SlideShare a Scribd company logo
INTERNSHIP REPORT
PT. TRIPATRA ENGINEERING
5th
JANUARY 2015 –27th
FEBRUARY 2015
CABLE SIZING CALCULATION
400 V SWITCHGEAR AND MCC PROCESS (360-ES-03)
ONSHORE OIL TREATING FACILITIES AND LPG RECOVERY PLANT
UJUNG PANGKAH LIQUID DEVELOPMENT PROJECT
Written by:
Febrianto Nugroho 1206291885
ELECTRICAL ENGINEERING DEPARTMENT
FACULTY OF ENGINEERING UNIVERSITY OF INDONESIA
DEPOK
2015
!
Internship*Report*
PT.*TRIPATRA*ENGINEERING*
2015*
UNIVERSITAS*INDONESIA*2015* 1"
PREFACE
Praise be to Allah SWT. for His blessings and guidance, that author is able to
finish this internship which takes place at PT Tripatra Engineering (TPE) Jakarta
from January 5th
2015 until February 27th
2015. The purpose of this internship is
to fulfill the requirement needed by the students in finishing their study in
Electrical Engineering, Faculty of Engineering, Universitas Indonesia.
During this internship, author has gained many experiences applying the
knowledge that has been learned throughout his study at the university in
understanding the real life conditions of work practices. Many had helped and
guided the author during the internship period and in writing this internship
report. Therefore, in this opportunity the author would like to express his gratitude
and many thanks to:
1. Parents and family for providing support, motivation and prayer.
2. Ir. GunawanWibisono, Msc., Ph.D as the Head of Electrical Engineering
Department Faculty of Engineering Universitas Indonesia.
3. Dr. Abdul Muis, S.T, M.Eng as the Internship Coordinator of Electrical
Engineering Department Faculty of Engineering Universitas Indonesia.
4. Mr. Johannes Bangun as the Head of Electrical Department in PT. Tripatra
5. Mr. Adi Iskandar as our mentor and Electrical Engineer in PT. Tripatra
6. Mr. SarmenNapitupulu as the Electrical Engineer in PT. Tripatra
7. Mr. Nopran Adhiansyah as the Electrical Engineer in PT. Tripatra
8. Mr. Haris Hakim as the Electrical Engineer in PT. Tripatra
9. Mrs. Diah Ayu Ciptaning Utami as the Human Resources in PT. Tripatra
10. Mr. Nasarudin as the Human Resources in PT Tripatra
11. Every employees of Tripatra Engineering for helping the writer throughout the
internship process.
12. Every other people that can’t be mentioned one by one for every help that they
have provided to the writer.
Internship*Report*
PT.*TRIPATRA*ENGINEERING*
2015*
UNIVERSITAS*INDONESIA*2015* 2"
The author realizes that this internship report is still far from perfect. Therefore
the author hopes for critics and suggestions from the readers for improvements in
future writings. In the end, the author hopes that this report can be useful to the
readers.
Jakarta, February 2015
Author
Internship*Report*
PT.*TRIPATRA*ENGINEERING*
2015*
UNIVERSITAS*INDONESIA*2015* 3"
TABLE OF CONTENTS
PREFACE ............................................................................................................... 1
TABLE OF CONTENTS........................................................................................ 3
CHAPTER I ............................................................................................................ 6
1.1 BACKGROUND.............................................................................................. 6
1.2 OBJECTIVES.................................................................................................. 7
1.3 TIME AND LOCATION ................................................................................... 8
CHAPTER II........................................................................................................... 9
2.1 COMPANY'S PROFILE (PT. TRIPATRA ENGINEERING) .......................... 9
2.1.1 Brief History........................................................................................ 9
2.1.2 Vision and Mission ............................................................................. 9
2.1.3 The Business ..................................................................................... 11
CHAPTER III........................................................................................................ 12
3.1 PROJECT DESCRIPTION ............................................................................... 12
3.2 DISTRIBUTION VOLTAGES.......................................................................... 12
3.3 ELECTRICAL OVERVIEW............................................................................. 13
3.3.1 General Overview ............................................................................. 13
3.3.2 Essential Power Supply..................................................................... 15
3.3.3 Essential Power Users....................................................................... 16
3.3.4 Critical Power Supply ....................................................................... 16
3.3.5 Critical Power Users ......................................................................... 17
3.4 CODES AND STANDARDS............................................................................ 18
3.5 LOAD UTILITY............................................................................................ 19
3.6 UTILIZATION VOLTAGES ............................................................................ 20
CHAPTER IV ....................................................................................................... 21
4.1 CALCULATION CRITERIA............................................................................ 21
4.2 CALCULATION METHOD AND FORMULA .................................................... 22
Internship*Report*
PT.*TRIPATRA*ENGINEERING*
2015*
UNIVERSITAS*INDONESIA*2015* 4"
4.2.1 Cable Ampacity Correction Factor ................................................... 22
4.2.2 Resistance Cable Data and Resistance Correction Factor................. 23
4.2.3 Multiplying Factor ............................................................................ 24
4.2.4 Full Load Current.............................................................................. 26
4.2.4.1 Generator................................................................................... 26
4.2.4.2 Motors ....................................................................................... 26
4.2.4.3 Transformers ............................................................................. 27
4.2.4.4 Distribution Board / Panel......................................................... 28
4.2.4.5 Static Load ................................................................................ 28
4.2.5 Minimum cable size based on cable ampacity.................................. 29
4.2.6 Number of Cable calculation ............................................................ 29
4.2.7 Voltage drop calculation ................................................................... 30
4.2.7.1 Permissible Voltage Drop ......................................................... 30
4.2.7.2 AC voltage drop at steady state................................................. 30
4.2.7.3 AC voltage drop at starting ....................................................... 31
4.2.7.4 DC voltage drop ........................................................................ 32
4.2.8 Short circuit thermal withstand capacity........................................... 33
CHAPTER V......................................................................................................... 35
5.1 BASIC CRITERIA ......................................................................................... 35
5.2 MOTOR LOAD............................................................................................. 35
5.2.1 Load Specification ............................................................................ 35
5.2.2 Cable Specification ........................................................................... 36
5.2.3 Cable Sizing Calculation................................................................... 37
5.2.3.1 Cable Ampacity Correction Factor ........................................... 37
5.2.3.2 Resistance Cable Data and Resistance Correction Factor......... 37
5.2.3.3 Motor Full Load Current........................................................... 38
5.2.3.4 Minimum cable size based on cable ampacity.......................... 38
5.2.3.5 Number of Cable....................................................................... 39
5.2.3.6 Voltage drop calculation ........................................................... 39
5.2.3.6.1 AC voltage drop at steady state............................................. 39
Internship*Report*
PT.*TRIPATRA*ENGINEERING*
2015*
UNIVERSITAS*INDONESIA*2015* 5"
5.2.3.6.2 AC voltage drop at starting ................................................... 40
5.2.3.7 Short circuit thermal withstand capacity................................... 40
5.2.4 Cable Selection.................................................................................. 41
5.3 FEEDER LOAD ............................................................................................ 42
5.3.1 Load Specification ............................................................................ 42
5.3.2 Cable Specification ........................................................................... 42
5.3.3 Cable Sizing Calculation................................................................... 43
5.3.3.1 Cable Ampacity Correction Factor ........................................... 43
5.3.3.2 Resistance Cable Data and Resistance Correction Factor......... 43
5.3.3.3 Feeder Full Load Current.......................................................... 44
5.3.3.4 Minimum cable size based on cable ampacity.......................... 44
5.3.3.5 Number of Cable....................................................................... 45
5.3.3.6 Voltage drop calculation ........................................................... 45
5.3.3.6.1 AC voltage drop at steady state............................................. 45
5.3.3.7 Short circuit thermal withstand capacity................................... 46
5.3.4 Cable Selection.................................................................................. 46
CHAPTER VI ....................................................................................................... 47
REFERENCES...................................................................................................... 48
APPENDICES
APPENDIX – 1 Calculation Sheet
APPENDIX – 2 PT. Sumi Indo KabelTbk. Low Voltage Cable Catalog
APPENDIX – 3 ABB Motor for Hazardous Areas Catalog
APPENDIX – 4 UPD-TJ-P2-EL-SL-1001-0 Single Line Diagram (Key)
APPENDIX – 5 UPD-TJ-P2-EL-SL-0052-1-0 Single Line Diagram (Detail)
APPENDIX – 6 UPD-TJ-P2-EL-SL-0052-2-0 Single Line Diagram (Detail)
APPENDIX – 7 UPD-TJ-P2-EL-DR-0011-2 Plant Layout
Internship*Report*
PT.*TRIPATRA*ENGINEERING*
2015*
UNIVERSITAS*INDONESIA*2015* 6"
CHAPTER I
INTRODUCTION
1.1 Background
Electrical engineering stands at a time of extraordinary opportunity, in the
changing energy, information, communication, transportation, and environmental
needs of the society. Electrical Engineers (EE's) are on the cutting edge of high
technology.
Electrical engineering plays an important role in modern oil and gas industry.
Electrical engineers are equipped to lead exciting, innovative and productive
careers designing enormous electrical power grids that span continents and bring
electricity to our homes and offices, designing control and instrumentation
systems for the oil and gas industry, designing communications systems,
designing electronic devices for commercial applications, designing computers
and their applications and much more.
There is a high demand on electrical engineers in the oil and gas industry.
Electrical engineers are an important part of the petrochemical industry ensuring
safe, reliable and economic production of oil and gas. Electrical engineers design,
monitor, control and manage the electric power system that supplies power to the
hundreds of high voltage motors and thousands of low voltage motors in the field.
It is with those motors that the oil and/or gas could be extracted from the wells for
processing at the plant. Electrical engineers also design, supervise, run and
monitor instrumentation control consoles protecting personnel, machinery and
equipment in the plant.
For that specific reason, PT. Tripatra Engineering is a good place to gain some
experiences. Not only that it has been for four decades experienced in such field,
it also one of the largest engineering company in Indonesia. Therefore, author
decides to do internship at PT. Tripatra Engineering. PT. Tripatra Engineering is a
Internship*Report*
PT.*TRIPATRA*ENGINEERING*
2015*
UNIVERSITAS*INDONESIA*2015* 7"
subcontractor of PT. Tripatra Engineers and Constructors. PT.
TripatraEngineering focuses on the engineering design activity related to EPC
(Engineering, Procurement and Construction) project awarded to PT. Tripatra
Engineers and Constructors. PT. TripatraEngineering also does the blanket
engineering project tendered by Oil and Gas Companies. One of the EPC projects
awarded to PT. Tripatra Engineers and Constructors was the involvement of PT.
Tripatra Engineering in Ujung Pangkah Liquid Development Phase 2.
The internship program mainly discuss about the Cable Sizing Calculation in
Ujung Pangkah Liquid Development Project. The cable selection is such an
important part of design engineering, because the cables are used to connect loads
to Switchgear/Motor Control Center (MCC), transformer to switchgear,
switchgear to transformer and generator to switchgear. Cable sizing must be
calculate carefully and must fulfill certain criteria in order to meet the client
specifications and standards. It is important to make sure that the cable size meet
the requirement of cable ampacity, maximum voltage drop allowed and short
circuit capacity as per company specification and standard.
1.2 Objectives
The objectives of the internship are:
1. To complete a compulsory subject in the Department of Electrical
Engineering, University of Indonesia, in order to obtain undergraduate degree
(S1).
2. To implement the knowledge gained during study to real life application.
3. To know and understand cable sizing, calculation and selection.
4. To develop experiences on real problems that lie in work life.
5. To provide opportunity for students to gain experience in practical
engineering, the ability to communicate and socialize in the industrialized
world.
Internship*Report*
PT.*TRIPATRA*ENGINEERING*
2015*
UNIVERSITAS*INDONESIA*2015* 8"
1.3 Time and Location
The internship was carried out for two months from 5th January to 27th February
2015 in PT. Tripatra Engineering (TPE), Jakarta. The internship took place in the
TPE office building located at Building 3 on 2nd
Floor. Internship students follow
the same working hours as applied to the field or in the office unit, from 07.45
until 16.45.
Internship*Report*
PT.*TRIPATRA*ENGINEERING*
2015*
UNIVERSITAS*INDONESIA*2015* 9"
CHAPTER II
OVERVIEW OF PT. TRIPATRA ENGINEERING
2.1 Company's Profile (PT. TRIPATRA ENGINEERING)
2.1.1 Brief History
PT. Tripatra Engineering is an engineering company that provide engineering
design services. This company does the engineering design for EPC (Engineering,
Procurement and Construction) project awarded to PT. Tripatra Engineers and
Constructors. The Company also provides blanket-engineering project tendered
by Oil and Gas Companies.
2.1.2 Vision and Mission
Vision
To be a world-class company providing integrated innovative engineering
solutions through excellent multidiscipline engineering
Mission
1. To provide world-class engineering and project management solutions for
energy & natural resources sectors.
2. To create synergy across our group’s integrated platform.
3. To create optimum shareholders value.
4. To continuously develop its human capital.
5. To become a good corporate citizen.
In pursuit of the mission, Tripatra as lawful and innovative organization will
adhere to:
1. Highest standard of ethics and professional integrity.
2. A safe and healthy environment.
3. Commitment to the utmost customer satisfaction.
Internship*Report*
PT.*TRIPATRA*ENGINEERING*
2015*
UNIVERSITAS*INDONESIA*2015* 10"
4. Recognition of human capital and its development as valuable asset.
5. Stimulating work environment with motivation, effective communication and
leadership covenant.
6. Continuous quality improvement and sustainability as a way of life
Tripatra has formulated the values that distinguish them from other companies
and is believed to have brought the company to the progress until now. The values
are believed to inspire all components and can bring the company ahead of the
competition in the present and the future.
The values are formulated in Insan Tripatra. Is the duty of every employee and
management of the Company to continue to hold and run values of 6(six) + 1(one)
which has been proclaimed as the guidance in life and work in the company:
• Professionally Honest : Upholding ethics, integrity and professionalism
• Perfection : The process and final results in the best quality
• Open & Positive : Open and respect in all directions
• Self Learning : Learn from any mistakes and experiences, honed expertise
proactive
• Challenge : Catch the opportunities, welcome the challenge
• Innovate : Creative and innovative solutions
Figure 2.1. Insan Tripatra
Internship*Report*
PT.*TRIPATRA*ENGINEERING*
2015*
UNIVERSITAS*INDONESIA*2015* 11"
• Energetic : Breakthrough difficulties, influence enthusiasm and support change
towards improvement
2.1.3 The Business
PT. TripatraEngineering is an engineering company that provide engineering
design services. This company does the engineering design for EPC (Engineering,
Procurement and Construction) project awarded to PT. Tripatra Engineers and
Constructors. The Company also provides blanket-engineering project tendered
by Oil and Gas Companies.
PT. TripatraEngineering mainly focuses on two divisions.
1. Design and Engineering
With more than 600 design, engineering and other technical personnel,
strategically located across its various company divisions, PT. Tripatra
Engineering is able to offer its clients the expertise necessary to ensure the
success of their projects, and the dedication to enable continuous support. At PT.
Tripatra Engineering the emphasis of state-of-the-art design based on the most up-
to-date engineering technology is very important.
2. Project Management
Through its extensive experience in Project Management, TRIPATRA has
developed proven methods and systems for the successful and seamless
implementation of large projects. By combining an appropriate method of project
organization with the support of sophisticated software systems, and with its
highly qualified and diverse team of experts, TRIPATRA has been able to provide
its clients with a comprehensive approach to project realization.
TRIPATRA’s approach to project management includes, among others, a concise
work and task definition and assignment, planning, scheduling, monitoring and
cost control. Qualified in all these areas of the project cycle, TRIPATRA is able
to provide its clients with best practices in engineering, project management,
procurement, construction, commissioning, and operations.
Internship*Report*
PT.*TRIPATRA*ENGINEERING*
2015*
UNIVERSITAS*INDONESIA*2015* 12"
CHAPTER III
ELECTRICAL OVERVIEW
UJUNG PANGKAH LIQUID DEVELOPMENT PHASE 2
3.1 Project Description
Hess (Indonesia-Pangkah) Ltd. (HIPL), as operator, is developing the Ujung
Pangkah gas reserves for export to the PLN power station at Gresik. The Ujung
Pangkah gas field is located between 2 and 10km offshore off the north coast of
East Java approximately 35km north of Gresik. Ujung Pangkah gas field is
divided into two phases. Phase 1 is the existing plant and Phase 2 is the expanded
field. The electrical system in phase 2 is a project that is held by PT. Tripatra
Engineering. The facility will be designed for a 25 year operating life, as specified
in the Basis of Design (referred to: UPD-TJ-P2-PR-BD-0001).
Power is generated at 11,000V AC, 3-phase, 50Hz, as part of the OPF facilities.
Main power generators are located at OPF nearby substation and are gas-turbine
driven. The main power generators were sized to supply all electrical loads under
all operating conditions, for all facilities (OPF and OTF/LPGF), under the worst
case load and ambient conditions, with one main power generator off-line. The
main power generators are directly feed main 11kV Switchboard (160- ES-01)
located in OPF substation. The 11 kV Switchboard will then supplied the existing
Phase 1 and Phase 2.
3.2 Distribution Voltages
Power distribution is the process of delivering electricity into the user, that is from
power generation to final end user or a load. To obtain minimum power losses and
in order for the transmission to be efficient, the normal power distribution will be
at the following stages:
Internship*Report*
PT.*TRIPATRA*ENGINEERING*
2015*
UNIVERSITAS*INDONESIA*2015* 13"
! 11 kV AC 3-phase main power supply from OPF
! 6,600V AC 3-phase for MV motor loads
! 400V AC 3-phase for LV motor loads
! 400V AC 3-phase and neutral for package equipment and non-motor loads
! 230VAC 1-phase and neutral; for general lighting and small power loads.
Power distribution for emergency power to essential supplies will be at:
! 400V AC 3-phase and neutral for main feeders, package equipment and motor
loads
! 230V AC 1-phase and neutral; for lighting and small power loads
Phase 2 electrical loads are handled by the 11 kV Switchgear 160-ES-01 (referred
to: UPD-TJ-P2-EL-SL-1001-0). Phase 2 mainly consist of these following
switchgear (referred to: UPD-TJ-P2-EL-SL-1001-0) :
! 6.6 KV Switchgear and MCC 360-ES-01 located in the Substation B
! 400 V Switchgear and MCC Process 360-ES-03 located in the Substation B
! 400 V Switchgear and MCC Utility 360-ES-02 located in the Substation B
! 400 V Switchgear and MCC Substation C 360-ES-04 located in the Substation
C
! 400 V MCC Inlet/Residue Gas Compressor and Metering 360-ES-31 located
in the Compressor and Metering Panel Room
3.3 Electrical Overview
3.3.1 General Overview
Power is generated at 11,000V AC, 3-phase, 50Hz, as part of the OPF facilities.
Main power generators are located at OPF nearby substation and are gas-turbine
driven. The main power generators were sized to supply all electrical loads under
all operating conditions, for all facilities (OPF and OTF/LPGF), under the worst
case load and ambient conditions, with one main power generator off-line. The
Internship*Report*
PT.*TRIPATRA*ENGINEERING*
2015*
UNIVERSITAS*INDONESIA*2015* 14"
main power generators are directly feed main 11kV Switchboard (160- ES-01)
located in OPF substation.
The main source of power for the OTF and LPGF shall be dual 11kV cable
feeders from the OPF 11kV Switchboard (160-ES-01). The dual 11kV feeders
shall terminate directly to the OTF/LPGF main 11/6.6kV power transformers. The
11kV feeders from OPF and the 11/6.6kV transformers are sized to supply all
OTF and LPGF electrical loads under all operating conditions with one
feeder/transformer off-line and shall be sized for the ONAF rating of the 11/6.6kV
transformers.
Power will be distributed at 6,600V AC 50Hz in 3-phase (MV), and at 400/230V
AC 50Hz in 3-phase with neutral (LV). The MV power system has had its neutral
earthed via low resistance at the transformer star points. The LV power system
has had its neutral solidly earthed at the transformer and emergency generator star
points.
A local emergency generator is provided for the OTF/LPGF, which is driven by
diesel engine. The OTF and LPGF electrical systems will in general consist of the
following main components:
! Dual 11kV feeders (2 x 100%) from the OPF main 11kV switchboard
! Dual 11/6.6kV Power Transformers (2 x 100%) feeding the OPF/LPGF MV
Switchboard, which includes motor starters for MV drives as well as feeders
to distribution transformers
! Process LV Switchboard and Utilities LV Switchboard, each fed by dual
6.6/0.4kV Distribution Transformers (2 x 100%)
! OTF/LPGF Essential Switchboard, fed from a local diesel engine driven
Emergency Generator sized to support essential loads (1 x 100%)
! Main AC and DC UPS Systems for critical services
Internship*Report*
PT.*TRIPATRA*ENGINEERING*
2015*
UNIVERSITAS*INDONESIA*2015* 15"
The liquids development project also involves additional jetty facilities. Power
supply for electrical consumers is supplied from portable diesel generator. The
portable generator will occasionally be operated to supply power to Jetty Loading
Arm facilities when crude oil or LPG is offloaded from storage tank to a tanker
ship. A small UPS for instrumentation, control and communication system
services are provided and supplied from existing LV power distribution. The jetty
electrical facilities for OTF/LPGF in general consist of the following main
components:
! Jetty Loading Arm LV distribution board, fed directly from portable diesel
generator
! AC UPS system for critical services, fed from existing LV power distribution
(Refered to UPD-TJ-P2-EL-PH-0102)
3.3.2 Essential Power Supply
An emergency generator is provided at the OTF/LPGF electrical substation, sized
to maintain power to essential users only. The emergency generator is connected
directly to the OTF/LPGF Essential LV Switchboard, which is a single bus
section with two incomers. One incomer is connected to the normal supply from
the OTF LV Switchboard, and this is closed during normal operation. The second
incomer will be connected to the emergency generator.
On loss of voltage at the essential switchboard, the emergency generator is
automatically started up and regulates its speed and voltage. The supply from the
normal power supply would automatically disconnect, and then the incomer from
the emergency generator will automatically close to energize the switchboard.
The controls for the essential switchboard is designed so that after the automatic
operation, it will be possible to re-close back to the normal switchboard so that
normal users can be supplied from the essential power supply. This operation
Internship*Report*
PT.*TRIPATRA*ENGINEERING*
2015*
UNIVERSITAS*INDONESIA*2015* 16"
however is manually initiated and operating procedures shall be written to ensure
in this event the generator is not overloaded by normal users.
3.3.3 Essential Power Users
Essential power users are loads related to the safety of personnel and equipment
but which are suitable for short breaks in the power supply without detriment
(such as during starting of emergency generators). Such loads are to be supplied
by emergency generators. Those loads are listed below:
! Feeders to all Critical power supplies
! Emergency and escape lighting
! HVAC systems for rooms containing essential equipment
! Safe and Controlled Shutdown
! Hazardous drain pumps (for continuous drain systems only) and flare/vent
scrubber pumps
! Turbine enclosure Ventilation
! Lube Oil Cooler Fans, where required by the package SUPPLIER
! Equipment anti-condensation heaters
Where there are two redundant essential users (e.g. pump A and B in a
duty/standby arrangement) one is fed from an essential switchboard and the other
from a normal switchboard.
3.3.4 Critical Power Supply
Critical Power Supplies are derived from storage batteries and distributed to
critical users as either AC or DC supply from UPS systems. The purpose of
critical power supplies is to provide the most reliable power supply for critical
users.
Internship*Report*
PT.*TRIPATRA*ENGINEERING*
2015*
UNIVERSITAS*INDONESIA*2015* 17"
Main UPS systems are three phase. UPS Power equipment is provided as 2 x
100% redundant rectifier/inverter units (UPS A and UPS B) and 2 x 50% batteries
based on the calculated design load for all connected critical users.
AC UPS systems are of the static, double conversion type with fully-electronic
static bypass switches for each UPS A and UPS B system and a separated manual
maintenance bypass switch. The by-pass AC supply is taken from a different
supply to that of the UPS main supply to minimize common mode failure.
A dedicated 110V DC UPS System is provided for switchgear control, protection
and circuit breakers. The DC UPS System is provided as 2 x 100% redundant
rectifiers and 2 x 50% batteries.
DC UPS systems for Diesel Fire Pumps and Emergency Generators is preferred to
be 24V DC, and be 1 x 100% redundant rectifier with 1 x 100% battery.
DC UPS systems for Compressor Gas Turbine backup lube oil pumps are at 1 x
100% rectifier with 1 x 100% battery.
Batteries are Valve-Regulated Lead Acid (VRLA). Dedicated ventilated battery
rooms are not provided. Each battery bank is installed with an isolator in order to
provide facilities for tripping the batteries.
3.3.5 Critical Power Users
Critical Users are those loads necessary for the operation of safety systems and for
facilitating or assisting safe evacuation. It is generally not appropriate for any
break in power supply for critical users, even for a short duration. Critical users
are generally those users listed below:
! Fire & Gas safety systems
! Shutdown & Process Control Systems (ESD & PCS)
! Telecommunications systems (Voice & Data)
! Gas Turbine / Compressor UCP
Internship*Report*
PT.*TRIPATRA*ENGINEERING*
2015*
UNIVERSITAS*INDONESIA*2015* 18"
! Switchgear tripping and closing supplies
! Gas Turbine backup Lube oil pumps
! Emergency Generator starting and control
! Diesel Engine Fire Pump Starting and Control
! Escape Route Lighting (self contained with integral battery)
! Exit Lighting (self contained with integral battery)
Control systems, telecommunications and UCPs are supplied from common UPS
systems, which also supply other critical users of various systems and packages.
Battery systems for diesel engines and backup lube oil systems are provided as
part of the package supply. Diesel engine driven generators and firewater pumps
have had battery systems sized for cranking duty rather than autonomy time.
3.4 Codes and Standards
Material selection, design, manufacturing, testing and installation of the cable and
its components shall comply with currently applicable statutes, regulation, safety
codes and standards issued by the following:
! API : American Petroleum Institute
! IEEE : Institute of Electrical and Electronic Engineer
! IEC : International Electrotechnical Commission
! IP : Institute of Petroleum
! NFPA : National Fire Protection Association
Indonesian Codes and Regulation
! PUIL : PeraturanUmumInstalasiListrik
! Government Regulation Number 19,1973
! Government Regulation Number 11,1979
! Decision of Director General of Oil and Natural Gas Number
Internship*Report*
PT.*TRIPATRA*ENGINEERING*
2015*
UNIVERSITAS*INDONESIA*2015* 19"
36/KPTS/DJ/MIGAS/1977
! Technical Directorate of Oil and Natural Gas Letter Number
008/380/DMT/1988
! Directorate General Oil and Natural Gas (MIGAS) Regulation
No.43P/382/DDJM/1992 for Terms and Conditions for Appointment of third
party
! MIGAS Guidelines under Regulation Number 06P/0746/M.PE/91
3.5 Load Utility
Load utility is used to determine which switchgear suits the motor. Since there are
lots of motors and feeders related to the plant and each loads required different
voltages to operate, then those loads are utilized to different switchgear. Those
switchgears have the voltages operation of 11 KV, 6.6KV, 400V and 230V. The
load utilization are described as follows:
! Motors rated above 132 kW : 6.6 kV, 3 Phase, 3 Wire, 50 Hz
! Motors rated above 0.18 kW up to 132 kW : 400 V, 3 phase, 3/4 Wire, 50 Hz
! Motors up to 0.18 kW : 230 V, 1 Phase, 2 Wire, 50 Hz
! Space Heater, Auxiliary power supply : 230 V, 1 phase, 2 Wire, 50 Hz
Internship*Report*
PT.*TRIPATRA*ENGINEERING*
2015*
UNIVERSITAS*INDONESIA*2015* 20"
3.6 Utilization Voltages
The utilization for typical loads are given below:
Table 3.1 Utilization for typical loads
LOADS UTILIZATION VOLTAGES
Motors less than 0.37kW 400V 3ph+E or 230V, 1ph+E, 50Hz
Motors – 0.37kW up to 132kW 400V, 3ph+E, 50Hz
Motors – above 132kW 6,600, 3ph+E, 50Hz
Process Heaters 400V, 3ph+E, 50Hz
Welding Sockets 400V, 3ph+E+N, 50Hz
Convenience Sockets (field) 230V, 1ph+E+N, 50Hz
Lighting (normal – emergency) 230V, 1ph+E+N, 50Hz
Anti-condensation Heaters 230V, 1ph+E+N, 50Hz
Diesel Engine Starters & Controls 24V DC, 2 wire
MCC Contactor Controls 230V, 1ph+E+N, 50Hz
Instrumentation, safety and
communications system
230V, 1ph+E+N, 50Hz
Internship*Report*
PT.*TRIPATRA*ENGINEERING*
2015*
UNIVERSITAS*INDONESIA*2015* 21"
CHAPTER IV
CABLE SIZING CRITERIA
4.1 Calculation Criteria
! Allowable steady state current carrying capacity.
Current carrying capacity is defined as the amperage a conductor can safely carry
before melting occurs in the conductor and/or the insulation. There are many
factors that will limit the amount of current that can be passed through a wire.
Determining factors include: Conductor Size, The larger the circular mil area, the
greater the current capacity. Insulation, The amount of heat generated should
never exceed the maximum temperature rating of the insulation material. Ambient
(surrounding) temperature, The higher the ambient temperature, the less heat
required to reach the maximum temperature rating of the insulation. Conductor
Number, Heat dissipation is lessened as the number of individually insulated
conductors, bundled together, is increased. Installation Conditions, Restricting the
heat dissipation by installing the conductor in conduit, duct, trays or raceways
lessens the current carrying capacity. This restriction can be alleviated somewhat
by using proper ventilation methods, forced air cooling, etc.
! Allowable voltage drop during steady state and transient (motor starting)
condition.
Voltage drop is defined as the amount of voltage losses that occurs through all
part of circuit due to impedance. The longer the cable the voltage drop will
become greater. Therefore the voltage drop aspect is critical to supply the voltage
to the loads.
! Short circuit current withstand capacity.
This criterion is applied to determine the minimum cross section area of the cable,
so that cable can withstand the short circuit current. Failure to check the conductor
size for short-circuit heating could result in permanent damage to the cable
Internship*Report*
PT.*TRIPATRA*ENGINEERING*
2015*
UNIVERSITAS*INDONESIA*2015* 22"
insulation and could also result into fire. In addition to thermal stresses, the cable
may also be subjected to significant mechanical stresses.
4.2 Calculation Method and Formula
4.2.1 Cable Ampacity Correction Factor
Cable ampacity is corrected by cable ampacity correction factor, that consists of
temperature correction factor and cable grouping correction factor. The formula of
cable correction factor is shown below:
F = F!!!x!F! (4-1)
where:
F : Cable ampacity correction factor
F! : Correction factor for ambient temperature and conductor
temperature consideration (Temperature correction factor)
F! : Correction factor for cable grouping consideration
Temperature correction factor is related to the environment ambient temperature
(or specified value as per company specification), temperature conductor rating
(depend on insulation type used) and reference ambient temperature as per
manufacture used for the cable. The formula of the temperature correction factor
is shown below:
F! =
!!!!!!
!!!!!
(4-2)
where:
TC : Temperature Rating of Conductor in 0
C (900
C for XLPE and
700
C for PVC)
T1 : Environment/ Field Ambient Temperature in 0
C (400
C)
T2 : Reference Temperature Ambient in 0
C
Internship*Report*
PT.*TRIPATRA*ENGINEERING*
2015*
UNIVERSITAS*INDONESIA*2015* 23"
Ft :Cable ampacity correction factor
Cable grouping correction factor is depend on the particular method of installation
in the ladder or tray or if direct buried. Here is the sample of cable grouping
correction factor table as per PT. Sumi Indo KabelTbk. (a cable manufacturer)
catalogue:
Table 4.1 Correction factor table for multi-core cable grouping
4.2.2 Resistance Cable Data and Resistance Correction Factor
When the ambient temperature value is different with ambient temperature
condition of resistance data as per manufacturer/catalogue data, resistance
Internship*Report*
PT.*TRIPATRA*ENGINEERING*
2015*
UNIVERSITAS*INDONESIA*2015* 24"
correction factor is applied to correct the resistance cable data. The formula of
resistance correction factor is shown below:
F! = 1 + α(T! − T!)! (4-3)
where:
T1 : New Conductor ambient temperature in o
C
T0 : Temperature resistance design as per manufacture/ catalogue in
o
C
α : 0.00393 for copper
Fr : Resistance correction factor
The corrected cable resistance can be achieved by the following formula:
R! = !F!!!x!!R! (4-4)
Where:
R : Corrected cable resistance in Ohm/km
R0 : Resistance cable data as per manufacture in Ohm/km
4.2.3 Multiplying Factor
The multiplying factor will be based on NFPA 70 Requirements, which is:
! Clause 210.19(A)(1)
Branch circuit conductors shall have an ampacity not less than the maximum load
to be served. Where a branch circuit supplies continuous loads or any combination
of continuous and non-continuous loads, the minimum branch circuit conductor
size, before the application of any adjustment or correction factors, shall have an
allowable ampacity not less than the non-continuous load plus 125 percent of the
continuous load
! Clause 215.2(A)(1)
Internship*Report*
PT.*TRIPATRA*ENGINEERING*
2015*
UNIVERSITAS*INDONESIA*2015* 25"
Feeder conductors shall have an ampacity not less than required to supply the load
as computed in parts II, III and IV of article 220. The minimum feeder circuit
conductor size, before the application of any adjustment or correction factors,
shall have an allowable ampacity not less than the non-continuous load plus 125
percent of the continuous load.
! Clause 215.2(B)(1)
The ampacity of feeder conductors shall not be less than the sum of the nameplate
ratings of the transformer supplied when only transformer is supplied.
! Clause 215.2(B)(2)
The ampacity of feeders supplying a combination of transformer and utilization
equipment shall not be less than the sum of the nameplate rating of the
transformer and 125 percent of the designed potential load of the utilization
equipment that will be operated simultaneously
! Clause 430.22(A)
Branch circuit conductor that supply a single motor used in a continuous duty
application shall have ampacity of not less than 125 percent of the motor’s full
load current rating.
! Clause 445.13
The ampacity of the conductors from the generator terminal to the first
distribution device(s) containing over current protection shall not be less than 115
percent of the nameplate current rating of the generator
Hence the multiplying factor can be concluded as:
! Multiplying factor (MF) for motor = 1.25
! Multiplying factor for generator = 1.15
! Multiplying factor for distribution board or lighting panel = 1.25
! Multiplying factor for static load = 1
Internship*Report*
PT.*TRIPATRA*ENGINEERING*
2015*
UNIVERSITAS*INDONESIA*2015* 26"
4.2.4 Full Load Current
4.2.4.1 Generator
The Full load current and the design current for generator is calculated using the
formula:
I!" !=!
!!"#!!!!"""
!!.!!!!.!"#!!
(4-5)
I! =!MF!"#!x!I!" (4-6)
= 1.15 xI!"
where:
I! : Design Current (A)
I!" : Full load current (A)
P!"# : Generator power (kW)
V!! : Line to line voltage (V)
cos!φ : Generator power factor
MF!"# : Multiplying factor for generator
4.2.4.2 Motors
The Full load current and the design current for motors is calculated using the
formula:
I!" !=!
!!!!!!"""
!!.!!!!.!.!"#!!
(4-7)
I! !=!MF!"#"$!x!I!" (4-8)
= 1.25 xI!"
Internship*Report*
PT.*TRIPATRA*ENGINEERING*
2015*
UNIVERSITAS*INDONESIA*2015* 27"
where:
I! : Design Current (A)
I!" : Full load current (A)
P! : Motor power (kW)
V!! : Line to line voltage (V)
cos!φ : Motor power factor
η : Motor efficiency
MF!"#"$ : Multiplying factor for motor
4.2.4.3 Transformers
The Full load current and the design current for transformer is calculated using the
formula:
I!" !=!
!!"!!!!"""
!!.!!!
(4-9)
I! =!MF!"#$%!x!I!" (4-10)
= 1.00 xI!"
where:
I! : Design Current (A)
I!" : Full load current (Amp)
S!" : Transformer power (KVA)
V!! : Line to line voltage (Volts)
MF!"#$% : Multiplying Factor for Transformers
Internship*Report*
PT.*TRIPATRA*ENGINEERING*
2015*
UNIVERSITAS*INDONESIA*2015* 28"
4.2.4.4 Distribution Board / Panel
The Full load current and the design current for distribution panel is calculated
using the formula:
I!" !=!
!!"!!!!"""
!!.!!!!.!"#!!
(4-11)
I! =!MF!"!x!I!" (4-12)
= 1.25 xI!"
where:
I! : Design Current (A)
I!" : Full load current (A)
P!" : Distribution board/panel power (kW)
V!! : Line to line voltage (V)
cos!φ : Distribution board/panel power factor
MF!" : Multiplying factor for distribution board
4.2.4.5 Static Load
The Full load current and the design current for static load is calculated using the
formula:
I!" !=!
!!"#"$%
!!.!!!!.!.!"#!!
(4-13)
I! =!MF!"#"!x!I!" (4-14)
= 1.00 xI!"
where:
I! : Design Current (A)
Internship*Report*
PT.*TRIPATRA*ENGINEERING*
2015*
UNIVERSITAS*INDONESIA*2015* 29"
I!" : Full load current (A)
P!"#"$% : Static load (kW)
V!! : Line to line voltage (V)
cos!φ : Static load power factor
η : Static load efficiency
MF!"#" : Multiplying factor for static load
4.2.5 Minimum cable size based on cable ampacity
Cable ampacity is corrected by derated factor and the deratedampacity shall be
larger than the full load current.
I! !=!I!!x!F! > I!" (4-15)
where:
I! : Corrected cable ampacity (A)
I! : Current carrying capacity (A)
F : Derating factor
I!" : Full load current (A)
4.2.6 Number of Cable calculation
To fulfill the full load current, the number of cable (number of pulling) is
calculated using the formula:
! =!
!!"
!!
(4-16)
Internship*Report*
PT.*TRIPATRA*ENGINEERING*
2015*
UNIVERSITAS*INDONESIA*2015* 30"
where:
! : Number of cables used
I! : Corrected cable ampacity (A)
I!" : Full load current (A)
4.2.7 Voltage drop calculation
4.2.7.1 Permissible Voltage Drop
The maximum permissible voltage drop along the length of the cable with
reference to the nominal supply voltage is:
Table 4.2 % Voltage Drop for typical loads (referred to: UPD-TJ-P2-EL-PH-0101)
Load Types % Voltage Drop
Motors 5% running at full load 15 % on starting
Feeders 5% at full load between the MCC and the load terminals 2%
between MCC and a distribution board
Lighting 3% between lighting distribution board and most distant lighting
fixture
4.2.7.2 AC voltage drop at steady state
The steady state voltage drop for AC system is given by the following formula:
V! != !k. I!"!(R. cos!φ! + !X. sin!φ).
!
!"""
!.
!""%
!
!.
!
!
(4-17)
V! !≤!V!"#$%
where:
V!"#$% : Specified allowable voltage drop
Internship*Report*
PT.*TRIPATRA*ENGINEERING*
2015*
UNIVERSITAS*INDONESIA*2015* 31"
V! : Voltage drop (%)
V : Voltage (V); line-to-line voltage for 3-phase system, or line-to-
neutral voltage for 1-phase system
I!" : Full load current (A)
R : Resistance of the cable (Ohm per 1000 m)
X : Reactance of the cable (Ohm per 1000 m)
cos!φ : Power factor
L : Cable length
n : Number of cable in parallel
k : Constant; 3 for 3-phase system, and 2 for 1-phase system
Cable size shall be upgraded to bigger size or add more number of cables in
parallel when VDis greater than the specified allowable voltage drop value.
4.2.7.3 AC voltage drop at starting
The voltage drop for AC system during motor starting is given by the following
formula:
V!"# != !k. I!"!(R. cos!φ!" !+ !X. sin!φ!").
!
!"""
!.
!""%
!
!.
!
!
(4-18)
V!st! ≤!V!"#$%
where:
V!"#$% : Specified allowable voltage drop
V!st : Motor starting voltage drop (%)
Internship*Report*
PT.*TRIPATRA*ENGINEERING*
2015*
UNIVERSITAS*INDONESIA*2015* 32"
V : Voltage (V); line-to-line voltage for 3-phase system, or line-to-
neutral voltage for 1-phase system
I!" : Motor starting current (A)
R : Resistance of the cable (Ohm per 1000 m)
X : Reactance of the cable (Ohm per 1000 m)
cos!φ!": Motor starting power factor
L : Cable length
n : Number of cable in parallel
k : Constant; 3 for 3-phase system, and 2 for 1-phase system
The value of motor starting current is as below or based on Vendor datasheet.
I!" = 7 x IFL (for LV Motors up to 11 kW)
I!" = 6 x IFL (for LV Motors above 11 kW)
I!" = 5 x IFL (for all MV Motors)
4.2.7.4 DC voltage drop
Based on Ohm Law, cable and wire voltage drop for DC cable are:
V! =
!!!!!!!!!!!!!!!"
!"""!!!!
(4-19)
where:
V! : Voltage Drop across the cable (Volt)
R! : Cables Resistance (Ohm/Km)
Internship*Report*
PT.*TRIPATRA*ENGINEERING*
2015*
UNIVERSITAS*INDONESIA*2015* 33"
L : Estimated Cable Length (M)
I!" : Full Load Current (Ampere)
n : Number of parallel conductors
V!" =
!!!!!!""%
!!"
(4-20)
where:
V!" : Allowable percentage of Voltage Drop (%)
V!" : Nominal Voltage (Volt)
4.2.8 Short circuit thermal withstand capacity
Short circuit at load can be calculated by the equation below:
!!" =!
!!"
!"""!!!!!"
(4-21)
where:
!!" : Short Circuit Current (kA)
I!" : Full Load Current (A)
!!" : Sub-transient reactance for motor (p.u)
The minimum conductor size of LV cables are calculated by formula shown
below which is based on ANSI/IEEE Std 242-2001:
!
!
!
x!t = 0.0297 x!log
!!"!!"#
!!!!"#
(4-22)
or
Internship*Report*
PT.*TRIPATRA*ENGINEERING*
2015*
UNIVERSITAS*INDONESIA*2015* 34"
! !" =!
!!!!!"""!!!
!.!"#!!! !!"#
!!"!!"#
!!!!"#
!
!"""
(4-23)
!!" !≤ !!
where:
A : Min. cable size cross sectional area (circular mils)
I : Max. short circuit current (A)
T : Short circuit duration time (sec)
Tc : Max. permissible continuous operating temp. (90o
C : XLPE
Cable)
Tsc : Max. permissible temp. at short circuit (250o
C : XLPE Cable)
Internship*Report*
PT.*TRIPATRA*ENGINEERING*
2015*
UNIVERSITAS*INDONESIA*2015* 35"
CHAPTER V
CABLE SIZING CALCULATION
5.1 Basic Criteria
The following criteria and environment condition is used for cable sizing
calculation;Criteria is based on standard documents, cable catalogs, and client's
specification. The criterion consist of:
! Steel Wire Armor (SWA) - Low Smoke Free Halogen (LSFH) cables is sized
based on 90°C insulation temperature and 40°C ambient.
! The power and control cables are Steel Wire Armor (SWA) cable, copper
conductor, Cross-linked polyethylene (XLPE) insulated
! The cable data for resistance, reactance and ampacity of cable is taken from
vendor catalog (Cable of PT. Sumi Indo KabelTbk.)
! Maximum service temperature of conductor with XLPE insulation: 90 °C.
! Maximum short circuit condition of temparature of conductor with XLPE
insulation: 250 °C
! Installation in open air is on cable tray (touching) (referred to PT. Sumi Indo
KabelTbk. Low Voltage Cable Catalog)
5.2 Motor Load
5.2.1 Load Specification
Consider 482-HM-04A-P, a Depropanizer Condenser Fan Motor A which is
connected using XLPE/SWA/LSFH Cable to 360 ES 03 LPG/OTF 400 V
Switchgear. The specification of the Fan Motor is given below:
Table 5.1 Depropanizer Condenser Fan Motor A (482-HM-04A-P) specification
Parameters Value
Power Rating 30 KW
Internship*Report*
PT.*TRIPATRA*ENGINEERING*
2015*
UNIVERSITAS*INDONESIA*2015* 36"
Voltage 400 V
Efficiency at full load 0.92
Power Factor at full load 0.86
Power Factor at starting 0.3
Multiplying Factor 1.25
5.2.2 Cable Specification
Cable used for Depropanizer Condenser Fan Motor A (482-HM-04A-P) is a 0.6/1 kV
- XLPE/SWA/LSFH 3/C # 25 mm2
. The cable length is set to be 225 m (200m + 25 m
of contingency).The specification of the cable is described as follows:
Table 5.2 0.6/1 kV - XLPE/SWA/LSFH 3/C # 25 mm2
specification
