SlideShare a Scribd company logo
1 of 41
Hepatic Physiology
Sabina Sabharwal, MD MPH
Boston Children’s Hospital
Sabina.Sabharwal@childrens.harvard.edu
Content Reviewers
Karen Murray, MD
David Piccoli, MD
NASPGHAN
Physiology Education Series
Series Editors:
Christine Waasdorp Hurtado, MD, MSCS, FAAP
Christine.Waasdorp@childrenscolorado.org
Daniel Kamin, MD
Daniel.Kamin@childrens.harvard.edu
Outline
• Anatomy and blood supply of the liver
• Physiologic immaturity of hepatic function
• Mechanisms of hepatic regeneration
• Hepatic serum protein synthesis
• Hepatic carbohydrate metabolism
• Hepatic fatty acid metabolism
• Biochemical parameters of hepatic integrity
• Pathways of hepatic drug metabolism
• Bilirubin uptake, metabolism, excretion
• Portal hypertension
• Board review questions
Segmental anatomy of the liver
• Couinaud (“French” system)
– based on tranverse plane through bifurcation of mail
portal vein
– Functional lobes divided into total of 8 subsegments
• Caudate 1
• Lateral 2,3
• Medial 4a, 4b
• Right 5,6,7,8
– Caudate lobe is separate, receiving blood flow from R
and L -sided vasculature
Blood supply liver
• Hepatic artery (25%) – oxygenated
• Hepatic portal vein (75%) – deoxygenated blood,
nutrient- rich
• Oxygen comes equally form both sources
• Terminal branches of hepatic portal vein and hepatic
artery empty together and mix entering the liver
• Blood flows through liver sinusoids, empties into
central vein of each lobule
• Central veins coalesce into hepatic veins
• Blood exits liver via hepatic vein and returns to the
heart via IVC, deoxygenated and detoxified
Blood supply and segments of the liver
From Dancygier Clinical Hepatology, Chapter 2. In SpringerImages database (non-commercial use permitted)
Extramedullary hematopoiesis
• Until 32 weeks of gestation in fetal
development, hematopoiesis occurs primarily
by the liver (and also the spleen)
Physiologic Immaturity of hepatic function
• Full maturity of biliary secretion takes up to 2
years after birth to be achieved
• Involves normal expression of signalling pathways
including JAG1 genes, amino acid transport,
insulin growth factors
• Hepatocytes are specialized at birth with 2
surfaces:
– Sinusoidal surface absorbs mixture of oxygenated
blood and nutrients from portal vein
– Other surface delivers bile and products of
conjugation, metabolism to bile canaliculi
Physiologic Immaturity of hepatic function
• With interruption of umbilical supply at birth,
rapid induction of transamination, glutamyl
transferase, coagulation factor synthesis, bile
production and transport
• Preterm infants have immaturity and delay in
achieving normal detoxifying and synthetic
function, risk of hypoxia and sepsis – all
placing them at risk for hepatic
decompensation
Lobule and its zones
• 3 distinct zones of the hepatic acinus:
– Zone 1: periportal hepatocytes
• Hepatocyte regeneration
• Bile duct proliferation
• gluconeogenesis
– Zone 2: mixed function between zones 1 and 3
– Zone 3: borders central vein
• Detoxification
• Glyocolysis
• Hydrolysis
From Shih et al. Journal of Biomed Microdevices 2013 in SpringerImages database ((non-commercial use permitted)
Hepatic Regeneration
• In fully developed liver, only 1/10-20,000
hepatocytes are dividing
• As little as 25% of liver can regenerate a full
liver
• If stimulated, the liver can regenerate rapidly:
– Viruses
– Cirrhosis
– Ischemia
– Trauma
– Partial hepatectomy
Hepatic Regeneration
• Requires new hepatocyte recruitment and
ECM restoration
• IL-6, epidermal growth factor (EGF), TGF-a,
TGF-B hepatocyte growth factor (HGF):
initiation and regulation of regeneration
• EGF works with insulin and glucagon to
promote hepatocyte DNA synthesis
Liver Protein synthesis
• Plasma proteins
– Alpha-fetoprotein (AFP), fibronectin, C-reactive protein, opsonin,
acute phase proteins, globulins
• Hemostasis, fibrinolysis
– All coagulation cascade (except factor VIII – endothelium), alpha1
antitrypsin, antithrombin III, protein C and S, plasminogen,
complement components
• Hormones, prohormones
– IGF-1, thrombopoietin, angiotensinogen
• Carrier proteins
– Albumin, ceruloplasmin, transcortin, haptoglobin, hemopexin, IGF
binding protein, retinol binding protein, sex hormone binding globulin,
thyroxine-binding globulin, tranferrin, vitamin D binding globulin
• Apolipoproteins
– All except apo B48 (intestine)
Taurine
• Conditionally essential amino acid in early life
• Essential amino acid for preterm/newborn infants and
assured by breast milk
• Diet is usual source, but in presence of vitamin B6,
synthesized from methionine and cysteine
• Patients on chronic TPN are at risk of taurine deficiency
and need supplementation
• Also at risk are those with hepatic, cardiac and renal
failure
• Taurine involved in bile acid conjugation and
cholestasis prevention
Hepatic carbohydrate metabolism
• Gluconeogenesis
– Synthesis of glucose from amino acids, lactate,
glycerol
• Glycogenolysis
– Breakdown of glycogen into glucose
• Glycogenesis
– Formation of glycogen from glucose
Fatty acids and lipid transport
• Triglycerides absorbed as free fatty acids (FA), packaged in
chylomicrons/liposomes released through lymphatic system into
the blood and binding to hepatocytes
• Liver processes chylomicron remnants and liposomes into VLDL and
LDL
• FA synthesized by the liver get converted to triglycerides and are
transported into the blood as VLDL
• In peripheral tissue, lioprotein lipase converts VLDL to LDL and free
FA by removing triglycerides
• The remaining VLDL then becomes LDL, absorbed by LDL receptors
• LDL is then converted into free fatty acids, cholesterol
• Liver controls serum cholesterol concentration by removal of LDL
• HDL carries cholesterol from the body back to the liver to be broken
down and excreted
Hepatocyte biochemical parameters
• Hepatocellular injury –
– membranes of hepatocytes become permeable
when damaged
– alanine aminotransferase (ALT) and aspartate
aminotransferase (AST) escape into bloodstream
• Cholestasis –
– obstructed/damaged intra- and extra- hepatic bile
ducts
– induction of alkaline phosphatase and gamma-
glutamyl transferase (GGT)
Hepatic drug metabolism
• Mostly in the smooth endosplasmic reticulum of the liver
• Factors that increase and decrease drug biotransformation affect
enzymes in the Cytochrome P450 monooxygenase system
• Phase 1 (utilized by acetaminophen and steroids)
– Oxidation: cytochrome P450 and flavin-containing monooxygenase,
alcohol and aldehyde dehydrogenase, monoamine oxidase, peroxidase
– Reduction: NADPH P450 reductase, reduced (ferrous) cytochrome
P450
– Hydrolysis: esterase, amidase, epoxide hydrolase
• Phase 2 (detoxifying)
– Conjugation reactions
– Methylation, sulphation, acetylation, glucuronidation, glutathione and
glycine conjugation
Clinical vignette: acetaminophen
toxicity
• Acetaminophen metabolism: normal dose
– Phase II metabolism: sulfate and glucuronide
metabolism
– Cytochrome P450: only 5% of acetaminophen
converted to NAPQI
– NAPQI detoxified via glutathione conjugation to
cysteine and mercapturic acid conjugates
Clinical vignette: acetaminophen
toxicity
• In acetaminophen toxicity:
– Phase II metabolism becomes saturated
– Shunted to P450 pathway
– Glutathione becomes depleted and NAPQI remains in toxic
form
– Damages hepatocyte cell membrane and leads to acute
hepatic necrosis
– Made worse with chronic alcohol use, concomitant use of
anti-epileptics, large amounts of caffeine
– N-acetylcysteine replenishes body stores of glutathione
and is treatment for acetaminophen toxicity
Bilirubin metabolism
