Masi et al. 2005] Jones et al. 2005 19/20 TE Power Spectrum • Smaller signal, but detection evident (3.5σ) • NA and IT results consistent • Error bars dominated by cosmic variance • Time and detectors Piacentini et al. 2005 jacknife OK, i.e. systematics negligible • Data consistent with TT best fit model La mappa dell’ universo primordiale con sovrapposta la polarizzazione Realizzata dal gruppo di Cosmologia di Tor Vergata (Genn. 2005) 14
  • 15. EE Power Spectrum WMAP (2002) • Signal extremely small, but detection evident for EE Wilkinson Microwave Anisotropy Probe (non zero at 4.8σ). • No detection for BB nor for EB • Time and detectors jacknife OK, i.e. systematics negligible • Data consistent with TT best Montroy et al. 2005 fit model • Error bars dominated by detector noise. Montroy et al. 2005 WMAP in L2 : sun, earth, moon are all WMAP Hinshaw et al. 2006 well behind the solar shield. astro-ph/0603451 Detailed Views of the 1o Recombination Epoch (z=1088, 13.7 Gyrs ago) BOOMERanG Masi et al. 2005 astro-ph/0507509 Paradigm of CMB anisotropies Power spectrum k l Processed by smaller than Power of CMB causal effects like spectrum of temperature horizon Acoustic oscillations Scales perturbations Radiation pressure fluctuations Gaussian, from photons resists gravitational INFLATION adiabatic Quantum (density) compression fluctuations horizon horizon horizon in the early Universe (ΔT/T) = (Δρ/ρ) /3 + (Δφ/c2)/3 P(k)=Akn l( l+1) cl – (v/c)•n larger than horizon Scales Unperturbed plasma neutral 2006 Hinshaw et al. 2006 0 Big-Bang 10-36s Inflation 3 min Nucleosynthesis 300000 yrs Recombination t 15
  • 16. Cosmological Parameters Assume an adiabatic inflationary model, and compare with same weak prior on 0.5<h<0.9 WMAP BOOMERanG (100% of the sky, <1% gain (4% of the sky, 10% gain Need for high calibration, <1% beam, calibration, 10% beam, angular multipole coverage 2-700) multipole coverage 50- resolution 1000) Bennett et al. 2003 < 10’ Ruhl et al. astro-ph/0212229 • Ωο =1.02+0.02 • Ωο = 1.03+0.05 • ns = 0.99+0.04 * • ns = 1.02+0.07 • Ωbh2 =0.022+0.001 • Ωbh2 =0.023+0.003 • Ωmh2 =0.14+0.02 • Ωmh2 =0.14+0.04 • T = 13.7+0.2 Gyr • T=14.5+1.5 Gyr τrec= ? 2006 • • τrec= 0.166+0.076 Hinshaw et al. 2006 PLANCK 2009 Planck is a very ambitious experiment. ESA’s mission to map the Cosmic Microwave Background Image of the whole sky at wavelengths near the intensity It carries a peak of the CMB radiation, with complex CMB experiment (the state of the art, a • high instrument sensitivity (ΔT/T∼10-6) few years ago) all the way to L2, • high resolution (≈5 arcmin) • wide frequency coverage (25 GHz-950 GHz) improving the sensitivity wrt • high control of systematics WMAP by at least a factor 10, •Sensitivity to polarization extending the frequency Launch: 2009; payload module: 2 instruments + telescope coverage towards high • Low Frequency Instrument (LFI, uses HEMTs) frequencies by a factor about 10 • High Frequency Instrument (HFI, uses bolometers) • Telescope: primary (1.50x1.89 m ellipsoid) Galaxy CMB 16
  • 17. Galaxy Galaxy CMB CMB Two Instruments: Low Frequency (LFI) and High Frequency (HFI) Spider Web and PSB Bolometers • Ultra-sensitive Technology • Tested on BOOMERanG (Piacentini et al. 2002, Crill et al. 2004, Masi et al. 2006) for bolometers, filters, horns, scan at 0.3K and on Archeops at 0.1K (Benoit et al. 2004). • Crucial role of balloon missions to get important science results, but also to validate satellite technology. 17
  • 18. Measured performance of Planck HFI bolometers (0.1K) (Holmes et al., Appl. Optics, 47, 5997, 2008) Multi-moded = Photon noise limit Planck-Herschel Launch May 14, 2009 15:12 CEST Telescopio fuori asse, diametro specchio principale 1.8 m 18
  • 19. Observing strategy The payload will work from L2, to Launch May 14th, 2009 avoid the emission of the Earth, of the Moon, of the Sun Boresight (85o from spin axis) Cruise May-June 2009 Field of view rotates at 1 rpm Calibrations, M Scan Ecliptic plane start July 2009 1 o/day E L2 HFI Verification / Calibration Plan e an m al pl ste c ht -sy FI fo SL) -flig b H su , C in (I AS LIGH, BEAM Main beam Far side lobes LIGH, BEAM Spectral response Time response LFER, SPIN Optical polarisation LIGH, POLC Thermo-optical coupling, bckgnd 01TO, 16TO, 4KTO Linearity 4KTO Absolute response LIGH Detection noise RW72, SPIN, NOIS Crosstalk XTLK Detection chain caract QECn, IVCF, IBTU, PHTU Numerical compression CPSE, CPVA Cryo chain setup 4KTU,16TU, 01TU Compatibility XTRA, NOIS Scanning ACMS [1.7arcmin] Solar AA SUNI [50%] 3 months after launch The sky explored by Planck so far (First Light Survey, 2 weeks) ● The launch was flawless and the transfer to final orbit was completed on 1 July ● All parts of the satellite survived launch and it is fully functional ● Coldest temperature (0.1 K) was reached on 3 July. The thermal behavior (static and dynamic) is as predicted from the ground. ● The instruments have been fully tuned and are in stable operations since 30 July ● All planned initial tests and measurements have been completed on 13 August ● Planck is now transitioning into routine operational mode Preview of data from the first-light survey (2 weeks of stable operation) 19
  • 20. The sky explored by Planck so far (First Light Survey, 2 weeks) Galactic Plane 20
  • 21. The sky explored by Planck in the First Light Survey, first 2 weeks High Galactic Latitude (CMB) 21