blog.md 6/29/2023
1 / 5
ByNikhilKumarMarepally
LeveragingClusteringforDocumentLayoutAnalysisin
MachineLearningProjects
Introduction
Inmachinelearningprojects,dealingwithdiversedocumentlayoutscanposeasignificantchallenge.
However,byleveragingclusteringtechniques,wecanidentifydocumentswithsimilarlayoutsand
selectivelyaugmentthetrainingdatatoimprovemodelperformance.Inthisblogpost,wewillexplorethe
conceptofdocumentlayoutanalysis,theimportanceoftargeteddataaugmentation,andhowclustering
canaidinidentifyingunderperformingdocumentsforaugmentation.
DocumentLayoutAnalysis
Documentlayoutanalysisinvolvesunderstandingthestructureandorganizationofdifferenttypesof
documents.Itplaysacrucialroleintaskssuchasopticalcharacterrecognition(OCR),information
extraction,anddocumentclassification.Variationindocumentlayoutscanposedifficultieswhentraining
machinelearningmodels,astheymayrequiredifferentpreprocessingforfeatureextractiontechniques.
TargetedDataAugmentation
Inscenarioswhereatrainedmodelisunderperforming,itisnotalwaysfeasibleorefficienttoinclude
randomdocumentsforadditionaltraining.Targeteddataaugmentationfocusesonselectivelyaugmenting
blog.md 6/29/2023
2 / 5
thetrainingdatawithsamplesthatspecificallyaddressthemodel'sweaknesses.Byaugmentingonlythe
relevantdocuments,wecanimprovethemodel'sperformancewithoutintroducingunnecessarynoise.
UtilizingClusteringforDocumentLayoutAnalysis
Clusteringtechniquesprovideavaluableapproachforgroupingsimilardocumentsbasedontheirlayout
characteristics.Thesetechniquesenableustoidentifyclustersofdocumentswithsimilarstructures,
formatting,orvisualfeatures.Byapplyingclusteringalgorithmstotheexistingdataset,wecan
automaticallygroupdocumentsintodistinctclusters,eachrepresentingaspecificlayouttype.
ProcessOverview
Hereisanoverviewoftheprocessfollowedintheproject:
.ImageFeatureExtraction:
TheVGG16modelwasusedtoextractmeaningfulfeaturesfromthedocumentimages.VGG16isa
populardeeplearningmodelthathasbeenpre-trainedonalargedatasetandcaneffectivelyextract
high-levelfeaturesfromimages.
.ClusteringUsingK-means:
TheextractedimagefeatureswerethenusedasinputfortheK-meansclusteringalgorithm.K-means
isanunsupervisedlearningalgorithmthatgroupssimilardatapointsintoclustersbasedontheir
featuresimilarity.
ByapplyingK-meansclusteringtotheimagefeatures,documentswithsimilarlayoutsweregrouped
together,formingdistinctclusters.
.DeterminingOptimalNumberofClusters:
Tofindtheoptimalnumberofclusters,anelbowplotanalysiswasperformed.Theelbowplothelps
identifythenumberofclustersthatprovidesthemostsignificantimprovementinwithin-cluster
similaritywhileavoidingexcessivefragmentation.
Theelbowplottypicallydisplaysthenumberofclustersonthex-axisandameasureofwithin-cluster
variance(suchasthesumofsquareddistances)onthey-axis.The"elbow"pointontheplot
indicatesthenumberofclusterswheretheadditionalbenefitofaddingmoreclustersbecomes
marginal.
blog.md 6/29/2023
3 / 5
SelectiveDataAugmentationProcess
Oncethedocumentsareclustered,wecanfocusontheclusterswherethemodelisunderperforming.By
analyzingthemisclassifiedorlow-performingsampleswithintheseclusters,wegaininsightsintothe
particulardocumentlayoutsthatchallengethemodel.Withthisknowledge,wecandesigntargeteddata
augmentationstrategiestoaddresstheweaknessesidentifiedintheunderperformingclusters.Below
imageshowsthedocumentsfromasinglecluster.
TechniquesforDataAugmentation
Dependingonthespecificrequirementsandcharacteristicsoftheunderperformingclusters,variousdata
augmentationtechniquescanbeemployed.Thesemayincludetechniquessuchasgeometric
transformations,textperturbation,imagemanipulation,orlayoutmodification.Byaugmentingthedata
blog.md 6/29/2023
4 / 5
withintherelevantclusters,wecanprovidethemodelwithadditionaltrainingsamplesthatresemblethe
challengingdocumentsitstruggleswith.
Experiments
Iappliedaclusteringapproachtogroupsimilardocumentsbasedontheirlayoutforasingleclassobject
detectiontask.Toevaluatetheeffectivenessofthisapproach,Iconductedtwoexperimentscomparingthe
model'sperformancewithandwithoutincludingdocumentsfromaspecificcluster(cluster6).
