SlideShare a Scribd company logo
1 of 1
Download to read offline
Dynamic modeling of glaciated watershed processes: Retrospective analysis and future
predictions in the headwaters of the Zongo River, Bolivia
Chris Frans1, Erkan Istanbulluoglu1, Bibi Naz1*, Dennis Lettenmaier1, Thomas Condom2
1Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA,
2IRD/UJF-Grenoble 1/CNRS/Grenoble-INP, Laboratorie d’etude des Transferts en Hydrologie et Environnement (LTHE)
*Now at Oak Ridge National Laboratory, Oak Ridge, TN, USA
1. Summary
In high-altitude regions the contribution of glacier melt to runoff is often critical to sustain water supply
throughout the year. The tropical glaciers of the South American Andes, whose melt contributes to water supply
and energy production, have retreated at unprecedented rates since the 1970’s. Loss of these ice reservoirs will
have critical implications to downstream densely populated areas. In this study we use a recently developed
glacio-hydrological model to evaluate the contribution of glacier melt to streamflow and track this contribution
in time with changing glacier area. A glacier model based on the shallow ice approximation (SIA), solving time-
evolving and spatially-distributed balance equations for glacier mass and momentum, is integrated within the
Distributed Hydrology Soil Vegetation Model (DHSVM). The model is used to simulate the glacio-hydrologic
behavior of the headwaters of the Zongo River during the historical period of 1985-2010. Model performance is
evaluated by comparing model predictions with observed glacier extent, mass balance, discharge, and terms of
the surface energy balance. Further, the modeling approach is used to predict this transitioning contribution of
glacier melt into the future using a stochastic statistical downscaling technique where multiple realizations of
future climate are produced using predictions from general circulation models (GCMs) and a weather generator
(AWE-GEN). The results of this study demonstrate the applicability of dynamic modeling, of both glacier and
watershed processes, for prediction of trends and uncertainties of streamflow in vulnerable high altitude areas
that rely on glacier melt.
Resumen
El agua de glaciares es un recurso importante para el suminstro de agua para consumo humano a lo largo del
año. Los glaciares tropicales de los Andes Sudamericanos han retrocedido a velocidades imprecedentes después
los setentas. La pérdida de estas reservas de agua tendrán consecuencias críticas en localidades altamente
pobladas localizadas aguas abajo. En este estudio usamos un modelo hidrológico-glacial recientemente
desarrollado para evaluar la contribución del glacial en la descarga del Río Zongo y para evaluar si dicha
contribución cambia con el retroceso del glaciar en la cabecera del río. Un modelo de procesos glaciales basado
en la aproximación de hielo superficial (SIA por sus siglas en Inglés), que resuelve las ecuaciones de balance de
masa que evolucionan a lo largo del tiempo, y que es espacialemente distribuida, fue integrado al modelo
hidrolócigo DSHVM (Distributed Hydrology Soil Vegetation Model). El modelo resultante fue evaluado contra
observaciones de la extensión del glaciar, balance de masa, descarga del río, y elementos del balance de energía.
Más tarde fue usado para simular los procesos hidrológicos-glaciares de las cabeceras del Río Zongo durante el
periodo histórico de 1985 a 2010. Este futuro también fue investigado a través de este modelo, usando
ensambles de datos generados por modelos climáticos globales (GCM por sus siglas en Inglés) y por el modelo
generador de variables meteorológicas AWE-GEN (Advanced Weather GENerator). Los resultados de este
estudio demuestran el uso del modelado dinámico de los procesos glaciares y los procesos hidrológicos en una
cuenca en conjunto, para predecir tendencias e incertidumbre en la descarga de ríos en zonas altas vulnerables
que dependen de agua de glaciares.
2. Study Location
4. Retrospective Analysis
3. Modeling Method
5. Future Predictions
6. Conclusions
• Retrospective (1987-2010) model simulations indicate that on average
glacier melt represented 31% of annual discharge from the watershed. This
value increases seasonally, up to 90% during dry years.
• An analysis of 11 CMIP5 RCP4.5 GCM outputs reveals that high altitude
air temperatures are expected to increase throughout the year, with the
highest increases of 3-4 degrees during the winter months by 2100.
• Initial results of future simulations indicate that glacier melt will both
increase and decrease seasonally in the near future with ongoing recession,
however will decline throughout the entire year in the latter half of the 21st
century.
• These findings demonstrate the potential of this coupled glacio-
hydroloigcal physics based modeling as a powerful tool for the prediction
of glaciated watershed processes in the context of water resources.
• Further analysis of uncertainty is required to strengthen the confidence in
model predictions
DHSVM
Glacier Dynamics Model
Watershed Hydrologic
Processes
Accumulation and Ablation
Surface
Mass
Balance
Dynamic Ice Flow in Response to Surface Mass Balance
Change in
Glacier thickness
and Area
Melt
Streamflow
Coupling of Models
Ice
Snow
Bedrock/
Soil
1
12
2 ( )
( , ) ( )
2
nn
mice xy n m m
xy ice xy
A g S
D H S H C g S H
n





  

( ) ice n
xy xy
water
bS
D S
t



    

nb IWE SWE   
Glen’s Flow Law Weertman Sliding Law
Non-linear Ice Diffusion
Momentum Diffusivity
A S O N D J F M A M J J A
-100
-50
0
50
100
150
Month
Wattsm-2
Surface Energy Balance (Elev. 5050 m, WY 2000)
SWnet
LE
SH
LWnet
Normalized Difference
Snow Index (NDSI)
(Landsat 4-5 TM scenes)
Headwaters of the Zongo River
• Located 30 km north of La Paz (-16.25, -68.1)
• 14 drainage area
• Runoff is intercepted and routed to reservoir for
hydro-electricity production
• Glacier extent decreased 54% from 1987-2010
(Huayna Potosi, left)
• Distinct seasonality: wet and warm Nov. to
March, dry and cold May through August.
• Accumulation occurs during the wet season
while ablation occurs throughout the year.
2
km
Distributed Hydrology Soil Vegetation
Model (DHSVM, Wigmosta et al., 1994)
• Fully distributed physically based
hydrology model
• Sub-daily timesteps
• Two layer energy balance snow/ice
accumulation and melt model
UBC Glacier Dynamics Model (Garry
Clarke, UBC; Jarosch et al., 2013)
• Based on shallow ice approximation
• Solves time-evolving balance equations
for glacier mass and momentum
• Spatially distributed
• Monthly time-step
• Forced with mass balance calculated by
DHSVM model
The glacier dynamics model is integrated in the DHSVM hydrology model. DHSVM is run at subdaily timesteps, simulating all
hydrologic processes, including snow accumulation and melt, snow densification to ice, and glacier ice ablation. Mass balance for
each gridcell covered with a glacier is provided to the glacier dynamics model at a monthly time-step. Flow of ice is calculated in
response to surface mass balance fluctuations. The thickness and extent of glacier ice is updated accounting for the simulated
dynamic ice flow [Naz et al. (in review)].
Model Inputs
• 50 meter Digital Elevation Model (DEM,
ASTER GDEM)
• Hourly air temperature, relative humidity, wind
speed, incoming incoming shortwave and
longwave radiation, precipitation
-Source: Modern Era Retrospective Analysis
for Research and applications
(MERRA,NASA) bias corrected using hourly
GLACIOCLIM observations.
• Soil Depth (estimated)
• Bed Topography (estimated, Clarke et al. 2013)
• Land Cover (Texas A&M University)
• Soil classes (estimated)
• Hourly solar shading and skyview maps
(estimated from DEM)
• Initial ice thickness (estimated with glacier
dynamics model)
Step 1: Spin-up to steady state matching
oldest satellite derived extent (1987)
Step 2: 30 year spin-up with current climate to
thin glaciers to transient state (iterate length of
spin-up to match observed recession)
Glaciological Simulation
-8000
-7000
-6000
-5000
-4000
-3000
-2000
-1000
0
1000
2000
4900
5000
5100
5200
5300
5400
5500
5600
5700
Elevation (m)
MassBalance(mmw.e.)
Simulated and Observed Mass Balance: Zongo Glacier 1992-2009
Simulated Annual
Simulated Mean Annual
Observed
(1991-2009)
1985 1990 1995 2000 2005 2010
-25
-20
-15
-10
-5
0
Year
Balance(mw.e.)
Cumulative Mass Balance: Zongo Glacier 1986-2010
Simulated
Hydrological (Soruco et al. 2009)
Adjusted Glaciological
(Soruco et al. 2009)
19951990
20102005
Demonstrating the performance of the
modeling approach (a,b) simulated mass
balance is compared with observations
(GLACIOCLIM, Soruco et al., 2009), (c)
modeled mean monthly surface energy
fluxes are compared with observations
digitized from Communidad Andina
(2007), and (d-g) comparing modeled
I.W.E with glacier extent derived from
Landsat satellite imagery.
(a)
(b)
(c)
(d)
(g)(f)
(e)
Hydrologic Simulation
Stochastic Downscaling of CMIP5 RCP4.5 GCM Output using an hourly
weather generator (Advanced WEather GENerator AWE-GEN) [Fatichi et al. 2011]
1)EstimateAWE-GEN
parameters from
historical observations
2) Calculate statistical
properties of GCM model
outputs
3) Calculate PDFs of factors
of change for each climate
statistic using Bayesian
approach with GCM
output and observations
5) Extend precipitation
statistics to finer time
scales
4) Estimate mean factors of
change from PDFs
6) Calculate new AWE-
GEN parameters from
future statistics obtained
in steps 4,5 (parameters
are calculated for each
decade to represent
transitional climate)
7) AWE-GEN construction
of future climate forcing
Factors of Change (170 PDFs total):
Temperature FUT = Future time period
Precipitation HIST= Historic time period
S(h) = Precipitation statistic at aggregation hour interval h
Precipitation Statistics: Mean, Variance, Skewness, Frequency of non-precipitation
Coefficient of Variation (annual)
, ,
( )FUT OBS GCM FUT GCM HIST
mon mon mon monT T T T  
,
,
( ) ( )
( ) ( )
FUT GCM FUT
OBS GCM HIST
S h S h
S h S h