Parameters Value
Size 0.6/1 kV - XLPE/SWA/LSFH 3/C # 25 mm2
Conductor Size (Kcmil) 50
Ampacity in Air (A) 153
Ampacity in Ground (A) 111
R (ohm / 1000 m) 0.727
X (ohm / 1000 m) 0.0779
Overall Diameter (mm) 27.5
Approx. Weight (kg/km) 1840
Internship*Report*
PT.*TRIPATRA*ENGINEERING*
2015*
UNIVERSITAS*INDONESIA*2015* 37"
5.2.3 Cable Sizing Calculation
5.2.3.1 Cable Ampacity Correction Factor
Referring to equation (4-2), The T1 which is the new conductor ambient temperature
is set to be 40o
Cand T2 which is the reference ambient temperature is 30o
C, referring
to PT. Sumi Indo Kabel Low Voltage Catalog, the temperature correction factor is
calculated as follows:
F! =
!!!!!!
!!!!!
=
!"!!!"
!"!!"
= !0.91 (5-1)
The installation assumption of the cable are using cable tray, number of tray is 2 and
the number of cable in each tray is 4, from the Table 4.1, F!is 0.77 (referred to PT.
Sumi Indo Kabel Low Voltage Catalog)
Table 5.3 Correction factor table for multi-core cable grouping perforated trays
Since F!is 0.77 and F! is 0.91, referring to equation (4-1), the overall correction factor
is equal to:
F = F!!!x!F! = 0.77!x!0.91! = !0.7 (5-2)
5.2.3.2 Resistance Cable Data and Resistance Correction Factor
Resistance of cable is provided at 20o
C (referred to PT. Sumi Indo Kabel Low
Voltage Cable Catalog),the ambient temperature is set to be at 40o
C. Referring to
equation (4-3), The resistance correction factor is:
Internship*Report*
PT.*TRIPATRA*ENGINEERING*
2015*
UNIVERSITAS*INDONESIA*2015* 38"
F! = 1 + α(T! − T!)!
F! = 1 + 0.00393!x(40 − 20)!
F! = 1.079 (5-3)
Referring to equation (4-4), and Table 5.2 for the R! value,
R! = !F!!!x!!R!
R! = !1.079!!!0.727
R! = !0.784!!ℎ!/!" (5-4)
5.2.3.3 Motor Full Load Current
Referring to equation (4-6), the Motor full load current can be calculated as follows:
I!" !=!
P!!x!1000
3!. V!!!. η. cos!φ
I!" !=!
!"!!!!"""
!!!!!!""!!!!.!"!!!!.!!
= 53.48 A (5-5)
Referring to equation (4-7),
I! =!MF!"#"$!x!I!"
I!= 1.25 x 53.48 A = 66.85 A (5-6)
5.2.3.4 Minimum cable size based on cable ampacity
Cable ampacity is corrected by Cable ampacity correction factor (F). From calculation
(5-2), F is equal to 0.7. Referring to equation (4-15) and Table 5.2, I! is the cable
ampacity in air and equal to 153 A. The Corrected cable ampacity (I!) can be
calculated as follows:
I! !=!I!!x!F
I! != !153!x!0.7!!
Internship*Report*
PT.*TRIPATRA*ENGINEERING*
2015*
UNIVERSITAS*INDONESIA*2015* 39"
I! != 107.55 A (5-7)
Since the system only used 1 cable, hence I!is equal to 107.55 A. Otherwise, I!should
be multiplied by the number of cable used in the system. Referring to calculation (5-
5), I!"is equal to 53.48 A. By equation (4-15), the corrected cable ampacity (I!) must
be larger than the full load current(I!").
I! > I!"
107.55!!! > !53.48!! (5-8)
By this condition, 0.6/1 kV - XLPE/SWA/LSFH 3/C # 25 mm2
suits the cable
ampacity for the system.
5.2.3.5 Number of Cable
To fulfill the full load current referring to equation (4-16), the number of cable is
calculated as follows:
! =!
!!"
!!
! =!
53.48
107.55
! = !0.49 ≈ 1 (5-9)
The number of 0.6/1 kV - XLPE/SWA/LSFH 3/C # 25 mm2
cable used is 1.
5.2.3.6 Voltage drop calculation
5.2.3.6.1 AC voltage drop at steady state
Referring to equation (4-17), the voltage drop at steady state are calculated as follows:
V! != !k. I!"!(R. cos!φ! + !X. sin!φ).
L
1000
!.
100%
V
!.
1
n
Internship*Report*
PT.*TRIPATRA*ENGINEERING*
2015*
UNIVERSITAS*INDONESIA*2015* 40"
V! != ! 3!!!53.48!!![(0.784!!!0.88)!+ (0.0779!!! sin (cos!!
0.88)]!!!
225
1000
!!
!100%
400
!!!
1
1
V! != !3.789!% (5-10)
From Table 4.2, the %voltage drop as per specification for motor running is 5%
V! !≤!V!"#$%
3.789!%!! ≤ !5!% (5-11)
By this condition, 0.6/1 kV - XLPE/SWA/LSFH 3/C # 25 mm2
suits the ac voltage
drop steady state criteria for the system.
5.2.3.6.2 AC voltage drop at starting
Referring to equation (4-18), the voltage drop at starting are calculated as follows:
V!"# != !k. I!"!(R. cos!φ!" !+ !X. sin!φ!").
L
1000
!.
100%
V
!.
1
n
V!"# != 3!!!53.48!!![(0.784!!!0.3)!+ (0.0779!!!0.95)]!!!
225
1000
!!
!100%
400
!!!
1
1
V!"# != !12.09!% (5-12)
From Table 4.2, the %voltage drop as per specification for motor starting is 15%
V!st! ≤!V!"#$%
12.09!% ≤ !15!% (5-13)
By this condition, 0.6/1 kV - XLPE/SWA/LSFH 3/C # 25 mm2
suits the ac voltage
drop starting criteria for the system.
5.2.3.7 Short circuit thermal withstand capacity
Referring to equation (4-21), short circuit at load can be calculated as follows:
Internship*Report*
PT.*TRIPATRA*ENGINEERING*
2015*
UNIVERSITAS*INDONESIA*2015* 41"
!!" =!
!!"
1000!!!!!"
!!" =!
53.48
1000!!!0.3
!!" = !0.178!!" (5-14)
To calculate the maximum short circuit current, referring to equation (4-23)
! !" =!
!!!!1000!!!
!.!"#!!! !"#
!!"!!"#
!!!!"#
!
1000
! !" =!
50!!!1000!!!
!.!"#!!! !"#
!"#!!"#
!"!!"#
!.!"
1000
! !" = !8.994!!"! (5-15)
!!" !≤ !!
0.178!!" ≤ !8.994!!"! (5-16)
By this condition, 0.6/1 kV - XLPE/SWA/LSFH 3/C # 25 mm2
suits the short circuit
current criteria for the system.
5.2.4 Cable Selection
Based on the calculation of (5-8), (5-11), (5-13) and (5-16), all of the cable criteria
conditions are fulfilled by the 0.6/1 kV - XLPE/SWA/LSFH 3/C # 25 mm2
cable.
Hence, the cable is suitable to be used for Depropanizer Condenser Fan Motor A
(482-HM-04A-P).
Internship*Report*
PT.*TRIPATRA*ENGINEERING*
2015*
UNIVERSITAS*INDONESIA*2015* 42"
5.3 Feeder Load
5.3.1 Load Specification
Consider 339-OEH-01A, a VRU Compressor A - Lube Oil Heater which is connected
using XLPE/SWA/LSFH Cable to 360 ES 03 LPG/OTF 400 V Switchgear. The
specification of the Heater is given below:
Table 5.4 VRU Compressor A - Lube Oil Heater (339-OEH-01A) specification
Parameters Value
Power Rating 3 KW
Voltage 400 V
Efficiency at full load 1
Power Factor at full load 0.85
Power Factor at starting N/A
Multiplying Factor 1
5.3.2 Cable Specification
Cable used for VRU Compressor A - Lube Oil Heater (339-OEH-01A)is a 0.6/1 kV -
XLPE/SWA/LSFH 3/C # 2.5 mm2
. The number of cable is set to be 1. The cable
length is set to be 195 m (180m + 15 m of contingency). The specification of the
cable is described as follows:
Table 5.5 0.6/1 kV - XLPE/SWA/LSFH 3/C # 2.5 mm2
specification
Parameters Value
Size 0.6/1 kV - XLPE/SWA/LSFH 3/C # 2.5 mm2
Conductor Size (Kcmil) 5
Internship*Report*
PT.*TRIPATRA*ENGINEERING*
2015*
UNIVERSITAS*INDONESIA*2015* 43"
Ampacity in Air (A) 37
Ampacity in Ground (A) 32
R (ohm / 1000 m) 7.41
X (ohm / 1000 m) 0.0961
Overall Diameter (mm) 16.5
Approx. Weight (kg/km) 485
5.3.3 Cable Sizing Calculation
5.3.3.1 Cable Ampacity Correction Factor
The installation assumption is using the same installation assumption as for motor
load, which is using cable tray. The number of tray is 2 and the number of cable in
each tray is 4, from the Table 4.1, F!is 0.77 (referred to PT. Sumi Indo Kabel Low
Voltage Catalog)
Referring to equation (5-1), the F! is equal to 0.91. Referring to equation (5-2), the
overall correction factor (F) is equal to 0.7.
5.3.3.2 Resistance Cable Data and Resistance Correction Factor
Using the same calculation as in calculation (5-3), the F!, which is the resistance
correction factor is equal to 1.079. Using the equation (4-4), and Table 5.5 for the R!
value, the corrected cable resistance for 0.6/1 kV - XLPE/SWA/LSFH 3/C # 2.5 mm2
cable is calculated as follows
R! = !F!!!x!!R!
R! = !1.079!!!7.41
R! = !7.99!!!ℎ!/!" (5-17)
Internship*Report*
PT.*TRIPATRA*ENGINEERING*
2015*
UNIVERSITAS*INDONESIA*2015* 44"
5.3.3.3 Feeder Full Load Current
Referring to equation (4-6), the Feeder full load current can be calculated as follows:
I!" !=!
P!!x!1000
3!. V!!!. η. cos!φ
I!" !=!
!!!!!"""
!!!!!!""!!!!!!!!.!"
= 5.094 A (5-18)
Referring to equation (4-7),
I! =!MF!""#"$!x!I!"
I! = 1 x 5.094A = 5.094 A (5-19)
5.3.3.4 Minimum cable size based on cable ampacity
Cable ampacity is corrected by Cable ampacity correction factor (F). From calculation
(5-2), F is equal to 0.7. Referring to equation (4-15) and Table 5.5, I! is the cable
ampacity in air and equal to 37 A. The Corrected cable ampacity (I!) can be
calculated as follows:
I! !=!I!!x!F
I! != !37!x!0.7!!
I! != 26 A (5-20)
Since the system only used 1 cable, hence I!is equal to 26 A. Otherwise, I!should be
multiplied by the number of cable used in the system. Referring to calculation (5-18),
I!" is equal to 5.094 A. By equation (4-15), the corrected cable ampacity (I!) must be
larger than the full load current (I!").
I! > I!"
26!!! > 5.094! (5-21)
Internship*Report*
PT.*TRIPATRA*ENGINEERING*
2015*
UNIVERSITAS*INDONESIA*2015* 45"
By this condition, 0.6/1 kV - XLPE/SWA/LSFH 3/C # 2.5 mm2
suits the cable
ampacity for the system.
5.3.3.5 Number of Cable
To fulfill the full load current referring to equation (4-16), the number of cable shall
be:
! =!
!!"
!!
! =!
5.09
26
! = !0.19 ≈ 1 (5-22)
The number of 0.6/1 kV - XLPE/SWA/LSFH 3/C # 2.5 mm2
cable used is 1.
5.3.3.6 Voltage drop calculation
5.3.3.6.1 AC voltage drop at steady state
Referring to equation (4-17), the voltage drop at steady state are calculated as follows:
V! != !k. I!"!(R. cos!φ! + !X. sin!φ).
L
1000
!.
100%
V
!.
1
n
V! != ! 3!!!5.094!!![(7.99!!!0.85)!+ (0.0961!!! sin (cos!!
0.85)]!!!
195
1000
!!
!100%
400
!!!
1
1
V! != !2.944!% (5-23)
From Table 4.2, the %voltage drop as per specification for feeder running is 5%
V! !≤!V!"#$%
2.944!!%!! ≤ !5!% (5-24)
By this condition, 0.6/1 kV - XLPE/SWA/LSFH 3/C # 2.5 mm2
suits the ac voltage
drop steady state criteria for the system.
Internship*Report*
PT.*TRIPATRA*ENGINEERING*
2015*
UNIVERSITAS*INDONESIA*2015* 46"
5.3.3.7 Short circuit thermal withstand capacity
Referring to equation (4-21), short circuit at load can be calculated as follows:
!!" =!
!!"
1000!!!!!"
!!" =!
5.094!
1000!!!0.3
!!" = !0.169!!" (5-25)
To calculate the maximum short circuit current, referring to equation (4-22)
! !" =!
!!!!1000!!!
!.!"#!!! !"#
!!"!!"#
!!!!"#
!
1000
! !" =!
5!!!1000!!!
!.!"#!!! !"#
!"#!!"#
!"!!"#
!.!"
1000
! !" = !0.8994!!"! (5-26)
!!" !≤ !!
0.169!!" ≤ !0.8994!!"! (5-27)
By this condition, 0.6/1 kV - XLPE/SWA/LSFH 3/C # 2.5 mm2
suits the short circuit
current criteria for the system.
5.3.4 Cable Selection
Based on the calculation of (5-21), (5-24) and (5-27), all of the cable criteria
conditions are fulfilled by the 0.6/1 kV - XLPE/SWA/LSFH 3/C # 2.5 mm2
cable.
Hence, the cable is suitable to be used for VRU Compressor A - Lube Oil Heater
(339-OEH-01A).
Internship*Report*
PT.*TRIPATRA*ENGINEERING*
2015*
UNIVERSITAS*INDONESIA*2015* 47"
CHAPTER VI
CONCLUSION
The conclusion that can be summarize from this cable sizing calculations are:
! Cable sizing for cables run from 400 V Switchgear and MCC Process 360-ES-03
to the loads already meet the requirement of allowable steady state current
carrying capacity. Where the condition of I! > I!" is fulfilled.
! Cable sizing for cables run from 400 V Switchgear and MCC Process 360-ES-03
to the loads already meet the requirement of allowable voltage drop during steady
state and transient (motor starting) condition. Where the condition of
V! !≤!V!"!"#andV!"# !≤!V!"#$% are fulfilled.
! Cable sizing for cables run from 400 V Switchgear and MCC Process 360-ES-03
to the loads already meet the requirement of short circuit current withstand
capacity. Where the condition of !!" !≤ !! is fulfilled.
Internship*Report*
PT.*TRIPATRA*ENGINEERING*
2015*
UNIVERSITAS*INDONESIA*2015* 48"
REFERENCES
Tripatra Engineering. Cable Sizing and Volt Drop Calculation. Document no:
DMAN-TPE-ENGELC-027.
Tripatra Engineering. Cable Tray Sizing and Selection. Document no: DMAN-TPE-
ENGELC-028.
CM Corporation. Current carrying capacity of copper conductors. Retrieved on 20th
March 2015 from http://www.cmcorporation.com/conductors/current-carrying-
capacity-of-copper-conductors
EPB. Fundamentals of electricity: Voltage drop. Retrieved on 18th
March 2015 from
http://epb.apogee.net/foe/frvd.asp.
Tripatra.Tripatra’s profile. Retrieved on 18th
March 2015 from
http://intranet.tripatra.com/default.aspx
Electerical Engineering Portal.Sizing of power cables. Retrieved on 19th
March 2015
fromhttp://electrical-engineering-portal.com/sizing-of-power-cables-for-circuit-
breaker- controlled-feeders-part-1
DP Kothari and I J Nagarath. 2003. Modern Power System Analysis 3rd
Edition.
Tata McGraw-Hill Education.
0.6 kV CONTINUOUS ALUMINUM CORRUGATED ARMOR
Correction Factor
: 40 Ft - Temp Correction Factor : 0.91
Fg - Cable Group Cor. Fact (In Cable Tray): 0.77 cable&tray&
number&of&tray&2
: 30 Fr - Resistance Cor. Fact : 1.079 number&of&cable&4
: 90
: 20
: 250
: 50
Ia/In CURRENT Ic Fg Ft Id Ro Fr R
X
(@50Hz)
MAX Vdn Vdn
MAX
Vdn
Vdn
SC
@LOAD
TIME
VALUE UNIT (VOLT) UNIT (pu) (pu) (pu) (pu) (A) (A) (pu) (A) (m) (no) (m) (Type)
COND SIZE
(kcmil)
(A) (pu) (pu) (A) (ohm/km) (ohm/km) (ohm/km) (%) (%) (%) (%) (kA) (s) Tsc (o
C) Tc (o
C)
1 M 482HM04A&7&P OTF/LPGF&&400&V&SWITCHGEAR&&&MCC&PROCESS& 3607&ES7&03& DEPROPANIZER&CONDENSER&FAN&MOTOR&A 4827HM704A& 30 kW 400 V 0.92 0.88 0.3 1.25 53.48 66.86 7.5 401.14 225 1 225 0.6/1&kV&7&XLPE/SWA/LSFH&3/C&#&25&mm2 50 153 0.77 0.91 107.55 0.73 1.08 0.78 0.08 5 3.79 15 12.10 0.3 0.18 0.16 250 90
2 M 482HM04B&7&P OTF/LPGF&&400&V&SWITCHGEAR&&&MCC&PROCESS& 3607&ES7&03& DEPROPANIZER&CONDENSER&FAN&MOTOR&B 4827HM704B& 30 kW 400 V 0.92 0.88 0.3 1.25 53.48 66.86 7.5 401.14 280 1 280 0.6/1&kV&7&XLPE/SWA/LSFH&3/C&#&35&mm2 68 188 0.77 0.91 132.15 0.52 1.08 0.57 0.08 5 3.46 15 11.74 0.3 0.18 0.16 250 90
3 M 482PM01A&7&P OTF/LPGF&&400&V&SWITCHGEAR&&&MCC&PROCESS& 3607&ES7&03& DEETHANIZER&REFLUX&PUMP&MOTOR&A 4827PM701A 22 kW 400 V 0.91 0.9 0.3 1.25 38.77 48.46 7.4 286.91 280 1 280 0.6/1&kV&7&XLPE/SWA/LSFH&3/C&#&25&mm2 50 153 0.77 0.91 107.55 0.73 1.08 0.78 0.08 5 3.48 15 10.77 0.3 0.13 0.16 250 90
4 M 482PM01B&7&P OTF/LPGF&&400&V&SWITCHGEAR&&&MCC&PROCESS& 3607&ES7&03& DEETHANIZER&REFLUX&PUMP&MOTOR&B 4827PM701B 22 kW 400 V 0.91 0.9 0.3 1.25 38.77 48.46 7.4 286.91 280 1 280 0.6/1&kV&7&XLPE/SWA/LSFH&3/C&#&25&mm2 50 153 0.77 0.91 107.55 0.73 1.08 0.78 0.08 5 3.48 15 10.77 0.3 0.13 0.16 250 90
5 M 482PM02A&7&P OTF/LPGF&&400&V&SWITCHGEAR&&&MCC&PROCESS& 3607&ES7&03& DEPROPANIZER&REFLUX&PUMP&MOTOR&A 4827PM702A 36 kW 400 V 0.94 0.89 0.3 1.25 62.11 77.64 7.4 459.62 280 2 280 0.6/1&kV&7&XLPE/SWA/LSFH&3/C&#&16&mm2 27 118 0.77 0.91 165.89 1.15 1.08 1.24 0.08 5 4.29 15 12.44 0.3 0.21 0.16 250 90
6 M 482PM02B&7&P OTF/LPGF&&400&V&SWITCHGEAR&&&MCC&PROCESS& 3607&ES7&03& DEPROPANIZER&REFLUX&PUMP&MOTOR&B 4827PM702B 36 kW 400 V 0.94 0.89 0.3 1.25 62.11 77.64 7.4 459.62 280 2 280 0.6/1&kV&7&XLPE/SWA/LSFH&3/C&#&16&mm2 27 118 0.77 0.91 165.89 1.15 1.08 1.24 0.08 5 4.29 15 12.44 0.3 0.21 0.16 250 90
7 M 482PM04A&7&P OTF/LPGF&&400&V&SWITCHGEAR&&&MCC&PROCESS& 3607&ES7&03& DEBUTANIZER&REFLUX&PUMP&MOTOR&A 4827PM704A 45 kW 400 V 0.95 0.87 0.3 1.25 78.59 98.23 7.6 597.26 280 1 280 0.6/1&kV&7&XLPE/SWA/LSFH&3/C&#&50&mm2 76 219 0.77 0.91 153.94 0.39 1.08 0.42 0.07 5 3.81 15 14.24 0.3 0.26 0.16 250 90
8 M 332HM02A&7&P OTF/LPGF&&400&V&SWITCHGEAR&&&MCC&PROCESS& 3607&ES7&03& CRUDE&OIL&RUNDOWN&COOLER&FAN&MOTOR&A 3327HM702A 15 kW 400 V 0.92 0.88 0.3 1.25 26.74 33.43 7.5 200.57 165 1 165 0.6/1&kV&7&XLPE/SWA/LSFH&3/C&#&10&mm2 20 88 0.77 0.91 61.86 1.83 1.08 1.97 0.08 5 3.39 15 9.58 0.3 0.09 0.16 250 90
9 M 339PM01A&7&P OTF/LPGF&&400&V&SWITCHGEAR&&&MCC&PROCESS& 3607&ES7&03& FLASH&GAS&COMPRESSOR&A&7&COMPRESSOR&PRE7LUBE&OIL&PUMP&MOTOR 3397PM701A 2.5 kW 400 V 0.83 0.88 0.3 1.25 4.94 6.18 7.6 37.55 250 1 250 0.6/1&kV&7&XLPE/SWA/LSFH&3/C&#&2.5&mm2 5 37 0.77 0.91 26.01 7.41 1.08 7.99 0.10 5 3.79 15 10.12 0.3 0.02 0.16 250 90
10 F 339OEH01A&7&P OTF/LPGF&&400&V&SWITCHGEAR&&&MCC&PROCESS& 3607&ES7&03& VRU&COMPRESSOR&A&7&LUBE&OIL&HEATER 3397OEH701A 3 kW 400 V 1 0.85 N/A 1 5.09 5.09 N/A N/A 195 1 195 0.6/1&kV&7&XLPE/SWA/LSFH&3/C&#&2.5&mm2 5 37 0.77 0.91 26.01 7.41 1.08 7.99 0.10 5 2.94 15 N/A 0.3 0.02 0.16 250 90
11 M 332PM01A&7&P OTF/LPGF&&400&V&SWITCHGEAR&&&MCC&PROCESS& 3607&ES7&03& CRUDE&OIL&RUNDOWN&PUMP&MOTOR&A 3327PM701A 36 kW 400 V 0.94 0.89 0.3 1.25 62.11 77.64 7.4 459.62 210 6 210 0.6/1&kV&7&XLPE/SWA/LSFH&3/C&#&25&mm2 50 153 0.77 0.91 645.27 0.73 1.08 0.78 0.08 5 0.69 15 2.16 0.3 0.21 0.16 250 90
12 M 332PM01B&7&P OTF/LPGF&&400&V&SWITCHGEAR&&&MCC&PROCESS& 3607&ES7&03& CRUDE&OIL&RUNDOWN&PUMP&MOTOR&B 3327PM701B 36 kW 400 V 0.94 0.89 0.3 1.25 62.11 77.64 7.4 459.62 210 1 210 0.6/1&kV&7&XLPE/SWA/LSFH&3/C&#&25&mm2 50 153 0.77 0.91 107.55 0.73 1.08 0.78 0.08 5 4.14 15 12.94 0.3 0.21 0.16 250 90
13 M 339PM03A&7&P OTF/LPGF&&400&V&SWITCHGEAR&&&MCC&PROCESS& 3607&ES7&03& FLASH&GAS&COMPRESSOR&A&7&ENGINE&PRE&LUBE&OIL&PUMP&MOTOR 3397PM703A 3.7 kW 400 V 0.84 0.88 0.3 1.25 7.22 9.03 7.7 55.63 250 1 250 0.6/1&kV&7&XLPE/SWA/LSFH&3/C&#&4&mm2 8 42 0.77 0.91 29.52 4.61 1.08 4.97 0.09 5 3.46 15 9.50 0.3 0.02 0.16 250 90
14 M 381PM02&7&P OTF/LPGF&&400&V&SWITCHGEAR&&&MCC&PROCESS& 3607&ES7&03& CRUDE&OIL&RE7RUN&PUMP&MOTOR 3817PM702 22 kW 400 V 0.91 0.9 0.3 1.25 38.77 48.46 7.4 286.91 385 1 385 0.6/1&kV&7&XLPE/SWA/LSFH&3/C&#&25&mm2 50 153 0.77 0.91 107.55 0.73 1.08 0.78 0.08 5 4.78 15 14.81 0.3 0.13 0.16 250 90
15 M 436HM01A&7&P OTF/LPGF&&400&V&SWITCHGEAR&&&MCC&PROCESS& 3607&ES7&03& REGENERATION&GAS&COOLER&FAN&MOTOR&A 4367HM701A 2.5 kW 400 V 0.83 0.88 0.3 1.25 4.94 6.18 7.6 37.55 250 1 250 0.6/1&kV&7&XLPE/SWA/LSFH&3/C&#&2.5&mm2 5 37 0.77 0.91 26.01 7.41 1.08 7.99 0.10 5 3.79 15 10.12 0.3 0.02 0.16 250 90
16 M 436HM01B&7&P OTF/LPGF&&400&V&SWITCHGEAR&&&MCC&PROCESS& 3607&ES7&03& REGENERATION&GAS&COOLER&FAN&MOTOR&B 4367HM701B 2.5 kW 400 V 0.83 0.88 0.3 1.25 4.94 6.18 7.6 37.55 250 1 250 0.6/1&kV&7&XLPE/SWA/LSFH&3/C&#&2.5&mm2 5 37 0.77 0.91 26.01 7.41 1.08 7.99 0.10 5 3.79 15 10.12 0.3 0.02 0.16 250 90
17 F 332VT027P OTF/LPGF&&400&V&SWITCHGEAR&&&MCC&PROCESS& 3607&ES7&03& LP&ELECTROSTATIC&TREATER 332&7VT702 30 kW 400 V 1 0.8 N/A 1 54.13 54.13 N/A N/A 160 1 160 0.6/1&kV&7&XLPE/SWA/LSFH&3/C&#&25&mm2 50 153 0.77 0.91 107.55 0.73 1.08 0.78 0.08 5 2.53 15 N/A 0.3 0.18 0.16 250 90
18 F 339OEH01B&7&P OTF/LPGF&&400&V&SWITCHGEAR&&&MCC&PROCESS& 3607&ES7&03& VRU&COMPRESSOR&B&7&LUBE&OIL&HEATER 3397OEH701B 3 kW 400 V 1 0.85 N/A 1 5.09 5.09 N/A N/A 195 1 195 0.6/1&kV&7&XLPE/SWA/LSFH&3/C&#&2.5&mm2 5 37 0.77 0.91 26.01 7.41 1.08 7.99 0.10 5 2.94 15 N/A 0.3 0.02 0.16 250 90
NO. LOAD TYPE
CABLE TAG
NUMBER
TEMPERATURE
CONDITION
POWER RATING CABLE SIZE
CABLE AMPACITY LOAD SCSTARTING CURRENT
Environment Condition
T1 - T amb (°C)
Design Cable- Catalogue
T2 - T amb (°C) (Ampacity)
Tc - T Rating of Cond. (°C)
To - T amb (°C) (Resistance)
Tsc- Tmax at SC (°C)
Frequency for Reactance (Hz)
FROM CABLE DATA RUNNINGTO
EGUIPMENT
TAG NUMBER
DESCRIPTION
EGUIPMENT TAG
NUMBER
DESCRIPTION
ESTIMATED
LENGTH
TOTAL
LENGTH
DESIGN
CURRENT
STARTING SC CAPACITY OF CONDUCTOR
PF. AT
START
NUMBER
OF CABLE
VOLTAGE( Vn)
EFF. AT
FULL
LOAD
PF. AT
FULL
LOAD
FULL LOAD
CURRENT
(IFL)
MULTIPLY
FACTOR
LOAD
Xd"
MINIMUM
CONDUCTOR
kcmill
1 8.99
1 12.23
1 8.99
1 8.99
2 4.86
2 4.86
2 13.67
1 3.60
1 0.90
1 0.90
1 8.99
1 8.99
1 1.44
1 8.99
1 0.90
1 0.90
1 8.99
1 0.90
SHORT CIRCUIT
CAPACITY OF
CONDUCTOR
(kA) @ 0.16 S
SC CAPACITY OF CONDUCTOR
Head Office/Factory:
Jl. Gatot Subroto Km 7,8 Kel Pasir Jaya, Kec. Jati Uwung, Tangerang 15135-Indonesia
Phone : (62-21) 5922404, 5928066 (Hunting) Fax. : (62-21) 59301979, 5922576, 5901469
c Copyright Sumi Indo Kabel 2009
All rights reserved. This catalogue is the copyright work of PT. Sumi Indo Kabel Tbk. No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means, electronic, mechanical, photocopying, recording or otherwise, without prior permission of PT. Sumi Indo Kabel.
All information contained in this catalogue is believed to be accurate at the time issue. PT. Sumi Indo Kabel reserve the right to change information or specification at any time
in the light of technical developments or revisions.
Issue : 3 Date: June 2009
Section 1 - Contents & Information
Low Voltage Catalogue Index
Page Number
SECTION 1 - Contents & Information
Index Page 11
Company Profile of PT. SUMI INDO KABEL Tbk 2
Cable Specification 3
SECTION 2 - PVC Insulated Cables
Unarmoured Cables
450/750 Volts PVC Insulated Cables (Cu/PVC, NYA) 5
450/750 Volts PVC Insulated Cables (Flexible Cu/PVC, NYAF) 6
300/500 Volts PVC Insulated and PVC Sheathed Cables (PVC/PVC, NYM) 8
300/500 Volts PVC Insulated and PVC Sheathed Cables (Flexible PVC/PVC, NYMHY) 10
450/750 Volts PVC Insulated and PVC Sheathed Cables (Flexible PVC/PVC, NYYHY) 11
600/1000 Volts PVC Insulated and PVC Sheathed Cables (PVC/PVC, NYY) 18
600/1000 Volts PVC Insulated, Copper Tape Shielded and PVC Sheathed Cables (PVC/PVC-S, NYSY) 30
Armoured Cables
600/1000 Volts PVC Insulated, Steel Wire Armoured and PVC Sheathed Cables (PVC/SWA/PVC, NYRY) 35
600/1000 Volts PVC Insulated, Flat Steel Wire Armoured and PVC Sheathed Cables (PVC/FSWA/PVC, NYFGbY) 41
600/1000 Volts PVC Insulated, Double Steel Tape Armoured and PVC Sheathed Cables (PVC/DSTA/PVC, NYBY) 46
SECTION 3 - XLPE Insulated Cables
Unarmoured Cables
600/1000 Volts XLPE Insulated and PVC Sheathed Cables (XLPE/PVC, N2XY) 52
600/1000 Volts XLPE Insulated, Copper Tape Shielded and PVC Sheathed Cables (XLPE/PVC-S, N2XSY) 62
Armoured Cables
600/1000 Volts XLPE Insulated, Steel Wire Armoured and PVC Sheathed Cables (XLPE/SWA/PVC, N2XRY) 67
600/1000 Volts XLPE Insulated, Flat Steel Wire Armoured and PVC Sheathed Cables (XLPE/FSWA/PVC, N2XFGbY) 73
600/1000 Volts XLPE Insulated, Double Steel Tape Armoured and PVC Sheathed Cables (XLPE/DSTA/PVC, N2XBY) 78
SECTION 4 - General Information
Current Carrying Capacity for XLPE Insulated cable (single core) 83
Current Carrying Capacity for XLPE Insulated cable (multicore) 84
Current Carrying Capacity for PVC Insulated cable (single core) 85
Current Carrying Capacity for PVC Insulated cable (multicore) 86
Correction factor of Curent carrying capacity 87
Cable arrangement for Installation purpose 88
Explanation of Flame Retardant / Fire Resistant Characteristic 91
Page - 1
Section 1 - Contents & Information
Page - 2
1
Company Profile of PT. Sumi Indo Kabel Tbk
The Company was established on July 23, 1981 with its Head Office
and Factory located in Tangerang, Banten. The Company is engaged
in the manufacturing of Power Cable, Telecommunication Cable &
Fiber Optic, and Copper Wire.
The Company was listed in the Jakarta and Surabaya Stock Exchanges
in 1990. The Company became Foreign Capital Investment (PMA)
in 1994, with the participation of Sumitomo Electric Industries, Ltd.,
Japan, one of the biggest in cable and wire industries in the world. The
name of Company became PT Sumi Indo Kabel Tbk. since 1999.
The Company received official recognition of its quality management
system standard from SGS, certification ISO 9001 : 2000 for its Power
Cable & Control Cable, Telephone Cable & Fiber Optic Cable, and
Copper Wire Rod in 2002. This was the first recognition in Indonesia
for Electric Cable and Wire industries.
Section 2 - PVC Insulated Cables
Unarmoured Cables
450/750 V PVC INSULATED WIRE (Cu/PVC)
acc. to IEC 60227
Copper Conductor (Solid) PVC Insulation
Copper Conductor (Stranded) PVC Insulation
Colour of Insulation : Red, White, Black, Green, Brown, Blue, Yellow, Green-yellow
450/750 V PVC INSULATED WIRE (Cu/PVC Flexible)
acc. to IEC 60227
Copper Conductor (Flexible) PVC Insulation
Colour of Insulation : Red, White, Black, Green, Brown, Blue, Yellow, Green-yellow
Page - 4
Note : Special application upon request
* Available product in accordance to : SPLN or other requirement.
* Tin coated Copper conductor.
Section 1 - Contents & Information
1 Scope
2 Conductor
The conductor shall be solid, circular stranded or compacted stranded.
3 Insulation
4 Identification of cores
Number of core Identification of cores
Single core Black (Natural for XLPE insulated)
Two cores Red, Black
Three cores Red, Yellow, Blue
Four cores Red, Yellow, Blue, Black
Five core or more Black insulation with white numbered code.
5 Cabling and filling