Theresultsshowedasignificantdifferenceinperformancebetweenthetwoscenarios.Themodeltrained
withtheinclusionofdocumentsfromcluster6outperformedthemodeltrainedwithoutthem.This
highlightstheimportanceofconsideringlayoutsimilarityintrainingthemodelforbetterobjectdetection
results.
Inaproductionenvironment,it'schallengingtopredicttheincomingtrafficandthetypesofdocumentsthat
willbeencountered.Toaddressthisuncertainty,Iemployedasystematicapproachofbinningthe
documentsbasedonlayoutsimilarity.Bysystematicallyselectingdocumentsfromdifferentclusters,the
modelbecomesmorerobustandadaptabletovariousdocumentlayouts,enablingbetterperformanceeven
withunpredictabletraffic.
Thisclusteringanddocumentselectionstrategyprovidesapracticalsolutionforhandlingdiverse
documentlayoutsandensuresthemodel'sreliabilityinreal-worldscenarios.
IterativeImprovement
Theiterativenatureofthisapproachallowsforcontinuousimprovementofthemodel'sperformance.By
evaluatingthemodel'sperformanceontheaugmenteddataandretrainingit,wecaniterativelyrefinethe
model'sabilitytohandlediversedocumentlayouts.Thisprocessensuresthatthemodelbecomesmore
robustandaccurateovertime.
Conclusion
Inmachinelearningprojectsinvolvingdiversedocumentlayouts,targeteddataaugmentationisapowerful
techniquetoenhancemodelperformance.Byleveragingclusteringalgorithms,wecanidentifyclustersof
documentswithsimilarlayouts,enablingustoselectivelyaugmentthetrainingdatawithrelevantsamples.
blog.md 6/29/2023
5 / 5
Thisapproachsignificantlyimprovesthemodel'sabilitytohandlevariousdocumentstructuresandleadsto
betteroverallperformance.
Documentlayoutanalysis,combinedwithtargeteddataaugmentation,providesapracticalandefficient
strategytoaddressunderperformingmodelsinspecificclassificationtasks.Byiterativelyrefiningthemodel
usingtheaugmenteddata,wecanachievehigheraccuracyandrobustnessinhandlingdiversedocument
layouts.
Wehopethisblogposthasprovidedvaluableinsightsintotheimportanceofdocumentlayoutanalysis,
targeteddataaugmentation,andtheroleofclusteringinidentifyingunderperformingdocuments.Stay
tunedformoreexcitingtopicsinthefieldofmachinelearninganddataanalysis!

Leveraging Clustering for Document Layout Analysis in Machine Learning Projects.pdf

  • 1.
    blog.md 6/29/2023 1 /5 ByNikhilKumarMarepally LeveragingClusteringforDocumentLayoutAnalysisin MachineLearningProjects Introduction Inmachinelearningprojects,dealingwithdiversedocumentlayoutscanposeasignificantchallenge. However,byleveragingclusteringtechniques,wecanidentifydocumentswithsimilarlayoutsand selectivelyaugmentthetrainingdatatoimprovemodelperformance.Inthisblogpost,wewillexplorethe conceptofdocumentlayoutanalysis,theimportanceoftargeteddataaugmentation,andhowclustering canaidinidentifyingunderperformingdocumentsforaugmentation. DocumentLayoutAnalysis Documentlayoutanalysisinvolvesunderstandingthestructureandorganizationofdifferenttypesof documents.Itplaysacrucialroleintaskssuchasopticalcharacterrecognition(OCR),information extraction,anddocumentclassification.Variationindocumentlayoutscanposedifficultieswhentraining machinelearningmodels,astheymayrequiredifferentpreprocessingforfeatureextractiontechniques. TargetedDataAugmentation Inscenarioswhereatrainedmodelisunderperforming,itisnotalwaysfeasibleorefficienttoinclude randomdocumentsforadditionaltraining.Targeteddataaugmentationfocusesonselectivelyaugmenting
  • 2.
