The document presents a comprehensive overview of functions and modules in Python, covering topics such as function definitions, different types of function arguments, variable scope, and the creation and use of modules and packages. It emphasizes good programming practices, the importance of documentation strings, and introduces standard library modules for various functionalities. Additionally, it includes examples relevant to creating and using these features effectively in Python.
Overview of functions, their definitions, need, syntax, examples, and types (built-in and user-defined). Basic concepts of reusability, readability, modular programming, and return statement.
Explanation of variable scopes (local and global) and their lifetimes, showcasing how variables can be accessed in different contexts with examples.
Different types of function arguments: required, keyword, default, and variable-length arguments, with syntax and usage examples.
Definition and syntax of anonymous (lambda) functions in Python, illustrating their usage with examples.
Importance of documentation strings (docstrings) for functions and good programming practices for coding conventions.
Introduction to modules and user-defined packages in Python, explaining how to import and use them with examples.
Overview of Python Standard Library and its essential modules: math, random, regex, and matplotlib, with examples of their functionalities.
Introduction to NumPy, array creation, reshaping, and functions like arange for array processing.
Overview of Pandas library for data analysis, explaining Series and DataFrames with examples.
Thank you note and resources for further learning about Python programming.
OBJECTIVE
Part I:
Needfor functions, Function: definition, call, variable scope
and lifetime, the return statement. Defining functions,
Part II:
Lambda or anonymous function, documentation string, good
programming practices.
Part II:
Introduction to modules, Introduction to packages in Python,
Introduction to standard library modules.
3.
FUNCTION
Def: It isblock of organized ,reusable code that is used
perform a single related action.
Need Of Function:
1.To improve readability of source code
2.Code Reusability
3.Modular programming
4.Easy for debugging
5.Reduces size of code
4.
DEFINING FUNCTION
def marksthe start of function
function name to uniquely
identify a function.
def function_name (parameter):
Argument to pass a value in function
colon(:) to mark end of
function header
CALLING A FUNCTION
Howto call a function?
• Once we have defined a function, we can call it from
another function, program or even the Python prompt.
• To call a function we simply type the function name
with appropriate parameters.
Syntax:
function_name(Parameter_list)
E.g:
message()
Return statement
• returnstatement is used at the end of the
function.
• Usually indicate the end of function.
Syntax:
return expression
9.
EXAMPLE
def add(a,b):
return a+b
a=int(input("Entervalue of a-->"))
b=int(input("Enter value of b-->"))
print("Addition of a and b-->",add(a,b))
Output:
Enter value of a10
Enter Value of b20
Addition of a and b30
10.
There are twotypes of function in python
1.Built-in functions:
Example: print(), input(), len().
2.User-defined functions:
Example: def my_addition(x,y):
sum = x +y
print(sum)
11.
Variable Scope &Lifetime
Scope of variable is nothing but the part of the
program in which variable is accessible.
Lifetime of variable is the duration for which the
variable exists
12.
Variable Scope &Lifetime
SR_NO Local Variable Global Variable
1 Local variables are declared within
a function
Global variables are declared
Outside all function
2 It can be used only in function in
which they declared.
Global variables can be used in all
function.
3 Local variables are destroyed when
control leave the function.
Global variables are destroyed when
program is terminated.
4 Local variables are used when the
values to be used within a function
Global variables are used when
values are to be shared among
different functions.
13.
Variable Scope &Lifetime
x=100 #Global Variable
def local():
x=20 #Local Variable
print("Value of x inside function-->",x)
local()
print("Value of x outside function-->",x)
Output:
Value of x inside function--> 20
Value of x outside function--> 100
14.
Function Arguments
You cancall a function by using the following types of formal arguments :
1.Required arguments
2.Keyword arguments
3.Default arguments
4.Variable-length arguments
15.
Function Arguments
1.Required arguments:
It is also called as positional arguments.
Required arguments are the arguments passed to a function in correct
positional order.
Here, the number of arguments in the function call should match
exactly with the function definition.
16.
