SlideShare a Scribd company logo
1 of 7
ResearchArticle 
Influence oftimeandlengthsizefeatureselectionsforhumanactivity 
sequencesrecognition 
Hongqing Fang a,n, LongChen a, RaghavendiranSrinivasan b 
a College ofEnergy&ElectricalEngineering,HohaiUniversity,Jiangsu211100,PRChina 
b School ofElectricalEngineering&ComputerScience,WashingtonStateUniversity,WA99163,USA 
a rticleinfo 
Article history: 
Received6January2013 
Receivedinrevisedform 
17August2013 
Accepted4September2013 
Availableonline25September2013 
Keywords: 
Activityrecognition 
Featureselections 
Hidden Markovmodel 
Viterbi algorithm 
Smart home 
a b s t r a c t 
In thispaper,ViterbialgorithmbasedonahiddenMarkovmodelisappliedtorecognizeactivity 
sequencesfromobservedsensorsevents.Alternativefeaturesselectionsoftimefeaturevaluesofsensors 
events andactivitylengthsizefeaturevaluesaretested,respectively,andthentheresultsofactivity 
sequencesrecognitionperformancesofViterbialgorithmareevaluated.Theresultsshowthatthe 
selection oflargertimefeaturevaluesofsensoreventsand/orsmalleractivitylengthsizefeaturevalues 
will generaterelativelybetterresultsontheactivitysequencesrecognitionperformances. 
& 2013ISA.PublishedbyElsevierLtd.Allrightsreserved. 
1. Introduction 
The smarthomes [1–16] providecontinuousmonitoringcap- 
ability thatconventionalmethodologieslack.Beingabletoauto- 
mate theactivityrecognitionfromhumanmotionpatternsusing 
unobtrusivesensorsorotherdevicescanbeusefulinmonitoring 
older adultsintheirhomesandkeepingtrackoftheiractivitiesof 
daily livings(ADLs)andbehavioralchanges [13–23]. TheCenterfor 
AdvancedStudiesinAdaptiveSystems(CASAS)smarthome 
project isamulti-disciplinaryresearchprojectatWashington 
StateUniversity,focusedonthecreationofanintelligent 
home environment.Theapproachistoviewthesmarthomeas 
an intelligentagentthatperceivesitsenvironmentthroughthe 
use ofsensors,andcanactupontheenvironmentthroughtheuse 
of actuators.TheresearchgoalsoftheCASASsmarthomeproject 
aretoenhanceandimprovequalityoflife,prolongstayat 
home withtechnology-enabledassistance,minimizethecostof 
maintaining thehomeandmaximizethecomfortofitsinhabitants 
[8–10]. 
ToimplementthegoaloftheCASASsmarthomeproject,a 
primarychallengeistodesignanalgorithmthatlabelstheactivity 
performedbyaninhabitantinasmartenvironmentfromthesensor 
datacollectedbytheenvironment duringtheactivity.Medical 
professionalsalsobelievethatoneofthebestwaystodetect 
emerging medicalconditionsbeforetheybecomeseriousistolook 
forchangesintheADLs.Recently,humanactivitydiscoveryand 
recognitionhasgainedalotofinterestduetoitsenormouspotential 
incontextawarecomputingsystems,includingsmarthomeenvir- 
onments.Torecognizeresidents'activitiesandtheirdailyroutines 
cangreatlyhelpinprovidingautomation,security,andmore 
importanceinremotehealthmonitoringofelderorpeoplewith 
disabilities.Themainobjectiveofhumanactivityrecognitionin 
smarthomeenvironmentsisto findinterestingpatternsofbehavior 
fromsensordataandtorecognizesuchpatterns.Researchershave 
commonlytestedthemachinelearningalgorithmssuchas 
knowledge-drivenapproach(KDA) [13], evolutionaryensembles 
model (EEM) [14], supportvectormachine(SVM) [15], Dempster– 
Shafer theoryofevidence(D–S) [16], naïveBayes(NB)classifier, 
Markovmodel(MM),hiddenMarkovmodel(HMM)andconditional 
random fields(CRF) [17–30], etc.,forhumanactivity(pattern) 
recognitioninsmarthomeenvironments.Eventhoughthedatasets 
include alargenumberofsensorevents sequencesgeneratedbya 
variousactivities,theresultsappearinthesepapersaremainlythe 
evaluationandcomparisonofthetotalactivityrecognitionaccuracy 
rategeneratedbydifferentmachinelearningalgorithms.Another 
shortcomingisthatanyactivityannotatedindatasethasvarious 
features.Usually,thesefeaturesvaluesareselectedinonemethodin 
all tests.However,theinfluencesofthesefeaturevaluestohuman 
activityrecognitionperformance areseldomaddressedinprevious 
works.Moreover,itisalsonecessarytorecognizewhichactivities 
generatesensoreventssequences. 
Contents listsavailableat ScienceDirect 
journalhomepage: www.elsevier.com/locate/isatrans 
ISATransactions 
0019-0578/$-seefrontmatter & 2013ISA.PublishedbyElsevierLtd.Allrightsreserved. 
http://dx.doi.org/10.1016/j.isatra.2013.09.001 
n Corresponding author.Tel.: þ86 18061705168. 
E-mail addresses: fanghongqing@sohu.com, fanghongqing@gmail.com 
(H. Fang). 
ISA Transactions53(2014)134–140
In thispaper,Viterbialgorithmisadynamicprogramming 
algorithm for finding themostlikelysequenceofhiddenstates 
that resultsinasequenceofobservedevents,especiallyinthe 
contextofMarkovinformationsources [31,32] and hiddenMarkov 
models [24,25,28–30,33]. Therefore,Viterbialgorithmisappliedto 
recognize activitiessequencesfromobservedsensorsevents 
sequences.Andthen,alternativefeaturesselectionsaretested 
[34–36], and finally theresultsofactivitiessequencesrecognition 
performance measuresofViterbialgorithmwithdifferenttime 
feature valuesofsensoreventsandactivitylengthsizefeature 
valuesareevaluated. 
The restofthepaperisorganizedasfollows. Section 2 briefly 
describes thesmartapartmenttestbedinstalledintheWashington 
StateUniversitycampusandalsothedatacollectionprocedures. 
Section 3 describes Viterbialgorithmappliedtorepresentand 
recognize humanactivitiessequences. Section 4 presentsthe 
results oftheinfluence oftimeandactivitylengthsizefeature 
valuestoactivitiessequencesrecognitionsperformances. Section 5 
summarizes themaincontributions. 
2. Smartapartmenttestbedanddatacollection 
ThesmartapartmenttestbedislocatedonWashingtonState 
UniversitycampusandismaintainedaspartoftheongoingCASAS 
smart homeproject [8–10,18,24–30]. Asshownin Fig. 1, thesmart 
apartment testbedincludesthreebedrooms,onebathroom,a 
kitchen,andaliving/diningroom.Thesmartapartmentisequipped 
with motionsensorsdistributedapproximately1mapartthrough- 
out thespaceontheceilings.Inaddition,othersensorsinstalled 
provideambienttemperaturereadingsandcustom-builtanalog 
sensorsprovidereadingsforhotwater,coldwater,andstoveburner 
use. VoiceoverIPusingAsterisksoftwarecapturesphoneusageand 
contactswitchsensorstomonitorusageofkeyitemsincluding 
a cookingpot,amedicinecontainer,andthephonebook.Lastly, 
Insteonpowercontrolsandswitchesareusedtomonitorandcontrol 
the lightinginthespace.Sensorsdataarecapturedusingasensor 
networkthatwasdesignedin-houseandstoredinaSQLdatabase. 
The middlewareusesaXMPP-basedpublish-subscribeprotocolasa 
lightweightplatformandlanguage-independentmethodtopush 
datatoclienttoolswithminimaloverheadandmaximal flexibility. 
Aftercollectingdatafromthesmart apartmenttestbed,thesensors 
eventsareannotatedforADLs.Alargenumberofsensorseventsare 
generatedeveryday. 
The datagatheredbyCASASsmarthomeisrepresentedbythe 
following parameters,whichspecifythenumberoffeaturesthat 
areusedtodescribethesensorsevents.Thedefaultnumberof 
features is5.Thedefaultinterpretationofthe five featuresis: 
(1) SensorID,whichisanintegervalueintherangeof0tothe 
number oflogicalsensorvalues. 
(2) Timeofday,whichistheinputtimeofthesensoreventbutis 
discretized toanintegervalue.Thedefaultvalueis5,which 
means thetimerangesofoneentiredayare0–5, 6–10,11–15, 
16–20, and21–24. Thevalueofthisfeatureisadjustable. 
(3) Dayofweek,whichtheinputdateofthesensoreventis 
convertedintoavalueintherangeof0–6 thatrepresentsthe 
day oftheweekonwhichthesensoreventoccurred. 
(4) Previousactivity,whichisanintegervaluethatrepresentsthe 
activity thatoccurredbeforethecurrentactivity. 
(5) Activitylength,whichrepresentsthelengthofthecurrent 
activity measuredinnumberofsensorsevents.Thevalueof 
this featureistocalculatethevalueoflengthsizethreshold, 
and thedefaultvalueis3,whichmeansthelengthsizeofeach 
activity isdistinguishedby3thresholds:{small,medium, 
large}. Thevalueofthisfeatureisadjustable. 
The generalizedsyntaxofthedatasetisgivenbelow. 
Date TimeSensorIDSensorValue 〈label〉 
An exampleofthedatasetofNight_wanderingactivityis 
{ 
2009-06-1003:20:59.08M006ONNight_wanderingbegin 
2009-06-1003:25:19.05M012ON 
2009-06-1003:25:19.08M011ON 
2009-06-1003:25:24.05M011OFF 
2009-06-1003:25:24.07M012OFFNight_wanderingend 
} 
This exampleshowsonesensorssequencecorrespondstothe 
Night_wanderingactivitywithconcreteDate,Time,SensorID, 
SensorValue aswellasactivitylabelparameters [18–30]. 
3. Viterbialgorithmappliedforactivitysequencesrecognition 
An HMMisastatisticalmodelinwhichtheunderlyingmodelisa 
stochasticprocessthatisnotobservable(i.e.,hidden)andisassumed 
tobeaMarkovprocesswhichcanbeobservedthroughanotherset 
of stochasticprocessesthatproducethesequenceofobserved 
symbols [33]. Thecurrentstatedependsona finitehistoryofprevious 
states.Actually,inthisresearch,thecurrentstatedependsonlyonthe 
previousstate.AnHMMmodelsasystemusinga finitesetofstates. 
A hiddenstateisusedtorepresenteachoftheseparateactivities. 
Each observableandhiddenstateisassociatedwithamultidimen- 
sionalprobabilitydistributionoverasetofparameters.Theparameters 
forthemodelarethefeaturesvaluesdescribedintheprevioussection. 
Transitionsbetweenstatesaregovernedbytransitionprobabilities. 
An HMMassignsprobabilityvaluesoverapotentiallyinfinitenumber 
ofsequences.Butastheprobabilitiesvaluesmustsumtoone,the 
distributiondescribedbyHMMisconstrained.Theconditionalprob- 
abilitydistributionofanyhiddenstatedependsonlyonthevalueof 
the precedinghiddenstate.Similarly,thevalueofanobservablestate 
depends onlyonthevalueofthecurrenthiddenstate. 
Consider asystemthathas N distinct states, fs1; s2;⋯; sNg, and 
the actualstateattime t is qt ¼ si; 1rirN , theneachstatehas 
M distinct observationsymbols,whichcanbedenotedas 
fv1; v2;⋯; vMg. InthetheoryofHMM,theobservablevariable 
ot ¼ vk; 1rk rM at time t depends onlyonthehiddenstate 
variable si at thattime. Fig. 1. The smartapartmenttestbed. 
H. Fangetal./ISATransactions53(2014)134–140 135
An HMMutilizesthreeprobabilitydistributions,the first isa 
probability distributionoverinitialstates 
πi ¼ Pðq1 ¼ siÞ ð1Þ 
Second, thestatetransitionprobabilitydistributionrepresents 
the probabilityoftransitioningfromstate i to state j, whichhasthe 
form of 
aij ¼ Pðqt ¼ sjjqt1 ¼ siÞ; 1ri; jrN ð2Þ 
Third,theobservationprobabilitydistributionindicatesthe 
probability thatthestate j wouldgenerateobservation ot ¼ vk 
bjðkÞ ¼ Pðot ¼ vkjqt ¼ sjÞ; 1rjrN; 1rkrM ð3Þ 
These distributionsareestimatedbasedontherelativefre- 
quenciesofvisitedstatesandstatetransitionsobservedinthe 
training data. 
In thiscase,theViterbialgorithmcanbeappliedtoidentifythis 
sequenceofhiddenstates,whichcomputethemostlikely 
sequenceofhiddenstatesthatcorrespondtoasequenceof 
observablesensorsevents. 
The aimofViterbialgorithmareto find thesinglebeststate 
sequence, fqn 
1; qn 
2;⋯; qnT 
g, foragivenobservationsequence, 
fo1; o2;⋯; oT g. Thebestscore,i.e.,thehighestprobability,alonga 
single pathattime t is define as 
δt ðiÞ ¼ max 
q1;q2;⋯;qt  1 
Pðq1q2⋯qt ¼ si; o1o2⋯otÞ ð4Þ 
δt ðiÞ accounts forthe first t observationsandendinstate si, and 