6 Metallic Shielding (if required)
The metallic shielding shall consist of either one or more Copper tapes or a concentric layer of
copper wires.
7 Inner sheath (armour cable only).
8 Metallic armour
9 Outer sheath
The conductor shall be formed from plain annealed copper or aluminium complying with IEC 60228,
ASTM B3 and B8.
The insulation shall be cross-linked polyethylene (XLPE) or Polivinyl chloride (PVC) in accordance
to IEC 60502-1.
The outer sheath shall consist of a thermoplastic compound such as polyvinyl chloride (PVC),
polyethylene (PE), halogen free (LSOH), etc in accordance with IEC 60502-1.
Page - 3
The cores of all cables shall be identified by color or numbered printed on the surface of insulation in
accordance with the following sequence or other sequence.
The multi cores shall be laid up together with suitable filler to give the completed cable a
substantially circular cross section and bound with suitable binder tape.
The inner sheath shall consist of extruded thermoplastic compound such as :polyvinyl chloride
(PVC), polyethylene (PE),halogen free (LSOH), etc in accordance to IEC 60502-1.
The metallic armour shall consist of single layer of round galvanized steel wire or flat galvanized steel
wire and steel tape or double layer of galvanized steel tapes in accordance to IEC 60502-1.
The armour of single core cables shall consist of single layer of aluminium wire or double layers of
aluminium tape as non magnetic material.
Cable Specification
These specification apply to material and constructions of cross-linked thermosetting polyethylene
(XLPE) or Polivinyl chloride (PVC) insulated wire and cables for rated voltages 0.3/0.5 kV up to
0.6/1(1.2) kV accordance to IEC 60502-1, Indonesia Electric Power Company (SPLN)
Section 2 - PVC Insulated Cables
Unarmoured Cables
CONSTRUCTION TECHNICAL DATA
Conductor : Plain Annealed Copper Voltage
(to IEC 60228 class 1 or 2) Uo/U - 450/750 V
Insulation : PVC Compound type C Operating Temperature
Colour Ident. : Red, White, Black, Green, Maximum 70°C
Blue, Yellow, Green-yellow
1.5 1 / 1.38 1.38 0.7 3.0 22 12.1 0.011 2500
1.5 7 / 0.52 1.56 0.7 3.5 23 12.1 0.010 2500
2.5 1 / 1.78 1.78 0.8 4.0 33 7.41 0.010 2500
2.5 7 / 0.67 2.01 0.8 4.0 35 7.41 0.009 2500
4 1 / 2.26 2.26 0.8 4.5 49 4.61 0.0085 2500
4 7 / 0.85 2.55 0.8 4.5 52 4.61 0.0077 2500
6 1 / 2.77 2.77 0.8 5.0 69 3.08 0.0070 2500
6 7 / 1.04 3.12 0.8 5.0 72 3.08 0.0065 2500
10 1 / 3.57 3.57 1.0 6.0 113 1.83 0.0070 2500
10 7 / 1.35 4.05 1.0 6.5 119 1.83 0.0065 2500
16 7 / 1.70 5.10 1.0 7.5 179 1.15 0.0050 2500
25 7 / 2.13 6.39 1.2 9.0 277 0.727 0.0050 2500
35 7 / 2.52 7.56 1.2 10.5 377 0.524 0.0040 2500
50 19 / 1.83 9.15 1.4 12.5 530 0.387 0.0045 2500
70 19 / 2.17 10.85 1.4 14.0 727 0.268 0.0035 2500
95 19 / 2.52 12.60 1.6 16.5 985 0.193 0.0035 2500
120 37 / 2.03 14.21 1.6 18.0 1218 0.153 0.0032 2500
150 37 / 2.27 15.89 1.8 20.0 1522 0.124 0.0032 2500
185 37 / 2.52 17.64 2.0 22.0 1873 0.0991 0.0032 2500
240 61 / 2.26 20.34 2.2 25.5 2465 0.0754 0.0032 2500
300 61 / 2.52 22.68 2.4 28.0 3055 0.0601 0.0030 2500
400 61 / 2.86 25.74 2.6 31.5 3927 0.0470 0.0028 2500
Page - 5
V/5 min
Maximum AC
Test
Voltage
MΩ.km
Thickness
Nominal
Resistance Resistance
wire
Conductor
of
Nominal No./
Diameter
Minimum
Insulation
Cross-
Diameter
of wire
(approx.)
Conductorsection Insulation
Weight
Nominal
Overall
Ω/kmkg/kmmm²
(Approx.)(Approx.)
No./mm
area (approx.)
mmmm mm
450/750 V PVC INSULATED WIRE
CU/PVC (IEC 60227)
Conductor
at 70°Cat 20°C
of Diameter of
Section 2 - PVC Insulated Cables
Unarmoured Cables
CONSTRUCTION TECHNICAL DATA
Conductor : Plain Annealed Copper Voltage
(to IEC 60228 class 5) Uo/U - 450/750 V
Insulation : PVC Compound type C Operating Temperature
Colour Ident. : Red, White, Black, Green, Maximum 70°C
Blue, Yellow, Green-yellow
1.5 1.58 0.7 3.5 22 13.30 0.010 2500
2.5 0.26 2.04 0.8 4.0 34 7.98 0.009 2500
4 0.31 2.59 0.8 4.5 50 4.95 0.007 2500
6 0.31 3.46 0.8 5.5 75 3.30 0.006 2500
10 0.41 4.62 1.0 7.0 130 1.91 0.0056 2500
16 0.41 5.66 1.0 8.0 186 1.21 0.0046 2500
25 0.41 7.06 1.2 10.0 286 0.78 0.0044 2500
35 0.41 8.43 1.2 11.0 395 0.554 0.0038 2500
50 0.41 10.07 1.4 13.5 550 0.386 0.0037 2500
70 0.51 11.97 1.4 15.0 760 0.272 0.0032 2500
95 0.51 13.73 1.6 17.5 1008 0.206 0.0032 2500
120 0.51 15.53 1.6 19.5 1270 0.161 0.0029 2500
150 0.51 17.56 1.8 22.0 1605 0.129 0.0029 2500
185 0.51 19.16 2.0 24.0 1914 0.106 0.0029 2500
240 0.51 22.0 2.2 27.0 2491 0.0801 0.0028 2500
Page - 6
Maximum MinimumNominal Nominal
Thickness Overall
section Conductor
Nominal Diameter Insulation
Cross- of of Diameter of Resistance Resistance
Weight Conductor
0.26
at 70°C
area (Approx.) (Approx.)(approx.)
mm mm kg/km Ω/kmmm² mm
(approx.)
Insulation wire at 20°C
mm V/5 minMΩ.km
Conductor AC
Maximum Test
Diameter Voltage
of wire
450/750 V PVC INSULATED WIRE
CU/PVC-Flexible (IEC 60227)
Section 2 - PVC Insulated Cables
Unarmoured Cables
300/500 V PVC INSULATED AND PVC SHEATHED CABLES
PVC/PVC (NYM) - IEC 60227 , SPLN 42-2
Conductor PVC Inner covering
PVC Insulation PVC Sheath
300/500 V PVC INSULATED AND PVC SHEATHED CABLES
PVC/PVC Flexible (NYMHY) - IEC 60227 , SPLN 42-2
Conductor
PVC Insulation PVC Sheath
450/750 V PVC INSULATED AND PVC SHEATHED CABLES
PVC/PVC Flexible (IEC 60227, SPLN 42-6-3)
Tape (manufacturer's option)
Conductor PVC Sheath
PVC Insulation
Filler (Polyprophylene yarn,or extruded filler up to request)
Page - 7
Section 2 - PVC Insulated Cables
Unarmoured Cables
CONSTRUCTION TECHNICAL DATA
Conductor : Plain Annealed Copper Voltage
(to IEC 60228 class 1 and 2) Uo/U - 300/500 V
Insulation : PVC Compound Operating Temperature
Inner covering : PVC Compound Maximum 70°C
Sheath : PVC Compound type ST2
Colour Ident. : Insulation : Two cores - Red,Black
Three cores - Red,Yellow, Blue
Sheath - White
TWO AND THREE CORES
No.
of
Core
-
1.5 1 / 1.38 1.38 0.7 0.4 1.2 9.5 129 12.1
7 / 0.52 1.56 0.7 0.4 1.2 10.0 138 12.1
2.5 1 / 1.78 1.78 0.8 0.4 1.2 11.0 173 7.41
7 / 0.67 2.01 0.8 0.4 1.2 11.0 184 7.41
4 1 / 2.26 2.26 0.8 0.4 1.2 12.0 222 4.61
2 7 / 0.85 2.55 0.8 0.4 1.2 12.5 239 4.61
6 1 / 2.77 2.77 0.8 0.4 1.2 13.0 294 3.08
7 / 1.04 3.12 0.8 0.4 1.2 14.0 313 3.08
10 1 / 3.57 3.57 1.0 0.6 1.4 16.0 453 1.83
7 / 1.35 4.05 1.0 0.6 1.4 17.0 492 1.83
16 7 / 1.70 5.10 1.0 0.6 1.4 19.0 668 1.15
25 7 / 2.13 6.39 1.2 0.8 1.4 23.0 998 0.727
35 7 / 2.52 7.56 1.2 1.0 1.6 26.0 1336 0.524
1.5 1 / 1.38 1.38 0.7 0.4 1.2 10.0 150 12.1
7 / 0.52 1.56 0.7 0.4 1.2 10.5 159 12.1
2.5 1 / 1.78 1.78 0.8 0.4 1.2 11.5 205 7.41
7 / 0.67 2.01 0.8 0.4 1.2 12.0 216 7.41
4 1 / 2.26 2.26 0.8 0.4 1.2 12.5 266 4.61
3 7 / 0.85 2.55 0.8 0.4 1.2 13.0 286 4.61
6 1 / 2.77 2.77 0.8 0.4 1.4 14.0 357 3.08
7 / 1.04 3.12 0.8 0.4 1.4 14.5 381 3.08
10 1 / 3.57 3.57 1.0 0.6 1.4 17.0 557 1.83
7 / 1.35 4.05 1.0 0.6 1.4 18.0 600 1.83
16 7 / 1.70 5.10 1.0 0.8 1.4 20.5 849 1.15
25 7 / 2.13 6.39 1.2 0.8 1.6 24.5 1270 0.727
35 7 / 2.52 7.56 1.2 1.0 1.6 27.5 1679 0.524
Conductor Nominal Nominal
at 20°C
Conductor
Ω/km
Resistance
Thickness
Sheath
Weightdiameter
cable cable
Maximum
Nominal No./ Diameter Thickness
Cross- Diameter of of
section
Overall
of of
No./mm
(approx.) (approx.)
mm kg/kmmm
area
300/500 V PVC INSULATED AND PVC SHEATHED CABLES
PVC/PVC (NYM) - IEC 60227 , SPLN 42-2
of wire Conductor Insulation
(approx.)
of
mm²
Thickness
of Inner
covering
(approx.)
mm mm
(approx.)
mm
Page - 8
Section 2 - PVC Insulated Cables
Unarmoured Cables
CONSTRUCTION TECHNICAL DATA
Conductor : Plain Annealed Copper Voltage
(to IEC 60228 class 1 and 2) Uo/U - 300/500 V
Insulation : PVC Compound Operating Temperature
Inner covering : PVC Compound Maximum 70°C
Sheath : PVC Compound type ST2
Colour Ident. : Insulation : Four core - Red,Yellow, Blue, Black
Five core - Black with numbering code
Sheath - White
FOUR AND FIVE CORES
No.
of
Core
-
1.5 1 / 1.38 1.38 0.7 0.4 1.2 11.0 177 12.1
7 / 0.52 1.56 0.7 0.4 1.2 11.5 189 12.1
2.5 1 / 1.78 1.78 0.8 0.4 1.2 12.5 247 7.41
7 / 0.67 2.01 0.8 0.4 1.2 13.0 262 7.41
4 1 / 2.26 2.26 0.8 0.4 1.4 14.0 340 4.61
4 7 / 0.85 2.55 0.8 0.4 1.4 14.5 361 4.61
6 1 / 2.77 2.77 0.8 0.4 1.4 15.5 456 3.08
7 / 1.04 3.12 0.8 0.4 1.4 16.0 482 3.08
10 1 / 3.57 3.57 1.0 0.6 1.4 18.5 690 1.83
7 / 1.35 4.05 1.0 0.6 1.4 19.5 742 1.83
16 7 / 1.70 5.10 1.0 0.8 1.4 22.5 1059 1.15
25 7 / 2.13 6.39 1.2 1.0 1.6 27.5 1616 0.727
35 7 / 2.52 7.56 1.2 1.0 1.6 30.0 2107 0.524
1.5 1 / 1.38 1.38 0.7 0.4 1.2 11.5 210 12.1
7 / 0.52 1.56 0.7 0.4 1.2 12.0 223 12.1
2.5 1 / 1.78 1.78 0.8 0.4 1.2 13.5 293 7.41
7 / 0.67 2.01 0.8 0.4 1.2 14.0 313 7.41
4 1 / 2.26 2.26 0.8 0.6 1.4 15.5 424 4.61
5 7 / 0.85 2.55 0.8 0.6 1.4 16.5 452 4.61
6 1 / 2.77 2.77 0.8 0.6 1.4 17.0 548 3.08
7 / 1.04 3.12 0.8 0.6 1.4 17.5 579 3.08
10 1 / 3.57 3.57 1.0 0.6 1.4 20.0 839 1.83
7 / 1.35 4.05 1.0 0.6 1.4 21.5 898 1.83
16 7 / 1.70 5.10 1.0 0.8 1.6 25.0 1310 1.15
25 7 / 2.13 6.39 1.2 1.0 1.6 30.0 1969 0.727
35 7 / 2.52 7.56 1.2 1.2 1.6 33.5 2617 0.524
300/500 V PVC INSULATED AND PVC SHEATHED CABLES
Maximum
PVC/PVC (NYM) - IEC 60227 , SPLN 42-2
Nominal No./ Diameter Thickness
Conductor Nominal Nominal Overall
of Inner of of of Resistance
Thickness Thickness diameter Weight
cablesection of wire Conductor Insulation
Conductor
Cross- Diameter of of
at 20°C
area (approx.) (approx.) (approx.) (approx.) (approx.)
covering Sheath cable
mm kg/kmmm² No./mm mm mm
Page - 9
Ω/kmmm mm
Section 2 - PVC Insulated Cables
Unarmoured Cables
CONSTRUCTION TECHNICAL DATA
Conductor : Plain Annealed Copper Voltage
(to IEC 60228 class 5) Uo/U - 300/500 V
Insulation : PVC Compound type D Operating Temperature
Sheath : PVC Compound type ST5 Maximum 70°C
Colour Ident. : Insulation - Red,Black: Two core - Red,Black
Three core - Red,Yellow, Blue
Four core - Red,Yellow, Blue, Black
Five core - Black with numbering code
Sheath - White
Number
of
Core
-
0.75 1.13 7.0 64 26.0
2 1 0.21 1.31 7.5 74 19.5
1.5 1.58 8.5 98 13.3
2.5 0.26 2.04 10.0 145 7.98
0.75 1.13 7.5 75 26.0
3 1 0.21 1.31 7.5 87 19.5
1.5 1.58 9.0 121 13.3
2.5 0.26 2.04 10.5 180 7.98
0.75 1.13 8.0 90 26.0
4 1 0.21 1.31 8.5 108 19.5
1.5 1.58 10.0 150 13.3
2.5 0.26 2.04 11.5 219 7.98
0.75 1.13 9.0 111 26.0
5 1 0.21 1.31 9.5 129 19.5
1.5 1.58 11.0 182 13.3
2.5 0.26 2.04 13.0 266 7.98
Conductor Nominal Nominal Overall Maximum
Nominal Maximum Diameter Thickness Thickness diameter Weight Conductor
of ResistanceCross- Diameter of of
section of wire Conductor Insulation
of of
(approx.) (approx.)
Sheath cable cable at 20°C
(approx.)
mm² mm mm mm mm mm kg/km
area (approx.)
0.6 0.8
0.26 0.7 0.8
Ω/km
0.6 0.8
0.26 0.7 0.9
0.8 1.0
0.21 0.6 0.8
0.6 0.9
0.26 0.7 1.0
0.8 1.1
0.21 0.6 0.8
0.26 0.7 1.1
0.8 1.1
0.21 0.6 0.9
0.21
300/500 V PVC INSULATED AND PVC SHEATHED CABLES
PVC/PVC Flexible (IEC 60227, SPLN 42-6-2)
Page - 10
0.8 1.2
0.80.6
0.6 0.9
Section 2 - PVC Insulated Cables
Unarmoured Cables
CONSTRUCTION TECHNICAL DATA
Conductor : Plain Annealed Copper Voltage
(to IEC 60228 class 5) Uo/U - 450/750 V
Insulation : PVC Compound type D Operating Temperature
Filler : Suitable material Maximum 70°C
Sheath : PVC Compound type ST5
Colour Ident. : Insulation - Red,Black
Sheath - Black
TWO CORES
1.5 1.58 1.8 10.5 126 13.3
2.5 0.26 2.04 1.8 12.0 166 7.98
4 0.31 2.59 1.8 14.0 230 4.95
6 0.31 3.46 1.8 15.5 297 3.30
10 0.41 4.62 1.8 18.0 422 1.91
16 0.41 5.66 1.8 20.0 562 1.21
25 0.41 7.06 1.8 23.5 809 0.780
35 0.41 8.43 1.8 26.0 1061 0.554
50 0.41 10.07 1.8 30.5 1451 0.386
70 0.51 11.97 1.9 34.5 1949 0.272
95 0.51 13.73 2.0 39.0 2546 0.206
120 0.51 15.53 2.1 43.0 3160 0.161
Conductor
Maximum
Diameter
kg/km
1.6
450/750 V PVC INSULATED AND PVC SHEATHED CABLES
PVC/PVC Flexible (IEC 60227, SPLN 42-6-3)
0.26
mm mm mm
(approx.) (approx.)
of
Insulation Sheath
Thickness
area (approx.)(approx.)
Nominal Nominal
Conductor
Ω/km
1.4
1.4
1.6
MaximumOverall
at 20°C
diameter
Resistance
cable
of
WeightThickness
of
mm² mmmm
section Conductor
Nominal Diameter
Cross- of
of wire
of
cable
0.7
0.8
1.0
1.0
1.0
1.0
1.2
1.2
Page - 11
Section 2 - PVC Insulated Cables
Unarmoured Cables
CONSTRUCTION TECHNICAL DATA
Conductor : Plain Annealed Copper Voltage
(to IEC 60228 class 5) Uo/U - 450/750 V
Insulation : PVC Compound type D Operating Temperature
Filler : Suitable material Maximum 70°C
Sheath : PVC Compound type ST5
Colour Ident. : Insulation - Red,Yellow , Blue
Sheath - Black
THREE CORES
1.5 1.58 1.8 11.0 153 13.3
2.5 0.26 2.04 1.8 12.5 204 7.98
4 0.31 2.59 1.8 14.5 287 4.95
6 0.31 3.46 1.8 16.5 380 3.30
10 0.41 4.62 1.8 19.0 552 1.91
16 0.41 5.66 1.8 21.0 744 1.21
25 0.41 7.06 1.8 25.0 1085 0.780
35 0.41 8.43 1.8 28.0 1443 0.554
50 0.41 10.07 1.8 32.5 1986 0.386
70 0.51 11.97 2.0 37.0 2702 0.272
95 0.51 13.73 2.1 42.0 3542 0.206
120 0.51 15.53 2.2 46.0 4408 0.161
(approx.)area (approx.) (approx.) (approx.)
at 20°Csection of wire Conductor Insulation Sheath cable cable
of ResistanceofCross- Diameter of of of
Conductor Nominal Nominal
Maximum Diameter Thickness Thickness diameter Weight
450/750 V PVC INSULATED AND PVC SHEATHED CABLES
PVC/PVC Flexible (IEC 60227, SPLN 42-6-3)
Maximum
mm² mm mm mm mm mm kg/km
ConductorNominal
1.0
1.0
1.0
1.2
Overall
Ω/km
0.26
0.8
1.0
0.7
1.6
1.2
1.4
1.4
1.6
Page - 12
Section 2 - PVC Insulated Cables
Unarmoured Cables
CONSTRUCTION TECHNICAL DATA
Conductor : Plain Annealed Copper Voltage
(to IEC 60228 class 5) Uo/U - 450/750 V
Insulation : PVC Compound type D Operating Temperature
Filler : Suitable material Maximum 70°C
Sheath : PVC Compound type ST5
Colour Ident. : Insulation - Red,Yellow , Blue , Black
Sheath - Black
FOUR CORES
1.5 1.58 1.8 12.0 181 13.3
2.5 0.26 2.04 1.8 13.5 247 7.98
4 0.31 2.59 1.8 16.0 353 4.95
6 0.31 3.46 1.8 18.0 471 3.30
10 0.41 4.62 1.8 20.5 696 1.91
16 0.41 5.66 1.8 23.5 942 1.21
25 0.41 7.06 1.8 27.5 1390 0.780
35 0.41 8.43 1.8 31.0 1856 0.554
50 0.41 10.07 1.9 36.0 2579 0.386
70 0.51 11.97 2.1 41.0 3517 0.272
95 0.51 13.73 2.2 47.0 4610 0.206
120 0.51 15.53 2.4 51.5 5769 0.161
Conductor Nominal Nominal Overall
450/750 V PVC INSULATED AND PVC SHEATHED CABLES
PVC/PVC Flexible (IEC 60227, SPLN 42-6-3)
Maximum
Nominal Maximum Diameter Thickness Thickness diameter Weight Conductor
Cross- Diameter of of of of of Resistance
cable at 20°Csection of wire Conductor Insulation
area (approx.) (approx.) (approx.)
Sheath cable
1.0
1.2
(approx.)
mm² mm mm mm mm mm kg/km Ω/km
0.26
0.8
1.0
0.7
1.2
1.4
1.0
1.0
1.4
1.6
1.6
Page - 13
Section 2 - PVC Insulated Cables
Unarmoured Cables
CONSTRUCTION TECHNICAL DATA
Conductor : Plain Annealed Copper Voltage
(to IEC 60228 class 5) Uo/U - 450/750 V
Insulation : PVC Compound type D Operating Temperature
Filler : Suitable material Maximum 70°C
Sheath : PVC Compound type ST5
Colour Ident. : Insulation - Black with numbering code
Sheath - Black
FIVE CORES
1.5 1.58 1.8 13.0 215 13.3
2.5 0.26 2.04 1.8 14.5 290 7.98
4 0.31 2.59 1.8 17.0 425 4.95
6 0.31 3.46 1.8 19.5 567 3.30
10 0.41 4.62 1.8 22.5 847 1.91
16 0.41 5.66 1.8 25.5 1154 1.21
25 0.41 7.06 1.8 30.5 1703 0.780
35 0.41 8.43 1.9 34.0 2297 0.554
50 0.41 10.07 2.0 40.0 3200 0.386
Conductor Nominal Nominal Overall
450/750 V PVC INSULATED AND PVC SHEATHED CABLES
PVC/PVC Flexible (IEC 60227, SPLN 42-6-3)
Maximum
Nominal Maximum Diameter Thickness Thickness diameter Weight Conductor
of ResistanceCross- Diameter of of
section of wire Conductor Insulation
of of
(approx.) (approx.)
Sheath cable cable at 20°C
(approx.)
mm² mm mm mm mm mm kg/km
area (approx.)
Ω/km
0.26
1.0
1.0
1.2
0.7
Page - 14
0.8
1.0
1.2
1.4
1.0
Section 2 - PVC Insulated Cables
Unarmoured Cables
CONSTRUCTION TECHNICAL DATA
Conductor : Plain Annealed Copper Voltage
(to IEC 60228 class 5) Uo/U - 450/750 V
Insulation : PVC Compound type D Operating Temperature
Filler : Suitable material Maximum 70°C
Sheath : PVC Compound type ST5
Colour Ident. : Insulation - Black with numbering code
Sheath - Black
CONTROL CABLE : 1.5 mm²
6 1.58 1.8 14.0 240 13.3
7 0.26 1.58 1.8 14.0 258 13.3
8 0.26 1.58 1.8 15.0 295 13.3
9 0.26 1.58 1.8 16.0 326 13.3
10 0.26 1.58 1.8 17.0 360 13.3
12 0.26 1.58 1.8 17.5 408 13.3
14 0.26 1.58 1.8 18.5 458 13.3
15 0.26 1.58 1.8 19.0 489 13.3
16 0.26 1.58 1.8 19.0 514 13.3
18 0.26 1.58 1.8 20.0 562 13.3
19 0.26 1.58 1.8 20.0 580 13.3
20 0.26 1.58 1.8 21.0 614 13.3
24 0.26 1.58 1.8 23.5 725 13.3
30 0.26 1.58 1.8 24.5 868 13.3
32 0.26 1.58 1.8 25.0 921 13.3
37 0.26 1.58 1.8 26.5 1034 13.3
40 0.26 1.58 1.8 27.5 1110 13.3
50 0.26 1.58 1.9 30.5 1374 13.3
52 0.26 1.58 1.9 31.5 1424 13.3
60 0.26 1.58 1.9 33.0 1617 13.3
61 0.26 1.58 1.9 33.0 1635 13.3
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
Conductor
0.7
0.7
0.7
0.7
Maximum Diameter
Ω/km
0.26 0.7
0.7
0.7
0.7
mm mm mm mm mm kg/km
cable at 20°C
core (approx.) (approx.) (approx.) (approx.)
of of wire Conductor Insulation Sheath cable
Weight Conductor
No Diameter of of of of of Resistance
Thickness
450/750 V PVC INSULATED AND PVC SHEATHED CABLES
PVC/PVC Flexible (IEC 60227, SPLN 42-6-3)
Nominal Nominal Overall Maximum
Thickness diameter
Page - 15
0.7
0.7
0.7
0.7
Section 2 - PVC Insulated Cables
Unarmoured Cables
CONSTRUCTION TECHNICAL DATA
Conductor : Plain Annealed Copper Voltage
(to IEC 60228 class 5) Uo/U - 450/750 V
Insulation : PVC Compound type D Operating Temperature
Filler : Suitable material Maximum 70°C
Sheath : PVC Compound type ST5
Colour Ident. : Insulation - Black with numbering code
Sheath - Black
CONTROL CABLE : 2.5 mm²
6 2.04 1.8 15.5 331 7.98
7 0.26 2.04 1.8 15.5 358 7.98
8 0.26 2.04 1.8 17.0 406 7.98
9 0.26 2.04 1.8 18.0 455 7.98
10 0.26 2.04 1.8 19.5 505 7.98
12 0.26 2.04 1.8 20.0 577 7.98
14 0.26 2.04 1.8 21.0 654 7.98
15 0.26 2.04 1.8 21.5 697 7.98
16 0.26 2.04 1.8 22.0 732 7.98
18 0.26 2.04 1.8 23.0 806 7.98
19 0.26 2.04 1.8 23.0 834 7.98
20 0.26 2.04 1.8 24.0 887 7.98
24 0.26 2.04 1.8 27.0 1049 7.98
30 0.26 2.04 1.8 28.5 1266 7.98
32 0.26 2.04 1.8 29.0 1342 7.98
37 0.26 2.04 1.9 31.0 1527 7.98
40 0.26 2.04 1.9 32.0 1644 7.98
50 0.26 2.04 2.0 35.5 2037 7.98
52 0.26 2.04 2.0 36.5 2115 7.98
60 0.26 2.04 2.1 39.0 2423 7.98
61 0.26 2.04 2.1 39.0 2450 7.98
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
Ω/km
0.26 0.8
0.8
0.8
0.8
mm mm mm mm mm kg/km
cable at 20°C
core (approx.) (approx.) (approx.) (approx.)
of of wire Conductor Insulation Sheath cable
Conductor
No Diameter of of of of of Resistance
Maximum Diameter Thickness Thickness diameter Weight
450/750 V PVC INSULATED AND PVC SHEATHED CABLES
PVC/PVC Flexible (IEC 60227, SPLN 42-6-3)
Conductor Nominal Nominal Overall Maximum
Page - 16
0.8
0.8
0.8
0.8
0.8
0.8
Section 2 - PVC Insulated Cables
600/1000 V PVC INSULATED AND PVC SHEATHED CABLES
Constructions :
Conductor (Annealed Copper)
Insulation (PVC Compound)
up to request)
Binding tape (Manufacturer's option)
Outer sheath (PVC Compound)
Page - 17
Unarmoured Cables
PVC/PVC (acc. to IEC 60502-1)
Filler (Polyprophylene yarn,or extruded filler
1 1
22
3
4
5 5
1
2
3
4
5
Note : Special application upon request
* Available product in accordance to : SPLN, ICEA/NEMA,
AS standard or other requirement.
* Flame retardant test acc to IEC 60332-3 Cat. A, B or C.
* Anti termite performance.
* Tin coated Copper conductor.
* Polyethylene / Low smoke Halogen Free sheathed
Section 2 - PVC Insulated Cables
600/1000 V PVC INSULATED AND PVC SHEATHED CABLES
PVC/PVC (IEC 60502-1)
CONSTRUCTION TECHNICAL DATA
Conductor : Plain Annealed Copper Voltage
(to IEC 60228 class 1 or 2)
Insulation : PVC Compound type A Operating Temperature
Sheath : PVC Compound type ST1 Maximum 70°C
: Insulation - Black
Sheath - Black
SINGLE CORE
Conductor Nominal Nominal Overall Maximum
Nominal No./ Diameter Thickness Thickness diameter Weight Conductor
Cross- Diameter of of of of of Resistance
section of wire Conductor Insulation Sheath cable cable at 20°C
area (approx.) (approx.) (approx.) (approx.)
mm² No./mm mm mm mm mm kg/km
1.5 1 / 1.38 1.38 0.8 1.4 6.0 52 12.1
1.5 7 / 0.52 1.56 0.8 1.4 6.0 55 12.1
2.5 1 / 1.78 1.78 0.8 1.4 6.5 65 7.41
2.5 7 / 0.67 2.01 0.8 1.4 6.5 70 7.41
4 1 / 2.26 2.26 1.0 1.4 7.5 90 4.61
4 7 / 0.85 2.55 1.0 1.4 7.5 95 4.61
6 7 / 1.04 3.12 1.0 1.4 8.0 120 3.08
10 7 / 1.35 4.05 1.0 1.4 9.0 170 1.83
16 7 / 1.70 5.10 1.0 1.4 10.0 235 1.15
25 7 / 2.13 6.39 1.2 1.4 12.0 345 0.727
35 7 / 2.52 7.56 1.2 1.4 13.0 450 0.524
50 19 / 1.83 9.15 1.4 1.4 15.0 620 0.387
70 19 / 2.17 10.85 1.4 1.4 16.5 825 0.268
95 19 / 2.52 12.60 1.6 1.5 19.0 1105 0.193
120 37 / 2.03 14.21 1.6 1.5 21.0 1350 0.153
150 37 / 2.27 15.89 1.8 1.6 23.0 1680 0.124
185 37 / 2.52 17.64 2.0 1.7 25.5 2060 0.0991
240 61 / 2.26 20.34 2.2 1.8 28.5 2685 0.0754
300 61 / 2.52 22.68 2.4 1.9 31.5 3315 0.0601
400 61 / 2.86 25.74 2.6 2.0 35.5 4235 0.0470
500 61 / 3.20 28.80 2.8 2.1 39.0 5250 0.0366
630 91 / 2.96 32.56 2.8 2.2 43.0 6560 0.0283
800 127 / 2.85 37.05 2.8 2.3 48.0 8345 0.0221
1000 127 / 3.20 41.60 3.0 2.5 53.0 10455 0.0176
Page - 18
Unarmoured Cables
Uo/U - 600/1000 V
Colour Ident.
W/km
Section 2 - PVC Insulated Cables
600/1000 V PVC INSULATED AND PVC SHEATHED CABLES
PVC/PVC (IEC 60502-1)
CONSTRUCTION TECHNICAL DATA
Conductor : Plain Annealed Copper Voltage
(to IEC 60228 class 1 or 2)
Insulation : PVC Compound type A Operating Temperature
Filler : Suitable material Maximum 70°C
Sheath : PVC Compound type ST1
: Insulation - Red,Black
Sheath - Black
TWO CORES
Conductor Nominal Nominal Overall Maximum
Nominal No./ Diameter Thickness Thickness diameter Weight Conductor
Cross- Diameter of of of of of Resistance
section area of wire Conductor Insulation Sheath cable cable at 20°C
(approx.) (approx.) (approx.) (approx.)
mm² No./mm mm mm mm mm kg/km
1.5 1 / 1.38 1.38 0.8 1.8 10.5 125 12.1
1.5 7 / 0.52 1.56 0.8 1.8 10.5 130 12.1
2.5 1 / 1.78 1.78 0.8 1.8 11.0 155 7.41
2.5 7 / 0.67 2.01 0.8 1.8 11.5 165 7.41
4 1 / 2.26 2.26 1.0 1.8 13.0 215 4.61
4 7 / 0.85 2.55 1.0 1.8 13.5 225 4.61
6 7 / 1.04 3.12 1.0 1.8 14.5 280 3.08
10 7 / 1.35 4.05 1.0 1.8 16.5 390 1.83
16 7 / 1.70 5.10 1.0 1.8 18.5 535 1.15
25 7 / 2.13 6.39 1.2 1.8 22.0 785 0.727
35 7 / 2.52 7.56 1.2 1.8 24.5 1020 0.524
50 19 / 1.83 9.15 1.4 1.8 28.5 1395 0.387
70 19 / 2.17 10.85 1.4 1.9 32.0 1865 0.268
95 19 / 2.52 12.60 1.6 2.0 36.5 2490 0.193
120 37 / 2.03 14.21 1.6 2.1 40.0 3045 0.153
150 37 / 2.27 15.89 1.8 2.2 44.5 3775 0.124
185 37 / 2.52 17.64 2.0 2.4 49.0 4635 0.0991
240 61 / 2.26 20.34 2.2 2.6 55.5 6045 0.0754
300 61 / 2.52 22.68 2.4 2.7 61.5 7435 0.0601
Page - 19
Unarmoured Cables
Uo/U - 600/1000 V
Colour Ident.
W/km
Section 2 - PVC Insulated Cables
600/1000 V PVC INSULATED AND PVC SHEATHED CABLES
PVC/PVC (IEC 60502-1)
CONSTRUCTION TECHNICAL DATA
Conductor : Plain Annealed Copper Voltage
(to IEC 60228 class 1 or 2)
Insulation : PVC Compound type A Operating Temperature
Filler : Suitable material Maximum 70°C
Sheath : PVC Compound type ST1
: Insulation - Red,Yellow , Blue
Sheath - Black
THREE CORES
Conductor Nominal Nominal Overall Maximum
Nominal No./ Diameter Thickness Thickness diameter Weight Conductor
Cross- Diameter of of of of of Resistance
section area of wire Conductor Insulation Sheath cable cable at 20°C
(approx.) (approx.) (approx.) (approx.)
mm² No./mm mm mm mm mm kg/km
1.5 1 / 1.38 1.38 0.8 1.8 11.0 150 12.1
1.5 7 / 0.52 1.56 0.8 1.8 11.0 160 12.1
2.5 1 / 1.78 1.78 0.8 1.8 11.5 190 7.41
2.5 7 / 0.67 2.01 0.8 1.8 12.0 200 7.41
4 1 / 2.26 2.26 1.0 1.8 13.5 270 4.61
4 7 / 0.85 2.55 1.0 1.8 14.0 285 4.61
6 7 / 1.04 3.12 1.0 1.8 15.5 360 3.08
10 7 / 1.35 4.05 1.0 1.8 17.5 515 1.83
16 7 / 1.70 5.10 1.0 1.8 19.5 720 1.15
25 7 / 2.13 6.39 1.2 1.8 23.5 1065 0.727
35 7 / 2.52 7.56 1.2 1.8 26.0 1400 0.524
50 6.8 1.4 1.8 24.5 1730 0.387
70 8.2 1.4 2.0 28.0 2405 0.268
95 Three- 9.7 1.6 2.1 32.5 3305 0.193
120 Segmental 10.9 1.6 2.2 35.0 3950 0.153
150 Stranded 11.9 1.8 2.3 38.5 4835 0.124
185 13.6 2.0 2.5 43.0 6035 0.0991
240 15.8 2.2 2.7 49.0 8050 0.0754
300 17.5 2.4 2.9 53.5 10010 0.0601
Page - 20
Unarmoured Cables
Uo/U - 600/1000 V
Colour Ident.
W/km
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)
Internship Report - Febrianto Nugroho (UI)