Function Arguments
Required arguments
frequired(p,q): #function definition
r=p+q
print("Sum-->",r)
=int(input("Enter value of a-->"))
=int(input("Enter value of b-->"))
quired(a,b) #function call
utput:
nter value of a-->2
nter value of b-->4
um--> 6
17.
Function Arguments
Keyword arguments:
Itis also called as named arguments.
Keyword arguments are related to the function calls.
When you use keyword arguments in a function call, the caller
identifies the arguments by the parameter name.
18.
Function Arguments
eyword Arguments
info(name,age):#Fun def
print("Name-->",name)
print("Age-->",age)
me=input("Enter the name-->")
=input("Enter the age-->")
o(age=age,name=name) #fun Call
tput:
er the name-->Ram
er the age-->21
me--> Ram
e--> 21
19.
Function Arguments
efault Arguments:
Adefault argument is an argument that assumes a default value if a
alue is not provided in the function call for that argument.
Function Arguments
ariable lengthArguments:
You may need to process a function for more arguments than you
specified while defining the function.
These arguments are called variable-length arguments and are not
named in the function definition, unlike required and default arguments.
These functionsare called anonymous because they are not declared
in the standard manner by using the def keyword.
Function without function name.
Function is defined using lambda keyword, hence function is
also called Lambda function.
Can have any number of arguments but only single expression.
ANONYMOUS
24.
Lambda Function
ntax:
lambda <argumentlist> : Expression
g:
lambda a,b : a*b
nt(input("Enter value of a-->"))
int(input("Enter value of b-->"))
nt(x(a,b))
utput:
ter value of a10
ter value of b2
25.
Documentation String
There isa special type of comment in python called as documentation
string or docstring.
It is used for giving more information about functions ,methods or class.
claring docstring:
e docstring is declared using triple double quotes(“”” …”””) just below
class,function,or method .
les for declaring docstring:
The doc string line should begin with a capital letter and end with a period.
The first line should be a short description.
If there are more lines in the documentation string, the second line should
be blank, visually separating the summary from the rest of the description.
26.
Documentation String
cessing docstring:
Thedocstring can be accessed using __doc__ method of object or using
help() function.
E.g:
add():
"""This is docstring
This function performs addition of two int numbers."""
p=10
q=20
print("Addition-->",p+q)
d()
nt(add.__doc__)
27.
Good Programming Practices
UseOf Proper Indentation
Avoid using keywords or reserved words for variable, identifier,
function, class or method names.
Class names first character should be written in capital letter.
Function or variable name should in lower case.
Avoid deep nesting of loops.
Whenever required use comment or docstring
Use spaces around the operators.
Give meaning full names to variable ,function, method or class,it should
not be lengthy .
28.
Introduction to Modules
•Module: A module is a file consisting of Python code.
• A module can define functions, classes and variables.
• You can use defined module with the help of import
statement, syntax is as:
• import module_name
29.
Introduction to Modules
•Example:
• datetime module:
• This module provide systems date and time in particular
format.
• Code:
• import datetime
• X=datetime.datetime.now()
• Print(X)
• Output:
• 2020-04-08 14:25:49.363535
30.
Introduction to Modules
•The from import Statement:
• if you want to use only selected variables or functions, then you
can use the from...import statement.
• E.g:
• from math import sqrt, factorial
• print("Squareroot-->",sqrt(4))
• print("Factorial-->",factorial(4))
• Output:
Squareroot--> 2.0
Factorial--> 24
31.
Introduction to Modules
•Creation of user defined modules:
Steps:
1.Create python file named myfile.py
myfile.py contain following code:
def message():
print(“Welcome to myfile module in python”)
32.
Introduction to Modules
•Creation of user defined modules:
Steps:
2.Create another python file named test.py
test.py contain following code:
import myfile
myfile.message()
33.
Introduction to Modules
•Creation of user defined modules:
Steps:
3.Run/execute the file test.py
Output:
Welcome to myfile module in python
34.
Introduction to packages
Package:Itis basically a directory with python files and file with the
name __init__.py.
This means that every directory in python path ,which contain the
file __init__.py will be treated as package in python.