it canbesolvedinductivelyas 
δtþ1ðjÞ ¼ ½ max 
1rirN 
δt ðiÞUaijUbjðotþ1Þ ð5Þ 
where 1rjrN and 1rtrT1. 
The initializationis 
δ1ðiÞ ¼ πi Ubiðo1Þ; 1rirN ð6Þ 
In eachrecursionofEq. (5), thelabelofahiddenstatewhichin 
Eq. (4) is returnedby 
ln 
t ¼ arg max ½δt ðiÞ 1rirN ð7Þ 
Once theprocedureisdone,thebesthiddenstatelabel 
sequencecanbeobtainedas fln 
1; ln 
2;⋯; ln 
T g, whichcorrespondsto 
the besthiddenstatesequence fqn 
1; qn 
2;⋯; qnT 
g. 
ToimplementViterbialgorithm,eachactivityistreatedasa 
hidden state.Sinceatotalof m activitiesarelabeledinthedataset 
to berecognized,Viterbialgorithmincludes m hidden states.Each 
hidden statedenotesoneofthe m modeled activities.Next,each 
sensor istreatedasanobservablestate,becauseofeachused 
sensor isobservableinthedataset. 
Viterbialgorithmprocessesthesensorseventssequenceasa 
continuous stream,andthenreturntheactivitylabel(hidden 
node) withthehighestprobability,whichcorrespondstothemost 
recentsensorevent.However,sinceonesensoreventmayhave 
different probabilitiescorrespondingtodifferenthiddenstates 
(activities), therefore,therecognitionaccuracyisnotdefinitely 
100%. 
In thisresearch,Viterbialgorithmusestherelativefrequencies 
of featuresvaluesandtheactivitylabelsforthesampletrain- 
ing datatolearnamappingfromadatapointdescriptiontoa 
classification label.Itdeterminesactivitylabelsprobabilistically 
based onthenumberofsensoreventofvariouskindsthatoccu- 
rred duringtheactivity.Allactivitiesarerepresentedbyvarious 
features includingthenumberofoccurringtimesofsensorID, 
time ofday,dayofweek,previousactivityandactivitylength. 
Actually,Viterbialgorithmusesthreeprobabilitydistributions: 
the distributionoverinitialstates πi, thestatetransitionprob- 
ability distribution aij, andtheobservationdistribution bjðkÞ. These 
probabilitydistributionsareestimatedbasedontherelative 
frequenciesofvisitedstatesandstatetransitionsobservedinthe 
trainingdata.Givenasetoftrainingdata,Viterbialgorithmuses 
the sensorsvaluesasparametersofahiddenMarkovmodel.Given 
an inputsequenceofsensorseventsobservations,thegoalisto 
find themostlikelysequenceofhiddenstates,oractivities,which 
could havegeneratedtheobservedeventsequence,followingthe 
calculation inEq. (7). Furthermore,thetrainingdataareusedto 
learn thetransitionprobabilitiesbetweenstatesforthecorre- 
sponding activitymodelandtolearnprobabilitydistributionsfor 
the featuresvaluesofeachstateinthemodel.Forthis,theprior 
probability(i.e.,thestartprobability)ofeverystatecanbe 
calculated basedonthecollecteddata.Thepriorprobability 
representsthebeliefaboutwhichstateofHMMisinwhenthe 
first sensoreventisseen.Forastate(i.e.,activity) A, itiscalculated 
as theratioofinstancesforwhichtheactivitylabelis A. The 
transitionprobabilitywhichrepresentsthechangeofthestatein 
the underlyinghiddenMarkovmodel,canalsobecalculated.For 
anytwostates A and B, theprobabilityoftransitioningfromstate A 
tostate B is calculatedastheratioofinstanceshavingactivitylabel 
A followedbyactivitylabel B, tothetotalnumberofinstances.The 
transitionprobabilitysignifies thelikelihoodoftransitioningfrom 
a givenstatetoanyotherstateinthemodelandcapturesthe 
temporalrelationshipbetweenthestates.Furthermore,theemis- 
sion probabilityrepresentsthelikelihoodofobservingaparticular 
sensor eventforagivenactivity.Thisiscalculatedby finding the 
frequencyofeverysensoreventasobservedforeachactivity [29]. 
4. Testsresults 
4.1.Trainingactivities 
A totalof10activitieswereperformedintheCASASsmart 
apartment bytwovolunteerstoprovidephysicaltrainingdatafor 
the Viterbialgorithm.Theseactivitiesincludebothbasicandmore 
complexADLsthatarefoundinclinicalquestionnaires.These 
activitiesare: 
(1) Bed_to_toilet(activity0,A0):transitionbetweenbedand 
toilet inthenighttime. 
(2) Breakfast(activity1,A1):theresidentshavebreakfast. 
(3) Bed(activity2,A2):theactivityofsleepinginbed. 
(4) C_work(activity3,A3):theactivityofresidentsworkinthe 
office space. 
(5) Dinner(activity4,A4):theresidentshavedinner. 
(6) Laundry(activity5,A5):theresidentscleanclothesusingthe 
laundry machine. 
(7) Leave_home(activity6,A6):theactivityoftheresident 
leavesthesmarthome. 
(8) Lunch(activity7,A7):theresidentshavelunch. 
(9) Night_wandering(activity8,A8):theactivityoftheresidents 
wandersduringnighttimesleep. 
(10)R_medicine(activity9,A9):theactivityoftheresidentstakes 
medicine. 
The datahavebeencollectedintheCASASsmartapartment 
testbedfor55days,whichresultingintotal600instancesofthese 
activitiesand647,485collectedmotionsensorsevents.The3-fold 
crossvalidationisappliedinthisresearch. 
4.2. Selectionsoftimefeaturevalues 
In thiscase,theactivitylengthsizefeaturevalueisdefined as 
the defaultvalue3.Thismeansthatthreeactivitylengthsize 
rangesareused.However,thetimefeaturevaluesarecompared 
H. Fangetal./ISATransactions53(2014)134–140 136
for differentnumbersofrangesincluding1,2,3,4,5,6,8,12and 
24, respectively. 
Table1 showsthatViterbialgorithmhasthebesthiddenstates 
sequenceaveragerecognitionaccuracyratewhentimefeature 
valueis24foractivities0,2,3,4,and8,i.e.,theproportionis50% 
of allactivities.Whentimefeaturevalueis12,thebestresultsare 
generatedofactivities1,6and9,andtheproportionis30%.Also, 
activity 7hasthebestresultwhentimefeaturevalueis6.Theonly 
one exceptionisactivity5,forwhichthebestresultisgenerated 
when timefeaturevalueis3. 
Again, itcanbeseenfrom Table2 that 30%ofalltheactivities,i. 
e., activities2,5and8,havethebesthiddenstatessequence 
recognition successratewhentimefeaturevalueis24.Activities0, 
3 and9havethebestresultsiftimefeaturevalueis12,whichisof 
the sameproportion.Further,activity6hasthebestresultwhen 
time featurevalueis8;activity1hasthebestresultwhentime 
feature valueis6;activity7hasthebestresultwhentimefeature 
valueis4;andactivity4hasthebestresultwhentimefeature 
valueis2. 
Similarly, Table3 showsthatactivities0,1,4,7and8havethe 
lowesthiddenstatessequencerecognitionfailurerateswitha 
time featurevalueof24,andtheproportionis50%.Thebesttime 
feature valueforactivity6is12,andforactivity9is8.Activities 
2 and5havethesamebesttimefeaturevalueof6.Activity3has 
the besttimefeaturevalueof1. 
One importantpointtobenotedisthatmorethanoneoptimal 
results shownin Tables1–3 arenotgeneratedunderonlyone 
specific timefeaturevalue,whichmeansthatViterbialgorithm 
generatethesameoptimalresultsunderdifferenttimefeature 
values.However,inthesetests,onlythemaximaloptimaltime 
feature valueforeachactivityislistedabove.Eventhough,it 
showsthatmostoftheactivitieshavebetterresultswitha 
relativelyhighertimefeaturevalue.Thereasonscanbeexplained 
from thestatisticaldatashownin Table4, whichshowsthehour- 
by-hoursensorseventsproportionofthe10activities.Sinceone 
day has24h,therefore,iftimefeaturevalueisdefined as24, 
which means24separatetimezonesaredefined, hour-by-hour. 
Actually, Table4 also reflects thatthelivinghabitsoftheresidents 
or ADLshavestrongrelationshipwithtimeoftheresidentsin 
CASAS smarthome,e.g.,foractivity0(bed-to-toilet),17.75% 
sensors eventsoccurinthetimezoneof(0:00–1:00),29.12% 
sensors eventsoccurinthetimezoneof(2:00–3:00),andthere 
arenosensorseventsoccurinthetimezoneof(8:00–22:00).A 
relativelylargertimefeaturevaluemeansmoreprecisetimezone 
resolution,whichgeneratesrelativelybetterresults. 
4.3. Selectionsofactivitylengthsizefeaturevalues 
In thiscase,timefeaturevalueisdefined withalargervalueas 
24, andactivitylengthsizefeaturevalueisdefined from2to45, 
respectively. 
Fig. 2 showsthetrendsofthehiddenstatessequenceaverage 
recognitionaccuracyratesofactivities0–9 generatedbyViterbi 
algorithmwiththeincreasingofactivitylengthsizefeaturevalues. 
In thistest,itshowsthatactivity0yieldsanoptimalresultwith 
activitylengthsizefeaturevalueof16;theoptimallengthfeature 
valueforactivity1is4;activities2and5havethesameoptimal 
activitylengthsizefeaturevalueof3;activities3and9havethe 
same optimalactivitylengthsizefeaturevalueof5;theoptimal 
activitylengthsizefeaturevalueforactivity4is23;foractivity6, 
it is43;foractivity7,itis6;andforactivity8,itis10.Therefore,a 
proportionof70%ofallactivitieshaverelativelysmalloptimal 
activitylengthsizefeaturevalues,whicharenotmorethan10. 
Fig. 3 showsthetrendsofthehiddenstatessequencerecogni- 
tion successrateofactivities0–9 generatedbyViterbialgorithm 
with increasingoflengthfeaturevalues.Itcanbefoundthatthe 
proportionis50%ofallactivitieswhichhaverelativelysmaller 
optimalactivitylengthsizefeaturevalues,specifically lessthan10. 
Concretely,activities1and7havethesameoptimalactivity 
lengthsizefeaturevalueof2;activities3and9havethesame 
optimalactivitylengthsizefeaturevalueof5;activity5hasthe 
optimalactivitylengthsizefeaturevalueof3;activity2hasthe 
optimalactivitylengthsizefeaturevalueof18;activities0and 
4 havethesameoptimalactivitylengthsizefeaturevalueof23; 
activity8hastheoptimalactivitylengthsizefeaturevalue 
of 28andactivity6hastheoptimalactivitylengthsizefeature 
valueof41. 
Fig. 4 showsthetrendsofthehiddenstatessequencerecogni- 
tion failurerateofactivities0–9 generatedbyViterbialgorithm 
with increasingofactivitylengthsizefeaturevalues.Actually,itis 
better tohavealowerfailurerateinthistest.Again,itcanbeseen 
that, mostoftheactivitieshavearelativelysmalleroptimal 
activitylengthsizefeaturevalue,specifically lessthan10.The 
overallproportionis70%.Activities4and5havethesameoptimal 
Table1 
ResultsforhiddenstatessequenceaverageaccuracyratebyViterbialgorithm. 
ActivitiesTimefeatureselections 
1 2 345681224 
0 0.2670.2640.2640.2880.3410.3470.4060.368 0.463 
1 0.2870.2670.7670.3560.5690.767 0.850 0.7970.823 
2 0.7740.7550.7600.8110.8930.8870.8350.882 0.902 
3 0.3000.2860.2440.2770.2550.2630.2760.282 0.350 
4 0.7900.7800.5730.8560.7180.6670.7950.811 0.886 
5 0.4470.423 0.455 0.4430.4020.4200.3570.1630.351 
6 0.8100.7990.7980.8370.8270.791 0.842 0.805 0.764 
7 0.2390.570 0.685 0.587 0.578 0.685 0.556 0.5760.678 
8 0.4030.4230.4320.5380.6490.6130.6500.675 0.689 
9 0.6490.7360.7330.7600.7160.741 0.780 0.7760.736 
Table2 
ResultsforhiddenstatessequencesuccessratebyViterbialgorithm. 
ActivitiesTimefeatureselections 
1 2345681224 
0 0.1670.1330.1330.1670.1670.167 0.2000.200 0.167 
1 0.0210.021 0.500 0.0210.375 0.500 0.3750.3750.354 
2 0.5750.5460.5360.6230.6910.5940.6180.667 0.739 
3 0.1520.1520.1090.1090.1520.1090.130 0.174 0.130 
4 0 0.095 0 000000.071 
5 0.10.10.10.10.10.10.1 0 0.1 
6 0.5800.5360.6230.6380.6520.609 0.681 0.580 0.551 
7 00.1080.081 0.108 0 0.081000 
8 0.2390.2840.2840.3580.4930.4180.4480.4786 0.552 
9 0.4770.5230.50.4550.5230.5460.546 0.568 0.523 
Table3 
ResultsforhiddenstatessequencefailureratebyViterbialgorithm. 
ActivitiesTimefeatureselections 
1 2 3 4 5 681224 
0 0.7000.7000.7000.6670.6000.6000.5330.600 0.467 
1 0.063 0.0420.0420.0420.0420.0420.0420.0420.042 
2 0.1590.1740.1690.1210.063 0.048 0.0970.0530.053 
3 0.413 0.4780.5220.4780.5000.5440.5220.5440.457 
4 0 0 0 0 0 0000 
5 0.4000.4000.4000.400 0.500 0.400 0.5000.8000.600 