Sept-90 Sept-91 Sept-92 Sept-93 Sept-94 Sept-95 Sept-96 Sept-97 Sept-98
0
200
400
600
literssec
-1
DHSVM Qtotal
DHSVM Qglacier ObservedALPACA
CANAL
0 2 4 6
0
0.1
0.2
0.3
0.4
T [°C]
Factor of Change for Air Temperature
pdf T
T GCMs
5 10 15 20 25
0
0.2
0.4
0.6
0.8
Pr [mm]
Frequency
Mean Precipitation (June)
pdf HIST
pdf FUT
0.4 0.6 0.8 1 1.2 1.4
0
0.1
0.2
0.3
0.4
Factor of Change
Factor of Change for Mean Precipitation
pdf FC
FC GCMs
-10 -5 0 5 10
0
0.1
0.2
0.3
0.4
Ta [°C]
Frequency
Monthly Air Temperature (June)
pdf HIST
pdf FUT
Downscaling Steps: Example visualizations of downscaling steps:
J F M A M J J A S O N D
0
1
2
3
4
5
6
Month
T[°C]
Ta500hPa
Factors of Change 2080-2100
BCC-CSM1
ACCESS1
CanESM2
CCSM4
CNCRM
CSIRO-Mk3.6
GFDL-CM3
INMCM4
MIROC5
MRIGCM
NORESM1
J F M A M J J A S O N D
0
0.5
1
1.5
2
2.5
Precip. Factors of Change 2080-2100
Month
[FUT/HIST]
Hourly time series of Ta,
SWin, RH, Wind, Precip.,
Cloud Cover (2011-2100)
J F M A M J J A S O N D
-4
-2
0
2
4
6
8
[°C]
Monthly Air Temperature
HIST
2080-2100
J F M A M J J A S O N D
0
50
100
150
200
[mm]
Monthly Precipitation
HIST
2080-2100
0
2
4
mm
0
500
1000
Wm-2
-5
0
5
C
Ta
SW
in
PPT
Predicted Glacier Response 2011-2100
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
0
200
400
600
800
Discharge(literssec-1
)
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
0
200
400
600
800
Water Year
Simulated ObservedZongo Proglacial
Stream
Sept-93 Sept-94 Sept-95 Sept-96
0
100
200
300
400
500
literssec-1
Sept-03 Sept-04 Sept-05 Sept-06 Sept-07 Sept-08 Sept-09
Qtotal
Qglacier
Observed
Proglacial Stream (Monthly)
7. References
Clarke, Garry K. C., Faron S. Anslow, Alexander H. Jarosch, Valentina Radić, Brian Menounos, Tobias Bolch, Etienne Berthier, 2013: Ice
volume and subglacial topography for western canadian glaciers from mass balance fields, thinning rates, and a bed stress
model. J. Climate, 26, 4282–4303.
Fatichi, Simone, Valeriy Y. Ivanov, and Enrica Caporali. "Simulation of future climate scenarios with a weather generator." Advances in
Water Resources34.4 (2011): 448-467.
Comunidad Andina (2007), Is it the end of snowy heights? Glaciers and Climate change in the Andean Community. General
Secretariat of the Andean Community .
GLACIOCLIM database http://www-lgge.ujf-grenoble.fr/ServiceObs/ Last accessed 12/1/2012.
AH, Jarosch. "Restoring mass conservation to shallow ice flow models over complex terrain." The Cryosphere 7.24 (2013): 229-240.
Naz, B. S., Frans, C. D., Clarke, G. K. C., Burns, P., and Lettenmaier, D. P.: Modeling the effect of glacier recession on streamflow
response using a coupled glacio-hydrological model, Hydrol. Earth Syst. Sci. Discuss., 10, 5013-5056, doi:10.5194/hessd-10-5013-
2013, 2013.Soruco
Wigmosta, Mark S., Lance W. Vail, and Dennis P. Lettenmaier. "A distributed hydrology‐vegetation model for complex terrain." Water
resources research 30.6 (1994): 1665-1679.
We would like to thank Pat Burns for his production of the Landsat glacier extent estimates.
Importance of Glacier Dynamics
No Dynamics with Dynamics
Comparing simulations (1985-
2010) (a) without and (b) with
glacier dynamics highlights
the importance of representing
the dynamic redistribution of
ice over longer periods of
time.
4
6
8
10
12
x 10
7
[m3
]
2010 2020 2030 2040 2050 2060 2070 2080 2090 2100
10
15
20
25
30
[%]
Glacier Volume
Glacier Extent
Predicted Hydrologic Response 2011-2100
Glacio-Hydrologic Simulations of 8 Future Climate Realizations:
2040 2060 2080 2100
(a)
(b)
(c) (d) (e) (f)
Modeled evolution of glacier (a)
volume, (b) extent, and (c-f) spatial
changes of ice water equivalent (I.W.E.).
(a) (b)
S O N D J F M A M J J A
0
200
400
600
800
literssec-1
S O N D J F M A M J J A S O N D J F M A M J J A
Total Discharge Glacier Melt Discharge
Dry
2005
Mean
1987-2010
Wet
2009
All Watershed Discharge
The model was calibrated to
optimize both streamflow and
cumulative mass balance of
Zongo glacier. Simulated
daily (monthly) discharge of
the proglacial stream is
shown at right (below).
Nash Sutcliffe efficiency
values for monthly flow
range from 0.4-0.7 for the
different locations and
periods of record in the
watershed. On average
glacier melt contributes 40%
of total monthly watershed
discharge but can represent
nearly 90% of total discharge
during low flows in dry years
(left).
1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100
0
500
1000
[mm]
S O N D J F M A M J J A
0
50
100
150
[mm]
S O N D J F M A M J J A
2030-2050 2080-2100
1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100
0
200
400
600
800
1000
1200
1400
mm
S O N D J F M A M J J A
0
50
100
150
200
mm
S O N D J F M A M J J A
Glacier Melt Total Runoff
Total Runoff
Glacier Melt
1987-2010
Total Runoff
1987-2010
Glacier Melt
2030-2050 2080-2100
1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100
0
200
400
600
800
1000
1200
1400
mm
S O N D J F M A M J J A
0
50
100
150
200
mm
S O N D J F M A M J J A
Glacier Melt Total Runoff
Total Runoff
Glacier Melt
1987-2010
Total Runoff
1987-2010
Glacier Melt
2030-2050 2080-2100
S O N D J F M A M J J A
-60
-40
-20
0
20
40
60
[%]
S O N D J F M A M J J A
-60
-40
-20
0
Total Runoff
Glacier Melt
2030-2050 2080-2100
Changes in Watershed Runoff
Initial predictions indicate
decreased (increased) runoff
in summer (winter) in the
near future (2030-2100)
through changes in glacier
melt .
In the far future (2080-2100), decreased runoff is predicted throughout the
year (up to -36%), through drastic declines in glacier melt contribution.