Package
__init__.py
Add.py Sub.py
Introduction to Packages
•Creation of user defined Packages:
Steps:
1.Create folder/directory.Package should be created in python
directory, ow it will not run. E.g. Mypkg
2.In the same folder , create the file __init__.py(You my keep this
file as empty)
3. In the same folder , create module files and name it with
extension .py .E.g-add.py and sub.py
4.Create python program to import this modules from package and
use available functions in module. E.g-test.py
5.Run the python program(test.py)
Introduction to Packages
Contentsof files/modules in package:
1.__init__.py: Usually we are keeping this file as empty
2.add.py : Written function for addition of two numbers
def addition(p,q):
print("Addition-->",p+q)
3.sub.py: Written function for subtraction of two numbers.
def subtraction(p,q):
print("Subtraction-->",p-q)
4.test.py: imported user defined package and defined modules too.
import Mypkg.add as add
import Mypkg.sub as sub
a=int(input("Enter value of a-->"))
b=int(input("Enter value of b-->"))
add.addition(a,b)
sub.subtraction(a,b)
39.
Introduction to Packages
•Output:
Enter value of a-->100
Enter value of b-->20
Addition--> 120
Subtraction--> 80
40.
Introduction to standardlibrary
modules
The Python Standard Library is a collection of
script modules accessible to a Python program to
simplify the programming process and removing the
need to rewrite commonly used commands
These module contain build-in modules that provide
various functionalities. different modules are as follows:
1.math module
2.random module
3.regEx/re module
4.matplotlib and pyplot
41.
Introduction to SLM
1.mathmodule:Python math module is defined as the most popular mathematical
functions, which includes trigonometric functions, representation functions,
logarithmic functions, etc. Furthermore, it also defines two mathematical
constants, i.e., Pie and Euler number, etc.
import math as m
print("square root-->",m.sqrt(15))
print("log-->",m.log(20,2))
print("sin-->",m.sin(90))
print("ceil-->",m.ceil(2.5))
print("floor-->",m.floor(2.5))
print("modf-->",m.modf(2.5))
print("Factorial-->",m.factorial(5))
print("Pi-->",m.pi)
Introduction to SLM
2.randommodule:This module is used to generate pseudo random
number
Code:
import random as rd
print("randint-->",rd.randint(1,10))
print("random-->",rd.random())
Output:
randint--> 5
random--> 0.7150866274864766
44.
Introduction to SLM
3.regEx/remodule:This module which supports regular
expression which search for a specific pattern in string.
Code:
import re
str="Welcome to Python"
a=re.search("^W.*Python$",str)
if(a):
print("Yes!We have a match")
else:
print("No match")
Output:
Yes!We have a match
45.
Introduction to SLM
3.regEx/remodule:
split():function returns a list where the string has been split at each mat
Code:
txt = "The rain in Spain"
x = re.split("s", txt)
print(x)
Output:
['The', 'rain', 'in', 'Spain']
46.
Introduction to SLM
4.matplotlib and pyplot:
Matplotlib is an amazing visualization library in Python
for 2D plots of arrays.
Matplotlib has a module named pyplot used for plotting
by providing number of features like control line ,styles
,font ,naming axes etc.
Supports variety of graphs and plot such as
histogram,bar charts etc.
47.
Introduction to SLM
Use of matplotlib :Creation Graph
Code:
import matplotlib.pyplot as plt
x=[1,2,3,4,5,6,7]
y=[1,2,3,4,5,6,7]
plt.plot(x,y)
plt.show()
Output:
48.
Introduction to SLM
Matplotlib: Formatting the graph
Code
import matplotlib.pyplot as plt
x=[1,2,3,4,5,6,7]
y=[1,2,3,4,5,6,7]
plt.plot(x,y)
plt.xlabel("X-Axis")
plt.ylabel("Y-Axis")
plt.title("My First Graph")
plt.show()
Output:
49.
Introduction to SLM
Line styles:
Code:
import matplotlib.pyplot as plt
x=[1,2,3,4,5,6,7]
y=[1,2,3,4,5,6,7]
plt.plot(x,y,color="red",linewidth=5,linestyle="--
",marker="o",markersize=10)
plt.xlabel("X-Axis")
plt.ylabel("Y-Axis")
plt.title("My First Graph")
plt.show()
Output:
50.