6 0.058 0.058 0.101 0.058 0.058 0.101 0.058 0.058 0.130 
7 0.432 0.1350.1350.135 0.162 0.1350.135 0.162 0.135 
8 0.2540.3130.2990.254 0.090 0.105 0.090 0.0900.090 
9 0.2730.1590.159 0.091 0.1820.159 0.091 0.1140.159 
H. Fangetal./ISATransactions53(2014)134–140 137
activitylengthsizefeaturevalueof2;activities3and9havethe 
same optimalactivitylengthsizefeaturevalueof5;activity1has 
the optimalactivitylengthsizefeaturevalueof4;activity7has 
the optimalactivitylengthsizefeaturevalueof6;activity8 
has theoptimalactivitylengthsizefeaturevalueof8;activity 
0 hastheoptimalactivitylengthsizefeaturevalueof11;activity 
2 hastheoptimalactivitylengthsizefeaturevalueof22and 
activity6hastheoptimalactivitylengthsizefeaturevalueof43. 
Again, itshouldbenotedthattheoptimalresultsshownin 
Figs. 2–4 arenotgeneratedbyonlyonespecific lengthfeature 
value,whichmeansthattheViterbialgorithmgeneratessame 
optimalresultsunderdifferentactivitylengthsizefeaturevalues. 
Actually,onlytheminimumoptimalactivitylengthsizefeature 
valueforeachactivityisgiveninthisdiscussion.However,the 
results showthat,itisbettertodefine asmallactivitylengthsize 
feature valuetogetarelativelybetterresult.Thereasonscanbe 
explainedfromthestatisticaldatashownin Table5, whichshows 
the average(mean),standardvariance(std),maximal(max)and 
minimum (min)sensorseventslengthsizeofeachactivity.Itcan 
be foundthatdifferentactivitieshavedifferentstatisticaldataof 
sensors eventslengthsize,e.g.,activity6hasanaveragesensors 
eventslengthsizeof6,incontrast,activity4hasanaverage 
sensors eventslengthsizeof534,etc.Arelativelylargeractivity 
length sizefeaturevalueresultsinsmallerlengththresholdvalue, 
which willgeneratemorelengthfeatures.Sincetheprobabilityof 
feature givenaspecific activityistheproductoftheprobabilities 
of eachsub-featuregiventhisactivity [29], morelengthfeatures 
will generateasmallerprobabilityoffeaturegiventhisactivity. 
Therefore,alargerlengthsizefeaturevaluegeneratesrelatively 
worseresults. 
Table4 
Hour-by-hoursensorseventsproportionoftheseactivities. 
Time zonesActivities 
0 123456789 
0:00–1:000.17750.01820.00.00.00.00.00.00.06960.0 
1:00–2:000.08810.00.00.00.00.00.00.00.14680.0 
2:00–3:000.29120.00.00.00.00.00.00.00.06150.0 
3:00–4:000.19160.00.00.00.00.00.00.00.24580.0 
4:00–5:000.03190.00.00540.00.00.00.00.00.17520.0 
5:00–6:000.00.00.02380.00640.00.00.00.00.06990.0159 
6:00–7:000.00.08890.22120.0730.00.00.00.00.02330.2739 
7:00–8:000.02170.48250.22940.10650.00.02470.03720.00.01490.5219 
8:00–9:000.00.28790.07070.06060.00.00.06650.00.00.1106 
9:00–10:000.00.12250.05550.04930.00.04310.10370.00.00.0777 
10:00–11:000.00.00.00230.10010.00.20340.24470.00190.00.0 
11:00–12:000.00.00.00.00340.00.00.08780.35420.00.0 
12:00–13:000.00.00.00.04440.00.13560.08780.60430.00.0 
13:00–14:000.00.00.00.0030.00.00.03460.03960.00.0 
14:00–15:000.00.00.00.04630.00.31120.06910.00.00.0 
15:00–16:000.00.00.00.04330.00.06470.06120.00.00.0 
16:00–17:000.00.00.00.06020.00.11090.05050.00.00.0 
17:00–18:000.00.00.00.00150.230.00.10640.00.00.0 
18:00–19:000.00.00.00.01540.69550.00.02390.00.00.0 
19:00–20:000.00.00.00360.20840.06670.10630.02660.00.00.0 
20:00–21:000.00.00.27820.11780.00780.00.00.00.00.0 
21:00–22:000.00.00.09720.06060.00.00.00.00.06850.0 
22:00–23:000.05620.00.01190.00.00.00.00.00.07980.0 
23:00–0:000.14180.09.05e-040.00.00.00.00.00.04480.0 
Fig. 2. The trendsofhiddenstatessequenceaveragerecognitionaccuracyrateofactivities0–9 generatedbyViterbialgorithm. 
H. Fangetal./ISATransactions53(2014)134–140 138
5. Conclusions 
This paperappliesViterbialgorithmbasedonahiddenMarkov 
modeltorepresentandrecognizeactivitiessequences.Sinceany 
activityannotatedindatasethasvarious features,therefore,itis 
necessary toselectsuitablefeaturesvaluestoobtainbetteractivities 
sequencesrecognitionperformances.Thealternativefeaturesvalues 
selectionshavebeentestedandtherecognitionaccuracyperfor- 
mances ofViterbialgorithmhavebeenevaluated.Fromtheresults,it 
can beconcludedthattheselectionsoflargertimefeaturevaluesof 
sensoreventsand/orsmalleractivitylengthsizefeaturevalueswill 
generaterelativelybetterresultsontheactivitiessequences 
recognitionperformancemeasures of Viterbialgorithm.According 
totheseresults,thefeaturesvaluesforbetteractivityrecognition 
performance canbedetermined.Infuturework,themethodsof 
automaticallyselectingfeaturesvalueswillbestudied. 
Acknowledgment 
This workwaspartiallysupportedbyQingLanProject,Jiangsu 
Province,China,andthedatawerecollectedfromthesmarthome 
testbedlocatedontheWashingtonStateUniversitycampus. 
References 
[1] Alam M,ReazM,AliM.Areviewofsmarthomes-past,present,andfuture. 
IEEE TransactionsonSystems,Man,andCybernetics,PartC:Applicationsand 
Reviews2012;42(6):1190–203. 
[2] WuC,FuL.Designandrealizationofaframeworkforhuman–system 
interactioninsmarthomes.IEEETransactionsonSystems,ManandCyber- 
netics, PartA:SystemsandHumans2012;42(1):15–31. 
[3] Zhang S,McCleanS,ScotneyB.Probabilisticlearningfromincompletedatafor 
recognitionofactivitiesofdailylivinginsmarthomes.IEEETransactionson 
Information TechnologyinBiomedicine2012;16(3):454–62. 
Fig. 3. The trendsofhiddenstatessequencerecognitionsuccessrateofactivities0–9 generatedbyViterbialgorithm. 
Fig. 4. The trendsofhiddenstatessequencerecognitionfailurerateofactivities0–9 generatedbyViterbialgorithm. 
Table5 
Sensors eventslengthsizeofthe10activities. 
Length sizeActivities 
0 1 23456789 
Mean 2735791585346563424123 
Std 1616583632393141842612 
Max 70886444270144410916104713965 
Min 8915419116290106 
H. Fangetal./ISATransactions53(2014)134–140 139
[4] Jalal A,UddinM,KimT-S.Depthvideo-basedhumanactivityrecognition 
systemusingtranslationandscalinginvariantfeaturesforlifeloggingatsmart 
home. IEEETransactionsonConsumerElectronics2012;58(3):863–71. 
[5] Kang K,KaB,KimS.Aservicescenariogenerationschemebasedon 
association ruleminingforelderlysurveillancesysteminasmarthome 
environment.EngineeringApplicationsofArtificial Intelligence2012;25 
(7):1355–64. 
[6] Makonin S,BartramL,PopowichF.Asmartersmarthome:casestudiesof 
ambient intelligence.IEEEPervasiveComputing2013;12(1):58–66. 
[7] YuM,RhumaA,NaqviS,WangL,ChambersJ.Aposturerecognition-basedfall 
detection systemformonitoringanelderlypersoninasmarthomeenviron- 
ment. IEEETransactionsonInformationTechnologyinBiomedicine2012;16 
(6):1274–86. 
[8] Cook D.Howsmartisyourhome?Science2012;335(6076):1579–81. 
[9] Cook D.Learningsetting-generalizedactivitymodelsforsmartspaces.IEEE 
IntelligentSystems2012;27(1):32–8. 
[10] Cook,D.,Schmitter-Edgecombe,M.,Crandall,A.,Sanders,C.,Thomas,B. 
Collecting anddisseminatingsmarthomesensordataintheCASASproject. 
In: ProceedingsoftheCHIWorkshoponDevelopingSharedHomeBehavior 
Datasets toAdvanceHCIandUbiquitousComputingResearch,2009. 
[11] Hussain S,ErdogenS,ParkJ.Monitoringuseractivitiesinsmarthome 
environments.InformationSystemsFrontiers2009;11(5):539–49. 
[12] Raad M,YangL.Aubiquitoussmarthomeforelderly.InformationSystems 
Frontiers2009;11(5):529–36. 
[13] Chen L,NugentC,WangH.Aknowledge-drivenapproachtoactivityrecogni- 
tion insmarthomes.IEEETransactionsonKnowledgeandDataEngineering 
2012;24(6):961–74. 
[14] FahimM,FatimaI,LeeS,LeeY.EEM:evolutionaryensemblesmodelfor 
activity recognitioninSmartHomes.AppliedIntelligence2013;38(1):88–98. 
[15] Fleury A,VacherM,NouryN.SVM-basedmultimodalclassification ofactivities 
of dailylivinginhealthsmarthomes:sensors,algorithms,and first experi- 
mental results.IEEETransactionsonInformationTechnologyinBiomedicine 
2010;14(2):274–83. 
[16] Liao J,BiY,NugentC.UsingtheDempster–Shafer theoryofevidencewitha 
revised latticestructureforactivityrecognition.IEEETransactionsonInforma- 
tion TechnologyinBiomedicine2011;15(1):74–82. 
[17] RoyP,BouzouaneA,GirouxS,BouchardB.Possibilisticactivityrecognitionin 
smart homesforcognitivelyimpairedpeople.AppliedArtificial Intelligence 
2011;25(10):883–926. 
[18] Cook D.Healthmonitoringandassistancetosupportaginginplace.Journalof 
UniversalComputerScience2006;12(1):15–29. 
[19] Munguia-TapiaE,IntilleS,LarsonK.Activityrecognitioninthehomesetting 
using simpleandubiquitoussensors.LectureNotesinComputerScience 
2004;3001:158–75. 
[20] WrenC,Munguia-TapiaE.Towardscalableactivityrecognitionforsensor 
networks.LectureNotesinComputerScience2004;3987:168–85. 
[21] Heierman, E.,Youngblood,M.,Cook,D.Miningtemporalsequencestodiscover 
interestingpatterns.In:WorkshoponMiningTemporalandSequentialData, 
Proceedings ofthe10thACMInternationalConferenceonKnowledgeDis- 
coveryandDataMining,Seattle,WA,USA;August2004. 
[22] Yin J,YangQ,ShenD,LiZ.Activityrecognitionviauser-tracesegmentation. 
ACMTransactionsonSensorNetworks2008;4(4)34pages. 
[23] StaufferC,GrimsonE.Learningpatternsofactivityusingreal-timetracking. 
IEEE TransactionsonPatternAnalysisandMachineIntelligence2000;22(8): 
747–57. 
[24] Crandall A,CookD.Copingwithmultipleresidentsinasmartenvironment. 
Journal ofAmbientIntelligenceandSmartEnvironments2009;1(4):323–34. 
[25] Crandall, A.,Cook,D.UsingahiddenMarkovmodelforresidentidentification. 
In: Proceedingsofthe6thInternationalConferenceonIntelligentEnviron- 
ments, KualaLumpur,Malaysia;July2010:pp.74–79. 
[26] Rashidi P,CookD.Keepingtheresidentintheloop:adaptingthesmarthome 
to theuser.IEEETransactionsonSystems,ManandCybernetics,PartA: 
SystemsandHumans2009;39(5):949–59. 
[27] Rashidi P,CookD.Anadaptivesensorminingframeworkforpervasive 
computing applications.LectureNotesinComputerScience2010;5840: 
154–74. 
[28] Kim E,HelalS,CookD.Humanactivityrecognitionandpatterndiscovery.IEEE 
PervasiveComputing2010;9(1):48–53. 
[29] Singla G,CookD,Schmitter-EdgecombeM.Trackingactivitiesincomplex 
settings usingsmartenvironmenttechnologies.InternationalJournalof 
BioSciences, PsychiatryandTechnology2009;1(1):25–35. 
[30] Rashidi P,CookD,HolderL,Schmitter-EdgecombeM.Discoveringactivitiesto 
recognize andtrackinasmartenvironment.IEEETransactionsonKnowledge 
and DataEngineering2011;23(4):527–39. 
[31] Knegtering B,BrombacherA.Amethodtopreventexcessivenumbersof 
MarkovstatesinMarkovmodelsforquantitativesafetyandreliability 
assessment. ISATransactions2000;39(3):363–9. 
[32] RouvroyeJ,WiegerinckJ.Minimizingcostswhilemeetingsafetyrequire- 
ments: modelingdeterministic(imperfect)staggeredtestsusingstandard 
MarkovmodelsforSILcalculations.ISATransactions2006;45(4):611–21. 
[33] Rabiner L.AtutorialonhiddenMarkovmodelsandselectedapplicationsin 
speech recognition.ProceedingsoftheIEEE1989;77(2):158–75. 
[34] Sujatha K,PappaN.Combustionmonitoringofawatertubeboilerusinga 
discriminant radialbasisnetwork.ISATransactions2011;50(1):101–10. 
[35] YenG,LeongW.Faultclassification onvibrationdatawithwaveletbased 
feature selectionscheme.ISATransactions2006;45(2):141–51. 
[36] KunduP,PanchariyaP,KunduM.Classification andauthenticationof 
unknown watersamplesusingmachinelearningalgorithms.ISATransactions 
2011;50(3):487–95. 
H. Fangetal./ISATransactions53(2014)134–140 140