• Formed by breakdown of heme (80% from
hemoglobin, 20% from other hemoproteins)
• Heme –via heme oxygenase—biliverdin---via
biliverdin reductase---bilirubin IX alpha
• Heme oxygenase is rate-limiting step in
bilirubin production
• Heme oxygenase is found in Kupffer cells of
the liver and reticuloendothelial cells of the
spleen
Bilirubin metabolism
• Albumin binds to bilirubin, reversible except in states
of bilirubin obstruction/conjugated bilirubinemia
• Albumin-bilirubin complex dissociates in liver sinusoids
where bilirubin is taken up by hepatocytes
• This is via facilitates diffusion, bidirectional
• Defects in transporters in these steps cause
hyperbilirubinemia (eg Gilbert’s)
• Unconjugated hyperbilirubinemia also results from
cirrhosis when bilirubin produced from the spleen
bypasses the liver via portosystemic collaterals
Bilirubin conjugation
• Bilirubin poorly water soluble because of
internal hydrogen bonding which makes it
toxic and prevents its elimination
• Glucuronic acid conjugation of bilirubin makes
it water-soluble and excretable into bile
• Phototherapy in neonatal jaundice produces
configurational and structural bilirubin
photoisomers, excreted into bile without
further metabolism
Bilirubin conjugation
• Mediated by a family of enzymes called uridine-
diphosphoglucuronate glucuronosyltransferase (UGT)
• UGT1A1 is the main enzyme of conjugation
• UGT1A1 deficiency – Gilbert’s and Crigler-Najjar
syndromes
• Inhibition of UGT1A1 can occur via a factor in breast
milk (breast milk jaundice)
• Inhibitory factor from maternal plasma can be
transferred to fetus transplacentally (Lucey Driscoll
syndrome)
– Inhibits UGT1A1 activity in newborn
– Results in unconjugated hyperbilirubinemia
Bilirubin excretion
• Conjugated bilirubin is excreted in bile across
the bile canalicular membrane via active
transport
• 4 types of transporters (eg MRP2, ABCC2)
• Excretion impaired by viral hepatitis,
cholestasis of pregnancy, Dubin-Johnson and
Rotor syndrome
Bilirubin degradation
• 98% of the bile pigment in bile is conjugated and
is water-soluble and will not be absorbed across
lipid membrane of small intestinal epithelium
• Unconjugated fraction is partially reabsorbed
through enterohepatic circulation
• Bilirubin is reduced by bacterial enzymes in the
colon to urobilinoids (urobilinogen and
stercobilinogen)
• Intestinal microflora influence serum bilirubin
levels and antibiotic use can increase serum
bilirubin levels
From Trowers and Tischler Gastrointestinal Physiology 2014 in SpringerImages database (non-commercial use permitted)
Bilirubin metabolism in newborns
• Generally infants not jaundiced at birth because
placenta can clear bilirubin well from the fetal
circulation, but can develop jaundice because
– Bilirubin production in term neonates is 2-3 times
higher than adults because they have more red blood
cells and the the red blood cells have a shorter life
span than in adults
– Bilirubin clearance is decreased in neonates because
of UGT1A1 deficiency and does not achieve adult
levels until 14 weeks of age
– Neonates have an increase in the enterohepatic
circulation of bilirubin
Clinical vignette: breastmilk
jaundice
• Starts at 10-21 days of age (after physiologic
jaundice period)
• Effects 0.5-2.4% of newborns
• Can last 3-12 weeks
• Theory: factor in breast milk is inhibiting
breakdown of bilirubin
• As long as infant is feeding and growing and
bilirubin is being monitored, no reason to stop
breastfeeding
Portal hypertension
• Portal system definition: begins and ends with
capillaries
• Liver portal system: capillaries of intestinal and
splenic mesentery ending in the hepatic sinusoids
• Portal hypertension: elevation of portal blood
pressure >5 mm Hg
• Because of high prevalence of pediatric biliary
disease compared to adult liver disease, portal
hypertension occurs earlier in the course of liver
disease versus hepatic insufficiency
Portal
hypertension
Physiologic porto-systemic
anastomoses. Portal
circulation in blue, systemic
circulation in green
From Moubarak et al. Abdominal Imaging 2012
in SpringerImages database (non-commercial
use permitted)
Portal hypertension
• Combination of increased portal resistance
and/or increased portal blood flow
– Splenomegaly/hypersplenism – congestion
– Esophageal and rectal varices – decompression
through portosystemic collaterals
– Decompression leads to hepatic encephalopathy
and hepatopulmonary syndrome
– Portal hypertension leads to ascites and
complications: peritonitis and hepatorenal
syndrome
Portal hypertension
• Hepatic encephalopathy
– Reversible impairment in neuropsychiatric
function
– Pathogenesis unclear
• Increase in ammonia concentration
• Inhibitory neurotransmitter through GABA receptors in
the CNS
• Changes in central neurotransmitters and amino acids
Portal Hypertension
• Hepatopulmonary syndrome
– Triad: liver disease, impaired oxygenation,
intrapulmonary vascular dilatations
• Hepatorenal syndrome
– Usually from portal hypertension from cirrhosis,
but also in fulminant hepatic failure
– Diagnosis of exclusion of acute renal failure
– Associated with poor prognosis
– Increasingly severe hepatic injury results in
reduction in renal perfusion
Summary
• The liver is organized by its vascular supply
into segments, and has a unique blood supply
that includes arterial and ‘venous’ blood
(portal system) draining the intestine,
pancreas, and spleen.
• The microscopic functional unit is the liver
lobule, composed of hepatocytes, vessels, and
bile ducts, organized in a fashion that
promotes the functions of the liver.
Summary-2
• The liver produces the majority of serum proteins, ranging in
function from albumin to sex hormone binding proteins to
numerous clotting factors.
• Liver glucose storage, breakdown, and generation maintain
serum glucose in a physiologic range
• Serum lipoprotein make up and content is heavily influenced
by liver synthesis and uptake of lipoproteins.
• Drug metabolism occurs in hepatocytes via phase I and/or
phase II enzyme systems– a goal of which is to produce
chemical structures which are excretable in the bile.
Summary-3
• Bilirubin metabolism is a robust example of a
waste product biotransformed into a
substance that can then be excreted in the
bile. Particular enzymes are responsible for
bioconversion and transport.
• Portal hypertension is a pathophysiologic state
established by the existence or development
of resistance to portal blood flow toward the
liver.
Board review question
• A 16 year old female presents to the ER with RUQ abdominal pain, nausea
and malaise. She has a history of depression and seizure disorder. AST and
ALT are greater than 10,000 IU/L. She admits to taking acetaminophen for
a headache the night before. What of the following is true:
• A. checking a serum acetaminophen level before 4 hours of ingestion is
generally helpful
• B. Concomitant use of anti-epileptic medications is protective for her liver
• C. If the patient has presented less than 8 hours of ingestion, NAC reduces
risk of hepatotoxicity and improves survival
• D. all of the above
Board review question
• A 3 day old full term breast-fed infant is noted to
have jaundice. He is otherwise behaving normally
and has normal-colored urine and stools. There was
no ABO or Rh incompatibility. The most likely reason
for the jaundice is:
• A. biliary atresia
• B. a factor in the maternal breast milk that is
inhibiting UGT1A1
• C. inadequate milk intake and dehydration
• D. none of the above
Please send any questions or comments to:
•Christine.waasdorp@childrenscolorado.org
or
•Daniel.Kamin@childrens.harvard.edu