More Related Content

What's hot

Integrated Modelling as a Tool for Assessing Groundwater Sustainability under...
Integrated Modelling as a Tool for Assessing Groundwater Sustainability under...Integrated Modelling as a Tool for Assessing Groundwater Sustainability under...
Integrated Modelling as a Tool for Assessing Groundwater Sustainability under...Dirk Kassenaar M.Sc. P.Eng.
 
Data Management and Calibration Strategies for Integrated Modelling
Data Management and Calibration Strategies for Integrated ModellingData Management and Calibration Strategies for Integrated Modelling
Data Management and Calibration Strategies for Integrated ModellingDirk Kassenaar M.Sc. P.Eng.
 
Incorporating a Dynamic Irrigation Demand Module into an Integrated Surface ...
Incorporating a Dynamic Irrigation Demand Module into an Integrated Surface ...Incorporating a Dynamic Irrigation Demand Module into an Integrated Surface ...
Incorporating a Dynamic Irrigation Demand Module into an Integrated Surface ...Dirk Kassenaar M.Sc. P.Eng.
 
Thermal Impact Assessment of Below-Water-Table Aggregate Extraction
Thermal Impact Assessment of Below-Water-Table Aggregate ExtractionThermal Impact Assessment of Below-Water-Table Aggregate Extraction
Thermal Impact Assessment of Below-Water-Table Aggregate ExtractionDirk Kassenaar M.Sc. P.Eng.
 
Topography and the Spatial Distribution of Groundwater Recharge and Evapotran...
Topography and the Spatial Distribution of Groundwater Recharge and Evapotran...Topography and the Spatial Distribution of Groundwater Recharge and Evapotran...
Topography and the Spatial Distribution of Groundwater Recharge and Evapotran...Dirk Kassenaar M.Sc. P.Eng.
 
Integrated surface water/groundwater modelling to simulate drought and climat...
Integrated surface water/groundwater modelling to simulate drought and climat...Integrated surface water/groundwater modelling to simulate drought and climat...
Integrated surface water/groundwater modelling to simulate drought and climat...Dirk Kassenaar M.Sc. P.Eng.
 
Assessing Sensitivity to Drought and Climate Change with an Integrated Surfac...
Assessing Sensitivity to Drought and Climate Change with an Integrated Surfac...Assessing Sensitivity to Drought and Climate Change with an Integrated Surfac...
Assessing Sensitivity to Drought and Climate Change with an Integrated Surfac...Dirk Kassenaar M.Sc. P.Eng.
 
Issues and Strategies for Integrated Model Calibration
Issues and Strategies for Integrated Model CalibrationIssues and Strategies for Integrated Model Calibration
Issues and Strategies for Integrated Model CalibrationDirk Kassenaar M.Sc. P.Eng.
 
Applications of Integrated Surface Water Groundwater Modelling Techniques and...
Applications of Integrated Surface Water Groundwater Modelling Techniques and...Applications of Integrated Surface Water Groundwater Modelling Techniques and...
Applications of Integrated Surface Water Groundwater Modelling Techniques and...Dirk Kassenaar M.Sc. P.Eng.
 
Assessing Cumulative Effects with Integrated Modelling
Assessing Cumulative Effects with Integrated ModellingAssessing Cumulative Effects with Integrated Modelling
Assessing Cumulative Effects with Integrated ModellingDirk Kassenaar M.Sc. P.Eng.
 
Issues and Strategies for Integrated Model Calibration
Issues and Strategies for Integrated Model CalibrationIssues and Strategies for Integrated Model Calibration
Issues and Strategies for Integrated Model CalibrationDirk Kassenaar M.Sc. P.Eng.
 
GEOG 246 Final paper Campbell & Hargrave
GEOG 246 Final paper Campbell & HargraveGEOG 246 Final paper Campbell & Hargrave
GEOG 246 Final paper Campbell & HargraveBenjamin Campbell
 
Transient Modelling of Groundwater Flow, Application to Tunnel Dewatering
Transient Modelling of Groundwater Flow, Application to Tunnel DewateringTransient Modelling of Groundwater Flow, Application to Tunnel Dewatering
Transient Modelling of Groundwater Flow, Application to Tunnel DewateringDirk Kassenaar M.Sc. P.Eng.
 
A New Methodology for Identifying Ecologically Significant Groundwater Rechar...
A New Methodology for Identifying Ecologically Significant Groundwater Rechar...A New Methodology for Identifying Ecologically Significant Groundwater Rechar...
A New Methodology for Identifying Ecologically Significant Groundwater Rechar...Dirk Kassenaar M.Sc. P.Eng.
 
Presentation: Unit 2 Measuring Groundwater Background Information
Presentation: Unit 2 Measuring Groundwater Background InformationPresentation: Unit 2 Measuring Groundwater Background Information
Presentation: Unit 2 Measuring Groundwater Background InformationSERC at Carleton College
 

What's hot (20)

Integrated Modelling as a Tool for Assessing Groundwater Sustainability under...
Integrated Modelling as a Tool for Assessing Groundwater Sustainability under...Integrated Modelling as a Tool for Assessing Groundwater Sustainability under...
Integrated Modelling as a Tool for Assessing Groundwater Sustainability under...
 
Data Management and Calibration Strategies for Integrated Modelling
Data Management and Calibration Strategies for Integrated ModellingData Management and Calibration Strategies for Integrated Modelling
Data Management and Calibration Strategies for Integrated Modelling
 
Re-thinking recharge
Re-thinking recharge Re-thinking recharge
Re-thinking recharge
 
#4
#4#4
#4
 
Incorporating a Dynamic Irrigation Demand Module into an Integrated Surface ...
Incorporating a Dynamic Irrigation Demand Module into an Integrated Surface ...Incorporating a Dynamic Irrigation Demand Module into an Integrated Surface ...
Incorporating a Dynamic Irrigation Demand Module into an Integrated Surface ...
 
Thermal Impact Assessment of Below-Water-Table Aggregate Extraction
Thermal Impact Assessment of Below-Water-Table Aggregate ExtractionThermal Impact Assessment of Below-Water-Table Aggregate Extraction
Thermal Impact Assessment of Below-Water-Table Aggregate Extraction
 
Topography and the Spatial Distribution of Groundwater Recharge and Evapotran...
Topography and the Spatial Distribution of Groundwater Recharge and Evapotran...Topography and the Spatial Distribution of Groundwater Recharge and Evapotran...
Topography and the Spatial Distribution of Groundwater Recharge and Evapotran...
 