More Related Content

Similar to Internship Report - Febrianto Nugroho (UI)

Naita training report Electro serv
Naita training report Electro servNaita training report Electro serv
Naita training report Electro serv
VishanMadushanka
 
Industrial Training Report, UmaOya Downstream Development Project
Industrial Training Report, UmaOya Downstream Development ProjectIndustrial Training Report, UmaOya Downstream Development Project
Industrial Training Report, UmaOya Downstream Development Project
Mohamed Juzaafi
 
Highway wind turbine report
Highway wind turbine reportHighway wind turbine report
Highway wind turbine report
Ali Rehman
 
Laura aulia 104117023_laporan kp_teknik sipil up_cv1
Laura aulia 104117023_laporan kp_teknik sipil up_cv1Laura aulia 104117023_laporan kp_teknik sipil up_cv1
Laura aulia 104117023_laporan kp_teknik sipil up_cv1
laura aulia
 
Civil Engineering Practicum Report
Civil Engineering Practicum ReportCivil Engineering Practicum Report
Civil Engineering Practicum Report
Abdullah Al Baki
 
An OJT Report On 3 Month Internship at Surya Nepal
An OJT Report On 3 Month Internship at Surya NepalAn OJT Report On 3 Month Internship at Surya Nepal
An OJT Report On 3 Month Internship at Surya Nepal
Bikram Dahal
 
Industrial Training Report
Industrial Training ReportIndustrial Training Report
Industrial Training Report
Upul Anuruddha
 
Continuous Drive Rotary Friction Welding
Continuous Drive Rotary Friction WeldingContinuous Drive Rotary Friction Welding
Continuous Drive Rotary Friction Welding
M. Ahmad
 
ELECTRICITY GENERATION USING STAIRCASE- HARVESTING RENEWABLE ENERGY
ELECTRICITY GENERATION USING STAIRCASE- HARVESTING RENEWABLE ENERGYELECTRICITY GENERATION USING STAIRCASE- HARVESTING RENEWABLE ENERGY
ELECTRICITY GENERATION USING STAIRCASE- HARVESTING RENEWABLE ENERGY
Shubham Patel
 
PROJECT REPORT LR908 INVESTIGATION
PROJECT REPORT LR908 INVESTIGATIONPROJECT REPORT LR908 INVESTIGATION
PROJECT REPORT LR908 INVESTIGATIONDinesh Mathur
 
Ceylon Electricity Board
Ceylon Electricity BoardCeylon Electricity Board
Ceylon Electricity Board
Wickramarathne GT
 
West Kenya sugar company Electrical and Electronics Engineering industrial at...
West Kenya sugar company Electrical and Electronics Engineering industrial at...West Kenya sugar company Electrical and Electronics Engineering industrial at...
West Kenya sugar company Electrical and Electronics Engineering industrial at...
AmosKarakacha
 
Emek R&D - Summer Practice Report
Emek R&D - Summer Practice ReportEmek R&D - Summer Practice Report
Emek R&D - Summer Practice Report
Samet Baykul
 
GSM Automated System For Monitoring And Controlling
 GSM Automated System  For Monitoring And Controlling  GSM Automated System  For Monitoring And Controlling
GSM Automated System For Monitoring And Controlling
meerkhan627
 
Febrian p aoke
Febrian p aokeFebrian p aoke
Febrian p aoke
Al Mtdrs
 
Project report of kota super thermal power plant
Project report of kota super thermal power plantProject report of kota super thermal power plant
Project report of kota super thermal power plantHîmãńshu Mêęńä
 
Final year project
Final year projectFinal year project
Final year project
Jitu Kumar Sen
 
Automatic power factor_detection_and_cor
Automatic power factor_detection_and_corAutomatic power factor_detection_and_cor
Automatic power factor_detection_and_cor
hadafree
 

Similar to Internship Report - Febrianto Nugroho (UI) (20)

Naita training report Electro serv
Naita training report Electro servNaita training report Electro serv
Naita training report Electro serv
 
Industrial Training Report, UmaOya Downstream Development Project
Industrial Training Report, UmaOya Downstream Development ProjectIndustrial Training Report, UmaOya Downstream Development Project
Industrial Training Report, UmaOya Downstream Development Project
 
Highway wind turbine report
Highway wind turbine reportHighway wind turbine report
Highway wind turbine report
 
Laura aulia 104117023_laporan kp_teknik sipil up_cv1
Laura aulia 104117023_laporan kp_teknik sipil up_cv1Laura aulia 104117023_laporan kp_teknik sipil up_cv1
Laura aulia 104117023_laporan kp_teknik sipil up_cv1
 
Civil Engineering Practicum Report
Civil Engineering Practicum ReportCivil Engineering Practicum Report
Civil Engineering Practicum Report
 
An OJT Report On 3 Month Internship at Surya Nepal
An OJT Report On 3 Month Internship at Surya NepalAn OJT Report On 3 Month Internship at Surya Nepal
An OJT Report On 3 Month Internship at Surya Nepal
 
Industrial Training Report
Industrial Training ReportIndustrial Training Report
Industrial Training Report
 
Continuous Drive Rotary Friction Welding
Continuous Drive Rotary Friction WeldingContinuous Drive Rotary Friction Welding
Continuous Drive Rotary Friction Welding
 
Training report_orginal
Training report_orginalTraining report_orginal
Training report_orginal
 
ELECTRICITY GENERATION USING STAIRCASE- HARVESTING RENEWABLE ENERGY
ELECTRICITY GENERATION USING STAIRCASE- HARVESTING RENEWABLE ENERGYELECTRICITY GENERATION USING STAIRCASE- HARVESTING RENEWABLE ENERGY
ELECTRICITY GENERATION USING STAIRCASE- HARVESTING RENEWABLE ENERGY
 
PROJECT REPORT LR908 INVESTIGATION
PROJECT REPORT LR908 INVESTIGATIONPROJECT REPORT LR908 INVESTIGATION
PROJECT REPORT LR908 INVESTIGATION
 
Ceylon Electricity Board
Ceylon Electricity BoardCeylon Electricity Board
Ceylon Electricity Board
 
projrep
projrepprojrep
projrep
 
West Kenya sugar company Electrical and Electronics Engineering industrial at...
West Kenya sugar company Electrical and Electronics Engineering industrial at...West Kenya sugar company Electrical and Electronics Engineering industrial at...
West Kenya sugar company Electrical and Electronics Engineering industrial at...
 
