UNIDAD EDUCATIVA IMBABURA PCEI / 2017-2018
FORMULAS DE CINEMATICA / FISICA I – II
M.R.U.
𝑑 = 𝑣 ∗ 𝑡 𝑣 =
𝑑
𝑡
𝑡 =
𝑑
𝑣
M.R.U.V.
𝑉𝑓 = 𝑉𝑜 + 𝑎 ∗ 𝑡 𝑡 =
𝑉𝑓 − 𝑉𝑜
𝑎
𝑎 =
𝑉𝑓 − 𝑉𝑜
𝑡
𝑉𝑓2
= 𝑉𝑜2
+ 2 ∗ 𝑎 ∗ 𝑑
𝑉𝑚 =
𝑋2 − 𝑋1
𝑡2 − 𝑡1
𝑉𝑓 =
2 ∗ 𝑑 − 𝑉𝑜 ∗ 𝑡2
2 ∗ 𝑑
𝑑 = 𝑉𝑜 ∗ 𝑡 +
𝑎 ∗ 𝑡2
2
𝑎 =
2( 𝑑 − 𝑉𝑜 ∗ 𝑡)
𝑡2
𝑑 = (
𝑉𝑜 + 𝑉𝑓
2
) ∗ 𝑡
𝑉𝑜 =
(𝑑 −
𝑎 ∗ 𝑡2
2
)
𝑡
𝑉𝑜 =
2𝑑 − 𝑣𝑓 ∗ 𝑡
𝑡
CAIDA LIBRE
𝑉𝑓 = 𝑉𝑜 ± 𝑔 ∗ 𝑡 𝑉𝑓2
= 𝑉𝑜2
± 2 ∗ 𝑔 ∗ ℎ 𝑡𝑚𝑎𝑥 =
𝑉𝑜
𝑔
𝑡𝑣 =
2 ∗ 𝑉𝑜
𝑔
ℎ = 𝑉𝑜 ∗ 𝑡 ±
𝑔 ∗ 𝑡2
2
ℎ𝑚𝑎𝑥 =
𝑉𝑜2
2 ∗ 𝑔
UNIDAD EDUCATIVA IMBABURA PCEI / 2017-2018
FORMULAS DE CINEMATICA / FISICA I – II
𝑡𝑣 = 2 ∗ 𝑡𝑚𝑎𝑥 𝑡 =
𝑉𝑓 − 𝑉𝑜
𝑔
𝑉𝑜 = 𝑉𝑓 − 𝑔 ∗ 𝑡
MOVIMIENTO SEMI-PARABOLICO
𝑉𝑦 = 𝑔 ∗ 𝑡 Vy = 0
Vox = Vx = Kte
𝑋 = 𝑉𝑜𝑥 ∗ 𝑡 𝑌 =
𝑔 ∗ 𝑡2
2
𝑉 = √𝑉𝑥2 + 𝑉𝑦2
𝑡 =
𝑋
𝑉𝑜𝑥
𝑡 = √
2𝑦
𝑔
𝑉𝑓𝑦2
= 𝑉𝑜𝑦2
+ 2 ∗ 𝑔 ∗ 𝑦
tan 𝛼 =
𝑉𝑦
𝑉𝑥
MOVIMIENTO PARABOLICO
𝑉𝑜𝑥 = 𝑉𝑜 ∗ cos 𝜃 𝑉𝑜𝑦 = 𝑉𝑜 ∗ sen 𝜃 𝑌𝑚𝑎𝑥 =
𝑉𝑜2
∗ 𝑠𝑒𝑛2
𝜃
2 ∗ 𝑔
𝑉𝑥 = 𝑉𝑜 ∗ cos 𝜃 𝑉𝑦 = 𝑉𝑜𝑦 − 𝑔 ∗ 𝑡 𝑡𝑠 =
𝑉𝑜 ∗ 𝑠𝑒𝑛𝜃
𝑔
𝑋𝑚𝑎𝑥 = 𝑉𝑜𝑥 ∗ 𝑡𝑣 𝑉𝑦 = 𝑉𝑜 ∗ sin 𝜃 − 𝑔 ∗ 𝑡 𝑡𝑣 =
2𝑉𝑜 ∗ 𝑠𝑒𝑛𝜃
𝑔
𝑋𝑚𝑎𝑥 =
2 ∗ 𝑉𝑜2
∗ 𝑐𝑜𝑠𝜃 ∗ 𝑠𝑒𝑛𝜃
𝑔
𝑋𝑚𝑎𝑥 =
𝑉𝑜2
∗ 𝑠𝑒𝑛2𝜃
𝑔
𝑉 = √𝑉𝑥2 + 𝑉𝑦2
𝑌 = 𝑉𝑜𝑦 ∗ 𝑡 −
1
2
∗ 𝑔 ∗ 𝑡2
𝑌 = (𝑉𝑜 ∗ 𝑠𝑒𝑛𝜃) ∗ 𝑡 −
1
2
∗ 𝑔 ∗ 𝑡2

Formulas cinematica

  • 1.