Integrated surface water/groundwater modelling to simulate drought and climat...
Integrated surface water/groundwater modelling to simulate drought and climat...Integrated surface water/groundwater modelling to simulate drought and climat...
Integrated surface water/groundwater modelling to simulate drought and climat...
 
Integrated Modelling: Insights and Blind Spots
Integrated Modelling: Insights and Blind SpotsIntegrated Modelling: Insights and Blind Spots
Integrated Modelling: Insights and Blind Spots
 
Assessing Sensitivity to Drought and Climate Change with an Integrated Surfac...
Assessing Sensitivity to Drought and Climate Change with an Integrated Surfac...Assessing Sensitivity to Drought and Climate Change with an Integrated Surfac...
Assessing Sensitivity to Drought and Climate Change with an Integrated Surfac...
 
Issues and Strategies for Integrated Model Calibration
Issues and Strategies for Integrated Model CalibrationIssues and Strategies for Integrated Model Calibration
Issues and Strategies for Integrated Model Calibration
 
Watertech Booth Slide 2013
Watertech Booth Slide 2013Watertech Booth Slide 2013
Watertech Booth Slide 2013
 
Applications of Integrated Surface Water Groundwater Modelling Techniques and...
Applications of Integrated Surface Water Groundwater Modelling Techniques and...Applications of Integrated Surface Water Groundwater Modelling Techniques and...
Applications of Integrated Surface Water Groundwater Modelling Techniques and...
 
Assessing Cumulative Effects with Integrated Modelling
Assessing Cumulative Effects with Integrated ModellingAssessing Cumulative Effects with Integrated Modelling
Assessing Cumulative Effects with Integrated Modelling
 
Assessment of Low Impact Design (LID)
Assessment of Low Impact Design (LID)Assessment of Low Impact Design (LID)
Assessment of Low Impact Design (LID)
 
Issues and Strategies for Integrated Model Calibration
Issues and Strategies for Integrated Model CalibrationIssues and Strategies for Integrated Model Calibration
Issues and Strategies for Integrated Model Calibration
 
GEOG 246 Final paper Campbell & Hargrave
GEOG 246 Final paper Campbell & HargraveGEOG 246 Final paper Campbell & Hargrave
GEOG 246 Final paper Campbell & Hargrave
 
Transient Modelling of Groundwater Flow, Application to Tunnel Dewatering
Transient Modelling of Groundwater Flow, Application to Tunnel DewateringTransient Modelling of Groundwater Flow, Application to Tunnel Dewatering
Transient Modelling of Groundwater Flow, Application to Tunnel Dewatering
 
A New Methodology for Identifying Ecologically Significant Groundwater Rechar...
A New Methodology for Identifying Ecologically Significant Groundwater Rechar...A New Methodology for Identifying Ecologically Significant Groundwater Rechar...
A New Methodology for Identifying Ecologically Significant Groundwater Rechar...
 
Presentation: Unit 2 Measuring Groundwater Background Information
Presentation: Unit 2 Measuring Groundwater Background InformationPresentation: Unit 2 Measuring Groundwater Background Information
Presentation: Unit 2 Measuring Groundwater Background Information
 

Similar to Dynamic modeling of glaciated watershed processes

Sarah shannon
Sarah shannonSarah shannon
Sarah shannonClimDev15
 
Climate change consideration in hydro‐power development in the nepal himalaya...
Climate change consideration in hydro‐power development in the nepal himalaya...Climate change consideration in hydro‐power development in the nepal himalaya...
Climate change consideration in hydro‐power development in the nepal himalaya...Jagat K. Bhusal
 
Somers et al 2016
Somers et al 2016Somers et al 2016
Somers et al 2016Joe Quijano
 
Glacier changes and climate trends derived from multiple sources in the data ...
Glacier changes and climate trends derived from multiple sources in the data ...Glacier changes and climate trends derived from multiple sources in the data ...
Glacier changes and climate trends derived from multiple sources in the data ...InfoAndina CONDESAN
 
REMOTE SENSING DATA FOR HYDROLOGICAL MODELING
REMOTE SENSING DATA FOR HYDROLOGICAL MODELINGREMOTE SENSING DATA FOR HYDROLOGICAL MODELING
REMOTE SENSING DATA FOR HYDROLOGICAL MODELINGShyam Mohan Chaudhary
 
Arctic sea ice - use of observational data
Arctic sea ice - use of observational dataArctic sea ice - use of observational data
Arctic sea ice - use of observational datatracyrogers84
 
Impacts of climate change on the water availability, seasonality and extremes...
Impacts of climate change on the water availability, seasonality and extremes...Impacts of climate change on the water availability, seasonality and extremes...
Impacts of climate change on the water availability, seasonality and extremes...asimjk
 
Sea Level: Current knowledge, gaps, and challenges UFORIC
Sea Level: Current knowledge, gaps, and challenges UFORIC Sea Level: Current knowledge, gaps, and challenges UFORIC
Sea Level: Current knowledge, gaps, and challenges UFORIC Deltares
 
Presentation final
Presentation finalPresentation final
Presentation finalHudsonAdams
 
Drivers and uncertainties in past and future sea level changes
Drivers and uncertainties in past and future sea level changesDrivers and uncertainties in past and future sea level changes
Drivers and uncertainties in past and future sea level changesHydrographic Society Benelux
 
Modeling the hydrological regime of Turkana Lake (Kenya, Ethiopia) by combini...
Modeling the hydrological regime of Turkana Lake (Kenya, Ethiopia) by combini...Modeling the hydrological regime of Turkana Lake (Kenya, Ethiopia) by combini...
Modeling the hydrological regime of Turkana Lake (Kenya, Ethiopia) by combini...DAFNE project
 
UiOlunchSeminar
UiOlunchSeminarUiOlunchSeminar
UiOlunchSeminarHong Li
 
An optimized snowmelt lysimeter system for monitoring melt rates and collecti...
An optimized snowmelt lysimeter system for monitoring melt rates and collecti...An optimized snowmelt lysimeter system for monitoring melt rates and collecti...
An optimized snowmelt lysimeter system for monitoring melt rates and collecti...NOMADPOWER
 
CLIMATE CHANGE AND GLOBAL WATER RESOURCES
CLIMATE CHANGE AND GLOBAL WATER RESOURCESCLIMATE CHANGE AND GLOBAL WATER RESOURCES
CLIMATE CHANGE AND GLOBAL WATER RESOURCESShyam Mohan Chaudhary
 
SWOT_Fu_2011_IGARSS.ppt
SWOT_Fu_2011_IGARSS.pptSWOT_Fu_2011_IGARSS.ppt
SWOT_Fu_2011_IGARSS.pptgrssieee
 
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...India UK Water Centre (IUKWC)
 

Similar to Dynamic modeling of glaciated watershed processes (20)

Sarah shannon
Sarah shannonSarah shannon
Sarah shannon
 
Climate change consideration in hydro‐power development in the nepal himalaya...
Climate change consideration in hydro‐power development in the nepal himalaya...Climate change consideration in hydro‐power development in the nepal himalaya...
Climate change consideration in hydro‐power development in the nepal himalaya...
 
Somers et al 2016
Somers et al 2016Somers et al 2016
Somers et al 2016
 
Glacier changes and climate trends derived from multiple sources in the data ...
Glacier changes and climate trends derived from multiple sources in the data ...Glacier changes and climate trends derived from multiple sources in the data ...
Glacier changes and climate trends derived from multiple sources in the data ...
 
