This document discusses artificial neural networks. It defines neural networks as computational models inspired by the human brain that are used for tasks like classification, clustering, and pattern recognition. The key points are:
- Neural networks contain interconnected artificial neurons that can perform complex computations. They are inspired by biological neurons in the brain.
- Common neural network types are feedforward networks, where data flows from input to output, and recurrent networks, which contain feedback loops.
- Neural networks are trained using algorithms like backpropagation that minimize error by adjusting synaptic weights between neurons.
- Neural networks have various applications including voice recognition, image recognition, and robotics due to their ability to learn from large amounts of data.