Introduction to SLM
Use of matplotlib : Scatter plot: This graph
will plot only points that to be plotted in the
graph
Code:
import matplotlib.pyplot as plt
x=[1,2,3,4,5,6,7]
y=[1,2,3,4,5,6,7]
plt.scatter(x,y)
plt.xlabel("x-Axis")
plt.ylabel("Y-Axis")
plt.title("Scatter Plot")
plt.show()
Output:
51.
Introduction to NumPy
NumPy is also called as Numerical Python.
NumPy is package in python which is used for array
processing.
Arrays in Numpy:
Array is collection of homogenous elements.
We can create array in Numpy using different data types
such as list tuple etc
52.
Introduction to NumPy
Example:
import numpy as np
t1=np.array([1,2,3,4])
print("Array-->",t1)
Output:
Array[1,2,3,4]
53.
Introduction to NumPy
NumPy: Array Using List:
import numpy as np
lst=[11,12,13]
print("Type of data-->",type(lst))
t1=np.array(lst)
print("Array-->",t1)
print("type of array",type(t1))
Output:
Type of data--> <class 'list’>
Array--> [11 12 13]
type of array <class 'numpy.ndarray'>
54.
Introduction to NumPy
NumPy: Array Using tuple:
import numpy as np
tup=(11,12,13)
print("Type of data-->",type(tup))
t1=np.array(tup)
print("Array-->",t1)
print("type of array",type(t1))
Output:
Type of data--> <class ‘tuple’>
Array--> [11 12 13]
type of array <class 'numpy.ndarray'>
55.
Introduction to NumPy
NumPy: reshape(): is used to give a new shape to
an array without changing its data
import numpy as np
lst=[11,12,13,14]
t1=np.array(lst)
print("Array-->",t1)
print("After reshape-->n",t1.reshape(2,2))
Output:
Array--> [11 12 13 14]
After reshape-->
[[11 12]
[13 14]]
56.
Introduction to NumPy
NumPy: arange() function:NumPy arange() is an
inbuilt numpy function that returns a ndarray object
containing evenly spaced values within the given range
Example:
import numpy as np
a=np.arange(0,10)
print(a)
Output:
[0,1,2,3,4,5,6,7,8,9]
57.
Introduction to Pandas
Pandas:
Pandas is the most popular python library that is used
for data analysis.
The name Pandas is derived from the word Panel
Data.
With the help of pandas data is represented in tabular
format i.e row and column.
58.
Introduction to Pandas
In pandas data can be represented as:
1.Series1-dimensional
2.Dataframes2-dimensional
59.
Introduction to Pandas
1.Series:
Series is a one-dimensional array like structure with
homogeneous data .
Code: Output
import pandas as pd
data=[1.1,1.2,1.3,1.4]
df=pd.Series(data)
print("Series is--
>n",df)
Series is-->
0 1.1
1 1.2
2 1.3
3 1.4
dtype: float64
60.
Introduction to Pandas
1.Creationof Series using dictionary:
Code: Output
import pandas as pd
dict={1:"Petrol",2:"Diesel"
,3:"LPG"}
df=pd.Series(dict)
print("Series is-->n",df)
Series is-->
1 Petrol
2 Diesel
3 LPG
dtype: object
61.
Introduction to Pandas
2.DataframesItis 2-D structures in which data can be
represented in row and column format.
Creation of DataFrame:
import pandas as pd
df=pd.DataFrame()
print(df)
Output:
Empty DataFrame
Columns:[]
Index:[]
62.
Introduction to Pandas
Example:
import pandas as pd
dict1={'a':"Petrol",'b':"Diesel",'c':"LPG"}
data={'col1':dict1}
df=pd.DataFrame(data)
print("DataFrame is-->n",df)
Output:
DataFrame is
col1
a Petrol
b Diesel
c LPG
tuple
DataFrame is--> col1 a Petrol b Diesel c LPG
DataFrame is--> col1 a Petrol b Diesel c LPG