    UNIDAD EDUCATIVA IMBABURAPCEI / 2017-2018 FORMULAS DE CINEMATICA / FISICA I – II M.R.U. 𝑑 = 𝑣 ∗ 𝑡 𝑣 = 𝑑 𝑡 𝑡 = 𝑑 𝑣 M.R.U.V. 𝑉𝑓 = 𝑉𝑜 + 𝑎 ∗ 𝑡 𝑡 = 𝑉𝑓 − 𝑉𝑜 𝑎 𝑎 = 𝑉𝑓 − 𝑉𝑜 𝑡 𝑉𝑓2 = 𝑉𝑜2 + 2 ∗ 𝑎 ∗ 𝑑 𝑉𝑚 = 𝑋2 − 𝑋1 𝑡2 − 𝑡1 𝑉𝑓 = 2 ∗ 𝑑 − 𝑉𝑜 ∗ 𝑡2 2 ∗ 𝑑 𝑑 = 𝑉𝑜 ∗ 𝑡 + 𝑎 ∗ 𝑡2 2 𝑎 = 2( 𝑑 − 𝑉𝑜 ∗ 𝑡) 𝑡2 𝑑 = ( 𝑉𝑜 + 𝑉𝑓 2 ) ∗ 𝑡 𝑉𝑜 = (𝑑 − 𝑎 ∗ 𝑡2 2 ) 𝑡 𝑉𝑜 = 2𝑑 − 𝑣𝑓 ∗ 𝑡 𝑡 CAIDA LIBRE 𝑉𝑓 = 𝑉𝑜 ± 𝑔 ∗ 𝑡 𝑉𝑓2 = 𝑉𝑜2 ± 2 ∗ 𝑔 ∗ ℎ 𝑡𝑚𝑎𝑥 = 𝑉𝑜 𝑔 𝑡𝑣 = 2 ∗ 𝑉𝑜 𝑔 ℎ = 𝑉𝑜 ∗ 𝑡 ± 𝑔 ∗ 𝑡2 2 ℎ𝑚𝑎𝑥 = 𝑉𝑜2 2 ∗ 𝑔
  • 2.
    UNIDAD EDUCATIVA IMBABURAPCEI / 2017-2018 FORMULAS DE CINEMATICA / FISICA I – II 𝑡𝑣 = 2 ∗ 𝑡𝑚𝑎𝑥 𝑡 = 𝑉𝑓 − 𝑉𝑜 𝑔 𝑉𝑜 = 𝑉𝑓 − 𝑔 ∗ 𝑡 MOVIMIENTO SEMI-PARABOLICO 𝑉𝑦 = 𝑔 ∗ 𝑡 Vy = 0 Vox = Vx = Kte 𝑋 = 𝑉𝑜𝑥 ∗ 𝑡 𝑌 = 𝑔 ∗ 𝑡2 2 𝑉 = √𝑉𝑥2 + 𝑉𝑦2 𝑡 = 𝑋 𝑉𝑜𝑥 𝑡 = √ 2𝑦 𝑔 𝑉𝑓𝑦2 = 𝑉𝑜𝑦2 + 2 ∗ 𝑔 ∗ 𝑦 tan 𝛼 = 𝑉𝑦 𝑉𝑥 MOVIMIENTO PARABOLICO 𝑉𝑜𝑥 = 𝑉𝑜 ∗ cos 𝜃 𝑉𝑜𝑦 = 𝑉𝑜 ∗ sen 𝜃 𝑌𝑚𝑎𝑥 = 𝑉𝑜2 ∗ 𝑠𝑒𝑛2 𝜃 2 ∗ 𝑔 𝑉𝑥 = 𝑉𝑜 ∗ cos 𝜃 𝑉𝑦 = 𝑉𝑜𝑦 − 𝑔 ∗ 𝑡 𝑡𝑠 = 𝑉𝑜 ∗ 𝑠𝑒𝑛𝜃 𝑔 𝑋𝑚𝑎𝑥 = 𝑉𝑜𝑥 ∗ 𝑡𝑣 𝑉𝑦 = 𝑉𝑜 ∗ sin 𝜃 − 𝑔 ∗ 𝑡 𝑡𝑣 = 2𝑉𝑜 ∗ 𝑠𝑒𝑛𝜃 𝑔 𝑋𝑚𝑎𝑥 = 2 ∗ 𝑉𝑜2 ∗ 𝑐𝑜𝑠𝜃 ∗ 𝑠𝑒𝑛𝜃 𝑔 𝑋𝑚𝑎𝑥 = 𝑉𝑜2 ∗ 𝑠𝑒𝑛2𝜃 𝑔 𝑉 = √𝑉𝑥2 + 𝑉𝑦2 𝑌 = 𝑉𝑜𝑦 ∗ 𝑡 − 1 2 ∗ 𝑔 ∗ 𝑡2 𝑌 = (𝑉𝑜 ∗ 𝑠𝑒𝑛𝜃) ∗ 𝑡 − 1 2 ∗ 𝑔 ∗ 𝑡2