More Related Content

Viewers also liked

PoolParty SKOS and Linked Data
PoolParty SKOS and Linked DataPoolParty SKOS and Linked Data
PoolParty SKOS and Linked DataAndreas Blumauer
 
Semana Gastronómica Benissa (del 1 al 10 de marzo)
Semana Gastronómica Benissa (del 1 al 10 de marzo)Semana Gastronómica Benissa (del 1 al 10 de marzo)
Semana Gastronómica Benissa (del 1 al 10 de marzo)Ayuntamiento Benissa
 
Intro al tema Instalaciones Digitales 2.0
Intro al tema Instalaciones Digitales 2.0Intro al tema Instalaciones Digitales 2.0
Intro al tema Instalaciones Digitales 2.0Daniel I. Krichman
 
Een Joomla-webshop bouwen zonder webshop-extensie, met formulieren
Een Joomla-webshop bouwen zonder webshop-extensie, met formulierenEen Joomla-webshop bouwen zonder webshop-extensie, met formulieren
Een Joomla-webshop bouwen zonder webshop-extensie, met formulierenAnja de Crom
 
Haciendo el contenido comprensible para estudiantes de Inglés
Haciendo el contenido comprensible para estudiantes de InglésHaciendo el contenido comprensible para estudiantes de Inglés
Haciendo el contenido comprensible para estudiantes de InglésAntonio Piedra
 
23 glandulas-mamarias1
23 glandulas-mamarias123 glandulas-mamarias1
23 glandulas-mamarias1Navil Ramírez
 
Manual de Apoyo a Docentes de Asignatura Estatal 2012
Manual de Apoyo a Docentes de Asignatura Estatal 2012Manual de Apoyo a Docentes de Asignatura Estatal 2012
Manual de Apoyo a Docentes de Asignatura Estatal 2012Roberto Carlos Vega Monroy
 
McKesson Case Study
McKesson Case StudyMcKesson Case Study
McKesson Case StudyForgeRock
 
2014 Membership Marketing Benchmarking Presentation by Tony Rossell
2014 Membership Marketing Benchmarking Presentation by Tony Rossell2014 Membership Marketing Benchmarking Presentation by Tony Rossell
2014 Membership Marketing Benchmarking Presentation by Tony RossellTony Rossell
 
reciclado de emociones aplicando las Tres erres del reciclaje
 reciclado de emociones aplicando  las Tres erres del reciclaje  reciclado de emociones aplicando  las Tres erres del reciclaje
reciclado de emociones aplicando las Tres erres del reciclaje Rosa Vila
 
Prosa renacentista
Prosa renacentistaProsa renacentista
Prosa renacentistaAlberto Zeal
 
The 5 Things You Need to Know About Resistance
The 5 Things You Need to Know About ResistanceThe 5 Things You Need to Know About Resistance
The 5 Things You Need to Know About ResistanceLuc Galoppin
 
Boostez votre visibilité avec les médias sociaux - E-atelier du 25 février 2010
Boostez votre visibilité avec les médias sociaux - E-atelier du 25 février 2010Boostez votre visibilité avec les médias sociaux - E-atelier du 25 février 2010
Boostez votre visibilité avec les médias sociaux - E-atelier du 25 février 2010Kinoa
 
Del Business Intelligence al Big Data
Del Business Intelligence al Big DataDel Business Intelligence al Big Data
Del Business Intelligence al Big DataDMC Perú
 

Viewers also liked (20)

Ppt folleto
Ppt folletoPpt folleto
Ppt folleto
 
PoolParty SKOS and Linked Data
PoolParty SKOS and Linked DataPoolParty SKOS and Linked Data
PoolParty SKOS and Linked Data
 
Manejo de materiales
Manejo de materialesManejo de materiales
Manejo de materiales
 
Semana Gastronómica Benissa (del 1 al 10 de marzo)
Semana Gastronómica Benissa (del 1 al 10 de marzo)Semana Gastronómica Benissa (del 1 al 10 de marzo)
Semana Gastronómica Benissa (del 1 al 10 de marzo)
 
Intro al tema Instalaciones Digitales 2.0
Intro al tema Instalaciones Digitales 2.0Intro al tema Instalaciones Digitales 2.0
Intro al tema Instalaciones Digitales 2.0
 
Hulu vs google
Hulu vs googleHulu vs google
Hulu vs google
 
La influencia de los modelos de política de familia en las desigualdades de g...
La influencia de los modelos de política de familia en las desigualdades de g...La influencia de los modelos de política de familia en las desigualdades de g...
La influencia de los modelos de política de familia en las desigualdades de g...
 
Een Joomla-webshop bouwen zonder webshop-extensie, met formulieren
Een Joomla-webshop bouwen zonder webshop-extensie, met formulierenEen Joomla-webshop bouwen zonder webshop-extensie, met formulieren
Een Joomla-webshop bouwen zonder webshop-extensie, met formulieren
 
JMCC
JMCCJMCC
JMCC
 
PONTE EN FORMA
PONTE EN FORMAPONTE EN FORMA
PONTE EN FORMA
 
Haciendo el contenido comprensible para estudiantes de Inglés
Haciendo el contenido comprensible para estudiantes de InglésHaciendo el contenido comprensible para estudiantes de Inglés
Haciendo el contenido comprensible para estudiantes de Inglés
 
23 glandulas-mamarias1
23 glandulas-mamarias123 glandulas-mamarias1
23 glandulas-mamarias1
 
Manual de Apoyo a Docentes de Asignatura Estatal 2012
Manual de Apoyo a Docentes de Asignatura Estatal 2012Manual de Apoyo a Docentes de Asignatura Estatal 2012
Manual de Apoyo a Docentes de Asignatura Estatal 2012
 
McKesson Case Study
McKesson Case StudyMcKesson Case Study
McKesson Case Study
 
2014 Membership Marketing Benchmarking Presentation by Tony Rossell
2014 Membership Marketing Benchmarking Presentation by Tony Rossell2014 Membership Marketing Benchmarking Presentation by Tony Rossell
2014 Membership Marketing Benchmarking Presentation by Tony Rossell
 
reciclado de emociones aplicando las Tres erres del reciclaje
 reciclado de emociones aplicando  las Tres erres del reciclaje  reciclado de emociones aplicando  las Tres erres del reciclaje
reciclado de emociones aplicando las Tres erres del reciclaje
 
Prosa renacentista
Prosa renacentistaProsa renacentista
Prosa renacentista
 
The 5 Things You Need to Know About Resistance
The 5 Things You Need to Know About ResistanceThe 5 Things You Need to Know About Resistance
The 5 Things You Need to Know About Resistance
 
Boostez votre visibilité avec les médias sociaux - E-atelier du 25 février 2010
Boostez votre visibilité avec les médias sociaux - E-atelier du 25 février 2010Boostez votre visibilité avec les médias sociaux - E-atelier du 25 février 2010
Boostez votre visibilité avec les médias sociaux - E-atelier du 25 février 2010
 
Del Business Intelligence al Big Data
Del Business Intelligence al Big DataDel Business Intelligence al Big Data
Del Business Intelligence al Big Data
 

Similar to Influence of time and length size feature selections for human activity sequences recognition

Influence of time and length size feature selections for human activity seque...
Influence of time and length size feature selections for human activity seque...Influence of time and length size feature selections for human activity seque...
Influence of time and length size feature selections for human activity seque...ISA Interchange
 
IRJET- Surveillance of Object Motion Detection and Caution System using B...
IRJET-  	  Surveillance of Object Motion Detection and Caution System using B...IRJET-  	  Surveillance of Object Motion Detection and Caution System using B...
IRJET- Surveillance of Object Motion Detection and Caution System using B...IRJET Journal
 
SYNCHROPHASOR DATA BASED INTELLIGENT ALGORITHM FOR REAL TIME EVENT DETECTION ...
SYNCHROPHASOR DATA BASED INTELLIGENT ALGORITHM FOR REAL TIME EVENT DETECTION ...SYNCHROPHASOR DATA BASED INTELLIGENT ALGORITHM FOR REAL TIME EVENT DETECTION ...
SYNCHROPHASOR DATA BASED INTELLIGENT ALGORITHM FOR REAL TIME EVENT DETECTION ...IAEME Publication
 
IRJET- Assessment of Blood Vessel using Fat Cell Acoustics
IRJET-  	  Assessment of Blood Vessel using Fat Cell AcousticsIRJET-  	  Assessment of Blood Vessel using Fat Cell Acoustics
IRJET- Assessment of Blood Vessel using Fat Cell AcousticsIRJET Journal
 
Akhil Kumar-resume
Akhil Kumar-resumeAkhil Kumar-resume
Akhil Kumar-resumeAkhil Kumar
 
IRJET- Survey on Shoulder Surfing Resistant Pin Entry by using Base Pin a...
IRJET-  	  Survey on Shoulder Surfing Resistant Pin Entry by using Base Pin a...IRJET-  	  Survey on Shoulder Surfing Resistant Pin Entry by using Base Pin a...
IRJET- Survey on Shoulder Surfing Resistant Pin Entry by using Base Pin a...IRJET Journal
 
Leap - Learning Adaptive Prosthetic Limb
Leap - Learning Adaptive Prosthetic LimbLeap - Learning Adaptive Prosthetic Limb
Leap - Learning Adaptive Prosthetic LimbPrasanna Venkataramanan
 
Poster for Snickers Conference(Afghah Version)
Poster for Snickers Conference(Afghah Version)Poster for Snickers Conference(Afghah Version)
Poster for Snickers Conference(Afghah Version)Jabari Stegall
 
Fault Diagnosis of a High Voltage Transmission Line Using Waveform Matching A...
Fault Diagnosis of a High Voltage Transmission Line Using Waveform Matching A...Fault Diagnosis of a High Voltage Transmission Line Using Waveform Matching A...
Fault Diagnosis of a High Voltage Transmission Line Using Waveform Matching A...ijsc
 
Real-time human activity recognition from smart phone using linear support ve...
Real-time human activity recognition from smart phone using linear support ve...Real-time human activity recognition from smart phone using linear support ve...
Real-time human activity recognition from smart phone using linear support ve...TELKOMNIKA JOURNAL
 
Fault diagnosis of a high voltage transmission line using waveform matching a...
Fault diagnosis of a high voltage transmission line using waveform matching a...Fault diagnosis of a high voltage transmission line using waveform matching a...
Fault diagnosis of a high voltage transmission line using waveform matching a...ijsc
 
A benchmark dataset to evaluate sensor displacement in activity recognition
A benchmark dataset to evaluate sensor displacement in activity recognitionA benchmark dataset to evaluate sensor displacement in activity recognition
A benchmark dataset to evaluate sensor displacement in activity recognitionOresti Banos
 
Multiple wavelet coefficients fusion in deep residual networks for fault diag...
Multiple wavelet coefficients fusion in deep residual networks for fault diag...Multiple wavelet coefficients fusion in deep residual networks for fault diag...
Multiple wavelet coefficients fusion in deep residual networks for fault diag...Minghang Zhao
 
IRJET - Creating a Security Alert for the Care Takers Implementing a Vast Dee...
IRJET - Creating a Security Alert for the Care Takers Implementing a Vast Dee...IRJET - Creating a Security Alert for the Care Takers Implementing a Vast Dee...
IRJET - Creating a Security Alert for the Care Takers Implementing a Vast Dee...IRJET Journal
 
Mining Frequent Patterns and Associations from the Smart meters using Bayesia...
Mining Frequent Patterns and Associations from the Smart meters using Bayesia...Mining Frequent Patterns and Associations from the Smart meters using Bayesia...
Mining Frequent Patterns and Associations from the Smart meters using Bayesia...Eswar Publications
 
DETECTION OF FAULT LOCATION IN TRANSMISSION LINE USING INTERNET OF THINGS (IOT)
DETECTION OF FAULT LOCATION IN TRANSMISSION LINE USING INTERNET OF THINGS (IOT)DETECTION OF FAULT LOCATION IN TRANSMISSION LINE USING INTERNET OF THINGS (IOT)
DETECTION OF FAULT LOCATION IN TRANSMISSION LINE USING INTERNET OF THINGS (IOT)Journal For Research
 

Similar to Influence of time and length size feature selections for human activity sequences recognition (20)

Influence of time and length size feature selections for human activity seque...
Influence of time and length size feature selections for human activity seque...Influence of time and length size feature selections for human activity seque...
Influence of time and length size feature selections for human activity seque...
 
IRJET- Surveillance of Object Motion Detection and Caution System using B...
IRJET-  	  Surveillance of Object Motion Detection and Caution System using B...IRJET-  	  Surveillance of Object Motion Detection and Caution System using B...
IRJET- Surveillance of Object Motion Detection and Caution System using B...
 