    blog.md 6/29/2023 2 /5 thetrainingdatawithsamplesthatspecificallyaddressthemodel'sweaknesses.Byaugmentingonlythe relevantdocuments,wecanimprovethemodel'sperformancewithoutintroducingunnecessarynoise. UtilizingClusteringforDocumentLayoutAnalysis Clusteringtechniquesprovideavaluableapproachforgroupingsimilardocumentsbasedontheirlayout characteristics.Thesetechniquesenableustoidentifyclustersofdocumentswithsimilarstructures, formatting,orvisualfeatures.Byapplyingclusteringalgorithmstotheexistingdataset,wecan automaticallygroupdocumentsintodistinctclusters,eachrepresentingaspecificlayouttype. ProcessOverview Hereisanoverviewoftheprocessfollowedintheproject: .ImageFeatureExtraction: TheVGG16modelwasusedtoextractmeaningfulfeaturesfromthedocumentimages.VGG16isa populardeeplearningmodelthathasbeenpre-trainedonalargedatasetandcaneffectivelyextract high-levelfeaturesfromimages. .ClusteringUsingK-means: TheextractedimagefeatureswerethenusedasinputfortheK-meansclusteringalgorithm.K-means isanunsupervisedlearningalgorithmthatgroupssimilardatapointsintoclustersbasedontheir featuresimilarity. ByapplyingK-meansclusteringtotheimagefeatures,documentswithsimilarlayoutsweregrouped together,formingdistinctclusters. .DeterminingOptimalNumberofClusters: Tofindtheoptimalnumberofclusters,anelbowplotanalysiswasperformed.Theelbowplothelps identifythenumberofclustersthatprovidesthemostsignificantimprovementinwithin-cluster similaritywhileavoidingexcessivefragmentation. Theelbowplottypicallydisplaysthenumberofclustersonthex-axisandameasureofwithin-cluster variance(suchasthesumofsquareddistances)onthey-axis.The"elbow"pointontheplot indicatesthenumberofclusterswheretheadditionalbenefitofaddingmoreclustersbecomes marginal.
  • 3.
    blog.md 6/29/2023 3 /5 SelectiveDataAugmentationProcess Oncethedocumentsareclustered,wecanfocusontheclusterswherethemodelisunderperforming.By analyzingthemisclassifiedorlow-performingsampleswithintheseclusters,wegaininsightsintothe particulardocumentlayoutsthatchallengethemodel.Withthisknowledge,wecandesigntargeteddata augmentationstrategiestoaddresstheweaknessesidentifiedintheunderperformingclusters.Below imageshowsthedocumentsfromasinglecluster. TechniquesforDataAugmentation Dependingonthespecificrequirementsandcharacteristicsoftheunderperformingclusters,variousdata augmentationtechniquescanbeemployed.Thesemayincludetechniquessuchasgeometric transformations,textperturbation,imagemanipulation,orlayoutmodification.Byaugmentingthedata
  • 4.
    blog.md 6/29/2023 4 /5 withintherelevantclusters,wecanprovidethemodelwithadditionaltrainingsamplesthatresemblethe challengingdocumentsitstruggleswith. Experiments Iappliedaclusteringapproachtogroupsimilardocumentsbasedontheirlayoutforasingleclassobject detectiontask.Toevaluatetheeffectivenessofthisapproach,Iconductedtwoexperimentscomparingthe model'sperformancewithandwithoutincludingdocumentsfromaspecificcluster(cluster6). Theresultsshowedasignificantdifferenceinperformancebetweenthetwoscenarios.Themodeltrained withtheinclusionofdocumentsfromcluster6outperformedthemodeltrainedwithoutthem.This highlightstheimportanceofconsideringlayoutsimilarityintrainingthemodelforbetterobjectdetection results. Inaproductionenvironment,it'schallengingtopredicttheincomingtrafficandthetypesofdocumentsthat willbeencountered.Toaddressthisuncertainty,Iemployedasystematicapproachofbinningthe documentsbasedonlayoutsimilarity.Bysystematicallyselectingdocumentsfromdifferentclusters,the modelbecomesmorerobustandadaptabletovariousdocumentlayouts,enablingbetterperformanceeven withunpredictabletraffic. Thisclusteringanddocumentselectionstrategyprovidesapracticalsolutionforhandlingdiverse documentlayoutsandensuresthemodel'sreliabilityinreal-worldscenarios. IterativeImprovement Theiterativenatureofthisapproachallowsforcontinuousimprovementofthemodel'sperformance.By evaluatingthemodel'sperformanceontheaugmenteddataandretrainingit,wecaniterativelyrefinethe model'sabilitytohandlediversedocumentlayouts.Thisprocessensuresthatthemodelbecomesmore robustandaccurateovertime. Conclusion Inmachinelearningprojectsinvolvingdiversedocumentlayouts,targeteddataaugmentationisapowerful techniquetoenhancemodelperformance.Byleveragingclusteringalgorithms,wecanidentifyclustersof documentswithsimilarlayouts,enablingustoselectivelyaugmentthetrainingdatawithrelevantsamples.
  • 5.
    blog.md 6/29/2023 5 /5 Thisapproachsignificantlyimprovesthemodel'sabilitytohandlevariousdocumentstructuresandleadsto betteroverallperformance. Documentlayoutanalysis,combinedwithtargeteddataaugmentation,providesapracticalandefficient strategytoaddressunderperformingmodelsinspecificclassificationtasks.Byiterativelyrefiningthemodel usingtheaugmenteddata,wecanachievehigheraccuracyandrobustnessinhandlingdiversedocument layouts. Wehopethisblogposthasprovidedvaluableinsightsintotheimportanceofdocumentlayoutanalysis, targeteddataaugmentation,andtheroleofclusteringinidentifyingunderperformingdocuments.Stay tunedformoreexcitingtopicsinthefieldofmachinelearninganddataanalysis!