REMOTE SENSING DATA FOR HYDROLOGICAL MODELING
REMOTE SENSING DATA FOR HYDROLOGICAL MODELINGREMOTE SENSING DATA FOR HYDROLOGICAL MODELING
REMOTE SENSING DATA FOR HYDROLOGICAL MODELING
 
Climate Change Science in the Hindu-Kush-Himalayas-Tibet
Climate Change Science in the Hindu-Kush-Himalayas-TibetClimate Change Science in the Hindu-Kush-Himalayas-Tibet
Climate Change Science in the Hindu-Kush-Himalayas-Tibet
 
Great Lakes Ice Forecasts and Climate Research
Great Lakes Ice Forecasts and Climate ResearchGreat Lakes Ice Forecasts and Climate Research
Great Lakes Ice Forecasts and Climate Research
 
Arctic sea ice - use of observational data
Arctic sea ice - use of observational dataArctic sea ice - use of observational data
Arctic sea ice - use of observational data
 
Impacts of climate change on the water availability, seasonality and extremes...
Impacts of climate change on the water availability, seasonality and extremes...Impacts of climate change on the water availability, seasonality and extremes...
Impacts of climate change on the water availability, seasonality and extremes...
 
Sea Level: Current knowledge, gaps, and challenges UFORIC
Sea Level: Current knowledge, gaps, and challenges UFORIC Sea Level: Current knowledge, gaps, and challenges UFORIC
Sea Level: Current knowledge, gaps, and challenges UFORIC
 
Presentation final
Presentation finalPresentation final
Presentation final
 
Drivers and uncertainties in past and future sea level changes
Drivers and uncertainties in past and future sea level changesDrivers and uncertainties in past and future sea level changes
Drivers and uncertainties in past and future sea level changes
 
tc-7-321-2013
tc-7-321-2013tc-7-321-2013
tc-7-321-2013
 
Modeling the hydrological regime of Turkana Lake (Kenya, Ethiopia) by combini...
Modeling the hydrological regime of Turkana Lake (Kenya, Ethiopia) by combini...Modeling the hydrological regime of Turkana Lake (Kenya, Ethiopia) by combini...
Modeling the hydrological regime of Turkana Lake (Kenya, Ethiopia) by combini...
 
UiONote
UiONoteUiONote
UiONote
 
UiOlunchSeminar
UiOlunchSeminarUiOlunchSeminar
UiOlunchSeminar
 
An optimized snowmelt lysimeter system for monitoring melt rates and collecti...
An optimized snowmelt lysimeter system for monitoring melt rates and collecti...An optimized snowmelt lysimeter system for monitoring melt rates and collecti...
An optimized snowmelt lysimeter system for monitoring melt rates and collecti...
 
CLIMATE CHANGE AND GLOBAL WATER RESOURCES
CLIMATE CHANGE AND GLOBAL WATER RESOURCESCLIMATE CHANGE AND GLOBAL WATER RESOURCES
CLIMATE CHANGE AND GLOBAL WATER RESOURCES
 
SWOT_Fu_2011_IGARSS.ppt
SWOT_Fu_2011_IGARSS.pptSWOT_Fu_2011_IGARSS.ppt
SWOT_Fu_2011_IGARSS.ppt
 
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...
 

More from InfoAndina CONDESAN

Experiencias de recuperación y rehabilitación de andenes mediante concursos i...
Experiencias de recuperación y rehabilitación de andenes mediante concursos i...Experiencias de recuperación y rehabilitación de andenes mediante concursos i...
Experiencias de recuperación y rehabilitación de andenes mediante concursos i...InfoAndina CONDESAN
 
Comparación Política de Terrazas entre Perú y Japón
Comparación Política de Terrazas entre Perú y JapónComparación Política de Terrazas entre Perú y Japón
Comparación Política de Terrazas entre Perú y JapónInfoAndina CONDESAN
 
Sistema Nacional de Áreas Naturales Protegidas por el Estado : Gobernanza con...
Sistema Nacional de Áreas Naturales Protegidas por el Estado : Gobernanza con...Sistema Nacional de Áreas Naturales Protegidas por el Estado : Gobernanza con...
Sistema Nacional de Áreas Naturales Protegidas por el Estado : Gobernanza con...InfoAndina CONDESAN
 
Safeguarding our Heritage for our Grandchildren - Can UNESCO help?
Safeguarding our Heritage for our Grandchildren - Can UNESCO help?Safeguarding our Heritage for our Grandchildren - Can UNESCO help?
Safeguarding our Heritage for our Grandchildren - Can UNESCO help?InfoAndina CONDESAN
 
Recuperación de andenes en la comunidad campesina Barrio Bajo de Matucana
Recuperación de andenes en la comunidad campesina Barrio Bajo de MatucanaRecuperación de andenes en la comunidad campesina Barrio Bajo de Matucana
Recuperación de andenes en la comunidad campesina Barrio Bajo de MatucanaInfoAndina CONDESAN
 
Tipologías de terrazas en la agricultura canaria
Tipologías de terrazas en la agricultura canariaTipologías de terrazas en la agricultura canaria
Tipologías de terrazas en la agricultura canariaInfoAndina CONDESAN
 
Mantenimiento agrícola en los Andes: Rehabilitación y puesta en uso de sistem...
Mantenimiento agrícola en los Andes: Rehabilitación y puesta en uso de sistem...Mantenimiento agrícola en los Andes: Rehabilitación y puesta en uso de sistem...
Mantenimiento agrícola en los Andes: Rehabilitación y puesta en uso de sistem...InfoAndina CONDESAN
 
Propuesta metodológica para la valoración, conservación y recuperación del pa...
Propuesta metodológica para la valoración, conservación y recuperación del pa...Propuesta metodológica para la valoración, conservación y recuperación del pa...
Propuesta metodológica para la valoración, conservación y recuperación del pa...InfoAndina CONDESAN
 
Cambios en la gestión del territorio en las comunidades campesinas altoandina...
Cambios en la gestión del territorio en las comunidades campesinas altoandina...Cambios en la gestión del territorio en las comunidades campesinas altoandina...
Cambios en la gestión del territorio en las comunidades campesinas altoandina...InfoAndina CONDESAN
 
Proyecto Incremento de los Ingresos Económico de los Pequeños Productores Agr...
Proyecto Incremento de los Ingresos Económico de los Pequeños Productores Agr...Proyecto Incremento de los Ingresos Económico de los Pequeños Productores Agr...
Proyecto Incremento de los Ingresos Económico de los Pequeños Productores Agr...InfoAndina CONDESAN
 
La zonificación como estrategia de conservación y uso racional de la agrobiod...
La zonificación como estrategia de conservación y uso racional de la agrobiod...La zonificación como estrategia de conservación y uso racional de la agrobiod...
La zonificación como estrategia de conservación y uso racional de la agrobiod...InfoAndina CONDESAN
 
Gestión del territorio en el santuario histórico de Machupicchu
Gestión del territorio en el santuario histórico de MachupicchuGestión del territorio en el santuario histórico de Machupicchu
Gestión del territorio en el santuario histórico de MachupicchuInfoAndina CONDESAN
 
Fortalecimiento de capacidades 10 cultivos en las provincias de Calca, Espina...
Fortalecimiento de capacidades 10 cultivos en las provincias de Calca, Espina...Fortalecimiento de capacidades 10 cultivos en las provincias de Calca, Espina...
Fortalecimiento de capacidades 10 cultivos en las provincias de Calca, Espina...InfoAndina CONDESAN
 
Agrobiodiversidad: Reserva Paisajística Nor Yauyos Cocha
Agrobiodiversidad: Reserva Paisajística Nor Yauyos CochaAgrobiodiversidad: Reserva Paisajística Nor Yauyos Cocha
Agrobiodiversidad: Reserva Paisajística Nor Yauyos CochaInfoAndina CONDESAN
 
Sistemas de riego predial regulados por microreservorios: Cosecha de agua y p...
Sistemas de riego predial regulados por microreservorios: Cosecha de agua y p...Sistemas de riego predial regulados por microreservorios: Cosecha de agua y p...
Sistemas de riego predial regulados por microreservorios: Cosecha de agua y p...InfoAndina CONDESAN
 