More Related Content

Similar to Hepatic_Physiology_NASPGHAN_Final (3).ppt

Metabolic 5 5-2013
Metabolic 5 5-2013Metabolic 5 5-2013
Metabolic 5 5-2013Azad Haleem
 
Diagnosis & Management of Hypoglycemia in Children
Diagnosis & Management of Hypoglycemia in ChildrenDiagnosis & Management of Hypoglycemia in Children
Diagnosis & Management of Hypoglycemia in ChildrenAzad Haleem
 
Biochemical functions of Liver.pptx
Biochemical functions of Liver.pptxBiochemical functions of Liver.pptx
Biochemical functions of Liver.pptxHamidhussain73
 
liver function test for mbbbs
liver function test  for mbbbsliver function test  for mbbbs
liver function test for mbbbsbinaya tamang
 
Digestion biochemistry
Digestion biochemistryDigestion biochemistry
Digestion biochemistrysantusan
 
Malabsorption syndrome ppt
Malabsorption syndrome pptMalabsorption syndrome ppt
Malabsorption syndrome pptmissmarimo
 
Liver Function Tests
Liver Function TestsLiver Function Tests
Liver Function TestsBadhri Nath
 
Jaundice & cholestatic liver diseases
Jaundice & cholestatic liver diseasesJaundice & cholestatic liver diseases
Jaundice & cholestatic liver diseasesTty Lim
 
digestion of carbohydrates proteins fats.pptx
digestion of carbohydrates proteins fats.pptxdigestion of carbohydrates proteins fats.pptx
digestion of carbohydrates proteins fats.pptxAbhiramKoganti1
 
Liver function tests
Liver function testsLiver function tests
Liver function testsRishabh Gupta
 
Evaluation of liver function and hyperbilirubinemias
Evaluation of liver function and hyperbilirubinemiasEvaluation of liver function and hyperbilirubinemias
Evaluation of liver function and hyperbilirubinemiasDeepujjwal
 
Heme Catabolism and Degradation Pathway #Bilirubin metabolism
 Heme Catabolism and Degradation Pathway #Bilirubin metabolism Heme Catabolism and Degradation Pathway #Bilirubin metabolism
Heme Catabolism and Degradation Pathway #Bilirubin metabolismAHLAD T.O
 
Liver diseases yakrut vikara
Liver diseases  yakrut vikaraLiver diseases  yakrut vikara
Liver diseases yakrut vikaraPrathamesh Karpe
 

Similar to Hepatic_Physiology_NASPGHAN_Final (3).ppt (20)

Liver function tests
Liver function testsLiver function tests
Liver function tests
 
Metabolic 5 5-2013
Metabolic 5 5-2013Metabolic 5 5-2013
Metabolic 5 5-2013
 
Diagnosis & Management of Hypoglycemia in Children
Diagnosis & Management of Hypoglycemia in ChildrenDiagnosis & Management of Hypoglycemia in Children
Diagnosis & Management of Hypoglycemia in Children
 
Biochemical functions of Liver.pptx
Biochemical functions of Liver.pptxBiochemical functions of Liver.pptx
Biochemical functions of Liver.pptx
 
liver function test for mbbbs
liver function test  for mbbbsliver function test  for mbbbs
liver function test for mbbbs
 
Digestion biochemistry
Digestion biochemistryDigestion biochemistry
Digestion biochemistry
 
Malabsorption syndrome ppt
Malabsorption syndrome pptMalabsorption syndrome ppt
Malabsorption syndrome ppt
 
Liver Function Tests
Liver Function TestsLiver Function Tests
Liver Function Tests
 
Bilirubin metabolism
Bilirubin metabolismBilirubin metabolism
Bilirubin metabolism
 
Jaundice & cholestatic liver diseases
Jaundice & cholestatic liver diseasesJaundice & cholestatic liver diseases
Jaundice & cholestatic liver diseases
 
digestion of carbohydrates proteins fats.pptx
digestion of carbohydrates proteins fats.pptxdigestion of carbohydrates proteins fats.pptx
digestion of carbohydrates proteins fats.pptx
 
Liver function tests
Liver function testsLiver function tests
Liver function tests
 
JAUNDICE.pptx
JAUNDICE.pptxJAUNDICE.pptx
JAUNDICE.pptx
 
Pancreas
PancreasPancreas
Pancreas
 
Evaluation of liver function and hyperbilirubinemias
Evaluation of liver function and hyperbilirubinemiasEvaluation of liver function and hyperbilirubinemias
Evaluation of liver function and hyperbilirubinemias
 