Emek R&D - Summer Practice Report
Emek R&D - Summer Practice ReportEmek R&D - Summer Practice Report
Emek R&D - Summer Practice Report
 
GSM Automated System For Monitoring And Controlling
 GSM Automated System  For Monitoring And Controlling  GSM Automated System  For Monitoring And Controlling
GSM Automated System For Monitoring And Controlling
 
Febrian p aoke
Febrian p aokeFebrian p aoke
Febrian p aoke
 
Project report of kota super thermal power plant
Project report of kota super thermal power plantProject report of kota super thermal power plant
Project report of kota super thermal power plant
 
Final year project
Final year projectFinal year project
Final year project
 
Automatic power factor_detection_and_cor
Automatic power factor_detection_and_corAutomatic power factor_detection_and_cor
Automatic power factor_detection_and_cor
 

Internship Report - Febrianto Nugroho (UI)

  • 1. INTERNSHIP REPORT PT. TRIPATRA ENGINEERING 5th JANUARY 2015 –27th FEBRUARY 2015 CABLE SIZING CALCULATION 400 V SWITCHGEAR AND MCC PROCESS (360-ES-03) ONSHORE OIL TREATING FACILITIES AND LPG RECOVERY PLANT UJUNG PANGKAH LIQUID DEVELOPMENT PROJECT Written by: Febrianto Nugroho 1206291885 ELECTRICAL ENGINEERING DEPARTMENT FACULTY OF ENGINEERING UNIVERSITY OF INDONESIA DEPOK 2015 !
  • 2. Internship*Report* PT.*TRIPATRA*ENGINEERING* 2015* UNIVERSITAS*INDONESIA*2015* 1" PREFACE Praise be to Allah SWT. for His blessings and guidance, that author is able to finish this internship which takes place at PT Tripatra Engineering (TPE) Jakarta from January 5th 2015 until February 27th 2015. The purpose of this internship is to fulfill the requirement needed by the students in finishing their study in Electrical Engineering, Faculty of Engineering, Universitas Indonesia. During this internship, author has gained many experiences applying the knowledge that has been learned throughout his study at the university in understanding the real life conditions of work practices. Many had helped and guided the author during the internship period and in writing this internship report. Therefore, in this opportunity the author would like to express his gratitude and many thanks to: 1. Parents and family for providing support, motivation and prayer. 2. Ir. GunawanWibisono, Msc., Ph.D as the Head of Electrical Engineering Department Faculty of Engineering Universitas Indonesia. 3. Dr. Abdul Muis, S.T, M.Eng as the Internship Coordinator of Electrical Engineering Department Faculty of Engineering Universitas Indonesia. 4. Mr. Johannes Bangun as the Head of Electrical Department in PT. Tripatra 5. Mr. Adi Iskandar as our mentor and Electrical Engineer in PT. Tripatra 6. Mr. SarmenNapitupulu as the Electrical Engineer in PT. Tripatra 7. Mr. Nopran Adhiansyah as the Electrical Engineer in PT. Tripatra 8. Mr. Haris Hakim as the Electrical Engineer in PT. Tripatra 9. Mrs. Diah Ayu Ciptaning Utami as the Human Resources in PT. Tripatra 10. Mr. Nasarudin as the Human Resources in PT Tripatra 11. Every employees of Tripatra Engineering for helping the writer throughout the internship process. 12. Every other people that can’t be mentioned one by one for every help that they have provided to the writer.
  • 3. Internship*Report* PT.*TRIPATRA*ENGINEERING* 2015* UNIVERSITAS*INDONESIA*2015* 2" The author realizes that this internship report is still far from perfect. Therefore the author hopes for critics and suggestions from the readers for improvements in future writings. In the end, the author hopes that this report can be useful to the readers. Jakarta, February 2015 Author
  • 4. Internship*Report* PT.*TRIPATRA*ENGINEERING* 2015* UNIVERSITAS*INDONESIA*2015* 3" TABLE OF CONTENTS PREFACE ............................................................................................................... 1 TABLE OF CONTENTS........................................................................................ 3 CHAPTER I ............................................................................................................ 6 1.1 BACKGROUND.............................................................................................. 6 1.2 OBJECTIVES.................................................................................................. 7 1.3 TIME AND LOCATION ................................................................................... 8 CHAPTER II........................................................................................................... 9 2.1 COMPANY'S PROFILE (PT. TRIPATRA ENGINEERING) .......................... 9 2.1.1 Brief History........................................................................................ 9 2.1.2 Vision and Mission ............................................................................. 9 2.1.3 The Business ..................................................................................... 11 CHAPTER III........................................................................................................ 12 3.1 PROJECT DESCRIPTION ............................................................................... 12 3.2 DISTRIBUTION VOLTAGES.......................................................................... 12 3.3 ELECTRICAL OVERVIEW............................................................................. 13 3.3.1 General Overview ............................................................................. 13 3.3.2 Essential Power Supply..................................................................... 15 3.3.3 Essential Power Users....................................................................... 16 3.3.4 Critical Power Supply ....................................................................... 16 3.3.5 Critical Power Users ......................................................................... 17 3.4 CODES AND STANDARDS............................................................................ 18 3.5 LOAD UTILITY............................................................................................ 19 3.6 UTILIZATION VOLTAGES ............................................................................ 20 CHAPTER IV ....................................................................................................... 21 4.1 CALCULATION CRITERIA............................................................................ 21 4.2 CALCULATION METHOD AND FORMULA .................................................... 22
  • 5. Internship*Report* PT.*TRIPATRA*ENGINEERING* 2015* UNIVERSITAS*INDONESIA*2015* 4" 4.2.1 Cable Ampacity Correction Factor ................................................... 22 4.2.2 Resistance Cable Data and Resistance Correction Factor................. 23 4.2.3 Multiplying Factor ............................................................................ 24 4.2.4 Full Load Current.............................................................................. 26 4.2.4.1 Generator................................................................................... 26 4.2.4.2 Motors ....................................................................................... 26 4.2.4.3 Transformers ............................................................................. 27 4.2.4.4 Distribution Board / Panel......................................................... 28 4.2.4.5 Static Load ................................................................................ 28 4.2.5 Minimum cable size based on cable ampacity.................................. 29 4.2.6 Number of Cable calculation ............................................................ 29 4.2.7 Voltage drop calculation ................................................................... 30 4.2.7.1 Permissible Voltage Drop ......................................................... 30 4.2.7.2 AC voltage drop at steady state................................................. 30 4.2.7.3 AC voltage drop at starting ....................................................... 31 4.2.7.4 DC voltage drop ........................................................................ 32 4.2.8 Short circuit thermal withstand capacity........................................... 33 CHAPTER V......................................................................................................... 35 5.1 BASIC CRITERIA ......................................................................................... 35 5.2 MOTOR LOAD............................................................................................. 35 5.2.1 Load Specification ............................................................................ 35 5.2.2 Cable Specification ........................................................................... 36 5.2.3 Cable Sizing Calculation................................................................... 37 5.2.3.1 Cable Ampacity Correction Factor ........................................... 37 5.2.3.2 Resistance Cable Data and Resistance Correction Factor......... 37 5.2.3.3 Motor Full Load Current........................................................... 38 5.2.3.4 Minimum cable size based on cable ampacity.......................... 38 5.2.3.5 Number of Cable....................................................................... 39 5.2.3.6 Voltage drop calculation ........................................................... 39 5.2.3.6.1 AC voltage drop at steady state............................................. 39
  • 6. Internship*Report* PT.*TRIPATRA*ENGINEERING* 2015* UNIVERSITAS*INDONESIA*2015* 5" 5.2.3.6.2 AC voltage drop at starting ................................................... 40 5.2.3.7 Short circuit thermal withstand capacity................................... 40 5.2.4 Cable Selection.................................................................................. 41 5.3 FEEDER LOAD ............................................................................................ 42 5.3.1 Load Specification ............................................................................ 42 5.3.2 Cable Specification ........................................................................... 42 5.3.3 Cable Sizing Calculation................................................................... 43 5.3.3.1 Cable Ampacity Correction Factor ........................................... 43 5.3.3.2 Resistance Cable Data and Resistance Correction Factor......... 43 5.3.3.3 Feeder Full Load Current.......................................................... 44 5.3.3.4 Minimum cable size based on cable ampacity.......................... 44 5.3.3.5 Number of Cable....................................................................... 45 5.3.3.6 Voltage drop calculation ........................................................... 45 5.3.3.6.1 AC voltage drop at steady state............................................. 45 5.3.3.7 Short circuit thermal withstand capacity................................... 46 5.3.4 Cable Selection.................................................................................. 46 CHAPTER VI ....................................................................................................... 47 REFERENCES...................................................................................................... 48 APPENDICES APPENDIX – 1 Calculation Sheet APPENDIX – 2 PT. Sumi Indo KabelTbk. Low Voltage Cable Catalog APPENDIX – 3 ABB Motor for Hazardous Areas Catalog APPENDIX – 4 UPD-TJ-P2-EL-SL-1001-0 Single Line Diagram (Key) APPENDIX – 5 UPD-TJ-P2-EL-SL-0052-1-0 Single Line Diagram (Detail) APPENDIX – 6 UPD-TJ-P2-EL-SL-0052-2-0 Single Line Diagram (Detail) APPENDIX – 7 UPD-TJ-P2-EL-DR-0011-2 Plant Layout
  • 7. Internship*Report* PT.*TRIPATRA*ENGINEERING* 2015* UNIVERSITAS*INDONESIA*2015* 6" CHAPTER I INTRODUCTION 1.1 Background Electrical engineering stands at a time of extraordinary opportunity, in the changing energy, information, communication, transportation, and environmental needs of the society. Electrical Engineers (EE's) are on the cutting edge of high technology. Electrical engineering plays an important role in modern oil and gas industry. Electrical engineers are equipped to lead exciting, innovative and productive careers designing enormous electrical power grids that span continents and bring electricity to our homes and offices, designing control and instrumentation systems for the oil and gas industry, designing communications systems, designing electronic devices for commercial applications, designing computers and their applications and much more. There is a high demand on electrical engineers in the oil and gas industry. Electrical engineers are an important part of the petrochemical industry ensuring safe, reliable and economic production of oil and gas. Electrical engineers design, monitor, control and manage the electric power system that supplies power to the hundreds of high voltage motors and thousands of low voltage motors in the field. It is with those motors that the oil and/or gas could be extracted from the wells for processing at the plant. Electrical engineers also design, supervise, run and monitor instrumentation control consoles protecting personnel, machinery and equipment in the plant. For that specific reason, PT. Tripatra Engineering is a good place to gain some experiences. Not only that it has been for four decades experienced in such field, it also one of the largest engineering company in Indonesia. Therefore, author decides to do internship at PT. Tripatra Engineering. PT. Tripatra Engineering is a
  • 8. Internship*Report* PT.*TRIPATRA*ENGINEERING* 2015* UNIVERSITAS*INDONESIA*2015* 7" subcontractor of PT. Tripatra Engineers and Constructors. PT. TripatraEngineering focuses on the engineering design activity related to EPC (Engineering, Procurement and Construction) project awarded to PT. Tripatra Engineers and Constructors. PT. TripatraEngineering also does the blanket engineering project tendered by Oil and Gas Companies. One of the EPC projects awarded to PT. Tripatra Engineers and Constructors was the involvement of PT. Tripatra Engineering in Ujung Pangkah Liquid Development Phase 2. The internship program mainly discuss about the Cable Sizing Calculation in Ujung Pangkah Liquid Development Project. The cable selection is such an important part of design engineering, because the cables are used to connect loads to Switchgear/Motor Control Center (MCC), transformer to switchgear, switchgear to transformer and generator to switchgear. Cable sizing must be calculate carefully and must fulfill certain criteria in order to meet the client specifications and standards. It is important to make sure that the cable size meet the requirement of cable ampacity, maximum voltage drop allowed and short circuit capacity as per company specification and standard. 1.2 Objectives The objectives of the internship are: 1. To complete a compulsory subject in the Department of Electrical Engineering, University of Indonesia, in order to obtain undergraduate degree (S1). 2. To implement the knowledge gained during study to real life application. 3. To know and understand cable sizing, calculation and selection. 4. To develop experiences on real problems that lie in work life. 5. To provide opportunity for students to gain experience in practical engineering, the ability to communicate and socialize in the industrialized world.
  • 9. Internship*Report* PT.*TRIPATRA*ENGINEERING* 2015* UNIVERSITAS*INDONESIA*2015* 8" 1.3 Time and Location The internship was carried out for two months from 5th January to 27th February 2015 in PT. Tripatra Engineering (TPE), Jakarta. The internship took place in the TPE office building located at Building 3 on 2nd Floor. Internship students follow the same working hours as applied to the field or in the office unit, from 07.45 until 16.45.
  • 10. Internship*Report* PT.*TRIPATRA*ENGINEERING* 2015* UNIVERSITAS*INDONESIA*2015* 9" CHAPTER II OVERVIEW OF PT. TRIPATRA ENGINEERING 2.1 Company's Profile (PT. TRIPATRA ENGINEERING) 2.1.1 Brief History PT. Tripatra Engineering is an engineering company that provide engineering design services. This company does the engineering design for EPC (Engineering, Procurement and Construction) project awarded to PT. Tripatra Engineers and Constructors. The Company also provides blanket-engineering project tendered by Oil and Gas Companies. 2.1.2 Vision and Mission Vision To be a world-class company providing integrated innovative engineering solutions through excellent multidiscipline engineering Mission 1. To provide world-class engineering and project management solutions for energy & natural resources sectors. 2. To create synergy across our group’s integrated platform. 3. To create optimum shareholders value. 4. To continuously develop its human capital. 5. To become a good corporate citizen. In pursuit of the mission, Tripatra as lawful and innovative organization will adhere to: 1. Highest standard of ethics and professional integrity. 2. A safe and healthy environment. 3. Commitment to the utmost customer satisfaction.
  • 11. Internship*Report* PT.*TRIPATRA*ENGINEERING* 2015* UNIVERSITAS*INDONESIA*2015* 10" 4. Recognition of human capital and its development as valuable asset. 5. Stimulating work environment with motivation, effective communication and leadership covenant. 6. Continuous quality improvement and sustainability as a way of life Tripatra has formulated the values that distinguish them from other companies and is believed to have brought the company to the progress until now. The values are believed to inspire all components and can bring the company ahead of the competition in the present and the future. The values are formulated in Insan Tripatra. Is the duty of every employee and management of the Company to continue to hold and run values of 6(six) + 1(one) which has been proclaimed as the guidance in life and work in the company: • Professionally Honest : Upholding ethics, integrity and professionalism • Perfection : The process and final results in the best quality • Open & Positive : Open and respect in all directions • Self Learning : Learn from any mistakes and experiences, honed expertise proactive • Challenge : Catch the opportunities, welcome the challenge • Innovate : Creative and innovative solutions Figure 2.1. Insan Tripatra
  • 12. Internship*Report* PT.*TRIPATRA*ENGINEERING* 2015* UNIVERSITAS*INDONESIA*2015* 11" • Energetic : Breakthrough difficulties, influence enthusiasm and support change towards improvement 2.1.3 The Business PT. TripatraEngineering is an engineering company that provide engineering design services. This company does the engineering design for EPC (Engineering, Procurement and Construction) project awarded to PT. Tripatra Engineers and Constructors. The Company also provides blanket-engineering project tendered by Oil and Gas Companies. PT. TripatraEngineering mainly focuses on two divisions. 1. Design and Engineering With more than 600 design, engineering and other technical personnel, strategically located across its various company divisions, PT. Tripatra Engineering is able to offer its clients the expertise necessary to ensure the success of their projects, and the dedication to enable continuous support. At PT. Tripatra Engineering the emphasis of state-of-the-art design based on the most up- to-date engineering technology is very important. 2. Project Management Through its extensive experience in Project Management, TRIPATRA has developed proven methods and systems for the successful and seamless implementation of large projects. By combining an appropriate method of project organization with the support of sophisticated software systems, and with its highly qualified and diverse team of experts, TRIPATRA has been able to provide its clients with a comprehensive approach to project realization. TRIPATRA’s approach to project management includes, among others, a concise work and task definition and assignment, planning, scheduling, monitoring and cost control. Qualified in all these areas of the project cycle, TRIPATRA is able to provide its clients with best practices in engineering, project management, procurement, construction, commissioning, and operations.
  • 13. Internship*Report* PT.*TRIPATRA*ENGINEERING* 2015* UNIVERSITAS*INDONESIA*2015* 12" CHAPTER III ELECTRICAL OVERVIEW UJUNG PANGKAH LIQUID DEVELOPMENT PHASE 2 3.1 Project Description Hess (Indonesia-Pangkah) Ltd. (HIPL), as operator, is developing the Ujung Pangkah gas reserves for export to the PLN power station at Gresik. The Ujung Pangkah gas field is located between 2 and 10km offshore off the north coast of East Java approximately 35km north of Gresik. Ujung Pangkah gas field is divided into two phases. Phase 1 is the existing plant and Phase 2 is the expanded field. The electrical system in phase 2 is a project that is held by PT. Tripatra Engineering. The facility will be designed for a 25 year operating life, as specified in the Basis of Design (referred to: UPD-TJ-P2-PR-BD-0001). Power is generated at 11,000V AC, 3-phase, 50Hz, as part of the OPF facilities. Main power generators are located at OPF nearby substation and are gas-turbine driven. The main power generators were sized to supply all electrical loads under all operating conditions, for all facilities (OPF and OTF/LPGF), under the worst case load and ambient conditions, with one main power generator off-line. The main power generators are directly feed main 11kV Switchboard (160- ES-01) located in OPF substation. The 11 kV Switchboard will then supplied the existing Phase 1 and Phase 2. 3.2 Distribution Voltages Power distribution is the process of delivering electricity into the user, that is from power generation to final end user or a load. To obtain minimum power losses and in order for the transmission to be efficient, the normal power distribution will be at the following stages:
  • 14. Internship*Report* PT.*TRIPATRA*ENGINEERING* 2015* UNIVERSITAS*INDONESIA*2015* 13" ! 11 kV AC 3-phase main power supply from OPF ! 6,600V AC 3-phase for MV motor loads ! 400V AC 3-phase for LV motor loads ! 400V AC 3-phase and neutral for package equipment and non-motor loads ! 230VAC 1-phase and neutral; for general lighting and small power loads. Power distribution for emergency power to essential supplies will be at: ! 400V AC 3-phase and neutral for main feeders, package equipment and motor loads ! 230V AC 1-phase and neutral; for lighting and small power loads Phase 2 electrical loads are handled by the 11 kV Switchgear 160-ES-01 (referred to: UPD-TJ-P2-EL-SL-1001-0). Phase 2 mainly consist of these following switchgear (referred to: UPD-TJ-P2-EL-SL-1001-0) : ! 6.6 KV Switchgear and MCC 360-ES-01 located in the Substation B ! 400 V Switchgear and MCC Process 360-ES-03 located in the Substation B ! 400 V Switchgear and MCC Utility 360-ES-02 located in the Substation B ! 400 V Switchgear and MCC Substation C 360-ES-04 located in the Substation C ! 400 V MCC Inlet/Residue Gas Compressor and Metering 360-ES-31 located in the Compressor and Metering Panel Room 3.3 Electrical Overview 3.3.1 General Overview Power is generated at 11,000V AC, 3-phase, 50Hz, as part of the OPF facilities. Main power generators are located at OPF nearby substation and are gas-turbine driven. The main power generators were sized to supply all electrical loads under all operating conditions, for all facilities (OPF and OTF/LPGF), under the worst case load and ambient conditions, with one main power generator off-line. The
  • 15. Internship*Report* PT.*TRIPATRA*ENGINEERING* 2015* UNIVERSITAS*INDONESIA*2015* 14" main power generators are directly feed main 11kV Switchboard (160- ES-01) located in OPF substation. The main source of power for the OTF and LPGF shall be dual 11kV cable feeders from the OPF 11kV Switchboard (160-ES-01). The dual 11kV feeders shall terminate directly to the OTF/LPGF main 11/6.6kV power transformers. The 11kV feeders from OPF and the 11/6.6kV transformers are sized to supply all OTF and LPGF electrical loads under all operating conditions with one feeder/transformer off-line and shall be sized for the ONAF rating of the 11/6.6kV transformers. Power will be distributed at 6,600V AC 50Hz in 3-phase (MV), and at 400/230V AC 50Hz in 3-phase with neutral (LV). The MV power system has had its neutral earthed via low resistance at the transformer star points. The LV power system has had its neutral solidly earthed at the transformer and emergency generator star points. A local emergency generator is provided for the OTF/LPGF, which is driven by diesel engine. The OTF and LPGF electrical systems will in general consist of the following main components: ! Dual 11kV feeders (2 x 100%) from the OPF main 11kV switchboard ! Dual 11/6.6kV Power Transformers (2 x 100%) feeding the OPF/LPGF MV Switchboard, which includes motor starters for MV drives as well as feeders to distribution transformers ! Process LV Switchboard and Utilities LV Switchboard, each fed by dual 6.6/0.4kV Distribution Transformers (2 x 100%) ! OTF/LPGF Essential Switchboard, fed from a local diesel engine driven Emergency Generator sized to support essential loads (1 x 100%) ! Main AC and DC UPS Systems for critical services
  • 16. Internship*Report* PT.*TRIPATRA*ENGINEERING* 2015* UNIVERSITAS*INDONESIA*2015* 15" The liquids development project also involves additional jetty facilities. Power supply for electrical consumers is supplied from portable diesel generator. The portable generator will occasionally be operated to supply power to Jetty Loading Arm facilities when crude oil or LPG is offloaded from storage tank to a tanker ship. A small UPS for instrumentation, control and communication system services are provided and supplied from existing LV power distribution. The jetty electrical facilities for OTF/LPGF in general consist of the following main components: ! Jetty Loading Arm LV distribution board, fed directly from portable diesel generator ! AC UPS system for critical services, fed from existing LV power distribution (Refered to UPD-TJ-P2-EL-PH-0102) 3.3.2 Essential Power Supply An emergency generator is provided at the OTF/LPGF electrical substation, sized to maintain power to essential users only. The emergency generator is connected directly to the OTF/LPGF Essential LV Switchboard, which is a single bus section with two incomers. One incomer is connected to the normal supply from the OTF LV Switchboard, and this is closed during normal operation. The second incomer will be connected to the emergency generator. On loss of voltage at the essential switchboard, the emergency generator is automatically started up and regulates its speed and voltage. The supply from the normal power supply would automatically disconnect, and then the incomer from the emergency generator will automatically close to energize the switchboard. The controls for the essential switchboard is designed so that after the automatic operation, it will be possible to re-close back to the normal switchboard so that normal users can be supplied from the essential power supply. This operation
  • 17. Internship*Report* PT.*TRIPATRA*ENGINEERING* 2015* UNIVERSITAS*INDONESIA*2015* 16" however is manually initiated and operating procedures shall be written to ensure in this event the generator is not overloaded by normal users. 3.3.3 Essential Power Users Essential power users are loads related to the safety of personnel and equipment but which are suitable for short breaks in the power supply without detriment (such as during starting of emergency generators). Such loads are to be supplied by emergency generators. Those loads are listed below: ! Feeders to all Critical power supplies ! Emergency and escape lighting ! HVAC systems for rooms containing essential equipment ! Safe and Controlled Shutdown ! Hazardous drain pumps (for continuous drain systems only) and flare/vent scrubber pumps ! Turbine enclosure Ventilation ! Lube Oil Cooler Fans, where required by the package SUPPLIER ! Equipment anti-condensation heaters Where there are two redundant essential users (e.g. pump A and B in a duty/standby arrangement) one is fed from an essential switchboard and the other from a normal switchboard. 3.3.4 Critical Power Supply Critical Power Supplies are derived from storage batteries and distributed to critical users as either AC or DC supply from UPS systems. The purpose of critical power supplies is to provide the most reliable power supply for critical users.
  • 18. Internship*Report* PT.*TRIPATRA*ENGINEERING* 2015* UNIVERSITAS*INDONESIA*2015* 17" Main UPS systems are three phase. UPS Power equipment is provided as 2 x 100% redundant rectifier/inverter units (UPS A and UPS B) and 2 x 50% batteries based on the calculated design load for all connected critical users. AC UPS systems are of the static, double conversion type with fully-electronic static bypass switches for each UPS A and UPS B system and a separated manual maintenance bypass switch. The by-pass AC supply is taken from a different supply to that of the UPS main supply to minimize common mode failure. A dedicated 110V DC UPS System is provided for switchgear control, protection and circuit breakers. The DC UPS System is provided as 2 x 100% redundant rectifiers and 2 x 50% batteries. DC UPS systems for Diesel Fire Pumps and Emergency Generators is preferred to be 24V DC, and be 1 x 100% redundant rectifier with 1 x 100% battery. DC UPS systems for Compressor Gas Turbine backup lube oil pumps are at 1 x 100% rectifier with 1 x 100% battery. Batteries are Valve-Regulated Lead Acid (VRLA). Dedicated ventilated battery rooms are not provided. Each battery bank is installed with an isolator in order to provide facilities for tripping the batteries. 3.3.5 Critical Power Users Critical Users are those loads necessary for the operation of safety systems and for facilitating or assisting safe evacuation. It is generally not appropriate for any break in power supply for critical users, even for a short duration. Critical users are generally those users listed below: ! Fire & Gas safety systems ! Shutdown & Process Control Systems (ESD & PCS) ! Telecommunications systems (Voice & Data) ! Gas Turbine / Compressor UCP
  • 19. Internship*Report* PT.*TRIPATRA*ENGINEERING* 2015* UNIVERSITAS*INDONESIA*2015* 18" ! Switchgear tripping and closing supplies ! Gas Turbine backup Lube oil pumps ! Emergency Generator starting and control ! Diesel Engine Fire Pump Starting and Control ! Escape Route Lighting (self contained with integral battery) ! Exit Lighting (self contained with integral battery) Control systems, telecommunications and UCPs are supplied from common UPS systems, which also supply other critical users of various systems and packages. Battery systems for diesel engines and backup lube oil systems are provided as part of the package supply. Diesel engine driven generators and firewater pumps have had battery systems sized for cranking duty rather than autonomy time. 3.4 Codes and Standards Material selection, design, manufacturing, testing and installation of the cable and its components shall comply with currently applicable statutes, regulation, safety codes and standards issued by the following: ! API : American Petroleum Institute ! IEEE : Institute of Electrical and Electronic Engineer ! IEC : International Electrotechnical Commission ! IP : Institute of Petroleum ! NFPA : National Fire Protection Association Indonesian Codes and Regulation ! PUIL : PeraturanUmumInstalasiListrik ! Government Regulation Number 19,1973 ! Government Regulation Number 11,1979 ! Decision of Director General of Oil and Natural Gas Number