Ijetcas14 467
Ijetcas14 467Ijetcas14 467
Ijetcas14 467
 
SYNCHROPHASOR DATA BASED INTELLIGENT ALGORITHM FOR REAL TIME EVENT DETECTION ...
SYNCHROPHASOR DATA BASED INTELLIGENT ALGORITHM FOR REAL TIME EVENT DETECTION ...SYNCHROPHASOR DATA BASED INTELLIGENT ALGORITHM FOR REAL TIME EVENT DETECTION ...
SYNCHROPHASOR DATA BASED INTELLIGENT ALGORITHM FOR REAL TIME EVENT DETECTION ...
 
IRJET- Assessment of Blood Vessel using Fat Cell Acoustics
IRJET-  	  Assessment of Blood Vessel using Fat Cell AcousticsIRJET-  	  Assessment of Blood Vessel using Fat Cell Acoustics
IRJET- Assessment of Blood Vessel using Fat Cell Acoustics
 
Akhil Kumar-resume
Akhil Kumar-resumeAkhil Kumar-resume
Akhil Kumar-resume
 
IRJET- Survey on Shoulder Surfing Resistant Pin Entry by using Base Pin a...
IRJET-  	  Survey on Shoulder Surfing Resistant Pin Entry by using Base Pin a...IRJET-  	  Survey on Shoulder Surfing Resistant Pin Entry by using Base Pin a...
IRJET- Survey on Shoulder Surfing Resistant Pin Entry by using Base Pin a...
 
Leap - Learning Adaptive Prosthetic Limb
Leap - Learning Adaptive Prosthetic LimbLeap - Learning Adaptive Prosthetic Limb
Leap - Learning Adaptive Prosthetic Limb
 
Poster for Snickers Conference(Afghah Version)
Poster for Snickers Conference(Afghah Version)Poster for Snickers Conference(Afghah Version)
Poster for Snickers Conference(Afghah Version)
 
Posterv.1.2
Posterv.1.2Posterv.1.2
Posterv.1.2
 
Y2AwUCI.pptx
Y2AwUCI.pptxY2AwUCI.pptx
Y2AwUCI.pptx
 
Fault Diagnosis of a High Voltage Transmission Line Using Waveform Matching A...
Fault Diagnosis of a High Voltage Transmission Line Using Waveform Matching A...Fault Diagnosis of a High Voltage Transmission Line Using Waveform Matching A...
Fault Diagnosis of a High Voltage Transmission Line Using Waveform Matching A...
 
DanielNakhaee-Zadeh_Poster2_Intership_2016
DanielNakhaee-Zadeh_Poster2_Intership_2016DanielNakhaee-Zadeh_Poster2_Intership_2016
DanielNakhaee-Zadeh_Poster2_Intership_2016
 
Real-time human activity recognition from smart phone using linear support ve...
Real-time human activity recognition from smart phone using linear support ve...Real-time human activity recognition from smart phone using linear support ve...
Real-time human activity recognition from smart phone using linear support ve...
 
Fault diagnosis of a high voltage transmission line using waveform matching a...
Fault diagnosis of a high voltage transmission line using waveform matching a...Fault diagnosis of a high voltage transmission line using waveform matching a...
Fault diagnosis of a high voltage transmission line using waveform matching a...
 
A benchmark dataset to evaluate sensor displacement in activity recognition
A benchmark dataset to evaluate sensor displacement in activity recognitionA benchmark dataset to evaluate sensor displacement in activity recognition
A benchmark dataset to evaluate sensor displacement in activity recognition
 
Multiple wavelet coefficients fusion in deep residual networks for fault diag...
Multiple wavelet coefficients fusion in deep residual networks for fault diag...Multiple wavelet coefficients fusion in deep residual networks for fault diag...
Multiple wavelet coefficients fusion in deep residual networks for fault diag...
 
IRJET - Creating a Security Alert for the Care Takers Implementing a Vast Dee...
IRJET - Creating a Security Alert for the Care Takers Implementing a Vast Dee...IRJET - Creating a Security Alert for the Care Takers Implementing a Vast Dee...
IRJET - Creating a Security Alert for the Care Takers Implementing a Vast Dee...
 
Mining Frequent Patterns and Associations from the Smart meters using Bayesia...
Mining Frequent Patterns and Associations from the Smart meters using Bayesia...Mining Frequent Patterns and Associations from the Smart meters using Bayesia...
Mining Frequent Patterns and Associations from the Smart meters using Bayesia...
 
DETECTION OF FAULT LOCATION IN TRANSMISSION LINE USING INTERNET OF THINGS (IOT)
DETECTION OF FAULT LOCATION IN TRANSMISSION LINE USING INTERNET OF THINGS (IOT)DETECTION OF FAULT LOCATION IN TRANSMISSION LINE USING INTERNET OF THINGS (IOT)
DETECTION OF FAULT LOCATION IN TRANSMISSION LINE USING INTERNET OF THINGS (IOT)
 

More from ISA Interchange

An optimal general type-2 fuzzy controller for Urban Traffic Network
An optimal general type-2 fuzzy controller for Urban Traffic NetworkAn optimal general type-2 fuzzy controller for Urban Traffic Network
An optimal general type-2 fuzzy controller for Urban Traffic NetworkISA Interchange
 
Embedded intelligent adaptive PI controller for an electromechanical system
Embedded intelligent adaptive PI controller for an electromechanical  systemEmbedded intelligent adaptive PI controller for an electromechanical  system
Embedded intelligent adaptive PI controller for an electromechanical systemISA Interchange
 
State of charge estimation of lithium-ion batteries using fractional order sl...
State of charge estimation of lithium-ion batteries using fractional order sl...State of charge estimation of lithium-ion batteries using fractional order sl...
State of charge estimation of lithium-ion batteries using fractional order sl...ISA Interchange
 
Fractional order PID for tracking control of a parallel robotic manipulator t...
Fractional order PID for tracking control of a parallel robotic manipulator t...Fractional order PID for tracking control of a parallel robotic manipulator t...
Fractional order PID for tracking control of a parallel robotic manipulator t...ISA Interchange
 
Fuzzy logic for plant-wide control of biological wastewater treatment process...
Fuzzy logic for plant-wide control of biological wastewater treatment process...Fuzzy logic for plant-wide control of biological wastewater treatment process...
Fuzzy logic for plant-wide control of biological wastewater treatment process...ISA Interchange
 
Design and implementation of a control structure for quality products in a cr...
Design and implementation of a control structure for quality products in a cr...Design and implementation of a control structure for quality products in a cr...
Design and implementation of a control structure for quality products in a cr...ISA Interchange
 
Model based PI power system stabilizer design for damping low frequency oscil...
Model based PI power system stabilizer design for damping low frequency oscil...Model based PI power system stabilizer design for damping low frequency oscil...
Model based PI power system stabilizer design for damping low frequency oscil...ISA Interchange
 
A comparison of a novel robust decentralized control strategy and MPC for ind...
A comparison of a novel robust decentralized control strategy and MPC for ind...A comparison of a novel robust decentralized control strategy and MPC for ind...
A comparison of a novel robust decentralized control strategy and MPC for ind...ISA Interchange
 
Fault detection of feed water treatment process using PCA-WD with parameter o...
Fault detection of feed water treatment process using PCA-WD with parameter o...Fault detection of feed water treatment process using PCA-WD with parameter o...
Fault detection of feed water treatment process using PCA-WD with parameter o...ISA Interchange
 
Model-based adaptive sliding mode control of the subcritical boiler-turbine s...
Model-based adaptive sliding mode control of the subcritical boiler-turbine s...Model-based adaptive sliding mode control of the subcritical boiler-turbine s...
Model-based adaptive sliding mode control of the subcritical boiler-turbine s...ISA Interchange
 
A Proportional Integral Estimator-Based Clock Synchronization Protocol for Wi...
A Proportional Integral Estimator-Based Clock Synchronization Protocol for Wi...A Proportional Integral Estimator-Based Clock Synchronization Protocol for Wi...
A Proportional Integral Estimator-Based Clock Synchronization Protocol for Wi...ISA Interchange
 
An artificial intelligence based improved classification of two-phase flow patte...
An artificial intelligence based improved classification of two-phase flow patte...An artificial intelligence based improved classification of two-phase flow patte...
An artificial intelligence based improved classification of two-phase flow patte...ISA Interchange
 
New Method for Tuning PID Controllers Using a Symmetric Send-On-Delta Samplin...
New Method for Tuning PID Controllers Using a Symmetric Send-On-Delta Samplin...New Method for Tuning PID Controllers Using a Symmetric Send-On-Delta Samplin...
New Method for Tuning PID Controllers Using a Symmetric Send-On-Delta Samplin...ISA Interchange
 
Load estimator-based hybrid controller design for two-interleaved boost conve...
Load estimator-based hybrid controller design for two-interleaved boost conve...Load estimator-based hybrid controller design for two-interleaved boost conve...
Load estimator-based hybrid controller design for two-interleaved boost conve...ISA Interchange
 
Effects of Wireless Packet Loss in Industrial Process Control Systems
Effects of Wireless Packet Loss in Industrial Process Control SystemsEffects of Wireless Packet Loss in Industrial Process Control Systems
Effects of Wireless Packet Loss in Industrial Process Control SystemsISA Interchange
 
Fault Detection in the Distillation Column Process
Fault Detection in the Distillation Column ProcessFault Detection in the Distillation Column Process
Fault Detection in the Distillation Column ProcessISA Interchange
 
Neural Network-Based Actuator Fault Diagnosis for a Non-Linear Multi-Tank System
Neural Network-Based Actuator Fault Diagnosis for a Non-Linear Multi-Tank SystemNeural Network-Based Actuator Fault Diagnosis for a Non-Linear Multi-Tank System
Neural Network-Based Actuator Fault Diagnosis for a Non-Linear Multi-Tank SystemISA Interchange
 
A KPI-based process monitoring and fault detection framework for large-scale ...
A KPI-based process monitoring and fault detection framework for large-scale ...A KPI-based process monitoring and fault detection framework for large-scale ...
A KPI-based process monitoring and fault detection framework for large-scale ...ISA Interchange
 
An adaptive PID like controller using mix locally recurrent neural network fo...
An adaptive PID like controller using mix locally recurrent neural network fo...An adaptive PID like controller using mix locally recurrent neural network fo...
An adaptive PID like controller using mix locally recurrent neural network fo...ISA Interchange
 
A method to remove chattering alarms using median filters
A method to remove chattering alarms using median filtersA method to remove chattering alarms using median filters
A method to remove chattering alarms using median filtersISA Interchange
 

More from ISA Interchange (20)

An optimal general type-2 fuzzy controller for Urban Traffic Network
An optimal general type-2 fuzzy controller for Urban Traffic NetworkAn optimal general type-2 fuzzy controller for Urban Traffic Network
An optimal general type-2 fuzzy controller for Urban Traffic Network
 
Embedded intelligent adaptive PI controller for an electromechanical system
Embedded intelligent adaptive PI controller for an electromechanical  systemEmbedded intelligent adaptive PI controller for an electromechanical  system
Embedded intelligent adaptive PI controller for an electromechanical system
 
State of charge estimation of lithium-ion batteries using fractional order sl...
State of charge estimation of lithium-ion batteries using fractional order sl...State of charge estimation of lithium-ion batteries using fractional order sl...
State of charge estimation of lithium-ion batteries using fractional order sl...
 
Fractional order PID for tracking control of a parallel robotic manipulator t...
Fractional order PID for tracking control of a parallel robotic manipulator t...Fractional order PID for tracking control of a parallel robotic manipulator t...
Fractional order PID for tracking control of a parallel robotic manipulator t...
 
Fuzzy logic for plant-wide control of biological wastewater treatment process...
Fuzzy logic for plant-wide control of biological wastewater treatment process...Fuzzy logic for plant-wide control of biological wastewater treatment process...
Fuzzy logic for plant-wide control of biological wastewater treatment process...
 
Design and implementation of a control structure for quality products in a cr...
Design and implementation of a control structure for quality products in a cr...Design and implementation of a control structure for quality products in a cr...
Design and implementation of a control structure for quality products in a cr...
 
Model based PI power system stabilizer design for damping low frequency oscil...
Model based PI power system stabilizer design for damping low frequency oscil...Model based PI power system stabilizer design for damping low frequency oscil...
Model based PI power system stabilizer design for damping low frequency oscil...
 
A comparison of a novel robust decentralized control strategy and MPC for ind...
A comparison of a novel robust decentralized control strategy and MPC for ind...A comparison of a novel robust decentralized control strategy and MPC for ind...
A comparison of a novel robust decentralized control strategy and MPC for ind...
 
Fault detection of feed water treatment process using PCA-WD with parameter o...
Fault detection of feed water treatment process using PCA-WD with parameter o...Fault detection of feed water treatment process using PCA-WD with parameter o...
Fault detection of feed water treatment process using PCA-WD with parameter o...
 
Model-based adaptive sliding mode control of the subcritical boiler-turbine s...
Model-based adaptive sliding mode control of the subcritical boiler-turbine s...Model-based adaptive sliding mode control of the subcritical boiler-turbine s...
Model-based adaptive sliding mode control of the subcritical boiler-turbine s...
 
A Proportional Integral Estimator-Based Clock Synchronization Protocol for Wi...
A Proportional Integral Estimator-Based Clock Synchronization Protocol for Wi...A Proportional Integral Estimator-Based Clock Synchronization Protocol for Wi...
A Proportional Integral Estimator-Based Clock Synchronization Protocol for Wi...
 
An artificial intelligence based improved classification of two-phase flow patte...
An artificial intelligence based improved classification of two-phase flow patte...An artificial intelligence based improved classification of two-phase flow patte...
An artificial intelligence based improved classification of two-phase flow patte...
 