PPT LFT 1.pptx
PPT LFT 1.pptxPPT LFT 1.pptx
PPT LFT 1.pptx
 
Liver function test
Liver function testLiver function test
Liver function test
 
Heme Catabolism and Degradation Pathway #Bilirubin metabolism
 Heme Catabolism and Degradation Pathway #Bilirubin metabolism Heme Catabolism and Degradation Pathway #Bilirubin metabolism
Heme Catabolism and Degradation Pathway #Bilirubin metabolism
 
Liver diseases yakrut vikara
Liver diseases  yakrut vikaraLiver diseases  yakrut vikara
Liver diseases yakrut vikara
 
Liver function tests
Liver function testsLiver function tests
Liver function tests
 

Recently uploaded

indian Call Girl Panchkula ❤️🍑 9907093804 Low Rate Call Girls Ludhiana Tulsi
indian Call Girl Panchkula ❤️🍑 9907093804 Low Rate Call Girls Ludhiana Tulsiindian Call Girl Panchkula ❤️🍑 9907093804 Low Rate Call Girls Ludhiana Tulsi
indian Call Girl Panchkula ❤️🍑 9907093804 Low Rate Call Girls Ludhiana TulsiHigh Profile Call Girls Chandigarh Aarushi
 
💚😋Chandigarh Escort Service Call Girls, ₹5000 To 25K With AC💚😋
💚😋Chandigarh Escort Service Call Girls, ₹5000 To 25K With AC💚😋💚😋Chandigarh Escort Service Call Girls, ₹5000 To 25K With AC💚😋
💚😋Chandigarh Escort Service Call Girls, ₹5000 To 25K With AC💚😋Sheetaleventcompany
 
Enjoyment ★ 8854095900 Indian Call Girls In Dehradun 🍆🍌 By Dehradun Call Girl ★
Enjoyment ★ 8854095900 Indian Call Girls In Dehradun 🍆🍌 By Dehradun Call Girl ★Enjoyment ★ 8854095900 Indian Call Girls In Dehradun 🍆🍌 By Dehradun Call Girl ★
Enjoyment ★ 8854095900 Indian Call Girls In Dehradun 🍆🍌 By Dehradun Call Girl ★indiancallgirl4rent
 
💚😋Kolkata Escort Service Call Girls, ₹5000 To 25K With AC💚😋
💚😋Kolkata Escort Service Call Girls, ₹5000 To 25K With AC💚😋💚😋Kolkata Escort Service Call Girls, ₹5000 To 25K With AC💚😋
💚😋Kolkata Escort Service Call Girls, ₹5000 To 25K With AC💚😋Sheetaleventcompany
 
VIP Call Girls Sector 67 Gurgaon Just Call Me 9711199012
VIP Call Girls Sector 67 Gurgaon Just Call Me 9711199012VIP Call Girls Sector 67 Gurgaon Just Call Me 9711199012
VIP Call Girls Sector 67 Gurgaon Just Call Me 9711199012Call Girls Service Gurgaon
 
Call Girls Service Chandigarh Gori WhatsApp ❤7710465962 VIP Call Girls Chandi...
Call Girls Service Chandigarh Gori WhatsApp ❤7710465962 VIP Call Girls Chandi...Call Girls Service Chandigarh Gori WhatsApp ❤7710465962 VIP Call Girls Chandi...
Call Girls Service Chandigarh Gori WhatsApp ❤7710465962 VIP Call Girls Chandi...Niamh verma
 
Call Girls Hyderabad Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Hyderabad Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Hyderabad Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Hyderabad Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Call Girls Service Faridabad 📲 9999965857 ヅ10k NiGhT Call Girls In Faridabad
Call Girls Service Faridabad 📲 9999965857 ヅ10k NiGhT Call Girls In FaridabadCall Girls Service Faridabad 📲 9999965857 ヅ10k NiGhT Call Girls In Faridabad
Call Girls Service Faridabad 📲 9999965857 ヅ10k NiGhT Call Girls In Faridabadgragmanisha42
 
Call Girl Raipur 📲 9999965857 ヅ10k NiGhT Call Girls In Raipur
Call Girl Raipur 📲 9999965857 ヅ10k NiGhT Call Girls In RaipurCall Girl Raipur 📲 9999965857 ヅ10k NiGhT Call Girls In Raipur
Call Girl Raipur 📲 9999965857 ヅ10k NiGhT Call Girls In Raipurgragmanisha42
 
No Advance 9053900678 Chandigarh Call Girls , Indian Call Girls For Full Ni...
No Advance 9053900678 Chandigarh  Call Girls , Indian Call Girls  For Full Ni...No Advance 9053900678 Chandigarh  Call Girls , Indian Call Girls  For Full Ni...
No Advance 9053900678 Chandigarh Call Girls , Indian Call Girls For Full Ni...Vip call girls In Chandigarh
 
Call Girls Amritsar 💯Call Us 🔝 8725944379 🔝 💃 Independent Escort Service Amri...
Call Girls Amritsar 💯Call Us 🔝 8725944379 🔝 💃 Independent Escort Service Amri...Call Girls Amritsar 💯Call Us 🔝 8725944379 🔝 💃 Independent Escort Service Amri...
Call Girls Amritsar 💯Call Us 🔝 8725944379 🔝 💃 Independent Escort Service Amri...Niamh verma
 
Vip sexy Call Girls Service In Sector 137,9999965857 Young Female Escorts Ser...
Vip sexy Call Girls Service In Sector 137,9999965857 Young Female Escorts Ser...Vip sexy Call Girls Service In Sector 137,9999965857 Young Female Escorts Ser...
Vip sexy Call Girls Service In Sector 137,9999965857 Young Female Escorts Ser...Call Girls Noida
 
❤️♀️@ Jaipur Call Girl Agency ❤️♀️@ Manjeet Russian Call Girls Service in Jai...
❤️♀️@ Jaipur Call Girl Agency ❤️♀️@ Manjeet Russian Call Girls Service in Jai...❤️♀️@ Jaipur Call Girl Agency ❤️♀️@ Manjeet Russian Call Girls Service in Jai...
❤️♀️@ Jaipur Call Girl Agency ❤️♀️@ Manjeet Russian Call Girls Service in Jai...Gfnyt.com
 
💚😋Mumbai Escort Service Call Girls, ₹5000 To 25K With AC💚😋
💚😋Mumbai Escort Service Call Girls, ₹5000 To 25K With AC💚😋💚😋Mumbai Escort Service Call Girls, ₹5000 To 25K With AC💚😋
💚😋Mumbai Escort Service Call Girls, ₹5000 To 25K With AC💚😋Sheetaleventcompany
 