Mitigación Ecosistémica & Participativa del Retraimiento Glaciar Andino
Mitigación Ecosistémica & Participativa del Retraimiento Glaciar AndinoMitigación Ecosistémica & Participativa del Retraimiento Glaciar Andino
Mitigación Ecosistémica & Participativa del Retraimiento Glaciar AndinoInfoAndina CONDESAN
 
Propuesta: Construir andenes para mitigar estratégicamente el retrimiento gla...
Propuesta: Construir andenes para mitigar estratégicamente el retrimiento gla...Propuesta: Construir andenes para mitigar estratégicamente el retrimiento gla...
Propuesta: Construir andenes para mitigar estratégicamente el retrimiento gla...InfoAndina CONDESAN
 
Cooperación de JICA en el Desarrollo Agrario y Rural en la Sierra del Perú
Cooperación de JICA en el Desarrollo Agrario y Rural en la Sierra del PerúCooperación de JICA en el Desarrollo Agrario y Rural en la Sierra del Perú
Cooperación de JICA en el Desarrollo Agrario y Rural en la Sierra del PerúInfoAndina CONDESAN
 
Uso ancestral del agua en el Perú
Uso ancestral del agua en el PerúUso ancestral del agua en el Perú
Uso ancestral del agua en el PerúInfoAndina CONDESAN
 

More from InfoAndina CONDESAN (20)

Experiencias de recuperación y rehabilitación de andenes mediante concursos i...
Experiencias de recuperación y rehabilitación de andenes mediante concursos i...Experiencias de recuperación y rehabilitación de andenes mediante concursos i...
Experiencias de recuperación y rehabilitación de andenes mediante concursos i...
 
Comparación Política de Terrazas entre Perú y Japón
Comparación Política de Terrazas entre Perú y JapónComparación Política de Terrazas entre Perú y Japón
Comparación Política de Terrazas entre Perú y Japón
 
Sistema Nacional de Áreas Naturales Protegidas por el Estado : Gobernanza con...
Sistema Nacional de Áreas Naturales Protegidas por el Estado : Gobernanza con...Sistema Nacional de Áreas Naturales Protegidas por el Estado : Gobernanza con...
Sistema Nacional de Áreas Naturales Protegidas por el Estado : Gobernanza con...
 
Safeguarding our Heritage for our Grandchildren - Can UNESCO help?
Safeguarding our Heritage for our Grandchildren - Can UNESCO help?Safeguarding our Heritage for our Grandchildren - Can UNESCO help?
Safeguarding our Heritage for our Grandchildren - Can UNESCO help?
 
Recuperación de andenes en la comunidad campesina Barrio Bajo de Matucana
Recuperación de andenes en la comunidad campesina Barrio Bajo de MatucanaRecuperación de andenes en la comunidad campesina Barrio Bajo de Matucana
Recuperación de andenes en la comunidad campesina Barrio Bajo de Matucana
 
Tipologías de terrazas en la agricultura canaria
Tipologías de terrazas en la agricultura canariaTipologías de terrazas en la agricultura canaria
Tipologías de terrazas en la agricultura canaria
 
Mantenimiento agrícola en los Andes: Rehabilitación y puesta en uso de sistem...
Mantenimiento agrícola en los Andes: Rehabilitación y puesta en uso de sistem...Mantenimiento agrícola en los Andes: Rehabilitación y puesta en uso de sistem...
Mantenimiento agrícola en los Andes: Rehabilitación y puesta en uso de sistem...
 
Propuesta metodológica para la valoración, conservación y recuperación del pa...
Propuesta metodológica para la valoración, conservación y recuperación del pa...Propuesta metodológica para la valoración, conservación y recuperación del pa...
Propuesta metodológica para la valoración, conservación y recuperación del pa...
 
Cambios en la gestión del territorio en las comunidades campesinas altoandina...
Cambios en la gestión del territorio en las comunidades campesinas altoandina...Cambios en la gestión del territorio en las comunidades campesinas altoandina...
Cambios en la gestión del territorio en las comunidades campesinas altoandina...
 
Proyecto Incremento de los Ingresos Económico de los Pequeños Productores Agr...
Proyecto Incremento de los Ingresos Económico de los Pequeños Productores Agr...Proyecto Incremento de los Ingresos Económico de los Pequeños Productores Agr...
Proyecto Incremento de los Ingresos Económico de los Pequeños Productores Agr...
 
La zonificación como estrategia de conservación y uso racional de la agrobiod...
La zonificación como estrategia de conservación y uso racional de la agrobiod...La zonificación como estrategia de conservación y uso racional de la agrobiod...
La zonificación como estrategia de conservación y uso racional de la agrobiod...
 
Gestión del territorio en el santuario histórico de Machupicchu
Gestión del territorio en el santuario histórico de MachupicchuGestión del territorio en el santuario histórico de Machupicchu
Gestión del territorio en el santuario histórico de Machupicchu
 
Fortalecimiento de capacidades 10 cultivos en las provincias de Calca, Espina...
Fortalecimiento de capacidades 10 cultivos en las provincias de Calca, Espina...Fortalecimiento de capacidades 10 cultivos en las provincias de Calca, Espina...
Fortalecimiento de capacidades 10 cultivos en las provincias de Calca, Espina...
 
Agrobiodiversidad: Reserva Paisajística Nor Yauyos Cocha
Agrobiodiversidad: Reserva Paisajística Nor Yauyos CochaAgrobiodiversidad: Reserva Paisajística Nor Yauyos Cocha
Agrobiodiversidad: Reserva Paisajística Nor Yauyos Cocha
 
Sistemas de riego predial regulados por microreservorios: Cosecha de agua y p...
Sistemas de riego predial regulados por microreservorios: Cosecha de agua y p...Sistemas de riego predial regulados por microreservorios: Cosecha de agua y p...
Sistemas de riego predial regulados por microreservorios: Cosecha de agua y p...
 
Mitigación Ecosistémica & Participativa del Retraimiento Glaciar Andino
Mitigación Ecosistémica & Participativa del Retraimiento Glaciar AndinoMitigación Ecosistémica & Participativa del Retraimiento Glaciar Andino
Mitigación Ecosistémica & Participativa del Retraimiento Glaciar Andino
 
Propuesta: Construir andenes para mitigar estratégicamente el retrimiento gla...
Propuesta: Construir andenes para mitigar estratégicamente el retrimiento gla...Propuesta: Construir andenes para mitigar estratégicamente el retrimiento gla...
Propuesta: Construir andenes para mitigar estratégicamente el retrimiento gla...
 