New Method for Tuning PID Controllers Using a Symmetric Send-On-Delta Samplin...
New Method for Tuning PID Controllers Using a Symmetric Send-On-Delta Samplin...New Method for Tuning PID Controllers Using a Symmetric Send-On-Delta Samplin...
New Method for Tuning PID Controllers Using a Symmetric Send-On-Delta Samplin...
 
Load estimator-based hybrid controller design for two-interleaved boost conve...
Load estimator-based hybrid controller design for two-interleaved boost conve...Load estimator-based hybrid controller design for two-interleaved boost conve...
Load estimator-based hybrid controller design for two-interleaved boost conve...
 
Effects of Wireless Packet Loss in Industrial Process Control Systems
Effects of Wireless Packet Loss in Industrial Process Control SystemsEffects of Wireless Packet Loss in Industrial Process Control Systems
Effects of Wireless Packet Loss in Industrial Process Control Systems
 
Fault Detection in the Distillation Column Process
Fault Detection in the Distillation Column ProcessFault Detection in the Distillation Column Process
Fault Detection in the Distillation Column Process
 
Neural Network-Based Actuator Fault Diagnosis for a Non-Linear Multi-Tank System
Neural Network-Based Actuator Fault Diagnosis for a Non-Linear Multi-Tank SystemNeural Network-Based Actuator Fault Diagnosis for a Non-Linear Multi-Tank System
Neural Network-Based Actuator Fault Diagnosis for a Non-Linear Multi-Tank System
 
A KPI-based process monitoring and fault detection framework for large-scale ...
A KPI-based process monitoring and fault detection framework for large-scale ...A KPI-based process monitoring and fault detection framework for large-scale ...
A KPI-based process monitoring and fault detection framework for large-scale ...
 
An adaptive PID like controller using mix locally recurrent neural network fo...
An adaptive PID like controller using mix locally recurrent neural network fo...An adaptive PID like controller using mix locally recurrent neural network fo...
An adaptive PID like controller using mix locally recurrent neural network fo...
 
A method to remove chattering alarms using median filters
A method to remove chattering alarms using median filtersA method to remove chattering alarms using median filters
A method to remove chattering alarms using median filters
 

Influence of time and length size feature selections for human activity sequences recognition