Nepali Escort Girl * 9999965857 Naughty Call Girls Service in Faridabad
Nepali Escort Girl * 9999965857 Naughty Call Girls Service in FaridabadNepali Escort Girl * 9999965857 Naughty Call Girls Service in Faridabad
Nepali Escort Girl * 9999965857 Naughty Call Girls Service in Faridabadgragteena
 
Bangalore call girl 👯‍♀️@ Simran Independent Call Girls in Bangalore GIUXUZ...
Bangalore call girl  👯‍♀️@ Simran Independent Call Girls in Bangalore  GIUXUZ...Bangalore call girl  👯‍♀️@ Simran Independent Call Girls in Bangalore  GIUXUZ...
Bangalore call girl 👯‍♀️@ Simran Independent Call Girls in Bangalore GIUXUZ...Gfnyt
 
VIP Call Girl Sector 32 Noida Just Book Me 9711199171
VIP Call Girl Sector 32 Noida Just Book Me 9711199171VIP Call Girl Sector 32 Noida Just Book Me 9711199171
VIP Call Girl Sector 32 Noida Just Book Me 9711199171Call Girls Service Gurgaon
 
VIP Kolkata Call Girl New Town 👉 8250192130 Available With Room
VIP Kolkata Call Girl New Town 👉 8250192130  Available With RoomVIP Kolkata Call Girl New Town 👉 8250192130  Available With Room
VIP Kolkata Call Girl New Town 👉 8250192130 Available With Roomdivyansh0kumar0
 

Recently uploaded (20)

indian Call Girl Panchkula ❤️🍑 9907093804 Low Rate Call Girls Ludhiana Tulsi
indian Call Girl Panchkula ❤️🍑 9907093804 Low Rate Call Girls Ludhiana Tulsiindian Call Girl Panchkula ❤️🍑 9907093804 Low Rate Call Girls Ludhiana Tulsi
indian Call Girl Panchkula ❤️🍑 9907093804 Low Rate Call Girls Ludhiana Tulsi
 
Model Call Girl in Subhash Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Subhash Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Subhash Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Subhash Nagar Delhi reach out to us at 🔝9953056974🔝
 
💚😋Chandigarh Escort Service Call Girls, ₹5000 To 25K With AC💚😋
💚😋Chandigarh Escort Service Call Girls, ₹5000 To 25K With AC💚😋💚😋Chandigarh Escort Service Call Girls, ₹5000 To 25K With AC💚😋
💚😋Chandigarh Escort Service Call Girls, ₹5000 To 25K With AC💚😋
 
Enjoyment ★ 8854095900 Indian Call Girls In Dehradun 🍆🍌 By Dehradun Call Girl ★
Enjoyment ★ 8854095900 Indian Call Girls In Dehradun 🍆🍌 By Dehradun Call Girl ★Enjoyment ★ 8854095900 Indian Call Girls In Dehradun 🍆🍌 By Dehradun Call Girl ★
Enjoyment ★ 8854095900 Indian Call Girls In Dehradun 🍆🍌 By Dehradun Call Girl ★
 
💚😋Kolkata Escort Service Call Girls, ₹5000 To 25K With AC💚😋
💚😋Kolkata Escort Service Call Girls, ₹5000 To 25K With AC💚😋💚😋Kolkata Escort Service Call Girls, ₹5000 To 25K With AC💚😋
💚😋Kolkata Escort Service Call Girls, ₹5000 To 25K With AC💚😋
 
VIP Call Girls Sector 67 Gurgaon Just Call Me 9711199012
VIP Call Girls Sector 67 Gurgaon Just Call Me 9711199012VIP Call Girls Sector 67 Gurgaon Just Call Me 9711199012
VIP Call Girls Sector 67 Gurgaon Just Call Me 9711199012
 
Call Girls Service Chandigarh Gori WhatsApp ❤7710465962 VIP Call Girls Chandi...
Call Girls Service Chandigarh Gori WhatsApp ❤7710465962 VIP Call Girls Chandi...Call Girls Service Chandigarh Gori WhatsApp ❤7710465962 VIP Call Girls Chandi...
Call Girls Service Chandigarh Gori WhatsApp ❤7710465962 VIP Call Girls Chandi...
 
Call Girls Hyderabad Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Hyderabad Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Hyderabad Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Hyderabad Just Call 9907093804 Top Class Call Girl Service Available
 
Call Girls Service Faridabad 📲 9999965857 ヅ10k NiGhT Call Girls In Faridabad
Call Girls Service Faridabad 📲 9999965857 ヅ10k NiGhT Call Girls In FaridabadCall Girls Service Faridabad 📲 9999965857 ヅ10k NiGhT Call Girls In Faridabad
Call Girls Service Faridabad 📲 9999965857 ヅ10k NiGhT Call Girls In Faridabad
 
Call Girl Raipur 📲 9999965857 ヅ10k NiGhT Call Girls In Raipur
Call Girl Raipur 📲 9999965857 ヅ10k NiGhT Call Girls In RaipurCall Girl Raipur 📲 9999965857 ヅ10k NiGhT Call Girls In Raipur
Call Girl Raipur 📲 9999965857 ヅ10k NiGhT Call Girls In Raipur
 
No Advance 9053900678 Chandigarh Call Girls , Indian Call Girls For Full Ni...
No Advance 9053900678 Chandigarh  Call Girls , Indian Call Girls  For Full Ni...No Advance 9053900678 Chandigarh  Call Girls , Indian Call Girls  For Full Ni...
No Advance 9053900678 Chandigarh Call Girls , Indian Call Girls For Full Ni...
 
Call Girls Amritsar 💯Call Us 🔝 8725944379 🔝 💃 Independent Escort Service Amri...
Call Girls Amritsar 💯Call Us 🔝 8725944379 🔝 💃 Independent Escort Service Amri...Call Girls Amritsar 💯Call Us 🔝 8725944379 🔝 💃 Independent Escort Service Amri...
Call Girls Amritsar 💯Call Us 🔝 8725944379 🔝 💃 Independent Escort Service Amri...
 
(ILA) Call Girls in Kolkata Call Now 8617697112 Kolkata Escorts
(ILA) Call Girls in Kolkata Call Now 8617697112 Kolkata Escorts(ILA) Call Girls in Kolkata Call Now 8617697112 Kolkata Escorts
(ILA) Call Girls in Kolkata Call Now 8617697112 Kolkata Escorts
 
Vip sexy Call Girls Service In Sector 137,9999965857 Young Female Escorts Ser...
Vip sexy Call Girls Service In Sector 137,9999965857 Young Female Escorts Ser...Vip sexy Call Girls Service In Sector 137,9999965857 Young Female Escorts Ser...
Vip sexy Call Girls Service In Sector 137,9999965857 Young Female Escorts Ser...
 