Cooperación de JICA en el Desarrollo Agrario y Rural en la Sierra del Perú
Cooperación de JICA en el Desarrollo Agrario y Rural en la Sierra del PerúCooperación de JICA en el Desarrollo Agrario y Rural en la Sierra del Perú
Cooperación de JICA en el Desarrollo Agrario y Rural en la Sierra del Perú
 
Zanotelli
ZanotelliZanotelli
Zanotelli
 
Uso ancestral del agua en el Perú
Uso ancestral del agua en el PerúUso ancestral del agua en el Perú
Uso ancestral del agua en el Perú
 

Dynamic modeling of glaciated watershed processes

  • 1. Dynamic modeling of glaciated watershed processes: Retrospective analysis and future predictions in the headwaters of the Zongo River, Bolivia Chris Frans1, Erkan Istanbulluoglu1, Bibi Naz1*, Dennis Lettenmaier1, Thomas Condom2 1Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA, 2IRD/UJF-Grenoble 1/CNRS/Grenoble-INP, Laboratorie d’etude des Transferts en Hydrologie et Environnement (LTHE) *Now at Oak Ridge National Laboratory, Oak Ridge, TN, USA 1. Summary In high-altitude regions the contribution of glacier melt to runoff is often critical to sustain water supply throughout the year. The tropical glaciers of the South American Andes, whose melt contributes to water supply and energy production, have retreated at unprecedented rates since the 1970’s. Loss of these ice reservoirs will have critical implications to downstream densely populated areas. In this study we use a recently developed glacio-hydrological model to evaluate the contribution of glacier melt to streamflow and track this contribution in time with changing glacier area. A glacier model based on the shallow ice approximation (SIA), solving time- evolving and spatially-distributed balance equations for glacier mass and momentum, is integrated within the Distributed Hydrology Soil Vegetation Model (DHSVM). The model is used to simulate the glacio-hydrologic behavior of the headwaters of the Zongo River during the historical period of 1985-2010. Model performance is evaluated by comparing model predictions with observed glacier extent, mass balance, discharge, and terms of the surface energy balance. Further, the modeling approach is used to predict this transitioning contribution of glacier melt into the future using a stochastic statistical downscaling technique where multiple realizations of future climate are produced using predictions from general circulation models (GCMs) and a weather generator (AWE-GEN). The results of this study demonstrate the applicability of dynamic modeling, of both glacier and watershed processes, for prediction of trends and uncertainties of streamflow in vulnerable high altitude areas that rely on glacier melt. Resumen El agua de glaciares es un recurso importante para el suminstro de agua para consumo humano a lo largo del año. Los glaciares tropicales de los Andes Sudamericanos han retrocedido a velocidades imprecedentes después los setentas. La pérdida de estas reservas de agua tendrán consecuencias críticas en localidades altamente pobladas localizadas aguas abajo. En este estudio usamos un modelo hidrológico-glacial recientemente desarrollado para evaluar la contribución del glacial en la descarga del Río Zongo y para evaluar si dicha contribución cambia con el retroceso del glaciar en la cabecera del río. Un modelo de procesos glaciales basado en la aproximación de hielo superficial (SIA por sus siglas en Inglés), que resuelve las ecuaciones de balance de masa que evolucionan a lo largo del tiempo, y que es espacialemente distribuida, fue integrado al modelo hidrolócigo DSHVM (Distributed Hydrology Soil Vegetation Model). El modelo resultante fue evaluado contra observaciones de la extensión del glaciar, balance de masa, descarga del río, y elementos del balance de energía. Más tarde fue usado para simular los procesos hidrológicos-glaciares de las cabeceras del Río Zongo durante el periodo histórico de 1985 a 2010. Este futuro también fue investigado a través de este modelo, usando ensambles de datos generados por modelos climáticos globales (GCM por sus siglas en Inglés) y por el modelo generador de variables meteorológicas AWE-GEN (Advanced Weather GENerator). Los resultados de este estudio demuestran el uso del modelado dinámico de los procesos glaciares y los procesos hidrológicos en una cuenca en conjunto, para predecir tendencias e incertidumbre en la descarga de ríos en zonas altas vulnerables que dependen de agua de glaciares. 2. Study Location 4. Retrospective Analysis 3. Modeling Method 5. Future Predictions 6. Conclusions • Retrospective (1987-2010) model simulations indicate that on average glacier melt represented 31% of annual discharge from the watershed. This value increases seasonally, up to 90% during dry years. • An analysis of 11 CMIP5 RCP4.5 GCM outputs reveals that high altitude air temperatures are expected to increase throughout the year, with the highest increases of 3-4 degrees during the winter months by 2100. • Initial results of future simulations indicate that glacier melt will both increase and decrease seasonally in the near future with ongoing recession, however will decline throughout the entire year in the latter half of the 21st century. • These findings demonstrate the potential of this coupled glacio- hydroloigcal physics based modeling as a powerful tool for the prediction of glaciated watershed processes in the context of water resources. • Further analysis of uncertainty is required to strengthen the confidence in model predictions DHSVM Glacier Dynamics Model Watershed Hydrologic Processes Accumulation and Ablation Surface Mass Balance Dynamic Ice Flow in Response to Surface Mass Balance Change in Glacier thickness and Area Melt Streamflow Coupling of Models Ice Snow Bedrock/ Soil 1 12 2 ( ) ( , ) ( ) 2 nn mice xy n m m xy ice xy A g S D H S H C g S H n          ( ) ice n xy xy water bS D S t          nb IWE SWE    Glen’s Flow Law Weertman Sliding Law Non-linear Ice Diffusion Momentum Diffusivity A S O N D J F M A M J J A -100 -50 0 50 100 150 Month Wattsm-2 Surface Energy Balance (Elev. 5050 m, WY 2000) SWnet LE SH LWnet Normalized Difference Snow Index (NDSI) (Landsat 4-5 TM scenes) Headwaters of the Zongo River • Located 30 km north of La Paz (-16.25, -68.1) • 14 drainage area • Runoff is intercepted and routed to reservoir for hydro-electricity production • Glacier extent decreased 54% from 1987-2010 (Huayna Potosi, left) • Distinct seasonality: wet and warm Nov. to March, dry and cold May through August. • Accumulation occurs during the wet season while ablation occurs throughout the year. 2 km Distributed Hydrology Soil Vegetation Model (DHSVM, Wigmosta et al., 1994) • Fully distributed physically based hydrology model • Sub-daily timesteps • Two layer energy balance snow/ice accumulation and melt model UBC Glacier Dynamics Model (Garry Clarke, UBC; Jarosch et al., 2013) • Based on shallow ice approximation • Solves time-evolving balance equations for glacier mass and momentum • Spatially distributed • Monthly time-step • Forced with mass balance calculated by DHSVM model The glacier dynamics model is integrated in the DHSVM hydrology model. DHSVM is run at subdaily timesteps, simulating all hydrologic processes, including snow accumulation and melt, snow densification to ice, and glacier ice ablation. Mass balance for each gridcell covered with a glacier is provided to the glacier dynamics model at a monthly time-step. Flow of ice is calculated in response to surface mass balance fluctuations. The thickness and extent of glacier ice is updated accounting for the simulated dynamic ice flow [Naz et al. (in review)]. Model Inputs • 50 meter Digital Elevation Model (DEM, ASTER GDEM) • Hourly air temperature, relative humidity, wind speed, incoming incoming shortwave and longwave radiation, precipitation -Source: Modern Era Retrospective Analysis for Research and applications (MERRA,NASA) bias corrected using hourly GLACIOCLIM observations. • Soil