  • 1. ResearchArticle Influence oftimeandlengthsizefeatureselectionsforhumanactivity sequencesrecognition Hongqing Fang a,n, LongChen a, RaghavendiranSrinivasan b a College ofEnergy&ElectricalEngineering,HohaiUniversity,Jiangsu211100,PRChina b School ofElectricalEngineering&ComputerScience,WashingtonStateUniversity,WA99163,USA a rticleinfo Article history: Received6January2013 Receivedinrevisedform 17August2013 Accepted4September2013 Availableonline25September2013 Keywords: Activityrecognition Featureselections Hidden Markovmodel Viterbi algorithm Smart home a b s t r a c t In thispaper,ViterbialgorithmbasedonahiddenMarkovmodelisappliedtorecognizeactivity sequencesfromobservedsensorsevents.Alternativefeaturesselectionsoftimefeaturevaluesofsensors events andactivitylengthsizefeaturevaluesaretested,respectively,andthentheresultsofactivity sequencesrecognitionperformancesofViterbialgorithmareevaluated.Theresultsshowthatthe selection oflargertimefeaturevaluesofsensoreventsand/orsmalleractivitylengthsizefeaturevalues will generaterelativelybetterresultsontheactivitysequencesrecognitionperformances. & 2013ISA.PublishedbyElsevierLtd.Allrightsreserved. 1. Introduction The smarthomes [1–16] providecontinuousmonitoringcap- ability thatconventionalmethodologieslack.Beingabletoauto- mate theactivityrecognitionfromhumanmotionpatternsusing unobtrusivesensorsorotherdevicescanbeusefulinmonitoring older adultsintheirhomesandkeepingtrackoftheiractivitiesof daily livings(ADLs)andbehavioralchanges [13–23]. TheCenterfor AdvancedStudiesinAdaptiveSystems(CASAS)smarthome project isamulti-disciplinaryresearchprojectatWashington StateUniversity,focusedonthecreationofanintelligent home environment.Theapproachistoviewthesmarthomeas an intelligentagentthatperceivesitsenvironmentthroughthe use ofsensors,andcanactupontheenvironmentthroughtheuse of actuators.TheresearchgoalsoftheCASASsmarthomeproject aretoenhanceandimprovequalityoflife,prolongstayat home withtechnology-enabledassistance,minimizethecostof maintaining thehomeandmaximizethecomfortofitsinhabitants [8–10]. ToimplementthegoaloftheCASASsmarthomeproject,a primarychallengeistodesignanalgorithmthatlabelstheactivity performedbyaninhabitantinasmartenvironmentfromthesensor datacollectedbytheenvironment duringtheactivity.Medical professionalsalsobelievethatoneofthebestwaystodetect emerging medicalconditionsbeforetheybecomeseriousistolook forchangesintheADLs.Recently,humanactivitydiscoveryand recognitionhasgainedalotofinterestduetoitsenormouspotential incontextawarecomputingsystems,includingsmarthomeenvir- onments.Torecognizeresidents'activitiesandtheirdailyroutines cangreatlyhelpinprovidingautomation,security,andmore importanceinremotehealthmonitoringofelderorpeoplewith disabilities.Themainobjectiveofhumanactivityrecognitionin smarthomeenvironmentsisto findinterestingpatternsofbehavior fromsensordataandtorecognizesuchpatterns.Researchershave commonlytestedthemachinelearningalgorithmssuchas knowledge-drivenapproach(KDA) [13], evolutionaryensembles model (EEM) [14], supportvectormachine(SVM) [15], Dempster– Shafer theoryofevidence(D–S) [16], naïveBayes(NB)classifier, Markovmodel(MM),hiddenMarkovmodel(HMM)andconditional random fields(CRF) [17–30], etc.,forhumanactivity(pattern) recognitioninsmarthomeenvironments.Eventhoughthedatasets include alargenumberofsensorevents sequencesgeneratedbya variousactivities,theresultsappearinthesepapersaremainlythe evaluationandcomparisonofthetotalactivityrecognitionaccuracy rategeneratedbydifferentmachinelearningalgorithms.Another shortcomingisthatanyactivityannotatedindatasethasvarious features.Usually,thesefeaturesvaluesareselectedinonemethodin all tests.However,theinfluencesofthesefeaturevaluestohuman activityrecognitionperformance areseldomaddressedinprevious works.Moreover,itisalsonecessarytorecognizewhichactivities generatesensoreventssequences. Contents listsavailableat ScienceDirect journalhomepage: www.elsevier.com/locate/isatrans ISATransactions 0019-0578/$-seefrontmatter & 2013ISA.PublishedbyElsevierLtd.Allrightsreserved. http://dx.doi.org/10.1016/j.isatra.2013.09.001 n Corresponding author.Tel.: þ86 18061705168. E-mail addresses: fanghongqing@sohu.com, fanghongqing@gmail.com (H. Fang). ISA Transactions53(2014)134–140
  • 2. In thispaper,Viterbialgorithmisadynamicprogramming algorithm for finding themostlikelysequenceofhiddenstates that resultsinasequenceofobservedevents,especiallyinthe contextofMarkovinformationsources [31,32] and hiddenMarkov models [24,25,28–30,33]. Therefore,Viterbialgorithmisappliedto recognize activitiessequencesfromobservedsensorsevents sequences.Andthen,alternativefeaturesselectionsaretested [34–36], and finally theresultsofactivitiessequencesrecognition performance measuresofViterbialgorithmwithdifferenttime feature valuesofsensoreventsandactivitylengthsizefeature valuesareevaluated. The restofthepaperisorganizedasfollows. Section 2 briefly describes thesmartapartmenttestbedinstalledintheWashington StateUniversitycampusandalsothedatacollectionprocedures. Section 3 describes Viterbialgorithmappliedtorepresentand recognize humanactivitiessequences. Section 4 presentsthe results oftheinfluence oftimeandactivitylengthsizefeature valuestoactivitiessequencesrecognitionsperformances. Section 5 summarizes themaincontributions. 2. Smartapartmenttestbedanddatacollection ThesmartapartmenttestbedislocatedonWashingtonState UniversitycampusandismaintainedaspartoftheongoingCASAS smart homeproject [8–10,18,24–30]. Asshownin Fig. 1, thesmart apartment testbedincludesthreebedrooms,onebathroom,a kitchen,andaliving/diningroom.Thesmartapartmentisequipped with motionsensorsdistributedapproximately1mapartthrough- out thespaceontheceilings.Inaddition,othersensorsinstalled provideambienttemperaturereadingsandcustom-builtanalog sensorsprovidereadingsforhotwater,coldwater,andstoveburner use. VoiceoverIPusingAsterisksoftwarecapturesphoneusageand contactswitchsensorstomonitorusageofkeyitemsincluding a cookingpot,amedicinecontainer,andthephonebook.Lastly, Insteonpowercontrolsandswitchesareusedtomonitorandcontrol the lightinginthespace.Sensorsdataarecapturedusingasensor networkthatwasdesignedin-houseandstoredinaSQLdatabase. The middlewareusesaXMPP-basedpublish-subscribeprotocolasa lightweightplatformandlanguage-independentmethodtopush datatoclienttoolswithminimaloverheadandmaximal flexibility. Aftercollectingdatafromthesmart apartmenttestbed,thesensors eventsareannotatedforADLs.Alargenumberofsensorseventsare generatedeveryday. The datagatheredbyCASASsmarthomeisrepresentedbythe following parameters,whichspecifythenumberoffeaturesthat areusedtodescribethesensorsevents.Thedefaultnumberof features is5.Thedefaultinterpretationofthe five featuresis: (1) SensorID,whichisanintegervalueintherangeof0tothe number oflogicalsensorvalues. (2) Timeofday,whichistheinputtimeofthesensoreventbutis discretized toanintegervalue.Thedefaultvalueis5,which means thetimerangesofoneentiredayare0–5, 6–10,11–15, 16–20, and21–24. Thevalueofthisfeatureisadjustable. (3) Dayofweek,whichtheinputdateofthesensoreventis convertedintoavalueintherangeof0–6 thatrepresentsthe day oftheweekonwhichthesensoreventoccurred. (4) Previousactivity,whichisanintegervaluethatrepresentsthe activity thatoccurredbeforethecurrentactivity. (5) Activitylength,whichrepresentsthelengthofthecurrent activity measuredinnumberofsensorsevents.Thevalueof this featureistocalculatethevalueoflengthsizethreshold, and thedefaultvalueis3,whichmeansthelengthsizeofeach activity isdistinguishedby3thresholds:{small,medium, large}. Thevalueofthisfeatureisadjustable. The generalizedsyntaxofthedatasetisgivenbelow. Date TimeSensorIDSensorValue 〈label〉 An exampleofthedatasetofNight_wanderingactivityis { 2009-06-1003:20:59.08M006ONNight_wanderingbegin 2009-06-1003:25:19.05M012ON 2009-06-1003:25:19.08M011ON 2009-06-1003:25:24.05M011OFF 2009-06-1003:25:24.07M012OFFNight_wanderingend } This exampleshowsonesensorssequencecorrespondstothe Night_wanderingactivitywithconcreteDate,Time,SensorID, SensorValue aswellasactivitylabelparameters [18–30]. 3. Viterbialgorithmappliedforactivitysequencesrecognition An HMMisastatisticalmodelinwhichtheunderlyingmodelisa stochasticprocessthatisnotobservable(i.e.,hidden)andisassumed tobeaMarkovprocesswhichcanbeobservedthroughanotherset of stochasticprocessesthatproducethesequenceofobserved symbols [33]. Thecurrentstatedependsona finitehistoryofprevious states.Actually,inthisresearch,thecurrentstatedependsonlyonthe previousstate.AnHMMmodelsasystemusinga finitesetofstates. A hiddenstateisusedtorepresenteachoftheseparateactivities. Each observableandhiddenstateisassociatedwithamultidimen- sionalprobabilitydistributionoverasetofparameters.Theparameters forthemodelarethefeaturesvaluesdescribedintheprevioussection. Transitionsbetweenstatesaregovernedbytransitionprobabilities. An HMMassignsprobabilityvaluesoverapotentiallyinfinitenumber ofsequences.Butastheprobabilitiesvaluesmustsumtoone,the distributiondescribedbyHMMisconstrained.Theconditionalprob- abilitydistributionofanyhiddenstatedependsonlyonthevalueof the precedinghiddenstate.Similarly,thevalueofanobservablestate depends onlyonthevalueofthecurrenthiddenstate. Consider asystemthathas N distinct states, fs1; s2;⋯; sNg, and the actualstateattime t is qt ¼ si; 1rirN , theneachstatehas M distinct observationsymbols,whichcanbedenotedas fv1; v2;⋯; vMg. InthetheoryofHMM,theobservablevariable ot ¼ vk; 1rk rM at time t depends onlyonthehiddenstate variable si at thattime. Fig. 1. The smartapartmenttestbed. H. Fangetal./ISATransactions53(2014)134–140 135
  • 3. An HMMutilizesthreeprobabilitydistributions,the first isa probability distributionoverinitialstates πi ¼ Pðq1 ¼ siÞ ð1Þ Second, thestatetransitionprobabilitydistributionrepresents the probabilityoftransitioningfromstate i to state j, whichhasthe form of aij ¼ Pðqt ¼ sjjqt1 ¼ siÞ; 1ri; jrN ð2Þ Third,theobservationprobabilitydistributionindicatesthe probability thatthestate j wouldgenerateobservation ot ¼ vk bjðkÞ ¼ Pðot ¼ vkjqt ¼ sjÞ; 1rjrN; 1rkrM ð3Þ These distributionsareestimatedbasedontherelativefre- quenciesofvisitedstatesandstatetransitionsobservedinthe training data. In thiscase,theViterbialgorithmcanbeappliedtoidentifythis sequenceofhiddenstates,whichcomputethemostlikely sequenceofhiddenstatesthatcorrespondtoasequenceof observablesensorsevents. The aimofViterbialgorithmareto find thesinglebeststate sequence, fqn 1; qn 2;⋯; qnT g, foragivenobservationsequence, fo1; o2;⋯; oT g. Thebestscore,i.e.,thehighestprobability,alonga single pathattime t is define as δt ðiÞ ¼ max q1;q2;⋯;qt 1 Pðq1q2⋯qt ¼ si; o1o2⋯otÞ ð4Þ δt ðiÞ accounts forthe first t observationsandendinstate si, and it canbesolvedinductivelyas δtþ1ðjÞ ¼ ½ max 1rirN δt ðiÞUaijUbjðotþ1Þ ð5Þ where 1rjrN and 1rtrT1. The initializationis δ1ðiÞ ¼ πi Ubiðo1Þ; 1rirN ð6Þ In eachrecursionofEq. (5), thelabelofahiddenstatewhichin Eq. (4) is returnedby ln t ¼ arg max ½δt ðiÞ 1rirN ð7Þ Once theprocedureisdone,thebesthiddenstatelabel sequencecanbeobtainedas fln 1; ln 2;⋯; ln T g, whichcorrespondsto the besthiddenstatesequence fqn 1; qn 2;⋯; qnT g. ToimplementViterbialgorithm,eachactivityistreatedasa hidden state.Sinceatotalof m activitiesarelabeledinthedataset to berecognized,Viterbialgorithmincludes m hidden states.Each hidden statedenotesoneofthe m modeled activities.Next,each sensor istreatedasanobservablestate,becauseofeachused sensor isobservableinthedataset. Viterbialgorithmprocessesthesensorseventssequenceasa continuous stream,andthenreturntheactivitylabel(hidden node) withthehighestprobability,whichcorrespondstothemost recentsensorevent.However,sinceonesensoreventmayhave different probabilitiescorrespondingtodifferenthiddenstates (activities), therefore,therecognitionaccuracyisnotdefinitely 100%. In thisresearch,Viterbialgorithmusestherelativefrequencies of featuresvaluesandtheactivitylabelsforthesampletrain- ing datatolearnamappingfromadatapointdescriptiontoa classification label.Itdeterminesactivitylabelsprobabilistically based onthenumberofsensoreventofvariouskindsthatoccu- rred duringtheactivity.Allactivitiesarerepresentedbyvarious features includingthenumberofoccurringtimesofsensorID, time ofday,dayofweek,previousactivityandactivitylength. Actually,Viterbialgorithmusesthreeprobabilitydistributions: the distributionoverinitialstates πi, thestatetransitionprob- ability distribution aij, andtheobservationdistribution bjðkÞ. These probabilitydistributionsareestimatedbasedontherelative frequenciesofvisitedstatesandstatetransitionsobservedinthe trainingdata.Givenasetoftrainingdata,Viterbialgorithmuses the sensorsvaluesasparametersofahiddenMarkovmodel.Given an inputsequenceofsensorseventsobservations,thegoalisto find themostlikelysequenceofhiddenstates,oractivities,which could havegeneratedtheobservedeventsequence,followingthe calculation inEq. (7). Furthermore,thetrainingdataareusedto learn thetransitionprobabilitiesbetweenstatesforthecorre- sponding activitymodelandtolearnprobabilitydistributionsfor the featuresvaluesofeachstateinthemodel.Forthis,theprior probability(i.e.,thestartprobability)ofeverystatecanbe calculated basedonthecollecteddata.Thepriorprobability representsthebeliefaboutwhichstateofHMMisinwhenthe first sensoreventisseen.Forastate(i.e.,activity) A, itiscalculated as theratioofinstancesforwhichtheactivitylabelis A. The transitionprobabilitywhichrepresentsthechangeofthestatein the underlyinghiddenMarkovmodel,canalsobecalculated.For anytwostates A and B, theprobabilityoftransitioningfromstate A tostate B is calculatedastheratioofinstanceshavingactivitylabel A followedbyactivitylabel B, tothetotalnumberofinstances.The transitionprobabilitysignifies thelikelihoodoftransitioningfrom a givenstatetoanyotherstateinthemodelandcapturesthe temporalrelationshipbetweenthestates.Furthermore,theemis- sion probabilityrepresentsthelikelihoodofobservingaparticular sensor eventforagivenactivity.Thisiscalculatedby finding the frequencyofeverysensoreventasobservedforeachactivity [29]. 4. Testsresults 4.1.Trainingactivities A totalof10activitieswereperformedintheCASASsmart apartment bytwovolunteerstoprovidephysicaltrainingdatafor the Viterbialgorithm.Theseactivitiesincludebothbasicandmore complexADLsthatarefoundinclinicalquestionnaires.These activitiesare: (1) Bed_to_toilet(activity0,A0):transitionbetweenbedand toilet inthenighttime. (2) Breakfast(activity1,A1):theresidentshavebreakfast. (3) Bed(activity2,A2):theactivityofsleepinginbed. (4) C_work(activity3,A3):theactivityofresidentsworkinthe office space. (5) Dinner(activity4,A4):theresidentshavedinner. (6) Laundry(activity5,A5):theresidentscleanclothesusingthe laundry machine. (7) Leave_home(activity6,A6):theactivityoftheresident leavesthesmarthome. (8) Lunch(activity7,A7):theresidentshavelunch. (9) Night_wandering(activity8,A8):theactivityoftheresidents wandersduringnighttimesleep. (10)R_medicine(activity9,A9):theactivityoftheresidentstakes medicine. The datahavebeencollectedintheCASASsmartapartment testbedfor55days,whichresultingintotal600instancesofthese activitiesand647,485collectedmotionsensorsevents.The3-fold crossvalidationisappliedinthisresearch. 4.2. Selectionsoftimefeaturevalues In thiscase,theactivitylengthsizefeaturevalueisdefined as the defaultvalue3.Thismeansthatthreeactivitylengthsize rangesareused.However,thetimefeaturevaluesarecompared H. Fangetal./ISATransactions53(2014)134–140 136