❤️♀️@ Jaipur Call Girl Agency ❤️♀️@ Manjeet Russian Call Girls Service in Jai...
❤️♀️@ Jaipur Call Girl Agency ❤️♀️@ Manjeet Russian Call Girls Service in Jai...❤️♀️@ Jaipur Call Girl Agency ❤️♀️@ Manjeet Russian Call Girls Service in Jai...
❤️♀️@ Jaipur Call Girl Agency ❤️♀️@ Manjeet Russian Call Girls Service in Jai...
 
💚😋Mumbai Escort Service Call Girls, ₹5000 To 25K With AC💚😋
💚😋Mumbai Escort Service Call Girls, ₹5000 To 25K With AC💚😋💚😋Mumbai Escort Service Call Girls, ₹5000 To 25K With AC💚😋
💚😋Mumbai Escort Service Call Girls, ₹5000 To 25K With AC💚😋
 
Nepali Escort Girl * 9999965857 Naughty Call Girls Service in Faridabad
Nepali Escort Girl * 9999965857 Naughty Call Girls Service in FaridabadNepali Escort Girl * 9999965857 Naughty Call Girls Service in Faridabad
Nepali Escort Girl * 9999965857 Naughty Call Girls Service in Faridabad
 
Bangalore call girl 👯‍♀️@ Simran Independent Call Girls in Bangalore GIUXUZ...
Bangalore call girl  👯‍♀️@ Simran Independent Call Girls in Bangalore  GIUXUZ...Bangalore call girl  👯‍♀️@ Simran Independent Call Girls in Bangalore  GIUXUZ...
Bangalore call girl 👯‍♀️@ Simran Independent Call Girls in Bangalore GIUXUZ...
 
VIP Call Girl Sector 32 Noida Just Book Me 9711199171
VIP Call Girl Sector 32 Noida Just Book Me 9711199171VIP Call Girl Sector 32 Noida Just Book Me 9711199171
VIP Call Girl Sector 32 Noida Just Book Me 9711199171
 
VIP Kolkata Call Girl New Town 👉 8250192130 Available With Room
VIP Kolkata Call Girl New Town 👉 8250192130  Available With RoomVIP Kolkata Call Girl New Town 👉 8250192130  Available With Room
VIP Kolkata Call Girl New Town 👉 8250192130 Available With Room
 