Depth (estimated) • Bed Topography (estimated, Clarke et al. 2013) • Land Cover (Texas A&M University) • Soil classes (estimated) • Hourly solar shading and skyview maps (estimated from DEM) • Initial ice thickness (estimated with glacier dynamics model) Step 1: Spin-up to steady state matching oldest satellite derived extent (1987) Step 2: 30 year spin-up with current climate to thin glaciers to transient state (iterate length of spin-up to match observed recession) Glaciological Simulation -8000 -7000 -6000 -5000 -4000 -3000 -2000 -1000 0 1000 2000 4900 5000 5100 5200 5300 5400 5500 5600 5700 Elevation (m) MassBalance(mmw.e.) Simulated and Observed Mass Balance: Zongo Glacier 1992-2009 Simulated Annual Simulated Mean Annual Observed (1991-2009) 1985 1990 1995 2000 2005 2010 -25 -20 -15 -10 -5 0 Year Balance(mw.e.) Cumulative Mass Balance: Zongo Glacier 1986-2010 Simulated Hydrological (Soruco et al. 2009) Adjusted Glaciological (Soruco et al. 2009) 19951990 20102005 Demonstrating the performance of the modeling approach (a,b) simulated mass balance is compared with observations (GLACIOCLIM, Soruco et al., 2009), (c) modeled mean monthly surface energy fluxes are compared with observations digitized from Communidad Andina (2007), and (d-g) comparing modeled I.W.E with glacier extent derived from Landsat satellite imagery. (a) (b) (c) (d) (g)(f) (e) Hydrologic Simulation Stochastic Downscaling of CMIP5 RCP4.5 GCM Output using an hourly weather generator (Advanced WEather GENerator AWE-GEN) [Fatichi et al. 2011] 1)EstimateAWE-GEN parameters from historical observations 2) Calculate statistical properties of GCM model outputs 3) Calculate PDFs of factors of change for each climate statistic using Bayesian approach with GCM output and observations 5) Extend precipitation statistics to finer time scales 4) Estimate mean factors of change from PDFs 6) Calculate new AWE- GEN parameters from future statistics obtained in steps 4,5 (parameters are calculated for each decade to represent transitional climate) 7) AWE-GEN construction of future climate forcing Factors of Change (170 PDFs total): Temperature FUT = Future time period Precipitation HIST= Historic time period S(h) = Precipitation statistic at aggregation hour interval h Precipitation Statistics: Mean, Variance, Skewness, Frequency of non-precipitation Coefficient of Variation (annual) , , ( )FUT OBS GCM FUT GCM HIST mon mon mon monT T T T   , , ( ) ( ) ( ) ( ) FUT GCM FUT OBS GCM HIST S h S h S h S h  Sept-90 Sept-91 Sept-92 Sept-93 Sept-94 Sept-95 Sept-96 Sept-97 Sept-98 0 200 400 600 literssec -1 DHSVM Qtotal DHSVM Qglacier ObservedALPACA CANAL 0 2 4 6 0 0.1 0.2 0.3 0.4 T [°C] Factor of Change for Air Temperature pdf T T GCMs 5 10 15 20 25 0 0.2 0.4 0.6 0.8 Pr [mm] Frequency Mean Precipitation (June) pdf HIST pdf FUT 0.4 0.6 0.8 1 1.2 1.4 0 0.1 0.2 0.3 0.4 Factor of Change Factor of Change for Mean Precipitation pdf FC FC GCMs -10 -5 0 5 10 0 0.1 0.2 0.3 0.4 Ta [°C] Frequency Monthly Air Temperature (June) pdf HIST pdf FUT Downscaling Steps: Example visualizations of downscaling steps: J F M A M J J A S O N D 0 1 2 3 4 5 6 Month T[°C] Ta500hPa Factors of Change 2080-2100 BCC-CSM1 ACCESS1 CanESM2 CCSM4 CNCRM CSIRO-Mk3.6 GFDL-CM3 INMCM4 MIROC5 MRIGCM NORESM1 J F M A M J J A S O N D 0 0.5 1 1.5 2 2.5 Precip. Factors of Change 2080-2100 Month [FUT/HIST] Hourly time series of Ta, SWin, RH, Wind, Precip., Cloud Cover (2011-2100) J F M A M J J A S O N D -4 -2 0 2 4 6 8 [°C] Monthly Air Temperature HIST 2080-2100 J F M A M J J A S O N D 0 50 100 150 200 [mm] Monthly Precipitation HIST 2080-2100 0 2 4 mm 0 500 1000 Wm-2 -5 0 5 C Ta SW in PPT Predicted Glacier Response 2011-2100 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 0 200 400 600 800 Discharge(literssec-1 ) 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 0 200 400 600 800 Water Year Simulated ObservedZongo Proglacial Stream Sept-93 Sept-94 Sept-95 Sept-96 0 100 200 300 400 500 literssec-1 Sept-03 Sept-04 Sept-05 Sept-06 Sept-07 Sept-08 Sept-09 Qtotal Qglacier Observed Proglacial Stream (Monthly) 7. References Clarke, Garry K. C., Faron S. Anslow, Alexander H. Jarosch, Valentina Radić, Brian Menounos, Tobias Bolch, Etienne Berthier, 2013: Ice volume and subglacial topography for western canadian glaciers from mass balance fields, thinning rates, and a bed stress model. J. Climate, 26, 4282–4303. Fatichi, Simone, Valeriy Y. Ivanov, and Enrica Caporali. "Simulation of future climate scenarios with a weather generator." Advances in Water Resources34.4 (2011): 448-467. Comunidad Andina (2007), Is it the end of snowy heights? Glaciers and Climate change in the Andean Community. General Secretariat of the Andean Community . GLACIOCLIM database http://www-lgge.ujf-grenoble.fr/ServiceObs/ Last accessed 12/1/2012. AH, Jarosch. "Restoring mass conservation to shallow ice flow models over complex terrain." The Cryosphere 7.24 (2013): 229-240. Naz, B. S., Frans, C. D., Clarke, G. K. C., Burns, P., and Lettenmaier, D. P.: Modeling the effect of glacier recession on streamflow response using a coupled glacio-hydrological model, Hydrol. Earth Syst. Sci. Discuss., 10, 5013-5056, doi:10.5194/hessd-10-5013- 2013, 2013.Soruco Wigmosta, Mark S., Lance W. Vail, and Dennis P. Lettenmaier. "A distributed hydrology‐vegetation model for complex terrain." Water resources research 30.6 (1994): 1665-1679. We would like to thank Pat Burns for his production of the Landsat glacier extent estimates. Importance of Glacier Dynamics No Dynamics with Dynamics Comparing simulations (1985- 2010) (a) without and (b) with glacier dynamics highlights the importance of representing the dynamic redistribution of ice over longer periods of time. 4 6 8 10 12 x 10 7 [m3 ] 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 10 15 20 25 30 [%] Glacier Volume Glacier Extent Predicted Hydrologic Response 2011-2100 Glacio-Hydrologic Simulations of 8 Future Climate Realizations: 2040 2060 2080 2100 (a) (b) (c) (d) (e) (f) Modeled evolution of glacier (a) volume, (b) extent, and (c-f) spatial changes of ice water equivalent (I.W.E.). (a) (b) S O N D J F M A M J J A 0 200 400 600 800 literssec-1 S O N D J F M A M J J A S O N D J F M A M J J A Total Discharge Glacier Melt Discharge Dry 2005 Mean 1987-2010 Wet 2009 All Watershed Discharge The model was calibrated to optimize both streamflow and cumulative mass balance of Zongo glacier. Simulated daily (monthly) discharge of the proglacial stream is shown at right (below). Nash Sutcliffe efficiency values for monthly flow range from 0.4-0.7 for the different locations and periods of record in the watershed. On average glacier melt contributes 40% of total monthly watershed discharge but can represent nearly 90% of total discharge during low flows in dry years (left). 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 0 500 1000 [mm] S O N D J F M A M J J A 0 50 100 150 [mm] S O N D J F M A M J J A 2030-2050 2080-2100 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 0 200 400 600 800 1000 1200 1400 mm S O N D J F M A M J J A 0 50 100 150 200 mm S O N D J F M A M J J A Glacier Melt Total Runoff Total Runoff Glacier Melt 1987-2010 Total Runoff 1987-2010 Glacier Melt 2030-2050 2080-2100 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 0 200 400 600 800 1000 1200 1400 mm S O N D J F M A M J J A 0 50 100 150 200 mm S O N D J F M A M J J A Glacier Melt Total Runoff Total Runoff Glacier Melt 1987-2010 Total Runoff 1987-2010 Glacier Melt 2030-2050 2080-2100 S O N D J F M A M J J A -60 -40 -20 0 20 40 60 [%] S O N D J F M A M J J A -60 -40 -20 0 Total Runoff Glacier Melt 2030-2050 2080-2100 Changes in Watershed Runoff Initial predictions indicate decreased (increased) runoff in summer (winter) in the near future (2030-2100) through changes in glacier melt . In the far future (2080-2100), decreased runoff is predicted throughout the year (up to -36%), through drastic declines in glacier melt contribution.