  • 20. Internship*Report* PT.*TRIPATRA*ENGINEERING* 2015* UNIVERSITAS*INDONESIA*2015* 19" 36/KPTS/DJ/MIGAS/1977 ! Technical Directorate of Oil and Natural Gas Letter Number 008/380/DMT/1988 ! Directorate General Oil and Natural Gas (MIGAS) Regulation No.43P/382/DDJM/1992 for Terms and Conditions for Appointment of third party ! MIGAS Guidelines under Regulation Number 06P/0746/M.PE/91 3.5 Load Utility Load utility is used to determine which switchgear suits the motor. Since there are lots of motors and feeders related to the plant and each loads required different voltages to operate, then those loads are utilized to different switchgear. Those switchgears have the voltages operation of 11 KV, 6.6KV, 400V and 230V. The load utilization are described as follows: ! Motors rated above 132 kW : 6.6 kV, 3 Phase, 3 Wire, 50 Hz ! Motors rated above 0.18 kW up to 132 kW : 400 V, 3 phase, 3/4 Wire, 50 Hz ! Motors up to 0.18 kW : 230 V, 1 Phase, 2 Wire, 50 Hz ! Space Heater, Auxiliary power supply : 230 V, 1 phase, 2 Wire, 50 Hz
  • 21. Internship*Report* PT.*TRIPATRA*ENGINEERING* 2015* UNIVERSITAS*INDONESIA*2015* 20" 3.6 Utilization Voltages The utilization for typical loads are given below: Table 3.1 Utilization for typical loads LOADS UTILIZATION VOLTAGES Motors less than 0.37kW 400V 3ph+E or 230V, 1ph+E, 50Hz Motors – 0.37kW up to 132kW 400V, 3ph+E, 50Hz Motors – above 132kW 6,600, 3ph+E, 50Hz Process Heaters 400V, 3ph+E, 50Hz Welding Sockets 400V, 3ph+E+N, 50Hz Convenience Sockets (field) 230V, 1ph+E+N, 50Hz Lighting (normal – emergency) 230V, 1ph+E+N, 50Hz Anti-condensation Heaters 230V, 1ph+E+N, 50Hz Diesel Engine Starters & Controls 24V DC, 2 wire MCC Contactor Controls 230V, 1ph+E+N, 50Hz Instrumentation, safety and communications system 230V, 1ph+E+N, 50Hz
  • 22. Internship*Report* PT.*TRIPATRA*ENGINEERING* 2015* UNIVERSITAS*INDONESIA*2015* 21" CHAPTER IV CABLE SIZING CRITERIA 4.1 Calculation Criteria ! Allowable steady state current carrying capacity. Current carrying capacity is defined as the amperage a conductor can safely carry before melting occurs in the conductor and/or the insulation. There are many factors that will limit the amount of current that can be passed through a wire. Determining factors include: Conductor Size, The larger the circular mil area, the greater the current capacity. Insulation, The amount of heat generated should never exceed the maximum temperature rating of the insulation material. Ambient (surrounding) temperature, The higher the ambient temperature, the less heat required to reach the maximum temperature rating of the insulation. Conductor Number, Heat dissipation is lessened as the number of individually insulated conductors, bundled together, is increased. Installation Conditions, Restricting the heat dissipation by installing the conductor in conduit, duct, trays or raceways lessens the current carrying capacity. This restriction can be alleviated somewhat by using proper ventilation methods, forced air cooling, etc. ! Allowable voltage drop during steady state and transient (motor starting) condition. Voltage drop is defined as the amount of voltage losses that occurs through all part of circuit due to impedance. The longer the cable the voltage drop will become greater. Therefore the voltage drop aspect is critical to supply the voltage to the loads. ! Short circuit current withstand capacity. This criterion is applied to determine the minimum cross section area of the cable, so that cable can withstand the short circuit current. Failure to check the conductor size for short-circuit heating could result in permanent damage to the cable
  • 23. Internship*Report* PT.*TRIPATRA*ENGINEERING* 2015* UNIVERSITAS*INDONESIA*2015* 22" insulation and could also result into fire. In addition to thermal stresses, the cable may also be subjected to significant mechanical stresses. 4.2 Calculation Method and Formula 4.2.1 Cable Ampacity Correction Factor Cable ampacity is corrected by cable ampacity correction factor, that consists of temperature correction factor and cable grouping correction factor. The formula of cable correction factor is shown below: F = F!!!x!F! (4-1) where: F : Cable ampacity correction factor F! : Correction factor for ambient temperature and conductor temperature consideration (Temperature correction factor) F! : Correction factor for cable grouping consideration Temperature correction factor is related to the environment ambient temperature (or specified value as per company specification), temperature conductor rating (depend on insulation type used) and reference ambient temperature as per manufacture used for the cable. The formula of the temperature correction factor is shown below: F! = !!!!!! !!!!! (4-2) where: TC : Temperature Rating of Conductor in 0 C (900 C for XLPE and 700 C for PVC) T1 : Environment/ Field Ambient Temperature in 0 C (400 C) T2 : Reference Temperature Ambient in 0 C
  • 24. Internship*Report* PT.*TRIPATRA*ENGINEERING* 2015* UNIVERSITAS*INDONESIA*2015* 23" Ft :Cable ampacity correction factor Cable grouping correction factor is depend on the particular method of installation in the ladder or tray or if direct buried. Here is the sample of cable grouping correction factor table as per PT. Sumi Indo KabelTbk. (a cable manufacturer) catalogue: Table 4.1 Correction factor table for multi-core cable grouping 4.2.2 Resistance Cable Data and Resistance Correction Factor When the ambient temperature value is different with ambient temperature condition of resistance data as per manufacturer/catalogue data, resistance
  • 25. Internship*Report* PT.*TRIPATRA*ENGINEERING* 2015* UNIVERSITAS*INDONESIA*2015* 24" correction factor is applied to correct the resistance cable data. The formula of resistance correction factor is shown below: F! = 1 + α(T! − T!)! (4-3) where: T1 : New Conductor ambient temperature in o C T0 : Temperature resistance design as per manufacture/ catalogue in o C α : 0.00393 for copper Fr : Resistance correction factor The corrected cable resistance can be achieved by the following formula: R! = !F!!!x!!R! (4-4) Where: R : Corrected cable resistance in Ohm/km R0 : Resistance cable data as per manufacture in Ohm/km 4.2.3 Multiplying Factor The multiplying factor will be based on NFPA 70 Requirements, which is: ! Clause 210.19(A)(1) Branch circuit conductors shall have an ampacity not less than the maximum load to be served. Where a branch circuit supplies continuous loads or any combination of continuous and non-continuous loads, the minimum branch circuit conductor size, before the application of any adjustment or correction factors, shall have an allowable ampacity not less than the non-continuous load plus 125 percent of the continuous load ! Clause 215.2(A)(1)
  • 26. Internship*Report* PT.*TRIPATRA*ENGINEERING* 2015* UNIVERSITAS*INDONESIA*2015* 25" Feeder conductors shall have an ampacity not less than required to supply the load as computed in parts II, III and IV of article 220. The minimum feeder circuit conductor size, before the application of any adjustment or correction factors, shall have an allowable ampacity not less than the non-continuous load plus 125 percent of the continuous load. ! Clause 215.2(B)(1) The ampacity of feeder conductors shall not be less than the sum of the nameplate ratings of the transformer supplied when only transformer is supplied. ! Clause 215.2(B)(2) The ampacity of feeders supplying a combination of transformer and utilization equipment shall not be less than the sum of the nameplate rating of the transformer and 125 percent of the designed potential load of the utilization equipment that will be operated simultaneously ! Clause 430.22(A) Branch circuit conductor that supply a single motor used in a continuous duty application shall have ampacity of not less than 125 percent of the motor’s full load current rating. ! Clause 445.13 The ampacity of the conductors from the generator terminal to the first distribution device(s) containing over current protection shall not be less than 115 percent of the nameplate current rating of the generator Hence the multiplying factor can be concluded as: ! Multiplying factor (MF) for motor = 1.25 ! Multiplying factor for generator = 1.15 ! Multiplying factor for distribution board or lighting panel = 1.25 ! Multiplying factor for static load = 1
  • 27. Internship*Report* PT.*TRIPATRA*ENGINEERING* 2015* UNIVERSITAS*INDONESIA*2015* 26" 4.2.4 Full Load Current 4.2.4.1 Generator The Full load current and the design current for generator is calculated using the formula: I!" !=! !!"#!!!!""" !!.!!!!.!"#!! (4-5) I! =!MF!"#!x!I!" (4-6) = 1.15 xI!" where: I! : Design Current (A) I!" : Full load current (A) P!"# : Generator power (kW) V!! : Line to line voltage (V) cos!φ : Generator power factor MF!"# : Multiplying factor for generator 4.2.4.2 Motors The Full load current and the design current for motors is calculated using the formula: I!" !=! !!!!!!""" !!.!!!!.!.!"#!! (4-7) I! !=!MF!"#"$!x!I!" (4-8) = 1.25 xI!"
  • 28. Internship*Report* PT.*TRIPATRA*ENGINEERING* 2015* UNIVERSITAS*INDONESIA*2015* 27" where: I! : Design Current (A) I!" : Full load current (A) P! : Motor power (kW) V!! : Line to line voltage (V) cos!φ : Motor power factor η : Motor efficiency MF!"#"$ : Multiplying factor for motor 4.2.4.3 Transformers The Full load current and the design current for transformer is calculated using the formula: I!" !=! !!"!!!!""" !!.!!! (4-9) I! =!MF!"#$%!x!I!" (4-10) = 1.00 xI!" where: I! : Design Current (A) I!" : Full load current (Amp) S!" : Transformer power (KVA) V!! : Line to line voltage (Volts) MF!"#$% : Multiplying Factor for Transformers
  • 29. Internship*Report* PT.*TRIPATRA*ENGINEERING* 2015* UNIVERSITAS*INDONESIA*2015* 28" 4.2.4.4 Distribution Board / Panel The Full load current and the design current for distribution panel is calculated using the formula: I!" !=! !!"!!!!""" !!.!!!!.!"#!! (4-11) I! =!MF!"!x!I!" (4-12) = 1.25 xI!" where: I! : Design Current (A) I!" : Full load current (A) P!" : Distribution board/panel power (kW) V!! : Line to line voltage (V) cos!φ : Distribution board/panel power factor MF!" : Multiplying factor for distribution board 4.2.4.5 Static Load The Full load current and the design current for static load is calculated using the formula: I!" !=! !!"#"$% !!.!!!!.!.!"#!! (4-13) I! =!MF!"#"!x!I!" (4-14) = 1.00 xI!" where: I! : Design Current (A)
  • 30. Internship*Report* PT.*TRIPATRA*ENGINEERING* 2015* UNIVERSITAS*INDONESIA*2015* 29" I!" : Full load current (A) P!"#"$% : Static load (kW) V!! : Line to line voltage (V) cos!φ : Static load power factor η : Static load efficiency MF!"#" : Multiplying factor for static load 4.2.5 Minimum cable size based on cable ampacity Cable ampacity is corrected by derated factor and the deratedampacity shall be larger than the full load current. I! !=!I!!x!F! > I!" (4-15) where: I! : Corrected cable ampacity (A) I! : Current carrying capacity (A) F : Derating factor I!" : Full load current (A) 4.2.6 Number of Cable calculation To fulfill the full load current, the number of cable (number of pulling) is calculated using the formula: ! =! !!" !! (4-16)
  • 31. Internship*Report* PT.*TRIPATRA*ENGINEERING* 2015* UNIVERSITAS*INDONESIA*2015* 30" where: ! : Number of cables used I! : Corrected cable ampacity (A) I!" : Full load current (A) 4.2.7 Voltage drop calculation 4.2.7.1 Permissible Voltage Drop The maximum permissible voltage drop along the length of the cable with reference to the nominal supply voltage is: Table 4.2 % Voltage Drop for typical loads (referred to: UPD-TJ-P2-EL-PH-0101) Load Types % Voltage Drop Motors 5% running at full load 15 % on starting Feeders 5% at full load between the MCC and the load terminals 2% between MCC and a distribution board Lighting 3% between lighting distribution board and most distant lighting fixture 4.2.7.2 AC voltage drop at steady state The steady state voltage drop for AC system is given by the following formula: V! != !k. I!"!(R. cos!φ! + !X. sin!φ). ! !""" !. !""% ! !. ! ! (4-17) V! !≤!V!"#$% where: V!"#$% : Specified allowable voltage drop
  • 32. Internship*Report* PT.*TRIPATRA*ENGINEERING* 2015* UNIVERSITAS*INDONESIA*2015* 31" V! : Voltage drop (%) V : Voltage (V); line-to-line voltage for 3-phase system, or line-to- neutral voltage for 1-phase system I!" : Full load current (A) R : Resistance of the cable (Ohm per 1000 m) X : Reactance of the cable (Ohm per 1000 m) cos!φ : Power factor L : Cable length n : Number of cable in parallel k : Constant; 3 for 3-phase system, and 2 for 1-phase system Cable size shall be upgraded to bigger size or add more number of cables in parallel when VDis greater than the specified allowable voltage drop value. 4.2.7.3 AC voltage drop at starting The voltage drop for AC system during motor starting is given by the following formula: V!"# != !k. I!"!(R. cos!φ!" !+ !X. sin!φ!"). ! !""" !. !""% ! !. ! ! (4-18) V!st! ≤!V!"#$% where: V!"#$% : Specified allowable voltage drop V!st : Motor starting voltage drop (%)
  • 33. Internship*Report* PT.*TRIPATRA*ENGINEERING* 2015* UNIVERSITAS*INDONESIA*2015* 32" V : Voltage (V); line-to-line voltage for 3-phase system, or line-to- neutral voltage for 1-phase system I!" : Motor starting current (A) R : Resistance of the cable (Ohm per 1000 m) X : Reactance of the cable (Ohm per 1000 m) cos!φ!": Motor starting power factor L : Cable length n : Number of cable in parallel k : Constant; 3 for 3-phase system, and 2 for 1-phase system The value of motor starting current is as below or based on Vendor datasheet. I!" = 7 x IFL (for LV Motors up to 11 kW) I!" = 6 x IFL (for LV Motors above 11 kW) I!" = 5 x IFL (for all MV Motors) 4.2.7.4 DC voltage drop Based on Ohm Law, cable and wire voltage drop for DC cable are: V! = !!!!!!!!!!!!!!!" !"""!!!! (4-19) where: V! : Voltage Drop across the cable (Volt) R! : Cables Resistance (Ohm/Km)
  • 34. Internship*Report* PT.*TRIPATRA*ENGINEERING* 2015* UNIVERSITAS*INDONESIA*2015* 33" L : Estimated Cable Length (M) I!" : Full Load Current (Ampere) n : Number of parallel conductors V!" = !!!!!!""% !!" (4-20) where: V!" : Allowable percentage of Voltage Drop (%) V!" : Nominal Voltage (Volt) 4.2.8 Short circuit thermal withstand capacity Short circuit at load can be calculated by the equation below: !!" =! !!" !"""!!!!!" (4-21) where: !!" : Short Circuit Current (kA) I!" : Full Load Current (A) !!" : Sub-transient reactance for motor (p.u) The minimum conductor size of LV cables are calculated by formula shown below which is based on ANSI/IEEE Std 242-2001: ! ! ! x!t = 0.0297 x!log !!"!!"# !!!!"# (4-22) or
  • 35. Internship*Report* PT.*TRIPATRA*ENGINEERING* 2015* UNIVERSITAS*INDONESIA*2015* 34" ! !" =! !!!!!"""!!! !.!"#!!! !!"# !!"!!"# !!!!"# ! !""" (4-23) !!" !≤ !! where: A : Min. cable size cross sectional area (circular mils) I : Max. short circuit current (A) T : Short circuit duration time (sec) Tc : Max. permissible continuous operating temp. (90o C : XLPE Cable) Tsc : Max. permissible temp. at short circuit (250o C : XLPE Cable)
  • 36. Internship*Report* PT.*TRIPATRA*ENGINEERING* 2015* UNIVERSITAS*INDONESIA*2015* 35" CHAPTER V CABLE SIZING CALCULATION 5.1 Basic Criteria The following criteria and environment condition is used for cable sizing calculation;Criteria is based on standard documents, cable catalogs, and client's specification. The criterion consist of: ! Steel Wire Armor (SWA) - Low Smoke Free Halogen (LSFH) cables is sized based on 90°C insulation temperature and 40°C ambient. ! The power and control cables are Steel Wire Armor (SWA) cable, copper conductor, Cross-linked polyethylene (XLPE) insulated ! The cable data for resistance, reactance and ampacity of cable is taken from vendor catalog (Cable of PT. Sumi Indo KabelTbk.) ! Maximum service temperature of conductor with XLPE insulation: 90 °C. ! Maximum short circuit condition of temparature of conductor with XLPE insulation: 250 °C ! Installation in open air is on cable tray (touching) (referred to PT. Sumi Indo KabelTbk. Low Voltage Cable Catalog) 5.2 Motor Load 5.2.1 Load Specification Consider 482-HM-04A-P, a Depropanizer Condenser Fan Motor A which is connected using XLPE/SWA/LSFH Cable to 360 ES 03 LPG/OTF 400 V Switchgear. The specification of the Fan Motor is given below: Table 5.1 Depropanizer Condenser Fan Motor A (482-HM-04A-P) specification Parameters Value Power Rating 30 KW
  • 37. Internship*Report* PT.*TRIPATRA*ENGINEERING* 2015* UNIVERSITAS*INDONESIA*2015* 36" Voltage 400 V Efficiency at full load 0.92 Power Factor at full load 0.86 Power Factor at starting 0.3 Multiplying Factor 1.25 5.2.2 Cable Specification Cable used for Depropanizer Condenser Fan Motor A (482-HM-04A-P) is a 0.6/1 kV - XLPE/SWA/LSFH 3/C # 25 mm2 . The cable length is set to be 225 m (200m + 25 m of contingency).The specification of the cable is described as follows: Table 5.2 0.6/1 kV - XLPE/SWA/LSFH 3/C # 25 mm2 specification Parameters Value Size 0.6/1 kV - XLPE/SWA/LSFH 3/C # 25 mm2 Conductor Size (Kcmil) 50 Ampacity in Air (A) 153 Ampacity in Ground (A) 111 R (ohm / 1000 m) 0.727 X (ohm / 1000 m) 0.0779 Overall Diameter (mm) 27.5 Approx. Weight (kg/km) 1840
  • 38. Internship*Report* PT.*TRIPATRA*ENGINEERING* 2015* UNIVERSITAS*INDONESIA*2015* 37" 5.2.3 Cable Sizing Calculation 5.2.3.1 Cable Ampacity Correction Factor Referring to equation (4-2), The T1 which is the new conductor ambient temperature is set to be 40o Cand T2 which is the reference ambient temperature is 30o C, referring to PT. Sumi Indo Kabel Low Voltage Catalog, the temperature correction factor is calculated as follows: F! = !!!!!! !!!!! = !"!!!" !"!!" = !0.91 (5-1) The installation assumption of the cable are using cable tray, number of tray is 2 and the number of cable in each tray is 4, from the Table 4.1, F!is 0.77 (referred to PT. Sumi Indo Kabel Low Voltage Catalog) Table 5.3 Correction factor table for multi-core cable grouping perforated trays Since F!is 0.77 and F! is 0.91, referring to equation (4-1), the overall correction factor is equal to: F = F!!!x!F! = 0.77!x!0.91! = !0.7 (5-2) 5.2.3.2 Resistance Cable Data and Resistance Correction Factor Resistance of cable is provided at 20o C (referred to PT. Sumi Indo Kabel Low Voltage Cable Catalog),the ambient temperature is set to be at 40o C. Referring to equation (4-3), The resistance correction factor is:
  • 39. Internship*Report* PT.*TRIPATRA*ENGINEERING* 2015* UNIVERSITAS*INDONESIA*2015* 38" F! = 1 + α(T! − T!)! F! = 1 + 0.00393!x(40 − 20)! F! = 1.079 (5-3) Referring to equation (4-4), and Table 5.2 for the R! value, R! = !F!!!x!!R! R! = !1.079!!!0.727 R! = !0.784!!ℎ!/!" (5-4) 5.2.3.3 Motor Full Load Current Referring to equation (4-6), the Motor full load current can be calculated as follows: I!" !=! P!!x!1000 3!. V!!!. η. cos!φ I!" !=! !"!!!!""" !!!!!!""!!!!.!"!!!!.!! = 53.48 A (5-5) Referring to equation (4-7), I! =!MF!"#"$!x!I!" I!= 1.25 x 53.48 A = 66.85 A (5-6) 5.2.3.4 Minimum cable size based on cable ampacity Cable ampacity is corrected by Cable ampacity correction factor (F). From calculation (5-2), F is equal to 0.7. Referring to equation (4-15) and Table 5.2, I! is the cable ampacity in air and equal to 153 A. The Corrected cable ampacity (I!) can be calculated as follows: I! !=!I!!x!F I! != !153!x!0.7!!
  • 40. Internship*Report* PT.*TRIPATRA*ENGINEERING* 2015* UNIVERSITAS*INDONESIA*2015* 39" I! != 107.55 A (5-7) Since the system only used 1 cable, hence I!is equal to 107.55 A. Otherwise, I!should be multiplied by the number of cable used in the system. Referring to calculation (5- 5), I!"is equal to 53.48 A. By equation (4-15), the corrected cable ampacity (I!) must be larger than the full load current(I!"). I! > I!" 107.55!!! > !53.48!! (5-8) By this condition, 0.6/1 kV - XLPE/SWA/LSFH 3/C # 25 mm2 suits the cable ampacity for the system. 5.2.3.5 Number of Cable To fulfill the full load current referring to equation (4-16), the number of cable is calculated as follows: ! =! !!" !! ! =! 53.48 107.55 ! = !0.49 ≈ 1 (5-9) The number of 0.6/1 kV - XLPE/SWA/LSFH 3/C # 25 mm2 cable used is 1. 5.2.3.6 Voltage drop calculation 5.2.3.6.1 AC voltage drop at steady state Referring to equation (4-17), the voltage drop at steady state are calculated as follows: V! != !k. I!"!(R. cos!φ! + !X. sin!φ). L 1000 !. 100% V !. 1 n
  • 41. Internship*Report* PT.*TRIPATRA*ENGINEERING* 2015* UNIVERSITAS*INDONESIA*2015* 40" V! != ! 3!!!53.48!!![(0.784!!!0.88)!+ (0.0779!!! sin (cos!! 0.88)]!!! 225 1000 !! !100% 400 !!! 1 1 V! != !3.789!% (5-10) From Table 4.2, the %voltage drop as per specification for motor running is 5% V! !≤!V!"#$% 3.789!%!! ≤ !5!% (5-11) By this condition, 0.6/1 kV - XLPE/SWA/LSFH 3/C # 25 mm2 suits the ac voltage drop steady state criteria for the system. 5.2.3.6.2 AC voltage drop at starting Referring to equation (4-18), the voltage drop at starting are calculated as follows: V!"# != !k. I!"!(R. cos!φ!" !+ !X. sin!φ!"). L 1000 !. 100% V !. 1 n V!"# != 3!!!53.48!!![(0.784!!!0.3)!+ (0.0779!!!0.95)]!!! 225 1000 !! !100% 400 !!! 1 1 V!"# != !12.09!% (5-12) From Table 4.2, the %voltage drop as per specification for motor starting is 15% V!st! ≤!V!"#$% 12.09!% ≤ !15!% (5-13) By this condition, 0.6/1 kV - XLPE/SWA/LSFH 3/C # 25 mm2 suits the ac voltage drop starting criteria for the system. 5.2.3.7 Short circuit thermal withstand capacity Referring to equation (4-21), short circuit at load can be calculated as follows:
  • 42. Internship*Report* PT.*TRIPATRA*ENGINEERING* 2015* UNIVERSITAS*INDONESIA*2015* 41" !!" =! !!" 1000!!!!!" !!" =! 53.48 1000!!!0.3 !!" = !0.178!!" (5-14) To calculate the maximum short circuit current, referring to equation (4-23) ! !" =! !!!!1000!!! !.!"#!!! !"# !!"!!"# !!!!"# ! 1000 ! !" =! 50!!!1000!!! !.!"#!!! !"# !"#!!"# !"!!"# !.!" 1000 ! !" = !8.994!!"! (5-15) !!" !≤ !! 0.178!!" ≤ !8.994!!"! (5-16) By this condition, 0.6/1 kV - XLPE/SWA/LSFH 3/C # 25 mm2 suits the short circuit current criteria for the system. 5.2.4 Cable Selection Based on the calculation of (5-8), (5-11), (5-13) and (5-16), all of the cable criteria conditions are fulfilled by the 0.6/1 kV - XLPE/SWA/LSFH 3/C # 25 mm2 cable. Hence, the cable is suitable to be used for Depropanizer Condenser Fan Motor A (482-HM-04A-P).
  • 43. Internship*Report* PT.*TRIPATRA*ENGINEERING* 2015* UNIVERSITAS*INDONESIA*2015* 42" 5.3 Feeder Load 5.3.1 Load Specification Consider 339-OEH-01A, a VRU Compressor A - Lube Oil Heater which is connected using XLPE/SWA/LSFH Cable to 360 ES 03 LPG/OTF 400 V Switchgear. The specification of the Heater is given below: Table 5.4 VRU Compressor A - Lube Oil Heater (339-OEH-01A) specification Parameters Value Power Rating 3 KW Voltage 400 V Efficiency at full load 1 Power Factor at full load 0.85 Power Factor at starting N/A Multiplying Factor 1 5.3.2 Cable Specification Cable used for VRU Compressor A - Lube Oil Heater (339-OEH-01A)is a 0.6/1 kV - XLPE/SWA/LSFH 3/C # 2.5 mm2 . The number of cable is set to be 1. The cable length is set to be 195 m (180m + 15 m of contingency). The specification of the cable is described as follows: Table 5.5 0.6/1 kV - XLPE/SWA/LSFH 3/C # 2.5 mm2 specification Parameters Value Size 0.6/1 kV - XLPE/SWA/LSFH 3/C # 2.5 mm2 Conductor Size (Kcmil) 5
  • 44. Internship*Report* PT.*TRIPATRA*ENGINEERING* 2015* UNIVERSITAS*INDONESIA*2015* 43" Ampacity in Air (A) 37 Ampacity in Ground (A) 32 R (ohm / 1000 m) 7.41 X (ohm / 1000 m) 0.0961 Overall Diameter (mm) 16.5 Approx. Weight (kg/km) 485 5.3.3 Cable Sizing Calculation 5.3.3.1 Cable Ampacity Correction Factor The installation assumption is using the same installation assumption as for motor load, which is using cable tray. The number of tray is 2 and the number of cable in each tray is 4, from the Table 4.1, F!is 0.77 (referred to PT. Sumi Indo Kabel Low Voltage Catalog) Referring to equation (5-1), the F! is equal to 0.91. Referring to equation (5-2), the overall correction factor (F) is equal to 0.7. 5.3.3.2 Resistance Cable Data and Resistance Correction Factor Using the same calculation as in calculation (5-3), the F!, which is the resistance correction factor is equal to 1.079. Using the equation (4-4), and Table 5.5 for the R! value, the corrected cable resistance for 0.6/1 kV - XLPE/SWA/LSFH 3/C # 2.5 mm2 cable is calculated as follows R! = !F!!!x!!R! R! = !1.079!!!7.41 R! = !7.99!!!ℎ!/!" (5-17)
  • 45. Internship*Report* PT.*TRIPATRA*ENGINEERING* 2015* UNIVERSITAS*INDONESIA*2015* 44" 5.3.3.3 Feeder Full Load Current Referring to equation (4-6), the Feeder full load current can be calculated as follows: I!" !=! P!!x!1000 3!. V!!!. η. cos!φ I!" !=! !!!!!""" !!!!!!""!!!!!!!!.!" = 5.094 A (5-18) Referring to equation (4-7), I! =!MF!""#"$!x!I!" I! = 1 x 5.094A = 5.094 A (5-19) 5.3.3.4 Minimum cable size based on cable ampacity Cable ampacity is corrected by Cable ampacity correction factor (F). From calculation (5-2), F is equal to 0.7. Referring to equation (4-15) and Table 5.5, I! is the cable ampacity in air and equal to 37 A. The Corrected cable ampacity (I!) can be calculated as follows: I! !=!I!!x!F I! != !37!x!0.7!! I! != 26 A (5-20) Since the system only used 1 cable, hence I!is equal to 26 A. Otherwise, I!should be multiplied by the number of cable used in the system. Referring to calculation (5-18), I!" is equal to 5.094 A. By equation (4-15), the corrected cable ampacity (I!) must be larger than the full load current (I!"). I! > I!" 26!!! > 5.094! (5-21)
  • 46. Internship*Report* PT.*TRIPATRA*ENGINEERING* 2015* UNIVERSITAS*INDONESIA*2015* 45" By this condition, 0.6/1 kV - XLPE/SWA/LSFH 3/C # 2.5 mm2 suits the cable ampacity for the system. 5.3.3.5 Number of Cable To fulfill the full load current referring to equation (4-16), the number of cable shall be: ! =! !!" !! ! =! 5.09 26 ! = !0.19 ≈ 1 (5-22) The number of 0.6/1 kV - XLPE/SWA/LSFH 3/C # 2.5 mm2 cable used is 1. 5.3.3.6 Voltage drop calculation 5.3.3.6.1 AC voltage drop at steady state Referring to equation (4-17), the voltage drop at steady state are calculated as follows: V! != !k. I!"!(R. cos!φ! + !X. sin!φ). L 1000 !. 100% V !. 1 n V! != ! 3!!!5.094!!![(7.99!!!0.85)!+ (0.0961!!! sin (cos!! 0.85)]!!! 195 1000 !! !100% 400 !!! 1 1 V! != !2.944!% (5-23) From Table 4.2, the %voltage drop as per specification for feeder running is 5% V! !≤!V!"#$% 2.944!!%!! ≤ !5!% (5-24) By this condition, 0.6/1 kV - XLPE/SWA/LSFH 3/C # 2.5 mm2 suits the ac voltage drop steady state criteria for the system.
  • 47. Internship*Report* PT.*TRIPATRA*ENGINEERING* 2015* UNIVERSITAS*INDONESIA*2015* 46" 5.3.3.7 Short circuit thermal withstand capacity Referring to equation (4-21), short circuit at load can be calculated as follows: !!" =! !!" 1000!!!!!" !!" =! 5.094! 1000!!!0.3 !!" = !0.169!!" (5-25) To calculate the maximum short circuit current, referring to equation (4-22) ! !" =! !!!!1000!!! !.!"#!!! !"# !!"!!"# !!!!"# ! 1000 ! !" =! 5!!!1000!!! !.!"#!!! !"# !"#!!"# !"!!"# !.!" 1000 ! !" = !0.8994!!"! (5-26) !!" !≤ !! 0.169!!" ≤ !0.8994!!"! (5-27) By this condition, 0.6/1 kV - XLPE/SWA/LSFH 3/C # 2.5 mm2 suits the short circuit current criteria for the system. 5.3.4 Cable Selection Based on the calculation of (5-21), (5-24) and (5-27), all of the cable criteria conditions are fulfilled by the 0.6/1 kV - XLPE/SWA/LSFH 3/C # 2.5 mm2 cable. Hence, the cable is suitable to be used for VRU Compressor A - Lube Oil Heater (339-OEH-01A).
  • 48. Internship*Report* PT.*TRIPATRA*ENGINEERING* 2015* UNIVERSITAS*INDONESIA*2015* 47" CHAPTER VI CONCLUSION The conclusion that can be summarize from this cable sizing calculations are: ! Cable sizing for cables run from 400 V Switchgear and MCC Process 360-ES-03 to the loads already meet the requirement of allowable steady state current carrying capacity. Where the condition of I! > I!" is fulfilled. ! Cable sizing for cables run from 400 V Switchgear and MCC Process 360-ES-03 to the loads already meet the requirement of allowable voltage drop during steady state and transient (motor starting) condition. Where the condition of V! !≤!V!"!"#andV!"# !≤!V!"#$% are fulfilled. ! Cable sizing for cables run from 400 V Switchgear and MCC Process 360-ES-03 to the loads already meet the requirement of short circuit current withstand capacity. Where the condition of !!" !≤ !! is fulfilled.
  • 49. Internship*Report* PT.*TRIPATRA*ENGINEERING* 2015* UNIVERSITAS*INDONESIA*2015* 48" REFERENCES Tripatra Engineering. Cable Sizing and Volt Drop Calculation. Document no: DMAN-TPE-ENGELC-027. Tripatra Engineering. Cable Tray Sizing and Selection. Document no: DMAN-TPE- ENGELC-028. CM Corporation. Current carrying capacity of copper conductors. Retrieved on 20th March 2015 from http://www.cmcorporation.com/conductors/current-carrying- capacity-of-copper-conductors EPB. Fundamentals of electricity: Voltage drop. Retrieved on 18th March 2015 from http://epb.apogee.net/foe/frvd.asp. Tripatra.Tripatra’s profile. Retrieved on 18th March 2015 from http://intranet.tripatra.com/default.aspx Electerical Engineering Portal.Sizing of power cables. Retrieved on 19th March 2015 fromhttp://electrical-engineering-portal.com/sizing-of-power-cables-for-circuit- breaker- controlled-feeders-part-1 DP Kothari and I J Nagarath. 2003. Modern Power System Analysis 3rd Edition. Tata McGraw-Hill Education.