Hepatic_Physiology_NASPGHAN_Final (3).ppt

  • 1. Hepatic Physiology Sabina Sabharwal, MD MPH Boston Children’s Hospital Sabina.Sabharwal@childrens.harvard.edu Content Reviewers Karen Murray, MD David Piccoli, MD
  • 2. NASPGHAN Physiology Education Series Series Editors: Christine Waasdorp Hurtado, MD, MSCS, FAAP Christine.Waasdorp@childrenscolorado.org Daniel Kamin, MD Daniel.Kamin@childrens.harvard.edu
  • 3. Outline • Anatomy and blood supply of the liver • Physiologic immaturity of hepatic function • Mechanisms of hepatic regeneration • Hepatic serum protein synthesis • Hepatic carbohydrate metabolism • Hepatic fatty acid metabolism • Biochemical parameters of hepatic integrity • Pathways of hepatic drug metabolism • Bilirubin uptake, metabolism, excretion • Portal hypertension • Board review questions
  • 4. Segmental anatomy of the liver • Couinaud (“French” system) – based on tranverse plane through bifurcation of mail portal vein – Functional lobes divided into total of 8 subsegments • Caudate 1 • Lateral 2,3 • Medial 4a, 4b • Right 5,6,7,8 – Caudate lobe is separate, receiving blood flow from R and L -sided vasculature
  • 5. Blood supply liver • Hepatic artery (25%) – oxygenated • Hepatic portal vein (75%) – deoxygenated blood, nutrient- rich • Oxygen comes equally form both sources • Terminal branches of hepatic portal vein and hepatic artery empty together and mix entering the liver • Blood flows through liver sinusoids, empties into central vein of each lobule • Central veins coalesce into hepatic veins • Blood exits liver via hepatic vein and returns to the heart via IVC, deoxygenated and detoxified
  • 6. Blood supply and segments of the liver From Dancygier Clinical Hepatology, Chapter 2. In SpringerImages database (non-commercial use permitted)
  • 7. Extramedullary hematopoiesis • Until 32 weeks of gestation in fetal development, hematopoiesis occurs primarily by the liver (and also the spleen)
  • 8. Physiologic Immaturity of hepatic function • Full maturity of biliary secretion takes up to 2 years after birth to be achieved • Involves normal expression of signalling pathways including JAG1 genes, amino acid transport, insulin growth factors • Hepatocytes are specialized at birth with 2 surfaces: – Sinusoidal surface absorbs mixture of oxygenated blood and nutrients from portal vein – Other surface delivers bile and products of conjugation, metabolism to bile canaliculi
  • 9. Physiologic Immaturity of hepatic function • With interruption of umbilical supply at birth, rapid induction of transamination, glutamyl transferase, coagulation factor synthesis, bile production and transport • Preterm infants have immaturity and delay in achieving normal detoxifying and synthetic function, risk of hypoxia and sepsis – all placing them at risk for hepatic decompensation
  • 10. Lobule and its zones • 3 distinct zones of the hepatic acinus: – Zone 1: periportal hepatocytes • Hepatocyte regeneration • Bile duct proliferation • gluconeogenesis – Zone 2: mixed function between zones 1 and 3 – Zone 3: borders central vein • Detoxification • Glyocolysis • Hydrolysis
  • 11. From Shih et al. Journal of Biomed Microdevices 2013 in SpringerImages database ((non-commercial use permitted)
  • 12. Hepatic Regeneration • In fully developed liver, only 1/10-20,000 hepatocytes are dividing • As little as 25% of liver can regenerate a full liver • If stimulated, the liver can regenerate rapidly: – Viruses – Cirrhosis – Ischemia – Trauma – Partial hepatectomy
  • 13. Hepatic Regeneration • Requires new hepatocyte recruitment and ECM restoration • IL-6, epidermal growth factor (EGF), TGF-a, TGF-B hepatocyte growth factor (HGF): initiation and regulation of regeneration • EGF works with insulin and glucagon to promote hepatocyte DNA synthesis
  • 14. Liver Protein synthesis • Plasma proteins – Alpha-fetoprotein (AFP), fibronectin, C-reactive protein, opsonin, acute phase proteins, globulins • Hemostasis, fibrinolysis – All coagulation cascade (except factor VIII – endothelium), alpha1 antitrypsin, antithrombin III, protein C and S, plasminogen, complement components • Hormones, prohormones – IGF-1, thrombopoietin, angiotensinogen • Carrier proteins – Albumin, ceruloplasmin, transcortin, haptoglobin, hemopexin, IGF binding protein, retinol binding protein, sex hormone binding globulin, thyroxine-binding globulin, tranferrin, vitamin D binding globulin • Apolipoproteins – All except apo B48 (intestine)
  • 15. Taurine • Conditionally essential amino acid in early life • Essential amino acid for preterm/newborn infants and assured by breast milk • Diet is usual source, but in presence of vitamin B6, synthesized from methionine and cysteine • Patients on chronic TPN are at risk of taurine deficiency and need supplementation • Also at risk are those with hepatic, cardiac and renal failure • Taurine involved in bile acid conjugation and cholestasis prevention
  • 16. Hepatic carbohydrate metabolism • Gluconeogenesis – Synthesis of glucose from amino acids, lactate, glycerol • Glycogenolysis – Breakdown of glycogen into glucose • Glycogenesis – Formation of glycogen from glucose
  • 17. Fatty acids and lipid transport • Triglycerides absorbed as free fatty acids (FA), packaged in chylomicrons/liposomes released through lymphatic system into the blood and binding to hepatocytes • Liver processes chylomicron remnants and liposomes into VLDL and LDL • FA synthesized by the liver get converted to triglycerides and are transported into the blood as VLDL • In peripheral tissue, lioprotein lipase converts VLDL to LDL and free FA by removing triglycerides • The remaining VLDL then becomes LDL, absorbed by LDL receptors • LDL is then converted into free fatty acids, cholesterol • Liver controls serum cholesterol concentration by removal of LDL • HDL carries cholesterol from the body back to the liver to be broken down and excreted
  • 18. Hepatocyte biochemical parameters • Hepatocellular injury – – membranes of hepatocytes become permeable when damaged – alanine aminotransferase (ALT) and aspartate aminotransferase (AST) escape into bloodstream • Cholestasis – – obstructed/damaged intra- and extra- hepatic bile ducts – induction of alkaline phosphatase and gamma- glutamyl transferase (GGT)
  • 19. Hepatic drug metabolism • Mostly in the smooth endosplasmic reticulum of the liver • Factors that increase and decrease drug biotransformation affect enzymes in the Cytochrome P450 monooxygenase system • Phase 1 (utilized by acetaminophen and steroids) – Oxidation: cytochrome P450 and flavin-containing monooxygenase, alcohol and aldehyde dehydrogenase, monoamine oxidase, peroxidase – Reduction: NADPH P450 reductase, reduced (ferrous) cytochrome P450 – Hydrolysis: esterase, amidase, epoxide hydrolase • Phase 2 (detoxifying) – Conjugation reactions – Methylation, sulphation, acetylation, glucuronidation, glutathione and glycine conjugation
  • 20. Clinical vignette: acetaminophen toxicity • Acetaminophen metabolism: normal dose – Phase II metabolism: sulfate and glucuronide metabolism – Cytochrome P450: only 5% of acetaminophen converted to NAPQI – NAPQI detoxified via glutathione conjugation to cysteine and mercapturic acid conjugates
  • 21. Clinical vignette: acetaminophen toxicity • In acetaminophen toxicity: – Phase II metabolism becomes saturated – Shunted to P450 pathway – Glutathione becomes depleted and NAPQI remains in toxic form – Damages hepatocyte cell membrane and leads to acute hepatic necrosis – Made worse with chronic alcohol use, concomitant use of anti-epileptics, large amounts of caffeine – N-acetylcysteine replenishes body stores of glutathione and is treatment for acetaminophen toxicity
  • 22. Bilirubin metabolism • Formed by breakdown of heme (80% from hemoglobin, 20% from other hemoproteins) • Heme –via heme oxygenase—biliverdin---via biliverdin reductase---bilirubin IX alpha • Heme oxygenase is rate-limiting step in bilirubin production • Heme oxygenase is found in Kupffer cells of the liver and reticuloendothelial cells of the spleen
  • 23. Bilirubin metabolism • Albumin binds to bilirubin, reversible except in states of bilirubin obstruction/conjugated bilirubinemia • Albumin-bilirubin complex dissociates in liver sinusoids where bilirubin is taken up by hepatocytes • This is via facilitates diffusion, bidirectional • Defects in transporters in these steps cause hyperbilirubinemia (eg Gilbert’s) • Unconjugated hyperbilirubinemia also results from cirrhosis when bilirubin produced from the spleen bypasses the liver via portosystemic collaterals
  • 24. Bilirubin conjugation • Bilirubin poorly water soluble because of internal hydrogen bonding which makes it toxic and prevents its elimination • Glucuronic acid conjugation of bilirubin makes it water-soluble and excretable into bile • Phototherapy in neonatal jaundice produces configurational and structural bilirubin photoisomers, excreted into bile without further metabolism
  • 25. Bilirubin conjugation • Mediated by a family of enzymes called uridine- diphosphoglucuronate glucuronosyltransferase (UGT) • UGT1A1 is the main enzyme of conjugation • UGT1A1 deficiency – Gilbert’s and Crigler-Najjar syndromes • Inhibition of UGT1A1 can occur via a factor in breast milk (breast milk jaundice) • Inhibitory factor from maternal plasma can be transferred to fetus transplacentally (Lucey Driscoll syndrome) – Inhibits UGT1A1 activity in newborn – Results in unconjugated hyperbilirubinemia
  • 26. Bilirubin excretion • Conjugated bilirubin is excreted in bile across the bile canalicular membrane via active transport • 4 types of transporters (eg MRP2, ABCC2) • Excretion impaired by viral hepatitis, cholestasis of pregnancy, Dubin-Johnson and Rotor syndrome
  • 27. Bilirubin degradation • 98% of the bile pigment in bile is conjugated and is water-soluble and will not be absorbed across lipid membrane of small intestinal epithelium • Unconjugated fraction is partially reabsorbed through enterohepatic circulation • Bilirubin is reduced by bacterial enzymes in the colon to urobilinoids (urobilinogen and stercobilinogen) • Intestinal microflora influence serum bilirubin levels and antibiotic use can increase serum bilirubin levels
  • 28. From Trowers and Tischler Gastrointestinal Physiology 2014 in SpringerImages database (non-commercial use permitted)
  • 29. Bilirubin metabolism in newborns • Generally infants not jaundiced at birth because placenta can clear bilirubin well from the fetal circulation, but can develop jaundice because – Bilirubin production in term neonates is 2-3 times higher than adults because they have more red blood cells and the the red blood cells have a shorter life span than in adults – Bilirubin clearance is decreased in neonates because of UGT1A1 deficiency and does not achieve adult levels until 14 weeks of age – Neonates have an increase in the enterohepatic circulation of bilirubin
  • 30. Clinical vignette: breastmilk jaundice • Starts at 10-21 days of age (after physiologic jaundice period) • Effects 0.5-2.4% of newborns • Can last 3-12 weeks • Theory: factor in breast milk is inhibiting breakdown of bilirubin • As long as infant is feeding and growing and bilirubin is being monitored, no reason to stop breastfeeding
  • 31. Portal hypertension • Portal system definition: begins and ends with capillaries • Liver portal system: capillaries of intestinal and splenic mesentery ending in the hepatic sinusoids • Portal hypertension: elevation of portal blood pressure >5 mm Hg • Because of high prevalence of pediatric biliary disease compared to adult liver disease, portal hypertension occurs earlier in the course of liver disease versus hepatic insufficiency
  • 32. Portal hypertension Physiologic porto-systemic anastomoses. Portal circulation in blue, systemic circulation in green From Moubarak et al. Abdominal Imaging 2012 in SpringerImages database (non-commercial use permitted)
  • 33. Portal hypertension • Combination of increased portal resistance and/or increased portal blood flow – Splenomegaly/hypersplenism – congestion – Esophageal and rectal varices – decompression through portosystemic collaterals – Decompression leads to hepatic encephalopathy and hepatopulmonary syndrome – Portal hypertension leads to ascites and complications: peritonitis and hepatorenal syndrome
  • 34. Portal hypertension • Hepatic encephalopathy – Reversible impairment in neuropsychiatric function – Pathogenesis unclear • Increase in ammonia concentration • Inhibitory neurotransmitter through GABA receptors in the CNS • Changes in central neurotransmitters and amino acids
  • 35. Portal Hypertension • Hepatopulmonary syndrome – Triad: liver disease, impaired oxygenation, intrapulmonary vascular dilatations • Hepatorenal syndrome – Usually from portal hypertension from cirrhosis, but also in fulminant hepatic failure – Diagnosis of exclusion of acute renal failure – Associated with poor prognosis – Increasingly severe hepatic injury results in reduction in renal perfusion
  • 36. Summary • The liver is organized by its vascular supply into segments, and has a unique blood supply that includes arterial and ‘venous’ blood (portal system) draining the intestine, pancreas, and spleen. • The microscopic functional unit is the liver lobule, composed of hepatocytes, vessels, and bile ducts, organized in a fashion that promotes the functions of the liver.
  • 37. Summary-2 • The liver produces the majority of serum proteins, ranging in function from albumin to sex hormone binding proteins to numerous clotting factors. • Liver glucose storage, breakdown, and generation maintain serum glucose in a physiologic range • Serum lipoprotein make up and content is heavily influenced by liver synthesis and uptake of lipoproteins. • Drug metabolism occurs in hepatocytes via phase I and/or phase II enzyme systems– a goal of which is to produce chemical structures which are excretable in the bile.
  • 38. Summary-3 • Bilirubin metabolism is a robust example of a waste product biotransformed into a substance that can then be excreted in the bile. Particular enzymes are responsible for bioconversion and transport. • Portal hypertension is a pathophysiologic state established by the existence or development of resistance to portal blood flow toward the liver.
  • 39. Board review question • A 16 year old female presents to the ER with RUQ abdominal pain, nausea and malaise. She has a history of depression and seizure disorder. AST and ALT are greater than 10,000 IU/L. She admits to taking acetaminophen for a headache the night before. What of the following is true: • A. checking a serum acetaminophen level before 4 hours of ingestion is generally helpful • B. Concomitant use of anti-epileptic medications is protective for her liver • C. If the patient has presented less than 8 hours of ingestion, NAC reduces risk of hepatotoxicity and improves survival • D. all of the above
  • 40. Board review question • A 3 day old full term breast-fed infant is noted to have jaundice. He is otherwise behaving normally and has normal-colored urine and stools. There was no ABO or Rh incompatibility. The most likely reason for the jaundice is: • A. biliary atresia • B. a factor in the maternal breast milk that is inhibiting UGT1A1 • C. inadequate milk intake and dehydration • D. none of the above
  • 41. Please send any questions or comments to: •Christine.waasdorp@childrenscolorado.org or •Daniel.Kamin@childrens.harvard.edu