  • 4. for differentnumbersofrangesincluding1,2,3,4,5,6,8,12and 24, respectively. Table1 showsthatViterbialgorithmhasthebesthiddenstates sequenceaveragerecognitionaccuracyratewhentimefeature valueis24foractivities0,2,3,4,and8,i.e.,theproportionis50% of allactivities.Whentimefeaturevalueis12,thebestresultsare generatedofactivities1,6and9,andtheproportionis30%.Also, activity 7hasthebestresultwhentimefeaturevalueis6.Theonly one exceptionisactivity5,forwhichthebestresultisgenerated when timefeaturevalueis3. Again, itcanbeseenfrom Table2 that 30%ofalltheactivities,i. e., activities2,5and8,havethebesthiddenstatessequence recognition successratewhentimefeaturevalueis24.Activities0, 3 and9havethebestresultsiftimefeaturevalueis12,whichisof the sameproportion.Further,activity6hasthebestresultwhen time featurevalueis8;activity1hasthebestresultwhentime feature valueis6;activity7hasthebestresultwhentimefeature valueis4;andactivity4hasthebestresultwhentimefeature valueis2. Similarly, Table3 showsthatactivities0,1,4,7and8havethe lowesthiddenstatessequencerecognitionfailurerateswitha time featurevalueof24,andtheproportionis50%.Thebesttime feature valueforactivity6is12,andforactivity9is8.Activities 2 and5havethesamebesttimefeaturevalueof6.Activity3has the besttimefeaturevalueof1. One importantpointtobenotedisthatmorethanoneoptimal results shownin Tables1–3 arenotgeneratedunderonlyone specific timefeaturevalue,whichmeansthatViterbialgorithm generatethesameoptimalresultsunderdifferenttimefeature values.However,inthesetests,onlythemaximaloptimaltime feature valueforeachactivityislistedabove.Eventhough,it showsthatmostoftheactivitieshavebetterresultswitha relativelyhighertimefeaturevalue.Thereasonscanbeexplained from thestatisticaldatashownin Table4, whichshowsthehour- by-hoursensorseventsproportionofthe10activities.Sinceone day has24h,therefore,iftimefeaturevalueisdefined as24, which means24separatetimezonesaredefined, hour-by-hour. Actually, Table4 also reflects thatthelivinghabitsoftheresidents or ADLshavestrongrelationshipwithtimeoftheresidentsin CASAS smarthome,e.g.,foractivity0(bed-to-toilet),17.75% sensors eventsoccurinthetimezoneof(0:00–1:00),29.12% sensors eventsoccurinthetimezoneof(2:00–3:00),andthere arenosensorseventsoccurinthetimezoneof(8:00–22:00).A relativelylargertimefeaturevaluemeansmoreprecisetimezone resolution,whichgeneratesrelativelybetterresults. 4.3. Selectionsofactivitylengthsizefeaturevalues In thiscase,timefeaturevalueisdefined withalargervalueas 24, andactivitylengthsizefeaturevalueisdefined from2to45, respectively. Fig. 2 showsthetrendsofthehiddenstatessequenceaverage recognitionaccuracyratesofactivities0–9 generatedbyViterbi algorithmwiththeincreasingofactivitylengthsizefeaturevalues. In thistest,itshowsthatactivity0yieldsanoptimalresultwith activitylengthsizefeaturevalueof16;theoptimallengthfeature valueforactivity1is4;activities2and5havethesameoptimal activitylengthsizefeaturevalueof3;activities3and9havethe same optimalactivitylengthsizefeaturevalueof5;theoptimal activitylengthsizefeaturevalueforactivity4is23;foractivity6, it is43;foractivity7,itis6;andforactivity8,itis10.Therefore,a proportionof70%ofallactivitieshaverelativelysmalloptimal activitylengthsizefeaturevalues,whicharenotmorethan10. Fig. 3 showsthetrendsofthehiddenstatessequencerecogni- tion successrateofactivities0–9 generatedbyViterbialgorithm with increasingoflengthfeaturevalues.Itcanbefoundthatthe proportionis50%ofallactivitieswhichhaverelativelysmaller optimalactivitylengthsizefeaturevalues,specifically lessthan10. Concretely,activities1and7havethesameoptimalactivity lengthsizefeaturevalueof2;activities3and9havethesame optimalactivitylengthsizefeaturevalueof5;activity5hasthe optimalactivitylengthsizefeaturevalueof3;activity2hasthe optimalactivitylengthsizefeaturevalueof18;activities0and 4 havethesameoptimalactivitylengthsizefeaturevalueof23; activity8hastheoptimalactivitylengthsizefeaturevalue of 28andactivity6hastheoptimalactivitylengthsizefeature valueof41. Fig. 4 showsthetrendsofthehiddenstatessequencerecogni- tion failurerateofactivities0–9 generatedbyViterbialgorithm with increasingofactivitylengthsizefeaturevalues.Actually,itis better tohavealowerfailurerateinthistest.Again,itcanbeseen that, mostoftheactivitieshavearelativelysmalleroptimal activitylengthsizefeaturevalue,specifically lessthan10.The overallproportionis70%.Activities4and5havethesameoptimal Table1 ResultsforhiddenstatessequenceaverageaccuracyratebyViterbialgorithm. ActivitiesTimefeatureselections 1 2 345681224 0 0.2670.2640.2640.2880.3410.3470.4060.368 0.463 1 0.2870.2670.7670.3560.5690.767 0.850 0.7970.823 2 0.7740.7550.7600.8110.8930.8870.8350.882 0.902 3 0.3000.2860.2440.2770.2550.2630.2760.282 0.350 4 0.7900.7800.5730.8560.7180.6670.7950.811 0.886 5 0.4470.423 0.455 0.4430.4020.4200.3570.1630.351 6 0.8100.7990.7980.8370.8270.791 0.842 0.805 0.764 7 0.2390.570 0.685 0.587 0.578 0.685 0.556 0.5760.678 8 0.4030.4230.4320.5380.6490.6130.6500.675 0.689 9 0.6490.7360.7330.7600.7160.741 0.780 0.7760.736 Table2 ResultsforhiddenstatessequencesuccessratebyViterbialgorithm. ActivitiesTimefeatureselections 1 2345681224 0 0.1670.1330.1330.1670.1670.167 0.2000.200 0.167 1 0.0210.021 0.500 0.0210.375 0.500 0.3750.3750.354 2 0.5750.5460.5360.6230.6910.5940.6180.667 0.739 3 0.1520.1520.1090.1090.1520.1090.130 0.174 0.130 4 0 0.095 0 000000.071 5 0.10.10.10.10.10.10.1 0 0.1 6 0.5800.5360.6230.6380.6520.609 0.681 0.580 0.551 7 00.1080.081 0.108 0 0.081000 8 0.2390.2840.2840.3580.4930.4180.4480.4786 0.552 9 0.4770.5230.50.4550.5230.5460.546 0.568 0.523 Table3 ResultsforhiddenstatessequencefailureratebyViterbialgorithm. ActivitiesTimefeatureselections 1 2 3 4 5 681224 0 0.7000.7000.7000.6670.6000.6000.5330.600 0.467 1 0.063 0.0420.0420.0420.0420.0420.0420.0420.042 2 0.1590.1740.1690.1210.063 0.048 0.0970.0530.053 3 0.413 0.4780.5220.4780.5000.5440.5220.5440.457 4 0 0 0 0 0 0000 5 0.4000.4000.4000.400 0.500 0.400 0.5000.8000.600 6 0.058 0.058 0.101 0.058 0.058 0.101 0.058 0.058 0.130 7 0.432 0.1350.1350.135 0.162 0.1350.135 0.162 0.135 8 0.2540.3130.2990.254 0.090 0.105 0.090 0.0900.090 9 0.2730.1590.159 0.091 0.1820.159 0.091 0.1140.159 H. Fangetal./ISATransactions53(2014)134–140 137
  • 5. activitylengthsizefeaturevalueof2;activities3and9havethe same optimalactivitylengthsizefeaturevalueof5;activity1has the optimalactivitylengthsizefeaturevalueof4;activity7has the optimalactivitylengthsizefeaturevalueof6;activity8 has theoptimalactivitylengthsizefeaturevalueof8;activity 0 hastheoptimalactivitylengthsizefeaturevalueof11;activity 2 hastheoptimalactivitylengthsizefeaturevalueof22and activity6hastheoptimalactivitylengthsizefeaturevalueof43. Again, itshouldbenotedthattheoptimalresultsshownin Figs. 2–4 arenotgeneratedbyonlyonespecific lengthfeature value,whichmeansthattheViterbialgorithmgeneratessame optimalresultsunderdifferentactivitylengthsizefeaturevalues. Actually,onlytheminimumoptimalactivitylengthsizefeature valueforeachactivityisgiveninthisdiscussion.However,the results showthat,itisbettertodefine asmallactivitylengthsize feature valuetogetarelativelybetterresult.Thereasonscanbe explainedfromthestatisticaldatashownin Table5, whichshows the average(mean),standardvariance(std),maximal(max)and minimum (min)sensorseventslengthsizeofeachactivity.Itcan be foundthatdifferentactivitieshavedifferentstatisticaldataof sensors eventslengthsize,e.g.,activity6hasanaveragesensors eventslengthsizeof6,incontrast,activity4hasanaverage sensors eventslengthsizeof534,etc.Arelativelylargeractivity length sizefeaturevalueresultsinsmallerlengththresholdvalue, which willgeneratemorelengthfeatures.Sincetheprobabilityof feature givenaspecific activityistheproductoftheprobabilities of eachsub-featuregiventhisactivity [29], morelengthfeatures will generateasmallerprobabilityoffeaturegiventhisactivity. Therefore,alargerlengthsizefeaturevaluegeneratesrelatively worseresults. Table4 Hour-by-hoursensorseventsproportionoftheseactivities. Time zonesActivities 0 123456789 0:00–1:000.17750.01820.00.00.00.00.00.00.06960.0 1:00–2:000.08810.00.00.00.00.00.00.00.14680.0 2:00–3:000.29120.00.00.00.00.00.00.00.06150.0 3:00–4:000.19160.00.00.00.00.00.00.00.24580.0 4:00–5:000.03190.00.00540.00.00.00.00.00.17520.0 5:00–6:000.00.00.02380.00640.00.00.00.00.06990.0159 6:00–7:000.00.08890.22120.0730.00.00.00.00.02330.2739 7:00–8:000.02170.48250.22940.10650.00.02470.03720.00.01490.5219 8:00–9:000.00.28790.07070.06060.00.00.06650.00.00.1106 9:00–10:000.00.12250.05550.04930.00.04310.10370.00.00.0777 10:00–11:000.00.00.00230.10010.00.20340.24470.00190.00.0 11:00–12:000.00.00.00.00340.00.00.08780.35420.00.0 12:00–13:000.00.00.00.04440.00.13560.08780.60430.00.0 13:00–14:000.00.00.00.0030.00.00.03460.03960.00.0 14:00–15:000.00.00.00.04630.00.31120.06910.00.00.0 15:00–16:000.00.00.00.04330.00.06470.06120.00.00.0 16:00–17:000.00.00.00.06020.00.11090.05050.00.00.0 17:00–18:000.00.00.00.00150.230.00.10640.00.00.0 18:00–19:000.00.00.00.01540.69550.00.02390.00.00.0 19:00–20:000.00.00.00360.20840.06670.10630.02660.00.00.0 20:00–21:000.00.00.27820.11780.00780.00.00.00.00.0 21:00–22:000.00.00.09720.06060.00.00.00.00.06850.0 22:00–23:000.05620.00.01190.00.00.00.00.00.07980.0 23:00–0:000.14180.09.05e-040.00.00.00.00.00.04480.0 Fig. 2. The trendsofhiddenstatessequenceaveragerecognitionaccuracyrateofactivities0–9 generatedbyViterbialgorithm. H. Fangetal./ISATransactions53(2014)134–140 138
  • 6. 5. Conclusions This paperappliesViterbialgorithmbasedonahiddenMarkov modeltorepresentandrecognizeactivitiessequences.Sinceany activityannotatedindatasethasvarious features,therefore,itis necessary toselectsuitablefeaturesvaluestoobtainbetteractivities sequencesrecognitionperformances.Thealternativefeaturesvalues selectionshavebeentestedandtherecognitionaccuracyperfor- mances ofViterbialgorithmhavebeenevaluated.Fromtheresults,it can beconcludedthattheselectionsoflargertimefeaturevaluesof sensoreventsand/orsmalleractivitylengthsizefeaturevalueswill generaterelativelybetterresultsontheactivitiessequences recognitionperformancemeasures of Viterbialgorithm.According totheseresults,thefeaturesvaluesforbetteractivityrecognition performance canbedetermined.Infuturework,themethodsof automaticallyselectingfeaturesvalueswillbestudied. Acknowledgment This workwaspartiallysupportedbyQingLanProject,Jiangsu Province,China,andthedatawerecollectedfromthesmarthome testbedlocatedontheWashingtonStateUniversitycampus. References [1] Alam M,ReazM,AliM.Areviewofsmarthomes-past,present,andfuture. IEEE TransactionsonSystems,Man,andCybernetics,PartC:Applicationsand Reviews2012;42(6):1190–203. [2] WuC,FuL.Designandrealizationofaframeworkforhuman–system interactioninsmarthomes.IEEETransactionsonSystems,ManandCyber- netics, PartA:SystemsandHumans2012;42(1):15–31. [3] Zhang S,McCleanS,ScotneyB.Probabilisticlearningfromincompletedatafor recognitionofactivitiesofdailylivinginsmarthomes.IEEETransactionson Information TechnologyinBiomedicine2012;16(3):454–62. Fig. 3. The trendsofhiddenstatessequencerecognitionsuccessrateofactivities0–9 generatedbyViterbialgorithm. Fig. 4. The trendsofhiddenstatessequencerecognitionfailurerateofactivities0–9 generatedbyViterbialgorithm. Table5 Sensors eventslengthsizeofthe10activities. Length sizeActivities 0 1 23456789 Mean 2735791585346563424123 Std 1616583632393141842612 Max 70886444270144410916104713965 Min 8915419116290106 H. Fangetal./ISATransactions53(2014)134–140 139
  • 7. [4] Jalal A,UddinM,KimT-S.Depthvideo-basedhumanactivityrecognition systemusingtranslationandscalinginvariantfeaturesforlifeloggingatsmart home. IEEETransactionsonConsumerElectronics2012;58(3):863–71. [5] Kang K,KaB,KimS.Aservicescenariogenerationschemebasedon association ruleminingforelderlysurveillancesysteminasmarthome environment.EngineeringApplicationsofArtificial Intelligence2012;25 (7):1355–64. [6] Makonin S,BartramL,PopowichF.Asmartersmarthome:casestudiesof ambient intelligence.IEEEPervasiveComputing2013;12(1):58–66. [7] YuM,RhumaA,NaqviS,WangL,ChambersJ.Aposturerecognition-basedfall detection systemformonitoringanelderlypersoninasmarthomeenviron- ment. IEEETransactionsonInformationTechnologyinBiomedicine2012;16 (6):1274–86. [8] Cook D.Howsmartisyourhome?Science2012;335(6076):1579–81. [9] Cook D.Learningsetting-generalizedactivitymodelsforsmartspaces.IEEE IntelligentSystems2012;27(1):32–8. [10] Cook,D.,Schmitter-Edgecombe,M.,Crandall,A.,Sanders,C.,Thomas,B. Collecting anddisseminatingsmarthomesensordataintheCASASproject. In: ProceedingsoftheCHIWorkshoponDevelopingSharedHomeBehavior Datasets toAdvanceHCIandUbiquitousComputingResearch,2009. [11] Hussain S,ErdogenS,ParkJ.Monitoringuseractivitiesinsmarthome environments.InformationSystemsFrontiers2009;11(5):539–49. [12] Raad M,YangL.Aubiquitoussmarthomeforelderly.InformationSystems Frontiers2009;11(5):529–36. [13] Chen L,NugentC,WangH.Aknowledge-drivenapproachtoactivityrecogni- tion insmarthomes.IEEETransactionsonKnowledgeandDataEngineering 2012;24(6):961–74. [14] FahimM,FatimaI,LeeS,LeeY.EEM:evolutionaryensemblesmodelfor activity recognitioninSmartHomes.AppliedIntelligence2013;38(1):88–98. [15] Fleury A,VacherM,NouryN.SVM-basedmultimodalclassification ofactivities of dailylivinginhealthsmarthomes:sensors,algorithms,and first experi- mental results.IEEETransactionsonInformationTechnologyinBiomedicine 2010;14(2):274–83. [16] Liao J,BiY,NugentC.UsingtheDempster–Shafer theoryofevidencewitha revised latticestructureforactivityrecognition.IEEETransactionsonInforma- tion TechnologyinBiomedicine2011;15(1):74–82. [17] RoyP,BouzouaneA,GirouxS,BouchardB.Possibilisticactivityrecognitionin smart homesforcognitivelyimpairedpeople.AppliedArtificial Intelligence 2011;25(10):883–926. [18] Cook D.Healthmonitoringandassistancetosupportaginginplace.Journalof UniversalComputerScience2006;12(1):15–29. [19] Munguia-TapiaE,IntilleS,LarsonK.Activityrecognitioninthehomesetting using simpleandubiquitoussensors.LectureNotesinComputerScience 2004;3001:158–75. [20] WrenC,Munguia-TapiaE.Towardscalableactivityrecognitionforsensor networks.LectureNotesinComputerScience2004;3987:168–85. [21] Heierman, E.,Youngblood,M.,Cook,D.Miningtemporalsequencestodiscover interestingpatterns.In:WorkshoponMiningTemporalandSequentialData, Proceedings ofthe10thACMInternationalConferenceonKnowledgeDis- coveryandDataMining,Seattle,WA,USA;August2004. [22] Yin J,YangQ,ShenD,LiZ.Activityrecognitionviauser-tracesegmentation. ACMTransactionsonSensorNetworks2008;4(4)34pages. [23] StaufferC,GrimsonE.Learningpatternsofactivityusingreal-timetracking. IEEE TransactionsonPatternAnalysisandMachineIntelligence2000;22(8): 747–57. [24] Crandall A,CookD.Copingwithmultipleresidentsinasmartenvironment. Journal ofAmbientIntelligenceandSmartEnvironments2009;1(4):323–34. [25] Crandall, A.,Cook,D.UsingahiddenMarkovmodelforresidentidentification. In: Proceedingsofthe6thInternationalConferenceonIntelligentEnviron- ments, KualaLumpur,Malaysia;July2010:pp.74–79. [26] Rashidi P,CookD.Keepingtheresidentintheloop:adaptingthesmarthome to theuser.IEEETransactionsonSystems,ManandCybernetics,PartA: SystemsandHumans2009;39(5):949–59. [27] Rashidi P,CookD.Anadaptivesensorminingframeworkforpervasive computing applications.LectureNotesinComputerScience2010;5840: 154–74. [28] Kim E,HelalS,CookD.Humanactivityrecognitionandpatterndiscovery.IEEE PervasiveComputing2010;9(1):48–53. [29] Singla G,CookD,Schmitter-EdgecombeM.Trackingactivitiesincomplex settings usingsmartenvironmenttechnologies.InternationalJournalof BioSciences, PsychiatryandTechnology2009;1(1):25–35. [30] Rashidi P,CookD,HolderL,Schmitter-EdgecombeM.Discoveringactivitiesto recognize andtrackinasmartenvironment.IEEETransactionsonKnowledge and DataEngineering2011;23(4):527–39. [31] Knegtering B,BrombacherA.Amethodtopreventexcessivenumbersof MarkovstatesinMarkovmodelsforquantitativesafetyandreliability assessment. ISATransactions2000;39(3):363–9. [32] RouvroyeJ,WiegerinckJ.Minimizingcostswhilemeetingsafetyrequire- ments: modelingdeterministic(imperfect)staggeredtestsusingstandard MarkovmodelsforSILcalculations.ISATransactions2006;45(4):611–21. [33] Rabiner L.AtutorialonhiddenMarkovmodelsandselectedapplicationsin speech recognition.ProceedingsoftheIEEE1989;77(2):158–75. [34] Sujatha K,PappaN.Combustionmonitoringofawatertubeboilerusinga discriminant radialbasisnetwork.ISATransactions2011;50(1):101–10. [35] YenG,LeongW.Faultclassification onvibrationdatawithwaveletbased feature selectionscheme.ISATransactions2006;45(2):141–51. [36] KunduP,PanchariyaP,KunduM.Classification andauthenticationof unknown watersamplesusingmachinelearningalgorithms.ISATransactions 2011;50(3):487–95. H. Fangetal./ISATransactions53(2014)134–140 140