  • 50. 0.6 kV CONTINUOUS ALUMINUM CORRUGATED ARMOR Correction Factor : 40 Ft - Temp Correction Factor : 0.91 Fg - Cable Group Cor. Fact (In Cable Tray): 0.77 cable&tray& number&of&tray&2 : 30 Fr - Resistance Cor. Fact : 1.079 number&of&cable&4 : 90 : 20 : 250 : 50 Ia/In CURRENT Ic Fg Ft Id Ro Fr R X (@50Hz) MAX Vdn Vdn MAX Vdn Vdn SC @LOAD TIME VALUE UNIT (VOLT) UNIT (pu) (pu) (pu) (pu) (A) (A) (pu) (A) (m) (no) (m) (Type) COND SIZE (kcmil) (A) (pu) (pu) (A) (ohm/km) (ohm/km) (ohm/km) (%) (%) (%) (%) (kA) (s) Tsc (o C) Tc (o C) 1 M 482HM04A&7&P OTF/LPGF&&400&V&SWITCHGEAR&&&MCC&PROCESS& 3607&ES7&03& DEPROPANIZER&CONDENSER&FAN&MOTOR&A 4827HM704A& 30 kW 400 V 0.92 0.88 0.3 1.25 53.48 66.86 7.5 401.14 225 1 225 0.6/1&kV&7&XLPE/SWA/LSFH&3/C&#&25&mm2 50 153 0.77 0.91 107.55 0.73 1.08 0.78 0.08 5 3.79 15 12.10 0.3 0.18 0.16 250 90 2 M 482HM04B&7&P OTF/LPGF&&400&V&SWITCHGEAR&&&MCC&PROCESS& 3607&ES7&03& DEPROPANIZER&CONDENSER&FAN&MOTOR&B 4827HM704B& 30 kW 400 V 0.92 0.88 0.3 1.25 53.48 66.86 7.5 401.14 280 1 280 0.6/1&kV&7&XLPE/SWA/LSFH&3/C&#&35&mm2 68 188 0.77 0.91 132.15 0.52 1.08 0.57 0.08 5 3.46 15 11.74 0.3 0.18 0.16 250 90 3 M 482PM01A&7&P OTF/LPGF&&400&V&SWITCHGEAR&&&MCC&PROCESS& 3607&ES7&03& DEETHANIZER&REFLUX&PUMP&MOTOR&A 4827PM701A 22 kW 400 V 0.91 0.9 0.3 1.25 38.77 48.46 7.4 286.91 280 1 280 0.6/1&kV&7&XLPE/SWA/LSFH&3/C&#&25&mm2 50 153 0.77 0.91 107.55 0.73 1.08 0.78 0.08 5 3.48 15 10.77 0.3 0.13 0.16 250 90 4 M 482PM01B&7&P OTF/LPGF&&400&V&SWITCHGEAR&&&MCC&PROCESS& 3607&ES7&03& DEETHANIZER&REFLUX&PUMP&MOTOR&B 4827PM701B 22 kW 400 V 0.91 0.9 0.3 1.25 38.77 48.46 7.4 286.91 280 1 280 0.6/1&kV&7&XLPE/SWA/LSFH&3/C&#&25&mm2 50 153 0.77 0.91 107.55 0.73 1.08 0.78 0.08 5 3.48 15 10.77 0.3 0.13 0.16 250 90 5 M 482PM02A&7&P OTF/LPGF&&400&V&SWITCHGEAR&&&MCC&PROCESS& 3607&ES7&03& DEPROPANIZER&REFLUX&PUMP&MOTOR&A 4827PM702A 36 kW 400 V 0.94 0.89 0.3 1.25 62.11 77.64 7.4 459.62 280 2 280 0.6/1&kV&7&XLPE/SWA/LSFH&3/C&#&16&mm2 27 118 0.77 0.91 165.89 1.15 1.08 1.24 0.08 5 4.29 15 12.44 0.3 0.21 0.16 250 90 6 M 482PM02B&7&P OTF/LPGF&&400&V&SWITCHGEAR&&&MCC&PROCESS& 3607&ES7&03& DEPROPANIZER&REFLUX&PUMP&MOTOR&B 4827PM702B 36 kW 400 V 0.94 0.89 0.3 1.25 62.11 77.64 7.4 459.62 280 2 280 0.6/1&kV&7&XLPE/SWA/LSFH&3/C&#&16&mm2 27 118 0.77 0.91 165.89 1.15 1.08 1.24 0.08 5 4.29 15 12.44 0.3 0.21 0.16 250 90 7 M 482PM04A&7&P OTF/LPGF&&400&V&SWITCHGEAR&&&MCC&PROCESS& 3607&ES7&03& DEBUTANIZER&REFLUX&PUMP&MOTOR&A 4827PM704A 45 kW 400 V 0.95 0.87 0.3 1.25 78.59 98.23 7.6 597.26 280 1 280 0.6/1&kV&7&XLPE/SWA/LSFH&3/C&#&50&mm2 76 219 0.77 0.91 153.94 0.39 1.08 0.42 0.07 5 3.81 15 14.24 0.3 0.26 0.16 250 90 8 M 332HM02A&7&P OTF/LPGF&&400&V&SWITCHGEAR&&&MCC&PROCESS& 3607&ES7&03& CRUDE&OIL&RUNDOWN&COOLER&FAN&MOTOR&A 3327HM702A 15 kW 400 V 0.92 0.88 0.3 1.25 26.74 33.43 7.5 200.57 165 1 165 0.6/1&kV&7&XLPE/SWA/LSFH&3/C&#&10&mm2 20 88 0.77 0.91 61.86 1.83 1.08 1.97 0.08 5 3.39 15 9.58 0.3 0.09 0.16 250 90 9 M 339PM01A&7&P OTF/LPGF&&400&V&SWITCHGEAR&&&MCC&PROCESS& 3607&ES7&03& FLASH&GAS&COMPRESSOR&A&7&COMPRESSOR&PRE7LUBE&OIL&PUMP&MOTOR 3397PM701A 2.5 kW 400 V 0.83 0.88 0.3 1.25 4.94 6.18 7.6 37.55 250 1 250 0.6/1&kV&7&XLPE/SWA/LSFH&3/C&#&2.5&mm2 5 37 0.77 0.91 26.01 7.41 1.08 7.99 0.10 5 3.79 15 10.12 0.3 0.02 0.16 250 90 10 F 339OEH01A&7&P OTF/LPGF&&400&V&SWITCHGEAR&&&MCC&PROCESS& 3607&ES7&03& VRU&COMPRESSOR&A&7&LUBE&OIL&HEATER 3397OEH701A 3 kW 400 V 1 0.85 N/A 1 5.09 5.09 N/A N/A 195 1 195 0.6/1&kV&7&XLPE/SWA/LSFH&3/C&#&2.5&mm2 5 37 0.77 0.91 26.01 7.41 1.08 7.99 0.10 5 2.94 15 N/A 0.3 0.02 0.16 250 90 11 M 332PM01A&7&P OTF/LPGF&&400&V&SWITCHGEAR&&&MCC&PROCESS& 3607&ES7&03& CRUDE&OIL&RUNDOWN&PUMP&MOTOR&A 3327PM701A 36 kW 400 V 0.94 0.89 0.3 1.25 62.11 77.64 7.4 459.62 210 6 210 0.6/1&kV&7&XLPE/SWA/LSFH&3/C&#&25&mm2 50 153 0.77 0.91 645.27 0.73 1.08 0.78 0.08 5 0.69 15 2.16 0.3 0.21 0.16 250 90 12 M 332PM01B&7&P OTF/LPGF&&400&V&SWITCHGEAR&&&MCC&PROCESS& 3607&ES7&03& CRUDE&OIL&RUNDOWN&PUMP&MOTOR&B 3327PM701B 36 kW 400 V 0.94 0.89 0.3 1.25 62.11 77.64 7.4 459.62 210 1 210 0.6/1&kV&7&XLPE/SWA/LSFH&3/C&#&25&mm2 50 153 0.77 0.91 107.55 0.73 1.08 0.78 0.08 5 4.14 15 12.94 0.3 0.21 0.16 250 90 13 M 339PM03A&7&P OTF/LPGF&&400&V&SWITCHGEAR&&&MCC&PROCESS& 3607&ES7&03& FLASH&GAS&COMPRESSOR&A&7&ENGINE&PRE&LUBE&OIL&PUMP&MOTOR 3397PM703A 3.7 kW 400 V 0.84 0.88 0.3 1.25 7.22 9.03 7.7 55.63 250 1 250 0.6/1&kV&7&XLPE/SWA/LSFH&3/C&#&4&mm2 8 42 0.77 0.91 29.52 4.61 1.08 4.97 0.09 5 3.46 15 9.50 0.3 0.02 0.16 250 90 14 M 381PM02&7&P OTF/LPGF&&400&V&SWITCHGEAR&&&MCC&PROCESS& 3607&ES7&03& CRUDE&OIL&RE7RUN&PUMP&MOTOR 3817PM702 22 kW 400 V 0.91 0.9 0.3 1.25 38.77 48.46 7.4 286.91 385 1 385 0.6/1&kV&7&XLPE/SWA/LSFH&3/C&#&25&mm2 50 153 0.77 0.91 107.55 0.73 1.08 0.78 0.08 5 4.78 15 14.81 0.3 0.13 0.16 250 90 15 M 436HM01A&7&P OTF/LPGF&&400&V&SWITCHGEAR&&&MCC&PROCESS& 3607&ES7&03& REGENERATION&GAS&COOLER&FAN&MOTOR&A 4367HM701A 2.5 kW 400 V 0.83 0.88 0.3 1.25 4.94 6.18 7.6 37.55 250 1 250 0.6/1&kV&7&XLPE/SWA/LSFH&3/C&#&2.5&mm2 5 37 0.77 0.91 26.01 7.41 1.08 7.99 0.10 5 3.79 15 10.12 0.3 0.02 0.16 250 90 16 M 436HM01B&7&P OTF/LPGF&&400&V&SWITCHGEAR&&&MCC&PROCESS& 3607&ES7&03& REGENERATION&GAS&COOLER&FAN&MOTOR&B 4367HM701B 2.5 kW 400 V 0.83 0.88 0.3 1.25 4.94 6.18 7.6 37.55 250 1 250 0.6/1&kV&7&XLPE/SWA/LSFH&3/C&#&2.5&mm2 5 37 0.77 0.91 26.01 7.41 1.08 7.99 0.10 5 3.79 15 10.12 0.3 0.02 0.16 250 90 17 F 332VT027P OTF/LPGF&&400&V&SWITCHGEAR&&&MCC&PROCESS& 3607&ES7&03& LP&ELECTROSTATIC&TREATER 332&7VT702 30 kW 400 V 1 0.8 N/A 1 54.13 54.13 N/A N/A 160 1 160 0.6/1&kV&7&XLPE/SWA/LSFH&3/C&#&25&mm2 50 153 0.77 0.91 107.55 0.73 1.08 0.78 0.08 5 2.53 15 N/A 0.3 0.18 0.16 250 90 18 F 339OEH01B&7&P OTF/LPGF&&400&V&SWITCHGEAR&&&MCC&PROCESS& 3607&ES7&03& VRU&COMPRESSOR&B&7&LUBE&OIL&HEATER 3397OEH701B 3 kW 400 V 1 0.85 N/A 1 5.09 5.09 N/A N/A 195 1 195 0.6/1&kV&7&XLPE/SWA/LSFH&3/C&#&2.5&mm2 5 37 0.77 0.91 26.01 7.41 1.08 7.99 0.10 5 2.94 15 N/A 0.3 0.02 0.16 250 90 NO. LOAD TYPE CABLE TAG NUMBER TEMPERATURE CONDITION POWER RATING CABLE SIZE CABLE AMPACITY LOAD SCSTARTING CURRENT Environment Condition T1 - T amb (°C) Design Cable- Catalogue T2 - T amb (°C) (Ampacity) Tc - T Rating of Cond. (°C) To - T amb (°C) (Resistance) Tsc- Tmax at SC (°C) Frequency for Reactance (Hz) FROM CABLE DATA RUNNINGTO EGUIPMENT TAG NUMBER DESCRIPTION EGUIPMENT TAG NUMBER DESCRIPTION ESTIMATED LENGTH TOTAL LENGTH DESIGN CURRENT STARTING SC CAPACITY OF CONDUCTOR PF. AT START NUMBER OF CABLE VOLTAGE( Vn) EFF. AT FULL LOAD PF. AT FULL LOAD FULL LOAD CURRENT (IFL) MULTIPLY FACTOR LOAD Xd"
  • 51. MINIMUM CONDUCTOR kcmill 1 8.99 1 12.23 1 8.99 1 8.99 2 4.86 2 4.86 2 13.67 1 3.60 1 0.90 1 0.90 1 8.99 1 8.99 1 1.44 1 8.99 1 0.90 1 0.90 1 8.99 1 0.90 SHORT CIRCUIT CAPACITY OF CONDUCTOR (kA) @ 0.16 S SC CAPACITY OF CONDUCTOR
  • 52.
  • 53. Head Office/Factory: Jl. Gatot Subroto Km 7,8 Kel Pasir Jaya, Kec. Jati Uwung, Tangerang 15135-Indonesia Phone : (62-21) 5922404, 5928066 (Hunting) Fax. : (62-21) 59301979, 5922576, 5901469 c Copyright Sumi Indo Kabel 2009 All rights reserved. This catalogue is the copyright work of PT. Sumi Indo Kabel Tbk. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means, electronic, mechanical, photocopying, recording or otherwise, without prior permission of PT. Sumi Indo Kabel. All information contained in this catalogue is believed to be accurate at the time issue. PT. Sumi Indo Kabel reserve the right to change information or specification at any time in the light of technical developments or revisions. Issue : 3 Date: June 2009
  • 54. Section 1 - Contents & Information Low Voltage Catalogue Index Page Number SECTION 1 - Contents & Information Index Page 11 Company Profile of PT. SUMI INDO KABEL Tbk 2 Cable Specification 3 SECTION 2 - PVC Insulated Cables Unarmoured Cables 450/750 Volts PVC Insulated Cables (Cu/PVC, NYA) 5 450/750 Volts PVC Insulated Cables (Flexible Cu/PVC, NYAF) 6 300/500 Volts PVC Insulated and PVC Sheathed Cables (PVC/PVC, NYM) 8 300/500 Volts PVC Insulated and PVC Sheathed Cables (Flexible PVC/PVC, NYMHY) 10 450/750 Volts PVC Insulated and PVC Sheathed Cables (Flexible PVC/PVC, NYYHY) 11 600/1000 Volts PVC Insulated and PVC Sheathed Cables (PVC/PVC, NYY) 18 600/1000 Volts PVC Insulated, Copper Tape Shielded and PVC Sheathed Cables (PVC/PVC-S, NYSY) 30 Armoured Cables 600/1000 Volts PVC Insulated, Steel Wire Armoured and PVC Sheathed Cables (PVC/SWA/PVC, NYRY) 35 600/1000 Volts PVC Insulated, Flat Steel Wire Armoured and PVC Sheathed Cables (PVC/FSWA/PVC, NYFGbY) 41 600/1000 Volts PVC Insulated, Double Steel Tape Armoured and PVC Sheathed Cables (PVC/DSTA/PVC, NYBY) 46 SECTION 3 - XLPE Insulated Cables Unarmoured Cables 600/1000 Volts XLPE Insulated and PVC Sheathed Cables (XLPE/PVC, N2XY) 52 600/1000 Volts XLPE Insulated, Copper Tape Shielded and PVC Sheathed Cables (XLPE/PVC-S, N2XSY) 62 Armoured Cables 600/1000 Volts XLPE Insulated, Steel Wire Armoured and PVC Sheathed Cables (XLPE/SWA/PVC, N2XRY) 67 600/1000 Volts XLPE Insulated, Flat Steel Wire Armoured and PVC Sheathed Cables (XLPE/FSWA/PVC, N2XFGbY) 73 600/1000 Volts XLPE Insulated, Double Steel Tape Armoured and PVC Sheathed Cables (XLPE/DSTA/PVC, N2XBY) 78 SECTION 4 - General Information Current Carrying Capacity for XLPE Insulated cable (single core) 83 Current Carrying Capacity for XLPE Insulated cable (multicore) 84 Current Carrying Capacity for PVC Insulated cable (single core) 85 Current Carrying Capacity for PVC Insulated cable (multicore) 86 Correction factor of Curent carrying capacity 87 Cable arrangement for Installation purpose 88 Explanation of Flame Retardant / Fire Resistant Characteristic 91 Page - 1
  • 55. Section 1 - Contents & Information Page - 2 1 Company Profile of PT. Sumi Indo Kabel Tbk The Company was established on July 23, 1981 with its Head Office and Factory located in Tangerang, Banten. The Company is engaged in the manufacturing of Power Cable, Telecommunication Cable & Fiber Optic, and Copper Wire. The Company was listed in the Jakarta and Surabaya Stock Exchanges in 1990. The Company became Foreign Capital Investment (PMA) in 1994, with the participation of Sumitomo Electric Industries, Ltd., Japan, one of the biggest in cable and wire industries in the world. The name of Company became PT Sumi Indo Kabel Tbk. since 1999. The Company received official recognition of its quality management system standard from SGS, certification ISO 9001 : 2000 for its Power Cable & Control Cable, Telephone Cable & Fiber Optic Cable, and Copper Wire Rod in 2002. This was the first recognition in Indonesia for Electric Cable and Wire industries.
  • 56. Section 2 - PVC Insulated Cables Unarmoured Cables 450/750 V PVC INSULATED WIRE (Cu/PVC) acc. to IEC 60227 Copper Conductor (Solid) PVC Insulation Copper Conductor (Stranded) PVC Insulation Colour of Insulation : Red, White, Black, Green, Brown, Blue, Yellow, Green-yellow 450/750 V PVC INSULATED WIRE (Cu/PVC Flexible) acc. to IEC 60227 Copper Conductor (Flexible) PVC Insulation Colour of Insulation : Red, White, Black, Green, Brown, Blue, Yellow, Green-yellow Page - 4 Note : Special application upon request * Available product in accordance to : SPLN or other requirement. * Tin coated Copper conductor.
  • 57. Section 1 - Contents & Information 1 Scope 2 Conductor The conductor shall be solid, circular stranded or compacted stranded. 3 Insulation 4 Identification of cores Number of core Identification of cores Single core Black (Natural for XLPE insulated) Two cores Red, Black Three cores Red, Yellow, Blue Four cores Red, Yellow, Blue, Black Five core or more Black insulation with white numbered code. 5 Cabling and filling 6 Metallic Shielding (if required) The metallic shielding shall consist of either one or more Copper tapes or a concentric layer of copper wires. 7 Inner sheath (armour cable only). 8 Metallic armour 9 Outer sheath The conductor shall be formed from plain annealed copper or aluminium complying with IEC 60228, ASTM B3 and B8. The insulation shall be cross-linked polyethylene (XLPE) or Polivinyl chloride (PVC) in accordance to IEC 60502-1. The outer sheath shall consist of a thermoplastic compound such as polyvinyl chloride (PVC), polyethylene (PE), halogen free (LSOH), etc in accordance with IEC 60502-1. Page - 3 The cores of all cables shall be identified by color or numbered printed on the surface of insulation in accordance with the following sequence or other sequence. The multi cores shall be laid up together with suitable filler to give the completed cable a substantially circular cross section and bound with suitable binder tape. The inner sheath shall consist of extruded thermoplastic compound such as :polyvinyl chloride (PVC), polyethylene (PE),halogen free (LSOH), etc in accordance to IEC 60502-1. The metallic armour shall consist of single layer of round galvanized steel wire or flat galvanized steel wire and steel tape or double layer of galvanized steel tapes in accordance to IEC 60502-1. The armour of single core cables shall consist of single layer of aluminium wire or double layers of aluminium tape as non magnetic material. Cable Specification These specification apply to material and constructions of cross-linked thermosetting polyethylene (XLPE) or Polivinyl chloride (PVC) insulated wire and cables for rated voltages 0.3/0.5 kV up to 0.6/1(1.2) kV accordance to IEC 60502-1, Indonesia Electric Power Company (SPLN)
  • 58. Section 2 - PVC Insulated Cables Unarmoured Cables CONSTRUCTION TECHNICAL DATA Conductor : Plain Annealed Copper Voltage (to IEC 60228 class 1 or 2) Uo/U - 450/750 V Insulation : PVC Compound type C Operating Temperature Colour Ident. : Red, White, Black, Green, Maximum 70°C Blue, Yellow, Green-yellow 1.5 1 / 1.38 1.38 0.7 3.0 22 12.1 0.011 2500 1.5 7 / 0.52 1.56 0.7 3.5 23 12.1 0.010 2500 2.5 1 / 1.78 1.78 0.8 4.0 33 7.41 0.010 2500 2.5 7 / 0.67 2.01 0.8 4.0 35 7.41 0.009 2500 4 1 / 2.26 2.26 0.8 4.5 49 4.61 0.0085 2500 4 7 / 0.85 2.55 0.8 4.5 52 4.61 0.0077 2500 6 1 / 2.77 2.77 0.8 5.0 69 3.08 0.0070 2500 6 7 / 1.04 3.12 0.8 5.0 72 3.08 0.0065 2500 10 1 / 3.57 3.57 1.0 6.0 113 1.83 0.0070 2500 10 7 / 1.35 4.05 1.0 6.5 119 1.83 0.0065 2500 16 7 / 1.70 5.10 1.0 7.5 179 1.15 0.0050 2500 25 7 / 2.13 6.39 1.2 9.0 277 0.727 0.0050 2500 35 7 / 2.52 7.56 1.2 10.5 377 0.524 0.0040 2500 50 19 / 1.83 9.15 1.4 12.5 530 0.387 0.0045 2500 70 19 / 2.17 10.85 1.4 14.0 727 0.268 0.0035 2500 95 19 / 2.52 12.60 1.6 16.5 985 0.193 0.0035 2500 120 37 / 2.03 14.21 1.6 18.0 1218 0.153 0.0032 2500 150 37 / 2.27 15.89 1.8 20.0 1522 0.124 0.0032 2500 185 37 / 2.52 17.64 2.0 22.0 1873 0.0991 0.0032 2500 240 61 / 2.26 20.34 2.2 25.5 2465 0.0754 0.0032 2500 300 61 / 2.52 22.68 2.4 28.0 3055 0.0601 0.0030 2500 400 61 / 2.86 25.74 2.6 31.5 3927 0.0470 0.0028 2500 Page - 5 V/5 min Maximum AC Test Voltage MΩ.km Thickness Nominal Resistance Resistance wire Conductor of Nominal No./ Diameter Minimum Insulation Cross- Diameter of wire (approx.) Conductorsection Insulation Weight Nominal Overall Ω/kmkg/kmmm² (Approx.)(Approx.) No./mm area (approx.) mmmm mm 450/750 V PVC INSULATED WIRE CU/PVC (IEC 60227) Conductor at 70°Cat 20°C of Diameter of
  • 59. Section 2 - PVC Insulated Cables Unarmoured Cables CONSTRUCTION TECHNICAL DATA Conductor : Plain Annealed Copper Voltage (to IEC 60228 class 5) Uo/U - 450/750 V Insulation : PVC Compound type C Operating Temperature Colour Ident. : Red, White, Black, Green, Maximum 70°C Blue, Yellow, Green-yellow 1.5 1.58 0.7 3.5 22 13.30 0.010 2500 2.5 0.26 2.04 0.8 4.0 34 7.98 0.009 2500 4 0.31 2.59 0.8 4.5 50 4.95 0.007 2500 6 0.31 3.46 0.8 5.5 75 3.30 0.006 2500 10 0.41 4.62 1.0 7.0 130 1.91 0.0056 2500 16 0.41 5.66 1.0 8.0 186 1.21 0.0046 2500 25 0.41 7.06 1.2 10.0 286 0.78 0.0044 2500 35 0.41 8.43 1.2 11.0 395 0.554 0.0038 2500 50 0.41 10.07 1.4 13.5 550 0.386 0.0037 2500 70 0.51 11.97 1.4 15.0 760 0.272 0.0032 2500 95 0.51 13.73 1.6 17.5 1008 0.206 0.0032 2500 120 0.51 15.53 1.6 19.5 1270 0.161 0.0029 2500 150 0.51 17.56 1.8 22.0 1605 0.129 0.0029 2500 185 0.51 19.16 2.0 24.0 1914 0.106 0.0029 2500 240 0.51 22.0 2.2 27.0 2491 0.0801 0.0028 2500 Page - 6 Maximum MinimumNominal Nominal Thickness Overall section Conductor Nominal Diameter Insulation Cross- of of Diameter of Resistance Resistance Weight Conductor 0.26 at 70°C area (Approx.) (Approx.)(approx.) mm mm kg/km Ω/kmmm² mm (approx.) Insulation wire at 20°C mm V/5 minMΩ.km Conductor AC Maximum Test Diameter Voltage of wire 450/750 V PVC INSULATED WIRE CU/PVC-Flexible (IEC 60227)
  • 60. Section 2 - PVC Insulated Cables Unarmoured Cables 300/500 V PVC INSULATED AND PVC SHEATHED CABLES PVC/PVC (NYM) - IEC 60227 , SPLN 42-2 Conductor PVC Inner covering PVC Insulation PVC Sheath 300/500 V PVC INSULATED AND PVC SHEATHED CABLES PVC/PVC Flexible (NYMHY) - IEC 60227 , SPLN 42-2 Conductor PVC Insulation PVC Sheath 450/750 V PVC INSULATED AND PVC SHEATHED CABLES PVC/PVC Flexible (IEC 60227, SPLN 42-6-3) Tape (manufacturer's option) Conductor PVC Sheath PVC Insulation Filler (Polyprophylene yarn,or extruded filler up to request) Page - 7
  • 61. Section 2 - PVC Insulated Cables Unarmoured Cables CONSTRUCTION TECHNICAL DATA Conductor : Plain Annealed Copper Voltage (to IEC 60228 class 1 and 2) Uo/U - 300/500 V Insulation : PVC Compound Operating Temperature Inner covering : PVC Compound Maximum 70°C Sheath : PVC Compound type ST2 Colour Ident. : Insulation : Two cores - Red,Black Three cores - Red,Yellow, Blue Sheath - White TWO AND THREE CORES No. of Core - 1.5 1 / 1.38 1.38 0.7 0.4 1.2 9.5 129 12.1 7 / 0.52 1.56 0.7 0.4 1.2 10.0 138 12.1 2.5 1 / 1.78 1.78 0.8 0.4 1.2 11.0 173 7.41 7 / 0.67 2.01 0.8 0.4 1.2 11.0 184 7.41 4 1 / 2.26 2.26 0.8 0.4 1.2 12.0 222 4.61 2 7 / 0.85 2.55 0.8 0.4 1.2 12.5 239 4.61 6 1 / 2.77 2.77 0.8 0.4 1.2 13.0 294 3.08 7 / 1.04 3.12 0.8 0.4 1.2 14.0 313 3.08 10 1 / 3.57 3.57 1.0 0.6 1.4 16.0 453 1.83 7 / 1.35 4.05 1.0 0.6 1.4 17.0 492 1.83 16 7 / 1.70 5.10 1.0 0.6 1.4 19.0 668 1.15 25 7 / 2.13 6.39 1.2 0.8 1.4 23.0 998 0.727 35 7 / 2.52 7.56 1.2 1.0 1.6 26.0 1336 0.524 1.5 1 / 1.38 1.38 0.7 0.4 1.2 10.0 150 12.1 7 / 0.52 1.56 0.7 0.4 1.2 10.5 159 12.1 2.5 1 / 1.78 1.78 0.8 0.4 1.2 11.5 205 7.41 7 / 0.67 2.01 0.8 0.4 1.2 12.0 216 7.41 4 1 / 2.26 2.26 0.8 0.4 1.2 12.5 266 4.61 3 7 / 0.85 2.55 0.8 0.4 1.2 13.0 286 4.61 6 1 / 2.77 2.77 0.8 0.4 1.4 14.0 357 3.08 7 / 1.04 3.12 0.8 0.4 1.4 14.5 381 3.08 10 1 / 3.57 3.57 1.0 0.6 1.4 17.0 557 1.83 7 / 1.35 4.05 1.0 0.6 1.4 18.0 600 1.83 16 7 / 1.70 5.10 1.0 0.8 1.4 20.5 849 1.15 25 7 / 2.13 6.39 1.2 0.8 1.6 24.5 1270 0.727 35 7 / 2.52 7.56 1.2 1.0 1.6 27.5 1679 0.524 Conductor Nominal Nominal at 20°C Conductor Ω/km Resistance Thickness Sheath Weightdiameter cable cable Maximum Nominal No./ Diameter Thickness Cross- Diameter of of section Overall of of No./mm (approx.) (approx.) mm kg/kmmm area 300/500 V PVC INSULATED AND PVC SHEATHED CABLES PVC/PVC (NYM) - IEC 60227 , SPLN 42-2 of wire Conductor Insulation (approx.) of mm² Thickness of Inner covering (approx.) mm mm (approx.) mm Page - 8
  • 62. Section 2 - PVC Insulated Cables Unarmoured Cables CONSTRUCTION TECHNICAL DATA Conductor : Plain Annealed Copper Voltage (to IEC 60228 class 1 and 2) Uo/U - 300/500 V Insulation : PVC Compound Operating Temperature Inner covering : PVC Compound Maximum 70°C Sheath : PVC Compound type ST2 Colour Ident. : Insulation : Four core - Red,Yellow, Blue, Black Five core - Black with numbering code Sheath - White FOUR AND FIVE CORES No. of Core - 1.5 1 / 1.38 1.38 0.7 0.4 1.2 11.0 177 12.1 7 / 0.52 1.56 0.7 0.4 1.2 11.5 189 12.1 2.5 1 / 1.78 1.78 0.8 0.4 1.2 12.5 247 7.41 7 / 0.67 2.01 0.8 0.4 1.2 13.0 262 7.41 4 1 / 2.26 2.26 0.8 0.4 1.4 14.0 340 4.61 4 7 / 0.85 2.55 0.8 0.4 1.4 14.5 361 4.61 6 1 / 2.77 2.77 0.8 0.4 1.4 15.5 456 3.08 7 / 1.04 3.12 0.8 0.4 1.4 16.0 482 3.08 10 1 / 3.57 3.57 1.0 0.6 1.4 18.5 690 1.83 7 / 1.35 4.05 1.0 0.6 1.4 19.5 742 1.83 16 7 / 1.70 5.10 1.0 0.8 1.4 22.5 1059 1.15 25 7 / 2.13 6.39 1.2 1.0 1.6 27.5 1616 0.727 35 7 / 2.52 7.56 1.2 1.0 1.6 30.0 2107 0.524 1.5 1 / 1.38 1.38 0.7 0.4 1.2 11.5 210 12.1 7 / 0.52 1.56 0.7 0.4 1.2 12.0 223 12.1 2.5 1 / 1.78 1.78 0.8 0.4 1.2 13.5 293 7.41 7 / 0.67 2.01 0.8 0.4 1.2 14.0 313 7.41 4 1 / 2.26 2.26 0.8 0.6 1.4 15.5 424 4.61 5 7 / 0.85 2.55 0.8 0.6 1.4 16.5 452 4.61 6 1 / 2.77 2.77 0.8 0.6 1.4 17.0 548 3.08 7 / 1.04 3.12 0.8 0.6 1.4 17.5 579 3.08 10 1 / 3.57 3.57 1.0 0.6 1.4 20.0 839 1.83 7 / 1.35 4.05 1.0 0.6 1.4 21.5 898 1.83 16 7 / 1.70 5.10 1.0 0.8 1.6 25.0 1310 1.15 25 7 / 2.13 6.39 1.2 1.0 1.6 30.0 1969 0.727 35 7 / 2.52 7.56 1.2 1.2 1.6 33.5 2617 0.524 300/500 V PVC INSULATED AND PVC SHEATHED CABLES Maximum PVC/PVC (NYM) - IEC 60227 , SPLN 42-2 Nominal No./ Diameter Thickness Conductor Nominal Nominal Overall of Inner of of of Resistance Thickness Thickness diameter Weight cablesection of wire Conductor Insulation Conductor Cross- Diameter of of at 20°C area (approx.) (approx.) (approx.) (approx.) (approx.) covering Sheath cable mm kg/kmmm² No./mm mm mm Page - 9 Ω/kmmm mm
  • 63. Section 2 - PVC Insulated Cables Unarmoured Cables CONSTRUCTION TECHNICAL DATA Conductor : Plain Annealed Copper Voltage (to IEC 60228 class 5) Uo/U - 300/500 V Insulation : PVC Compound type D Operating Temperature Sheath : PVC Compound type ST5 Maximum 70°C Colour Ident. : Insulation - Red,Black: Two core - Red,Black Three core - Red,Yellow, Blue Four core - Red,Yellow, Blue, Black Five core - Black with numbering code Sheath - White Number of Core - 0.75 1.13 7.0 64 26.0 2 1 0.21 1.31 7.5 74 19.5 1.5 1.58 8.5 98 13.3 2.5 0.26 2.04 10.0 145 7.98 0.75 1.13 7.5 75 26.0 3 1 0.21 1.31 7.5 87 19.5 1.5 1.58 9.0 121 13.3 2.5 0.26 2.04 10.5 180 7.98 0.75 1.13 8.0 90 26.0 4 1 0.21 1.31 8.5 108 19.5 1.5 1.58 10.0 150 13.3 2.5 0.26 2.04 11.5 219 7.98 0.75 1.13 9.0 111 26.0 5 1 0.21 1.31 9.5 129 19.5 1.5 1.58 11.0 182 13.3 2.5 0.26 2.04 13.0 266 7.98 Conductor Nominal Nominal Overall Maximum Nominal Maximum Diameter Thickness Thickness diameter Weight Conductor of ResistanceCross- Diameter of of section of wire Conductor Insulation of of (approx.) (approx.) Sheath cable cable at 20°C (approx.) mm² mm mm mm mm mm kg/km area (approx.) 0.6 0.8 0.26 0.7 0.8 Ω/km 0.6 0.8 0.26 0.7 0.9 0.8 1.0 0.21 0.6 0.8 0.6 0.9 0.26 0.7 1.0 0.8 1.1 0.21 0.6 0.8 0.26 0.7 1.1 0.8 1.1 0.21 0.6 0.9 0.21 300/500 V PVC INSULATED AND PVC SHEATHED CABLES PVC/PVC Flexible (IEC 60227, SPLN 42-6-2) Page - 10 0.8 1.2 0.80.6 0.6 0.9
  • 64. Section 2 - PVC Insulated Cables Unarmoured Cables CONSTRUCTION TECHNICAL DATA Conductor : Plain Annealed Copper Voltage (to IEC 60228 class 5) Uo/U - 450/750 V Insulation : PVC Compound type D Operating Temperature Filler : Suitable material Maximum 70°C Sheath : PVC Compound type ST5 Colour Ident. : Insulation - Red,Black Sheath - Black TWO CORES 1.5 1.58 1.8 10.5 126 13.3 2.5 0.26 2.04 1.8 12.0 166 7.98 4 0.31 2.59 1.8 14.0 230 4.95 6 0.31 3.46 1.8 15.5 297 3.30 10 0.41 4.62 1.8 18.0 422 1.91 16 0.41 5.66 1.8 20.0 562 1.21 25 0.41 7.06 1.8 23.5 809 0.780 35 0.41 8.43 1.8 26.0 1061 0.554 50 0.41 10.07 1.8 30.5 1451 0.386 70 0.51 11.97 1.9 34.5 1949 0.272 95 0.51 13.73 2.0 39.0 2546 0.206 120 0.51 15.53 2.1 43.0 3160 0.161 Conductor Maximum Diameter kg/km 1.6 450/750 V PVC INSULATED AND PVC SHEATHED CABLES PVC/PVC Flexible (IEC 60227, SPLN 42-6-3) 0.26 mm mm mm (approx.) (approx.) of Insulation Sheath Thickness area (approx.)(approx.) Nominal Nominal Conductor Ω/km 1.4 1.4 1.6 MaximumOverall at 20°C diameter Resistance cable of WeightThickness of mm² mmmm section Conductor Nominal Diameter Cross- of of wire of cable 0.7 0.8 1.0 1.0 1.0 1.0 1.2 1.2 Page - 11
  • 65. Section 2 - PVC Insulated Cables Unarmoured Cables CONSTRUCTION TECHNICAL DATA Conductor : Plain Annealed Copper Voltage (to IEC 60228 class 5) Uo/U - 450/750 V Insulation : PVC Compound type D Operating Temperature Filler : Suitable material Maximum 70°C Sheath : PVC Compound type ST5 Colour Ident. : Insulation - Red,Yellow , Blue Sheath - Black THREE CORES 1.5 1.58 1.8 11.0 153 13.3 2.5 0.26 2.04 1.8 12.5 204 7.98 4 0.31 2.59 1.8 14.5 287 4.95 6 0.31 3.46 1.8 16.5 380 3.30 10 0.41 4.62 1.8 19.0 552 1.91 16 0.41 5.66 1.8 21.0 744 1.21 25 0.41 7.06 1.8 25.0 1085 0.780 35 0.41 8.43 1.8 28.0 1443 0.554 50 0.41 10.07 1.8 32.5 1986 0.386 70 0.51 11.97 2.0 37.0 2702 0.272 95 0.51 13.73 2.1 42.0 3542 0.206 120 0.51 15.53 2.2 46.0 4408 0.161 (approx.)area (approx.) (approx.) (approx.) at 20°Csection of wire Conductor Insulation Sheath cable cable of ResistanceofCross- Diameter of of of Conductor Nominal Nominal Maximum Diameter Thickness Thickness diameter Weight 450/750 V PVC INSULATED AND PVC SHEATHED CABLES PVC/PVC Flexible (IEC 60227, SPLN 42-6-3) Maximum mm² mm mm mm mm mm kg/km ConductorNominal 1.0 1.0 1.0 1.2 Overall Ω/km 0.26 0.8 1.0 0.7 1.6 1.2 1.4 1.4 1.6 Page - 12
  • 66. Section 2 - PVC Insulated Cables Unarmoured Cables CONSTRUCTION TECHNICAL DATA Conductor : Plain Annealed Copper Voltage (to IEC 60228 class 5) Uo/U - 450/750 V Insulation : PVC Compound type D Operating Temperature Filler : Suitable material Maximum 70°C Sheath : PVC Compound type ST5 Colour Ident. : Insulation - Red,Yellow , Blue , Black Sheath - Black FOUR CORES 1.5 1.58 1.8 12.0 181 13.3 2.5 0.26 2.04 1.8 13.5 247 7.98 4 0.31 2.59 1.8 16.0 353 4.95 6 0.31 3.46 1.8 18.0 471 3.30 10 0.41 4.62 1.8 20.5 696 1.91 16 0.41 5.66 1.8 23.5 942 1.21 25 0.41 7.06 1.8 27.5 1390 0.780 35 0.41 8.43 1.8 31.0 1856 0.554 50 0.41 10.07 1.9 36.0 2579 0.386 70 0.51 11.97 2.1 41.0 3517 0.272 95 0.51 13.73 2.2 47.0 4610 0.206 120 0.51 15.53 2.4 51.5 5769 0.161 Conductor Nominal Nominal Overall 450/750 V PVC INSULATED AND PVC SHEATHED CABLES PVC/PVC Flexible (IEC 60227, SPLN 42-6-3) Maximum Nominal Maximum Diameter Thickness Thickness diameter Weight Conductor Cross- Diameter of of of of of Resistance cable at 20°Csection of wire Conductor Insulation area (approx.) (approx.) (approx.) Sheath cable 1.0 1.2 (approx.) mm² mm mm mm mm mm kg/km Ω/km 0.26 0.8 1.0 0.7 1.2 1.4 1.0 1.0 1.4 1.6 1.6 Page - 13
  • 67. Section 2 - PVC Insulated Cables Unarmoured Cables CONSTRUCTION TECHNICAL DATA Conductor : Plain Annealed Copper Voltage (to IEC 60228 class 5) Uo/U - 450/750 V Insulation : PVC Compound type D Operating Temperature Filler : Suitable material Maximum 70°C Sheath : PVC Compound type ST5 Colour Ident. : Insulation - Black with numbering code Sheath - Black FIVE CORES 1.5 1.58 1.8 13.0 215 13.3 2.5 0.26 2.04 1.8 14.5 290 7.98 4 0.31 2.59 1.8 17.0 425 4.95 6 0.31 3.46 1.8 19.5 567 3.30 10 0.41 4.62 1.8 22.5 847 1.91 16 0.41 5.66 1.8 25.5 1154 1.21 25 0.41 7.06 1.8 30.5 1703 0.780 35 0.41 8.43 1.9 34.0 2297 0.554 50 0.41 10.07 2.0 40.0 3200 0.386 Conductor Nominal Nominal Overall 450/750 V PVC INSULATED AND PVC SHEATHED CABLES PVC/PVC Flexible (IEC 60227, SPLN 42-6-3) Maximum Nominal Maximum Diameter Thickness Thickness diameter Weight Conductor of ResistanceCross- Diameter of of section of wire Conductor Insulation of of (approx.) (approx.) Sheath cable cable at 20°C (approx.) mm² mm mm mm mm mm kg/km area (approx.) Ω/km 0.26 1.0 1.0 1.2 0.7 Page - 14 0.8 1.0 1.2 1.4 1.0
  • 68. Section 2 - PVC Insulated Cables Unarmoured Cables CONSTRUCTION TECHNICAL DATA Conductor : Plain Annealed Copper Voltage (to IEC 60228 class 5) Uo/U - 450/750 V Insulation : PVC Compound type D Operating Temperature Filler : Suitable material Maximum 70°C Sheath : PVC Compound type ST5 Colour Ident. : Insulation - Black with numbering code Sheath - Black CONTROL CABLE : 1.5 mm² 6 1.58 1.8 14.0 240 13.3 7 0.26 1.58 1.8 14.0 258 13.3 8 0.26 1.58 1.8 15.0 295 13.3 9 0.26 1.58 1.8 16.0 326 13.3 10 0.26 1.58 1.8 17.0 360 13.3 12 0.26 1.58 1.8 17.5 408 13.3 14 0.26 1.58 1.8 18.5 458 13.3 15 0.26 1.58 1.8 19.0 489 13.3 16 0.26 1.58 1.8 19.0 514 13.3 18 0.26 1.58 1.8 20.0 562 13.3 19 0.26 1.58 1.8 20.0 580 13.3 20 0.26 1.58 1.8 21.0 614 13.3 24 0.26 1.58 1.8 23.5 725 13.3 30 0.26 1.58 1.8 24.5 868 13.3 32 0.26 1.58 1.8 25.0 921 13.3 37 0.26 1.58 1.8 26.5 1034 13.3 40 0.26 1.58 1.8 27.5 1110 13.3 50 0.26 1.58 1.9 30.5 1374 13.3 52 0.26 1.58 1.9 31.5 1424 13.3 60 0.26 1.58 1.9 33.0 1617 13.3 61 0.26 1.58 1.9 33.0 1635 13.3 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 Conductor 0.7 0.7 0.7 0.7 Maximum Diameter Ω/km 0.26 0.7 0.7 0.7 0.7 mm mm mm mm mm kg/km cable at 20°C core (approx.) (approx.) (approx.) (approx.) of of wire Conductor Insulation Sheath cable Weight Conductor No Diameter of of of of of Resistance Thickness 450/750 V PVC INSULATED AND PVC SHEATHED CABLES PVC/PVC Flexible (IEC 60227, SPLN 42-6-3) Nominal Nominal Overall Maximum Thickness diameter Page - 15 0.7 0.7 0.7 0.7
  • 69. Section 2 - PVC Insulated Cables Unarmoured Cables CONSTRUCTION TECHNICAL DATA Conductor : Plain Annealed Copper Voltage (to IEC 60228 class 5) Uo/U - 450/750 V Insulation : PVC Compound type D Operating Temperature Filler : Suitable material Maximum 70°C Sheath : PVC Compound type ST5 Colour Ident. : Insulation - Black with numbering code Sheath - Black CONTROL CABLE : 2.5 mm² 6 2.04 1.8 15.5 331 7.98 7 0.26 2.04 1.8 15.5 358 7.98 8 0.26 2.04 1.8 17.0 406 7.98 9 0.26 2.04 1.8 18.0 455 7.98 10 0.26 2.04 1.8 19.5 505 7.98 12 0.26 2.04 1.8 20.0 577 7.98 14 0.26 2.04 1.8 21.0 654 7.98 15 0.26 2.04 1.8 21.5 697 7.98 16 0.26 2.04 1.8 22.0 732 7.98 18 0.26 2.04 1.8 23.0 806 7.98 19 0.26 2.04 1.8 23.0 834 7.98 20 0.26 2.04 1.8 24.0 887 7.98 24 0.26 2.04 1.8 27.0 1049 7.98 30 0.26 2.04 1.8 28.5 1266 7.98 32 0.26 2.04 1.8 29.0 1342 7.98 37 0.26 2.04 1.9 31.0 1527 7.98 40 0.26 2.04 1.9 32.0 1644 7.98 50 0.26 2.04 2.0 35.5 2037 7.98 52 0.26 2.04 2.0 36.5 2115 7.98 60 0.26 2.04 2.1 39.0 2423 7.98 61 0.26 2.04 2.1 39.0 2450 7.98 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 Ω/km 0.26 0.8 0.8 0.8 0.8 mm mm mm mm mm kg/km cable at 20°C core (approx.) (approx.) (approx.) (approx.) of of wire Conductor Insulation Sheath cable Conductor No Diameter of of of of of Resistance Maximum Diameter Thickness Thickness diameter Weight 450/750 V PVC INSULATED AND PVC SHEATHED CABLES PVC/PVC Flexible (IEC 60227, SPLN 42-6-3) Conductor Nominal Nominal Overall Maximum Page - 16 0.8 0.8 0.8 0.8 0.8 0.8
  • 70. Section 2 - PVC Insulated Cables 600/1000 V PVC INSULATED AND PVC SHEATHED CABLES Constructions : Conductor (Annealed Copper) Insulation (PVC Compound) up to request) Binding tape (Manufacturer's option) Outer sheath (PVC Compound) Page - 17 Unarmoured Cables PVC/PVC (acc. to IEC 60502-1) Filler (Polyprophylene yarn,or extruded filler 1 1 22 3 4 5 5 1 2 3 4 5 Note : Special application upon request * Available product in accordance to : SPLN, ICEA/NEMA, AS standard or other requirement. * Flame retardant test acc to IEC 60332-3 Cat. A, B or C. * Anti termite performance. * Tin coated Copper conductor. * Polyethylene / Low smoke Halogen Free sheathed
  • 71. Section 2 - PVC Insulated Cables 600/1000 V PVC INSULATED AND PVC SHEATHED CABLES PVC/PVC (IEC 60502-1) CONSTRUCTION TECHNICAL DATA Conductor : Plain Annealed Copper Voltage (to IEC 60228 class 1 or 2) Insulation : PVC Compound type A Operating Temperature Sheath : PVC Compound type ST1 Maximum 70°C : Insulation - Black Sheath - Black SINGLE CORE Conductor Nominal Nominal Overall Maximum Nominal No./ Diameter Thickness Thickness diameter Weight Conductor Cross- Diameter of of of of of Resistance section of wire Conductor Insulation Sheath cable cable at 20°C area (approx.) (approx.) (approx.) (approx.) mm² No./mm mm mm mm mm kg/km 1.5 1 / 1.38 1.38 0.8 1.4 6.0 52 12.1 1.5 7 / 0.52 1.56 0.8 1.4 6.0 55 12.1 2.5 1 / 1.78 1.78 0.8 1.4 6.5 65 7.41 2.5 7 / 0.67 2.01 0.8 1.4 6.5 70 7.41 4 1 / 2.26 2.26 1.0 1.4 7.5 90 4.61 4 7 / 0.85 2.55 1.0 1.4 7.5 95 4.61 6 7 / 1.04 3.12 1.0 1.4 8.0 120 3.08 10 7 / 1.35 4.05 1.0 1.4 9.0 170 1.83 16 7 / 1.70 5.10 1.0 1.4 10.0 235 1.15 25 7 / 2.13 6.39 1.2 1.4 12.0 345 0.727 35 7 / 2.52 7.56 1.2 1.4 13.0 450 0.524 50 19 / 1.83 9.15 1.4 1.4 15.0 620 0.387 70 19 / 2.17 10.85 1.4 1.4 16.5 825 0.268 95 19 / 2.52 12.60 1.6 1.5 19.0 1105 0.193 120 37 / 2.03 14.21 1.6 1.5 21.0 1350 0.153 150 37 / 2.27 15.89 1.8 1.6 23.0 1680 0.124 185 37 / 2.52 17.64 2.0 1.7 25.5 2060 0.0991 240 61 / 2.26 20.34 2.2 1.8 28.5 2685 0.0754 300 61 / 2.52 22.68 2.4 1.9 31.5 3315 0.0601 400 61 / 2.86 25.74 2.6 2.0 35.5 4235 0.0470 500 61 / 3.20 28.80 2.8 2.1 39.0 5250 0.0366 630 91 / 2.96 32.56 2.8 2.2 43.0 6560 0.0283 800 127 / 2.85 37.05 2.8 2.3 48.0 8345 0.0221 1000 127 / 3.20 41.60 3.0 2.5 53.0 10455 0.0176 Page - 18 Unarmoured Cables Uo/U - 600/1000 V Colour Ident. W/km
  • 72. Section 2 - PVC Insulated Cables 600/1000 V PVC INSULATED AND PVC SHEATHED CABLES PVC/PVC (IEC 60502-1) CONSTRUCTION TECHNICAL DATA Conductor : Plain Annealed Copper Voltage (to IEC 60228 class 1 or 2) Insulation : PVC Compound type A Operating Temperature Filler : Suitable material Maximum 70°C Sheath : PVC Compound type ST1 : Insulation - Red,Black Sheath - Black TWO CORES Conductor Nominal Nominal Overall Maximum Nominal No./ Diameter Thickness Thickness diameter Weight Conductor Cross- Diameter of of of of of Resistance section area of wire Conductor Insulation Sheath cable cable at 20°C (approx.) (approx.) (approx.) (approx.) mm² No./mm mm mm mm mm kg/km 1.5 1 / 1.38 1.38 0.8 1.8 10.5 125 12.1 1.5 7 / 0.52 1.56 0.8 1.8 10.5 130 12.1 2.5 1 / 1.78 1.78 0.8 1.8 11.0 155 7.41 2.5 7 / 0.67 2.01 0.8 1.8 11.5 165 7.41 4 1 / 2.26 2.26 1.0 1.8 13.0 215 4.61 4 7 / 0.85 2.55 1.0 1.8 13.5 225 4.61 6 7 / 1.04 3.12 1.0 1.8 14.5 280 3.08 10 7 / 1.35 4.05 1.0 1.8 16.5 390 1.83 16 7 / 1.70 5.10 1.0 1.8 18.5 535 1.15 25 7 / 2.13 6.39 1.2 1.8 22.0 785 0.727 35 7 / 2.52 7.56 1.2 1.8 24.5 1020 0.524 50 19 / 1.83 9.15 1.4 1.8 28.5 1395 0.387 70 19 / 2.17 10.85 1.4 1.9 32.0 1865 0.268 95 19 / 2.52 12.60 1.6 2.0 36.5 2490 0.193 120 37 / 2.03 14.21 1.6 2.1 40.0 3045 0.153 150 37 / 2.27 15.89 1.8 2.2 44.5 3775 0.124 185 37 / 2.52 17.64 2.0 2.4 49.0 4635 0.0991 240 61 / 2.26 20.34 2.2 2.6 55.5 6045 0.0754 300 61 / 2.52 22.68 2.4 2.7 61.5 7435 0.0601 Page - 19 Unarmoured Cables Uo/U - 600/1000 V Colour Ident. W/km
  • 73. Section 2 - PVC Insulated Cables 600/1000 V PVC INSULATED AND PVC SHEATHED CABLES PVC/PVC (IEC 60502-1) CONSTRUCTION TECHNICAL DATA Conductor : Plain Annealed Copper Voltage (to IEC 60228 class 1 or 2) Insulation : PVC Compound type A Operating Temperature Filler : Suitable material Maximum 70°C Sheath : PVC Compound type ST1 : Insulation - Red,Yellow , Blue Sheath - Black THREE CORES Conductor Nominal Nominal Overall Maximum Nominal No./ Diameter Thickness Thickness diameter Weight Conductor Cross- Diameter of of of of of Resistance section area of wire Conductor Insulation Sheath cable cable at 20°C (approx.) (approx.) (approx.) (approx.) mm² No./mm mm mm mm mm kg/km 1.5 1 / 1.38 1.38 0.8 1.8 11.0 150 12.1 1.5 7 / 0.52 1.56 0.8 1.8 11.0 160 12.1 2.5 1 / 1.78 1.78 0.8 1.8 11.5 190 7.41 2.5 7 / 0.67 2.01 0.8 1.8 12.0 200 7.41 4 1 / 2.26 2.26 1.0 1.8 13.5 270 4.61 4 7 / 0.85 2.55 1.0 1.8 14.0 285 4.61 6 7 / 1.04 3.12 1.0 1.8 15.5 360 3.08 10 7 / 1.35 4.05 1.0 1.8 17.5 515 1.83 16 7 / 1.70 5.10 1.0 1.8 19.5 720 1.15 25 7 / 2.13 6.39 1.2 1.8 23.5 1065 0.727 35 7 / 2.52 7.56 1.2 1.8 26.0 1400 0.524 50 6.8 1.4 1.8 24.5 1730 0.387 70 8.2 1.4 2.0 28.0 2405 0.268 95 Three- 9.7 1.6 2.1 32.5 3305 0.193 120 Segmental 10.9 1.6 2.2 35.0 3950 0.153 150 Stranded 11.9 1.8 2.3 38.5 4835 0.124 185 13.6 2.0 2.5 43.0 6035 0.0991 240 15.8 2.2 2.7 49.0 8050 0.0754 300 17.5 2.4 2.9 53.5 10010 0.0601 Page - 20 Unarmoured Cables Uo/U - 600/1000 V Colour Ident. W/km