Editor's Notes

  1. This is a lecture series created by faculty from Children’s Hospital Colorado, Boston’s Children’s, Morgan Stanley Children’s Hospital of New York,  and UCLA Children’s, and supported by NASPGHAN. To maximize the effectiveness of the physiology series, the text document should be reviewed by lecture attendees before presentation of the PowerPoint.  We encourage faculty and fellows to modify the content to meet their educational goals. Thanks to NASPGHAN for supporting this educational tool. Christine Waasdorp Hurtado, MD and Daniel Kamin, MD
  2. http://www.springerimages.com.ezp-prod1.hul.harvard.edu/terms-of-use.aspx
  3. http://www.springerimages.com.ezp-prod1.hul.harvard.edu/terms-of-use.aspx
  4. http://www.springerimages.com.ezp-prod1.hul.harvard.edu/terms-of-use.aspx
  5. http://www.springerimages.com.ezp-prod1.hul.harvard.edu/terms-of-use.aspx
  6. Correct answer C. A is not preferred answer because the serum level may continue to rise within 4 hours of acetaminophen ingestion. B is not preferred because such medications may upregulate Phase I reactions, resulting in increased production of the toxic acetaminophen metabolite NAPQI. C is preferred because n-acetylcysteine (NAC) administered within 8 hours of overdose nearly always prevents hepatic injury because NAC replenishes glutathione in the liver, re-establishing conjugation of NAPQI via glutathione transferase.
  7. The correct answer s D, none of the above. A is not preferred because biliary atresia causes jaundice because of progressive obstruction of biliary flow. Stools would be pale since bile is not reaching the intestine. B refers to the condition called Breast Milk jaundice. Typically this will develop 1-2 weeks after birth, perhaps because of inhibition of the conjugating enzyme as noted. C is not preferred, because the baby described is healthy and producing normal urine. The most likely explanation is physiologic jaundice, which occurs because of the relatively generous bilirubin production from the excess red cell mass in neonates, conjugation in the liver is immature, and conjugated bilirubin that does reach the intestine is disproportionately hydrolyzed to unconjugated bilirubin (instead of being converted to urobilinogen by bacteria), resulting in excess bilirubin in serum from heightened enterohepatic circulation.